1
|
Payet CA, You A, Fayet OM, Dragin N, Berrih-Aknin S, Le Panse R. Myasthenia Gravis: An Acquired Interferonopathy? Cells 2022; 11:cells11071218. [PMID: 35406782 PMCID: PMC8997999 DOI: 10.3390/cells11071218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/12/2023] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease mediated by antibodies against components of the neuromuscular junction, particularly the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG patients. In early-onset AChR-MG and thymoma-associated MG, an interferon type I (IFN-I) signature is clearly detected in the thymus. The origin of this chronic IFN-I expression in the thymus is not yet defined. IFN-I subtypes are normally produced in response to viral infection. However, genetic diseases called interferonopathies are associated with an aberrant chronic production of IFN-I defined as sterile inflammation. Some systemic autoimmune diseases also share common features with interferonopathies. This review aims to analyze the pathogenic role of IFN-I in these diseases as compared to AChR-MG in order to determine if AChR-MG could be an acquired interferonopathy.
Collapse
Affiliation(s)
- Cloé A Payet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Axel You
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Odessa-Maud Fayet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Nadine Dragin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
2
|
Sengupta M, Wang BD, Lee NH, Marx A, Kusner LL, Kaminski HJ. MicroRNA and mRNA expression associated with ectopic germinal centers in thymus of myasthenia gravis. PLoS One 2018; 13:e0205464. [PMID: 30308012 PMCID: PMC6181382 DOI: 10.1371/journal.pone.0205464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A characteristic pathology of early onset myasthenia gravis is thymic hyperplasia with ectopic germinal centers (GC). However, the mechanisms that trigger and maintain thymic hyperplasia are poorly characterized. Dysregulation of small, non-coding microRNAs (miRNAs) and their target genes has been identified in the pathology of several autoimmune diseases. We assessed the miRNA and mRNA profiles of the MG thymus and have investigated their role in GC formation and maintenance. METHODS MG thymus samples were assessed by histology and grouped based upon the appearance of GC; GC positive and GC negative. A systems biology approach was used to study the differences between the groups. Our study included miRNA and mRNA profiling, quantitative real-time PCR validation, miRNA target identification, pathway analysis, miRNA-mRNA reciprocal expression pairing and interaction. RESULTS Thirty-eight mature miRNAs and forty-six annotated mRNA transcripts were differentially expressed between the two groups (>1.5 fold change, ANOVA p<0.05). The miRNAs were found to be involved in immune response pathways and identified in other autoimmune diseases. The cellular and molecular functions of the mRNAs showed involvement in cell death and cell survival, cellular proliferation, cytokine signaling and extra-cellular matrix reorganization. Eleven miRNA and mRNA pairs were reciprocally regulated. The Regulator of G protein Signalling 13 (RGS13), known to be involved in GC regulation, was identified in specimens with GC and was paired with downregulation of miR-452-5p and miR-139-5p. MiRNA target sites were validated by dual luciferase assay. Transfection of miRNA mimics led to down regulation of RGS13 expression in Raji cells. CONCLUSION Our study indicates a distinct miRNA and mRNA expression pattern in ectopic GC in MG thymus. These miRNAs and mRNAs are involved in regulatory pathways common to inflammation and immune response, cell cycle regulation and anti-apoptotic pathways suggesting their involvement in support of GC formation in the thymus. We demonstrate for the first time that miR-139-5p and miR-452-5p negatively regulate RGS13 expression.
Collapse
Affiliation(s)
- Manjistha Sengupta
- Department of Neurology, George Washington University, Washington, D.C., United States of America
| | - Bi-Dar Wang
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - Norman H. Lee
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
| | - Alexander Marx
- University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Linda L. Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
- * E-mail:
| | - Henry J. Kaminski
- Department of Neurology, George Washington University, Washington, D.C., United States of America
| |
Collapse
|
3
|
Cavalcante P, Barzago C, Baggi F, Antozzi C, Maggi L, Mantegazza R, Bernasconi P. Toll-like receptors 7 and 9 in myasthenia gravis thymus: amplifiers of autoimmunity? Ann N Y Acad Sci 2018; 1413:11-24. [PMID: 29363775 DOI: 10.1111/nyas.13534] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
Pathogen infections and dysregulated Toll-like receptor (TLR)-mediated innate immune responses are suspected to play key roles in autoimmunity. Among TLRs, TLR7 and TLR9 have been implicated in several autoimmune conditions, mainly because of their ability to promote abnormal B cell activation and survival. Recently, we provided evidence of Epstein-Barr virus (EBV) persistence and reactivation in the thymus of myasthenia gravis (MG) patients, suggesting an involvement of EBV in the intrathymic pathogenesis of the disease. Considerable data highlight the existence of pathogenic crosstalk among EBV, TLR7, and TLR9: EBV elicits TLR7/9 signaling, which in turn can enhance B cell dysfunction and autoimmunity. In this article, after a brief summary of data demonstrating TLR activation in MG thymus, we provide an overview on the contribution of TLR7 and TLR9 to autoimmune diseases and discuss our recent findings indicating a pivotal role for these two receptors, along with EBV, in driving, perpetuating, and/or amplifying intrathymic B cell dysregulation and autoimmune responses in MG. Development of therapeutic approaches targeting TLR7 and TLR9 signaling could be a novel strategy for treating the chronic inflammatory autoimmune process in myasthenia gravis.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Claudia Barzago
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Fulvio Baggi
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Carlo Antozzi
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Lorenzo Maggi
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Renato Mantegazza
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Pia Bernasconi
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| |
Collapse
|
4
|
Robinet M, Villeret B, Maillard S, Cron MA, Berrih-Aknin S, Le Panse R. Use of Toll-Like Receptor Agonists to Induce Ectopic Lymphoid Structures in Myasthenia Gravis Mouse Models. Front Immunol 2017; 8:1029. [PMID: 28970832 PMCID: PMC5609563 DOI: 10.3389/fimmu.2017.01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. MG symptoms are characterized by muscle weaknesses. The thymus of MG patients is very often abnormal and possesses all the characteristics of tertiary lymphoid organs such as neoangiogenesis processes, overexpression of inflammatory cytokines and chemokines, and infiltration of B lymphocytes leading to ectopic germinal center (GC) development. We previously demonstrated that injections of mice with polyinosinic–polycytidylic acid [Poly(I:C)], a synthetic double-stranded RNA mimicking viral infection, induce thymic changes and trigger MG symptoms. Upon Poly(I:C) injections, we observed increased thymic expressions of α-AChR, interferon-β and chemokines such as CXCL13 and CCL21 leading to B-cell recruitment. However, these changes were only transient. In order to develop an experimental MG model associated with thymic GCs, we used Poly(I:C) in the classical experimental autoimmune MG model induced by immunizations with purified AChR emulsified in complete Freund’s adjuvant. We observed that Poly(I:C) strongly favored the development of MG as almost all mice displayed MG symptoms. Nevertheless, we did not observe any ectopic GC development. We next challenged mice with Poly(I:C) together with other toll-like receptor (TLR) agonists known to be involved in GC development and that are overexpressed in MG thymuses. Imiquimod and CpG oligodeoxynucleotides that activate TLR7 and TLR9, respectively, did not induce thymic changes. In contrast, lipopolysaccharide that activates TLR4 potentiated Poly(I:C) effects and induced a significant expression of CXCL13 mRNA in the thymus associated with a higher recruitment of B cells that induced over time thymic B-lymphoid structures. Altogether, these data suggest that tertiary lymphoid genesis in MG thymus could result from a combined activation of TLR signaling pathways.
Collapse
Affiliation(s)
- Marieke Robinet
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Bérengère Villeret
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Solène Maillard
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Mélanie A Cron
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| |
Collapse
|
5
|
Dragin N, Nancy P, Villegas J, Roussin R, Le Panse R, Berrih-Aknin S. Balance between Estrogens and Proinflammatory Cytokines Regulates Chemokine Production Involved in Thymic Germinal Center Formation. Sci Rep 2017; 7:7970. [PMID: 28801669 PMCID: PMC5554297 DOI: 10.1038/s41598-017-08631-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
The early-onset form of Myasthenia Gravis (MG) is prevalent in women and associates with ectopic germinal centers (GCs) development and inflammation in the thymus. we aimed to investigate the contribution of estrogens in the molecular processes involved in thymic GCs formation. We examined expression of genes involved in anti-acetylcholine receptor (AChR) response in MG, MHC class II and α-AChR subunit as well as chemokines involved in GC development (CXCL13, CCL21and CXCL12). In resting conditions, estrogens have strong regulatory effects on thymic epithelial cells (TECs), inducing a decreased protein expression of the above molecules. In knockout mouse models for estrogen receptor or aromatase, we observed that perturbation in estrogen transduction pathway altered MHC Class II, α-AChR, and CXCL13 expression. However, in inflammatory conditions, estrogen effects were partially overwhelmed by pro-inflammatory cytokines. Interestingly, estrogens were able to control production of type I interferon and therefore play dual roles during inflammatory events. In conclusion, we showed that estrogens inhibited expression of α-AChR and HLA-DR in TECs, suggesting that estrogens may alter the tolerization process and favor environment for an autoimmune response. By contrast, under inflammatory conditions, estrogen effects depend upon strength of the partner molecules with which it is confronted to.
Collapse
Affiliation(s)
- Nadine Dragin
- Inovarion, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, Paris, France. .,INSERM U974, Paris, France.
| | - Patrice Nancy
- Department of Pathology, New York University, School of Medicine, New York, USA
| | - José Villegas
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, institute of myology, Paris, France
| | | | - Rozen Le Panse
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, institute of myology, Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, institute of myology, Paris, France
| |
Collapse
|
6
|
Truffault F, de Montpreville V, Eymard B, Sharshar T, Le Panse R, Berrih-Aknin S. Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review. Clin Rev Allergy Immunol 2017; 52:108-124. [PMID: 27273086 DOI: 10.1007/s12016-016-8558-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The most common form of Myasthenia gravis (MG) is due to anti-acetylcholine receptor (AChR) antibodies and is frequently associated with thymic pathology. In this review, we discuss the immunopathological characteristics and molecular mechanisms of thymic follicular hyperplasia, the effects of corticosteroids on this thymic pathology, and the role of thymic epithelial cells (TEC), a key player in the inflammatory thymic mechanisms. This review is based not only on the literature data but also on thymic transcriptome results and analyses of pathological and immunological correlations in a vast cohort of 1035 MG patients without thymoma. We show that among patients presenting a thymic hyperplasia with germinal centers (GC), 80 % are females, indicating that thymic follicular hyperplasia is mainly a disease of women. The presence of anti-AChR antibodies is correlated with the degree of follicular hyperplasia, suggesting that the thymus is a source of anti-AChR antibodies. The degree of hyperplasia is not dependent upon the time from the onset, implying that either the antigen is chronically expressed and/or that the mechanisms of the resolution of the GC are not efficiently controlled. Glucocorticoids, a conventional therapy in MG, induce a significant reduction in the GC number, together with changes in the expression of chemokines and angiogenesis. These changes are likely related to the acetylation molecular process, overrepresented in corticosteroid-treated patients, and essential for gene regulation. Altogether, based on the pathological and molecular thymic abnormalities found in MG patients, this review provides some explanations for the benefit of thymectomy in early-onset MG patients.
Collapse
Affiliation(s)
- Frédérique Truffault
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | | | - Bruno Eymard
- Department of Neuromuscular Disorders, CHU Salpêtrière, Paris, France
| | - Tarek Sharshar
- General Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, 92380, Garches, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France. .,CNRS FRE3617, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, Paris, France. .,AIM, Institut de myologie, Paris, France. .,UMRS 974 UPMC, INSERM, FRE 3617 CNRS, AIM, Center of Research in Myology, 105 Boulevard de l'Hôpital, Paris, 75013, France.
| |
Collapse
|
7
|
Lopomo A, Berrih-Aknin S. Autoimmune Thyroiditis and Myasthenia Gravis. Front Endocrinol (Lausanne) 2017; 8:169. [PMID: 28751878 PMCID: PMC5508005 DOI: 10.3389/fendo.2017.00169] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
Autoimmune diseases (AIDs) are the result of specific immune responses directed against structures of the self. In normal conditions, the molecules recognized as "self" are tolerated by immune system, but when the self-tolerance is lost, the immune system could react against molecules from the body, causing the loss of self-tolerance, and subsequently the onset of AID that differs for organ target and etiology. Autoimmune thyroid disease (ATD) is caused by the development of autoimmunity against thyroid antigens and comprises Hashimoto's thyroiditis and Graves disease. They are frequently associated with other organ or non-organ specific AIDs, such as myasthenia gravis (MG). In fact, ATD seems to be the most associated pathology to MG. The etiology of both diseases is multifactorial and it is due to genetic and environmental factors, and each of them has specific characteristics. The two pathologies show many commonalities, such as the organ-specificity with a clear pathogenic effect of antibodies, the pathological mechanisms, such as deregulation of the immune system and the implication of the genetic predisposition. They also show some differences, such as the mode of action of the antibodies and therapies. In this review that focuses on ATD and MG, the common features and the differences between the two diseases are discussed.
Collapse
Affiliation(s)
- Angela Lopomo
- Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics, University of Pisa, Pisa, Italy
| | - Sonia Berrih-Aknin
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- INSERM U974, Paris, France
- AIM, Institute of Myology, Paris, France
- *Correspondence: Sonia Berrih-Aknin,
| |
Collapse
|
8
|
Affiliation(s)
- Sonia Berrih-Aknin
- INSERM U974; Paris France
- CNRS FRE3617; Paris France
- Sorbonne University; UPMC Univ Paris 06; Paris France
- AIM; Institute of Myology; Paris France
| |
Collapse
|
9
|
Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection. Immunobiology 2015; 221:516-27. [PMID: 26723518 DOI: 10.1016/j.imbio.2015.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022]
Abstract
Considerable data implicate the thymus as the main site of autosensitization to the acetylcholine receptor in myasthenia gravis (MG), a B-cell-mediated autoimmune disease affecting the neuromuscular junction. We recently demonstrated an active Epstein-Barr virus (EBV) infection in the thymus of MG patients, suggesting that EBV might contribute to the onset or maintenance of the autoimmune response within MG thymus, because of its ability to activate and immortalize autoreactive B cells. EBV has been reported to elicit and modulate Toll-like receptor (TLR) 7- and TLR9-mediated innate immune responses, which are known to favor B-cell dysfunction and autoimmunity. Aim of this study was to investigate whether EBV infection is associated with altered expression of TLR7 and TLR9 in MG thymus. By real-time PCR, we found that TLR7 and TLR9 mRNA levels were significantly higher in EBV-positive MG compared to EBV-negative normal thymuses. By confocal microscopy, high expression levels of TLR7 and TLR9 proteins were observed in B cells and plasma cells of MG thymic germinal centers (GCs) and lymphoid infiltrates, where the two receptors co-localized with EBV antigens. An increased frequency of Ki67-positive proliferating B cells was found in MG thymuses, where we also detected proliferating cells expressing TLR7, TLR9 and EBV antigens, thus supporting the idea that EBV-associated TLR7/9 signaling may promote abnormal B-cell activation and proliferation. Along with B cells and plasma cells, thymic epithelium, plasmacytoid dendritic cells and macrophages exhibited enhanced TLR7 and TLR9 expression in MG thymus; TLR7 was also increased in thymic myeloid dendritic cells and its transcriptional levels positively correlated with those of interferon (IFN)-β. We suggested that TLR7/9 signaling may be involved in antiviral type I IFN production and long-term inflammation in EBV-infected MG thymuses. Our overall findings indicate that EBV-driven TLR7- and TLR9-mediated innate immune responses may participate in the intra-thymic pathogenesis of MG.
Collapse
|
10
|
Systems biology of myasthenia gravis, integration of aberrant lncRNA and mRNA expression changes. BMC Med Genomics 2015; 8:13. [PMID: 25889429 PMCID: PMC4380247 DOI: 10.1186/s12920-015-0087-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
Background A novel class of transcripts, long non-coding RNAs (lncRNAs), has recently emerged as a key player in several biological processes, and important roles for these molecules have been reported in a number of complex human diseases, such as autoimmune diseases, neurological disorders, and various cancers. However, the aberrant lncRNAs implicated in myasthenia gravis (MG) remain unknown. The aim of the present study was to explore the abnormal expression of lncRNAs in peripheral blood mononuclear cells (PBMCs) and examine mRNA regulatory relationship networks among MG patients with or without thymoma. Methods Microarray assays were performed, and the outstanding differences between lncRNAs or mRNA expression were verified through RT-PCR. The lncRNAs functions were annotated for the target genes using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway. The potential regulatory relationships between the lncRNAs and target genes were analyzed using the ‘cis’ and ‘trans’ model. Outstanding lncRNAs were organized to generate a TF-lncRNA-gene network using Cytoscape software. Results The lncRNA and mRNA expression profile analysis revealed subsets of differentially expressed genes in MG patients with or without thymoma. A total of 12 outstanding dysregulated expression lncRNAs, such as lncRNA oebiotech_11933, were verified through real-time PCR. Several GO terms including the cellular response to interferon-γ, platelet degranulation, chemokine receptor binding and cytokine interactions were very important in MG pathogenesis. The chromosome locations of some lncRNAs and associated co-expression genes were demonstrated using ‘cis’ analysis. The results of the ‘trans’ analysis revealed that some TFs (i.e., CTCF, TAF1and MYC) regulate lncRNA and gene expression. The outstanding lncRNAs in each group were implicated in the regulation of the TF-lncRNA-target gene network. Conclusion The results of the present study provide a perspective on lncRNA expression in MG. We identify a subset of aberrant lncRNAs and mRNAs as potential biomarkers for the diagnosis of MG. The GO and KEGG pathway analysis provides an annotation to determine the functions of these lncRNAs. The results of the ‘cis’ and ‘trans’ analyses provide information concerning the modular regulation of lncRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0087-z) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
IL-6 and Akt are involved in muscular pathogenesis in myasthenia gravis. Acta Neuropathol Commun 2015; 3:1. [PMID: 25627031 PMCID: PMC4308930 DOI: 10.1186/s40478-014-0179-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/15/2014] [Indexed: 01/11/2023] Open
Abstract
Introduction Anti-acetylcholine receptor (AChR) autoantibodies target muscles in spontaneous human myasthenia gravis (MG) and its induced experimental autoimmune model MG (EAMG). The aim of this study was to identify novel functional mechanisms occurring in the muscle pathology of myasthenia. Results A transcriptome analysis performed on muscle tissue from MG patients (compared with healthy controls) and from EAMG rats (compared with control rats) revealed a deregulation of genes associated with the Interleukin-6 (IL-6) and Insulin-Like Growth Factor 1 (IGF-1) pathways in both humans and rats. The expression of IL-6 and its receptor IL-6R transcripts was found to be altered in muscles of EAMG rats and mice compared with control animals. In muscle biopsies from MG patients, IL-6 protein level was higher than in control muscles. Using cultures of human muscle cells, we evaluated the effects of anti-AChR antibodies on IL-6 production and on the phosphorylation of Protein Kinase B (PKB/Akt). Most MG sera and some monoclonal anti-AChR antibodies induced a significant increase in IL-6 production by human muscle cells. Furthermore, Akt phosphorylation in response to insulin was decreased in the presence of monoclonal anti-AChR antibodies. Conclusions Anti-AChR antibodies alter IL-6 production by muscle cells, suggesting a putative novel functional mechanism of action for the anti-AChR antibodies. IL-6 is a myokine with known effects on signaling pathways such as Akt/mTOR (mammalian Target of Rapamycin). Since Akt plays a key role in multiple cellular processes, the reduced phosphorylation of Akt by the anti-AChR antibodies may have a significant impact on the muscle fatigability observed in MG patients. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0179-6) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Vrolix K, Fraussen J, Losen M, Stevens J, Lazaridis K, Molenaar PC, Somers V, Bracho MA, Le Panse R, Stinissen P, Berrih-Aknin S, Maessen JG, Van Garsse L, Buurman WA, Tzartos SJ, De Baets MH, Martinez-Martinez P. Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor. J Autoimmun 2014; 52:101-12. [PMID: 24439114 DOI: 10.1016/j.jaut.2013.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR-MG) is considered as a prototypic autoimmune disease. The thymus is important in the pathophysiology of the disease since thymus hyperplasia is a characteristic of early-onset AChR-MG and patients often improve after thymectomy. We hypothesized that thymic B cell and antibody repertoires of AChR-MG patients differ intrinsically from those of control individuals. Using immortalization with Epstein-Barr Virus and Toll-like receptor 9 activation, we isolated and characterized monoclonal B cell lines from 5 MG patients and 8 controls. Only 2 of 570 immortalized B cell clones from MG patients produced antibodies against the AChR (both clones were from the same patient), suggesting that AChR-specific B cells are not enriched in the thymus. Surprisingly, many B cell lines from both AChR-MG and control thymus samples displayed reactivity against striated muscle proteins. Striational antibodies were produced by 15% of B cell clones from AChR-MG versus 6% in control thymus. The IgVH gene sequence analysis showed remarkable similarities, concerning VH family gene distribution, mutation frequency and CDR3 composition, between B cells of AChR-MG patients and controls. MG patients showed clear evidence of clonal B cell expansion in contrast to controls. In this latter aspect, MG resembles multiple sclerosis and clinically isolated syndrome, but differs from systemic lupus erythematosus. Our results support an antigen driven immune response in the MG thymus, but the paucity of AChR-specific B cells, in combination with the observed polyclonal expansions suggest a more diverse immune response than expected.
Collapse
Affiliation(s)
- Kathleen Vrolix
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Judith Fraussen
- Neuroimmunology group, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Mario Losen
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jo Stevens
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | - Peter C Molenaar
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Veerle Somers
- Neuroimmunology group, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Maria Alma Bracho
- Centre Superior d'Investigació en Salut Pública (CSISP), Àrea de Genòmica i Salut, Conselleria de Sanitat, Generalitat Valenciana, València, Spain; Institut "Cavanilles" de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, València, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia e Innovación, Spain
| | - Rozen Le Panse
- UPMC UM 76/INSERM U974/CNRS UMR7215/Institute of Myology, 105 Bd de l'hôpital, Paris, France
| | - Piet Stinissen
- Neuroimmunology group, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sonia Berrih-Aknin
- UPMC UM 76/INSERM U974/CNRS UMR7215/Institute of Myology, 105 Bd de l'hôpital, Paris, France
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, University Hospital, Maastricht, The Netherlands
| | - Leen Van Garsse
- Department of Cardiothoracic Surgery, University Hospital, Maastricht, The Netherlands
| | - Wim A Buurman
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Socrates J Tzartos
- Department of Biochemistry, Hellenic Pasteur Institute, GR 11521 Athens, Greece
| | - Marc H De Baets
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Neuroimmunology group, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
13
|
Cufi P, Dragin N, Ruhlmann N, Weiss JM, Fadel E, Serraf A, Berrih-Aknin S, Le Panse R. Central role of interferon-beta in thymic events leading to myasthenia gravis. J Autoimmun 2014; 52:44-52. [PMID: 24393484 DOI: 10.1016/j.jaut.2013.12.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/12/2013] [Indexed: 12/30/2022]
Abstract
The thymus plays a primary role in early-onset Myasthenia Gravis (MG) mediated by anti-acetylcholine receptor (AChR) antibodies. As we recently showed an inflammatory and anti-viral signature in MG thymuses, we investigated in detail the contribution of interferon (IFN)-I and IFN-III subtypes in thymic changes associated with MG. We showed that IFN-I and IFN-III subtypes, but especially IFN-β, induced specifically α-AChR expression in thymic epithelial cells (TECs). We also demonstrated that IFN-β increased TEC death and the uptake of TEC proteins by dendritic cells. In parallel, we showed that IFN-β increased the expression of the chemokines CXCL13 and CCL21 by TECs and lymphatic endothelial cells, respectively. These two chemokines are involved in germinal center (GC) development and overexpressed in MG thymus with follicular hyperplasia. We also demonstrated that the B-cell activating factor (BAFF), which favors autoreactive B-cells, was overexpressed by TECs in MG thymus and was also induced by IFN-β in TEC cultures. Some of IFN-β effects were down-regulated when cell cultures were treated with glucocorticoids, a treatment widely used in MG patients that decreases the number of thymic GCs. Similar changes were observed in vivo. The injections of Poly(I:C) to C57BL/6 mice triggered a thymic overexpression of IFN-β and IFN-α2 associated with increased expressions of CXCL13, CCL21, BAFF, and favored the recruitment of B cells. These changes were not observed in the thymus of IFN-I receptor KO mice injected with Poly(I:C), even if IFN-β and IFN-α2 were overexpressed. Altogether, these results demonstrate that IFN-β could play a central role in thymic events leading to MG by triggering the overexpression of α-AChR probably leading to thymic DC autosensitization, the abnormal recruitment of peripheral cells and GC formation.
Collapse
Affiliation(s)
- Perrine Cufi
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of Myology, Paris, France
| | - Nadine Dragin
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of Myology, Paris, France
| | - Nathalie Ruhlmann
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France
| | - Julia Miriam Weiss
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of Myology, Paris, France
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Alain Serraf
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France; Jacques Cartier Hospital, Massy, France
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of Myology, Paris, France
| | - Rozen Le Panse
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of Myology, Paris, France.
| |
Collapse
|
14
|
Berrih-Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun 2014; 52:90-100. [PMID: 24389034 DOI: 10.1016/j.jaut.2013.12.011] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022]
Abstract
Autoimmune myasthenia gravis (MG) is characterized by muscle weakness caused by antibodies directed against proteins of the neuromuscular junction. The main antigenic target is the acetylcholine receptor (AChR), but the muscle Specific Kinase (MuSK) and the low-density lipoprotein receptor-related protein (LRP4) are also targets. This review summarizes the clinical and biological data available for different subgroups of patients, who are classified according to antigenic target, age of onset, and observed thymic abnormalities, such as follicular hyperplasia or thymoma. Here, we analyze in detail the role of the thymus in the physiopathology of MG and propose an explanation for the development of the thymic follicular hyperplasia that is commonly observed in young female patients with anti-AChR antibodies. The influence of the pro-inflammatory environment is discussed, particularly the role of TNF-α and Th17-related cytokines, which could explain the escape of thymic T cells from regulation and the chronic inflammation in the MG thymus. Together with this immune dysregulation, active angiogenic processes and the upregulation of chemokines could promote thymic follicular hyperplasia. MG is a multifactorial disease, and we review the etiological mechanisms that could lead to its onset. Recent global genetic analyses have highlighted potential susceptibility genes. In addition, miRNAs, which play a crucial role in immune function, have been implicated in MG by recent studies. We also discuss the role of sex hormones and the influence of environmental factors, such as the viral hypothesis. This hypothesis is supported by reports that type I interferon and molecules mimicking viral infection can induce thymic changes similar to those observed in MG patients with anti-AChR antibodies.
Collapse
Affiliation(s)
- Sonia Berrih-Aknin
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of myology, Paris, France.
| | - Rozen Le Panse
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of myology, Paris, France.
| |
Collapse
|
15
|
Weiss JM, Cufi P, Le Panse R, Berrih-Aknin S. The thymus in autoimmune Myasthenia Gravis: Paradigm for a tertiary lymphoid organ. Rev Neurol (Paris) 2013; 169:640-9. [DOI: 10.1016/j.neurol.2013.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/10/2013] [Accepted: 02/04/2013] [Indexed: 01/02/2023]
|
16
|
Cavalcante P, Cufi P, Mantegazza R, Berrih-Aknin S, Bernasconi P, Le Panse R. Etiology of myasthenia gravis: Innate immunity signature in pathological thymus. Autoimmun Rev 2013; 12:863-74. [DOI: 10.1016/j.autrev.2013.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/09/2023]
|
17
|
Gradolatto A, Nazzal D, Foti M, Bismuth J, Truffault F, Panse RL, Berrih-Aknin S. Defects of immunoregulatory mechanisms in myasthenia gravis: role of IL-17. Ann N Y Acad Sci 2012; 1274:40-7. [DOI: 10.1111/j.1749-6632.2012.06791.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Franchini A, Bertolotti E. The thymus and tail regenerative capacity in Xenopus laevis tadpoles. Acta Histochem 2012; 114:334-41. [PMID: 21794900 DOI: 10.1016/j.acthis.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 01/19/2023]
Abstract
A morphofunctional analysis of the thymus from differently aged Xenopus laevis tadpoles during regeneration of the tail is reported. In stage 50 larvae, competent to regenerate, the appendage cut provoked thymic structural modifications that affected the medullary microenvironment cells and changes in TNF-α immunoreactivity. Mucocyte-like cells, multicellular epithelial cysts, myoid cells and cells immunoreactive to TNF-α increased in number. Increased numbers of lymphocytes were also found in regenerating areas and, at the end of regeneration, thymic structural and immunocytochemical patterns were restored to control levels. The observed cellular responses and the induction of molecules critical for thymus constitutive processes suggest a stimulation of thymic function after tail amputation. In older larvae, whose capacity to form a new complete and correctly patterned tail was reduced, thymic morphological changes were more severe and may persist throughout the regeneration process with a significant reduction in organ size. In these larvae the histological patterns and the marked thymic decrease may be related to the events occurring during regeneration, i.e. the higher inflammatory response and the reduced tail regenerative potential.
Collapse
|
19
|
Cavalcante P, Maggi L, Colleoni L, Caldara R, Motta T, Giardina C, Antozzi C, Berrih-Aknin S, Bernasconi P, Mantegazza R. Inflammation and epstein-barr virus infection are common features of myasthenia gravis thymus: possible roles in pathogenesis. Autoimmune Dis 2011; 2011:213092. [PMID: 21961056 PMCID: PMC3180177 DOI: 10.4061/2011/213092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 06/23/2011] [Indexed: 12/12/2022] Open
Abstract
The thymus plays a major role in myasthenia gravis (MG). Our recent finding of a persistent Epstein-Barr (EBV) virus infection in some MG thymuses, combined with data showing that the thymus is in a proinflammatory state in most patients, supports a viral contribution to the pathogenesis of MG.
Aim of this study was to gain further evidence for intrathymic chronic inflammation and EBV infection in MG patients. Transcriptional profiling by low density array and real-time PCR showed overexpression of genes involved in inflammatory and immune response in MG thymuses. Real-time PCR for EBV genome, latent (EBER1, EBNA1, LMP1) and lytic (BZLF1) transcripts, and immunohistochemistry for LMP1 and BZLF1 proteins confirmed an active intrathymic EBV infection, further supporting the hypothesis that EBV might contribute to onset or perpetuation of the autoimmune response in MG.
Altogether, our results support a role of inflammation and EBV infection as pathogenic features of MG thymus.
Collapse
Affiliation(s)
- Paola Cavalcante
- Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Neurological Institute C. Besta Foundation, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cavalcante P, Le Panse R, Berrih-aknin S, Maggi L, Antozzi C, Baggi F, Bernasconi P, Mantegazza R. The thymus in myasthenia gravis: Site of “innate autoimmunity”? Muscle Nerve 2011; 44:467-84. [DOI: 10.1002/mus.22103] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Vrolix K, Niks EH, Le Panse R, van Ostaijen-ten Dam MM, Muris AH, Jol-van der Zijde CM, van Tol MJ, Losen M, Molenaar PC, van Zoelen EJ, Berrih-Aknin S, De Baets MH, Verschuuren JJ, Martínez-Martínez P. Reduced thymic expression of ErbB receptors without auto-antibodies against synaptic ErbB in myasthenia gravis. J Neuroimmunol 2011; 232:158-65. [DOI: 10.1016/j.jneuroim.2010.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/27/2010] [Accepted: 10/21/2010] [Indexed: 11/15/2022]
|
22
|
Le Panse R, Bismuth J, Cizeron-Clairac G, Weiss JM, Cufi P, Dartevelle P, De Rosbo NK, Berrih-Aknin S. Thymic remodeling associated with hyperplasia in myasthenia gravis. Autoimmunity 2010; 43:401-12. [DOI: 10.3109/08916930903563491] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|