1
|
Zou W, Kou L, Wang Y, Jin Z, Xiong N, Wang T, Xia Y. Complement C4 exacerbates astrocyte-mediated neuroinflammation and promotes α-synuclein pathology in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:141. [PMID: 40436856 PMCID: PMC12119883 DOI: 10.1038/s41531-025-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/21/2025] [Indexed: 06/01/2025] Open
Abstract
Complement C4, implicated in neuroinflammation and synaptic dysfunction, plays a poorly defined role in Parkinson's disease (PD). Here, we demonstrate elevated C4 levels in PD patient plasma and the substantia nigra of α-synuclein preformed fibril (α-syn PFF)-injected mice, correlating with disease severity. α-syn PFF treatment induces complement C4 expression, particularly in neurons, with astrocytes further enhancing this response. Complement C4 was found to amplify astrocytic inflammatory responses, leading to increased neuronal apoptosis and synaptic damage. Additionally, conditioned media from astrocytes treated with α-syn PFF and complement C4 accelerated α-syn aggregation and synaptic loss in cultured neurons. In vivo, complement C4 exacerbated motor dysfunction, dopaminergic neuronal loss, and α-syn pathology in α-syn PFF-injected mice. These findings reveal that complement C4 significantly contributes to the neuroinflammatory environment and α-syn pathology in PD, highlighting its potential as a therapeutic target for mitigating neurodegeneration in this disorder.
Collapse
Affiliation(s)
- Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Chi X, Yin S, Sun Y, Kou L, Zou W, Wang Y, Jin Z, Wang T, Xia Y. Astrocyte-neuron communication through the complement C3-C3aR pathway in Parkinson's disease. Brain Behav Immun 2025; 123:229-243. [PMID: 39288893 DOI: 10.1016/j.bbi.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024] Open
Abstract
Neuroinflammation and autoimmunity are pivotal in the pathogenesis of neurodegenerative diseases. Complement activation and involvement of astrocyte-neuron C3/C3aR pathway have been observed, yet the mechanisms influencing α-synuclein (α-syn) pathology and neurodegeneration remain unclear. In this study, elevated levels of complement C3 were detected in the plasma of α-syn PFF-induced mice and the substantia nigra of A53T transgenic mice. Colocalization of complement C3 with astrocytes was also observed. Overexpression of complement C3 exacerbated motor dysfunction, dopaminergic neuron loss, and phosphorylated α-syn expression in mice injected with α-syn preformed fibrils (α-syn PFFs). Conversely, downregulation of complement C3 protected α-syn PFF-induced mice. Molecular investigations revealed that inhibition of Toll-like receptor 2 (TLR2) or NF-κB reduced complement C3 expression in primary astrocytes following α-syn PFF treatment. Astrocyte-neuron communication via the C3/C3aR pathway influenced α-syn PFF-induced neuronal apoptosis and α-syn pathology, potentially through modulation of GSK3β. These findings underscore the critical role of astrocyte-neuron communication via the C3/C3aR pathway in PD pathogenesis, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Zhang C, Shi G, Meng Q, Hu R, Li Y, Hu G, Wang K, Huang M. An approach based on a combination of toxicological experiments and in silico predictions to investigate the adverse outcome pathway (AOP) of paraquat neuro-immunotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134607. [PMID: 38761765 DOI: 10.1016/j.jhazmat.2024.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Paraquat (PQ) exposure is strongly associated with neurotoxicity. However, research on the neurotoxicity mechanisms of PQ varies in terms of endpoints of toxic assessment, resulting in a great challenge to understand the early neurotoxic effects of PQ. In this study, we developed an adverse outcome pathway (AOP) to investigate PQ-induced neuro-immunotoxicity from an immunological perspective, combining of traditional toxicology methods and computer simulations. In vivo, PQ can microstructurally lead to an early synaptic loss in the brain mice, which is a large degree regarded as a main reason for cognitive impairment to mice behavior. Both in vitro and in vivo demonstrated synapse loss is caused by excessive activation of the complement C1q/C3-CD11b pathway, which mediates microglial phagocytosis dysfunction. Additionally, the interaction between PQ and C1q was validated by molecular simulation docking. Our findings extend the AOP framework related to PQ neurotoxicity from a neuro-immunotoxic perspective, highlighting C1q activation as the initiating event for PQ-induced neuro-immunotoxicity. In addition, downstream complement cascades induce abnormal microglial phagocytosis, resulting in reduced synaptic density and subsequent non-motor dysfunction. These findings deepen our understanding of neurotoxicity and provide a theoretical basis for ecological risk assessment of PQ.
Collapse
Affiliation(s)
- Chunhui Zhang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Qi Meng
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
4
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
5
|
Scarian E, Viola C, Dragoni F, Di Gerlando R, Rizzo B, Diamanti L, Gagliardi S, Bordoni M, Pansarasa O. New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2698. [PMID: 38473944 DOI: 10.3390/ijms25052698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.
Collapse
Affiliation(s)
- Eveljn Scarian
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Camilla Viola
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
6
|
Xing Y, Zhang D, Fang L, Wang J, Liu C, Wu D, Liu X, Wang X, Min W. Complement in Human Brain Health: Potential of Dietary Food in Relation to Neurodegenerative Diseases. Foods 2023; 12:3580. [PMID: 37835232 PMCID: PMC10572247 DOI: 10.3390/foods12193580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The complement pathway is a major component of the innate immune system, which is critical for recognizing and clearing pathogens that rapidly react to defend the body against external pathogens. Many components of this pathway are expressed throughout the brain and play a beneficial role in synaptic pruning in the developing central nervous system (CNS). However, excessive complement-mediated synaptic pruning in the aging or injured brain may play a contributing role in a wide range of neurodegenerative diseases. Complement Component 1q (C1q), an initiating recognition molecule of the classical complement pathway, can interact with a variety of ligands and perform a range of functions in physiological and pathophysiological conditions of the CNS. This review considers the function and immunomodulatory mechanisms of C1q; the emerging role of C1q on synaptic pruning in developing, aging, or pathological CNS; the relevance of C1q; the complement pathway to neurodegenerative diseases; and, finally, it summarizes the foods with beneficial effects in neurodegenerative diseases via C1q and complement pathway and highlights the need for further research to clarify these roles. This paper aims to provide references for the subsequent study of food functions related to C1q, complement, neurodegenerative diseases, and human health.
Collapse
Affiliation(s)
- Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Wang Q, Xue Q. Bioinformatics analysis of potential common pathogenic mechanism for carotid atherosclerosis and Parkinson's disease. Front Aging Neurosci 2023; 15:1202952. [PMID: 37649719 PMCID: PMC10464527 DOI: 10.3389/fnagi.2023.1202952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background Cerebrovascular disease (CVD) related to atherosclerosis and Parkinson's disease (PD) are two prevalent neurological disorders. They share common risk factors and frequently occur together. The aim of this study is to investigate the association between atherosclerosis and PD using genetic databases to gain a comprehensive understanding of underlying biological mechanisms. Methods The gene expression profiles of atherosclerosis (GSE28829 and GSE100927) and PD (GSE7621 and GSE49036) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) for these two disorders, we constructed protein-protein interaction (PPI) networks and functional modules, and further identified hub genes using Least Absolute Shrinkage and Selection Operator (LASSO) regression. The diagnostic effectiveness of these hub genes was evaluated using Receiver Operator Characteristic Curve (ROC) analysis. Furthermore, we used single sample gene set enrichment analysis (ssGSEA) to analyze immune cell infiltration and explored the association of the identified hub genes with infiltrating immune cells through Spearman's rank correlation analysis in R software. Results A total of 50 shared DEGs, with 36 up-regulated and 14 down-regulated genes, were identified through the intersection of DEGs of atherosclerosis and PD. Using LASSO regression, we identified six hub genes, namely C1QB, CD53, LY96, P2RX7, C3, and TNFSF13B, in the lambda.min model, and CD14, C1QB, CD53, P2RX7, C3, and TNFSF13B in the lambda.1se model. ROC analysis confirmed that both models had good diagnostic efficiency for atherosclerosis datasets GSE28829 (lambda.min AUC = 0.99, lambda.1se AUC = 0.986) and GSE100927 (lambda.min AUC = 0.922, lambda.1se AUC = 0.933), as well as for PD datasets GSE7621 (lambda.min AUC = 0.924, lambda.1se AUC = 0.944) and GSE49036 (lambda.min AUC = 0.894, lambda.1se AUC = 0.881). Furthermore, we found that activated B cells, effector memory CD8 + T cells, and macrophages were the shared correlated types of immune cells in both atherosclerosis and PD. Conclusion This study provided new sights into shared molecular mechanisms between these two disorders. These common hub genes and infiltrating immune cells offer promising clues for further experimental studies to explore the common pathogenesis of these disorders.
Collapse
Affiliation(s)
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Gu X, Chen A, You M, Guo H, Tan S, He Q, Hu B. Extracellular vesicles: a new communication paradigm of complement in neurological diseases. Brain Res Bull 2023; 199:110667. [PMID: 37192717 DOI: 10.1016/j.brainresbull.2023.110667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/25/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
The complement system is crucial to the innate immune system. It has the function of destroying pathogens by activating the classical, alternative, and lectin pathways. The complement system is important in nervous system diseases such as cerebrovascular and neurodegenerative diseases. Activation of the complement system involves a series of intercellular signaling and cascade reactions. However, research on the source and transport mechanisms of the complement system in neurological diseases is still in its infancy. Studies have increasingly found that extracellular vesicles (EVs), a classic intercellular communication paradigm, may play a role in complement signaling disorders. Here, we systematically review the EV-mediated activation of complement pathways in different neurological diseases. We also discuss the prospect of EVs as future immunotherapy targets.
Collapse
Affiliation(s)
- Xinmei Gu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| |
Collapse
|
9
|
Zhang W, Chen Y, Pei H. C1q and central nervous system disorders. Front Immunol 2023; 14:1145649. [PMID: 37033981 PMCID: PMC10076750 DOI: 10.3389/fimmu.2023.1145649] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
C1q is a crucial component of the complement system, which is activated through the classical pathway to perform non-specific immune functions, serving as the first line of defense against pathogens. C1q can also bind to specific receptors to carry out immune and other functions, playing a vital role in maintaining immune homeostasis and normal physiological functions. In the developing central nervous system (CNS), C1q functions in synapse formation and pruning, serving as a key player in the development and homeostasis of neuronal networks in the CNS. C1q has a close relationship with microglia and astrocytes, and under their influence, C1q may contribute to the development of CNS disorders. Furthermore, C1q can also have independent effects on neurological disorders, producing either beneficial or detrimental outcomes. Most of the evidence for these functions comes from animal models, with some also from human specimen studies. C1q is now emerging as a promising target for the treatment of a variety of diseases, and clinical trials are already underway for CNS disorders. This article highlights the role of C1q in CNS diseases, offering new directions for the diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of General Practice, Xingyang Sishui Central Health Center, Zhengzhou, China
| | - Yuan Chen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Pei
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Schulz K, Trendelenburg M. C1q as a target molecule to treat human disease: What do mouse studies teach us? Front Immunol 2022; 13:958273. [PMID: 35990646 PMCID: PMC9385197 DOI: 10.3389/fimmu.2022.958273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system is a field of growing interest for pharmacological intervention. Complement protein C1q, the pattern recognition molecule at the start of the classical pathway of the complement cascade, is a versatile molecule with additional non-canonical actions affecting numerous cellular processes. Based on observations made in patients with hereditary C1q deficiency, C1q is protective against systemic autoimmunity and bacterial infections. Accordingly, C1q deficient mice reproduce this phenotype with susceptibility to autoimmunity and infections. At the same time, beneficial effects of C1q deficiency on disease entities such as neurodegenerative diseases have also been described in murine disease models. This systematic review provides an overview of all currently available literature on the C1q knockout mouse in disease models to identify potential target diseases for treatment strategies focusing on C1q, and discusses potential side-effects when depleting and/or inhibiting C1q.
Collapse
Affiliation(s)
- Kristina Schulz
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- *Correspondence: Kristina Schulz,
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
11
|
Proteomics for comprehensive characterization of extracellular vesicles in neurodegenerative disease. Exp Neurol 2022; 355:114149. [PMID: 35732219 DOI: 10.1016/j.expneurol.2022.114149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer particles ubiquitously released by almost every cell type. A specific and selective constituents of EVs loaded with variety of proteins, lipids, small noncoding RNAs, and long non-coding RNAs are reflective of cellular events, type, and physiologic/pathophysiologic status of the cell of origin. Moreover, these molecular contents carry information from the cell of origin to recipient cells, modulating intercellular communication. Recent studies demonstrated that EVs not only play a neuroprotective role by mediating the removal of toxic proteins, but also emerge as an important player in various neurodegenerative disease onset and progression through facilitating of misfolded proteins propagation. For this reason, neurodegenerative disease-associated differences in EV proteome relative to normal EVs can be used to fulfil diagnostic, prognostic, and therapeutic purposes. Nonetheless, characterizing EV proteome obtained from biological samples (brain tissue and body fluids, including urea, blood, saliva, and CSF) is a challenging task. Herein, we review the status of EV proteome profiling and the updated discovery of potential biomarkers for the diagnosis of neurodegenerative disease with an emphasis on the integration of high-throughput advanced mass spectrometry (MS) technologies for both qualitative and quantitative analysis of EVs in different clinical tissue/body fluid samples in past five years.
Collapse
|
12
|
Abdi IY, Ghanem SS, El-Agnaf OM. Immune-related biomarkers for Parkinson's disease. Neurobiol Dis 2022; 170:105771. [DOI: 10.1016/j.nbd.2022.105771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 12/13/2022] Open
|
13
|
Klietz M, Elaman MH, Mahmoudi N, Nösel P, Ahlswede M, Wegner F, Höglinger GU, Lanfermann H, Ding XQ. Cerebral Microstructural Alterations in Patients With Early Parkinson's Disease Detected With Quantitative Magnetic Resonance Measurements. Front Aging Neurosci 2021; 13:763331. [PMID: 34790113 PMCID: PMC8591214 DOI: 10.3389/fnagi.2021.763331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023] Open
Abstract
Objective: Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elderly. In early stages of PD, patients typically display normal brain magnet resonance imaging (MRI) in routine screening. Advanced imaging approaches are necessary to discriminate early PD patients from healthy controls. In this study, microstructural changes in relevant brain regions of early PD patients were investigated by using quantitative MRI methods. Methods: Cerebral MRI at 3T was performed on 20 PD patients in early stages and 20 age and sex matched healthy controls. Brain relative proton density, T1, T2, and T2′ relaxation times were measured in 14 regions of interest (ROIs) in each hemisphere and compared between patients and controls to estimate PD related alterations. Results: In comparison to matched healthy controls, the PD patients revealed decreased relative proton density in contralateral prefrontal subcortical area, upper and lower pons, in ipsilateral globus pallidus, and bilaterally in splenium corporis callosi, caudate nucleus, putamen, thalamus, and mesencephalon. The T1 relaxation time was increased in contralateral prefrontal subcortical area and centrum semiovale, putamen, nucleus caudatus and mesencephalon, whereas T2 relaxation time was elevated in upper pons bilaterally and in centrum semiovale ipsilaterally. T2′ relaxation time did not show significant changes. Conclusion: Early Parkinson’s disease is associated with a distinct profile of brain microstructural changes which may relate to clinical symptoms. The quantitative MR method used in this study may be useful in early diagnosis of Parkinson’s disease. Limitations of this study include a small sample size and manual selection of the ROIs. Atlas-based or statistical mapping methods would be an alternative for an objective evaluation. More studies are necessary to validate the measurement methods for clinical use in diagnostics of early Parkinson’s disease.
Collapse
Affiliation(s)
- Martin Klietz
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - M Handan Elaman
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Nima Mahmoudi
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Patrick Nösel
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Mareike Ahlswede
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | | | - Heinrich Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Xiao-Qi Ding
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
14
|
Kopaeva MY, Cherepov AB, Nesterenko MV, Zarayskaya IY. Pretreatment with Human Lactoferrin Had a Positive Effect on the Dynamics of Mouse Nigrostriatal System Recovery after Acute MPTP Exposure. BIOLOGY 2021; 10:24. [PMID: 33401480 PMCID: PMC7823682 DOI: 10.3390/biology10010024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 01/26/2023]
Abstract
We studied the effect of human lactoferrin (hLf) on degenerative changes in the nigrostriatal system and associated behavioral deficits in the animal model of Parkinson disease. Nigrostriatal dopaminergic injury was induced by single administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 40 mg/kg) to five-month-old C57Bl/6 mice. Behavioral disturbances were assessed in the open field and rotarod tests and by the stride length analysis. Structural deficits were assessed by the counts of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and optical density (OD) of TH-immunolabeled fibers in the striatum. Acute MPTP treatment induced long-term behavioral deficit and degenerative changes in the nigrostriatal system. Pretreatment with hLf prevented body weight loss and promoted recovery of motor functions and exploratory behavior. Importantly, OD of TH-positive fibers in the striatum of mice treated with hLf almost returned to normal, and the number of TH-positive cells in the substantia nigra significantly increased on day 28. These results indicate that hLf produces a neuroprotective effect and probably stimulates neuroregeneration under conditions of MPTP toxicity in our model. A relationship between behavioral deficits and nigrostriatal system disturbances at delayed terms after MPTP administration was found.
Collapse
Affiliation(s)
- Marina Yu. Kopaeva
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| | - Anton B. Cherepov
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| | | | - Irina Yu. Zarayskaya
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| |
Collapse
|
15
|
Propson NE, Gedam M, Zheng H. Complement in Neurologic Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:277-298. [PMID: 33234021 DOI: 10.1146/annurev-pathol-031620-113409] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Classic innate immune signaling pathways provide most of the immune response in the brain. This response activates many of the canonical signaling mechanisms identified in peripheral immune cells, despite their relative absence in this immune-privileged tissue. Studies over the past decade have strongly linked complement protein production and activation to age-related functional changes and neurodegeneration. The reactivation of the complement signaling pathway in aging and disease has opened new avenues for understanding brain aging and neurological disease pathogenesis and has implicated cell types such as astrocytes, microglia, endothelial cells, oligodendrocytes, neurons, and even peripheral immune cells in these processes. In this review, we aim to unravel the past decade of research related to complement activation and its numerous consequences in aging and neurological disease.
Collapse
Affiliation(s)
- Nicholas E Propson
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manasee Gedam
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
16
|
Gavriilaki M, Kimiskidis VK, Gavriilaki E. Precision Medicine in Neurology: The Inspirational Paradigm of Complement Therapeutics. Pharmaceuticals (Basel) 2020; 13:E341. [PMID: 33114553 PMCID: PMC7693884 DOI: 10.3390/ph13110341] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Precision medicine has emerged as a central element of healthcare science. Complement, a component of innate immunity known for centuries, has been implicated in the pathophysiology of numerous incurable neurological diseases, emerging as a potential therapeutic target and predictive biomarker. In parallel, the innovative application of the first complement inhibitor in clinical practice as an approved treatment of myasthenia gravis (MG) and neuromyelitis optica spectrum disorders (NMOSD) related with specific antibodies raised hope for the implementation of personalized therapies in detrimental neurological diseases. A thorough literature search was conducted through May 2020 at MEDLINE, EMBASE, Cochrane Library and ClinicalTrials.gov databases based on medical terms (MeSH)" complement system proteins" and "neurologic disease". Complement's role in pathophysiology, monitoring of disease activity and therapy has been investigated in MG, multiple sclerosis, NMOSD, spinal muscular atrophy, amyotrophic lateral sclerosis, Parkinson, Alzheimer, Huntington disease, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, stroke, and epilepsy. Given the complexity of complement diagnostics and therapeutics, this state-of-the-art review aims to provide a brief description of the complement system for the neurologist, an overview of novel complement inhibitors and updates of complement studies in a wide range of neurological disorders.
Collapse
Affiliation(s)
- Maria Gavriilaki
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasilios K. Kimiskidis
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Eleni Gavriilaki
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece;
| |
Collapse
|
17
|
Lee JD, Coulthard LG, Woodruff TM. Complement dysregulation in the central nervous system during development and disease. Semin Immunol 2019; 45:101340. [PMID: 31708347 DOI: 10.1016/j.smim.2019.101340] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
The complement cascade is an important arm of the immune system that plays a key role in protecting the central nervous system (CNS) from infection. Recently, it has also become clear that complement proteins have fundamental roles in the developing and aging CNS that are distinct from their roles in immunity. During neurodevelopment, complement signalling is involved in diverse processes including neural tube closure, neural progenitor proliferation and differentiation, neuronal migration, and synaptic pruning. In acute neurotrauma and ischamic brain injury, complement drives inflammation and neuronal death, but also neuroprotection and regeneration. In diseases of the aging CNS including dementias and motor neuron disease, chronic complement activation is associated with glial activation, and synapse and neuron loss. Proper regulation of complement is thus essential to allow for an appropriately developed CNS and prevention of excessive damage following neurotrauma or during neurodegeneration. This review provides a comprehensive overview of the evidence for functional roles of complement in brain formation, and its dysregulation during acute and chronic disease. We also provide working models for how complement can lead to neurodevelopmental disorders such as schizophrenia and autism, and either protect, or propagate neurodegenerative diseases including Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
18
|
Jiang R, Rong C, Ke R, Meng S, Yan X, Ke H, Wu S. Differential proteomic analysis of serum exosomes reveals alterations in progression of Parkinson disease. Medicine (Baltimore) 2019; 98:e17478. [PMID: 31593110 PMCID: PMC6799836 DOI: 10.1097/md.0000000000017478] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Exosomes are nanometer-sized vesicles with intercellular communication functions, and their encapsulated proteins may participate in the pathological process of neurodegenerative disorders. The aim of this study was to identify the protein changes of serum exosomes in Parkinson disease (PD) patients with different disease progress types, and to identify potential biomarkers. The exosomes of PD patients with different severity and healthy control group were isolated from serum. The exosome proteins were analyzed by mass spectrometry with label-free quantitative proteomics. A total of 429 proteins were identified, of which 14 were significantly different in mild and severe PD patients. The expression levels of 7 proteins, including pigmented epithelium-derived factor, afamin, apolipoprotein D and J, were significantly increased in PD patients. The expression levels of 7 proteins, including complement C1q and protein Immunoglobulin Lambda Variable 1-33 (IGLV1-33)Cluster -33, were decreased in PD patients. These differentially expressed proteins were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, which confirmed that the interaction between prion diseases and ECM receptors was the most significant pathways of enrichment. The changes of proteins and pathways may be related to the pathophysiological mechanism of PD. Therefore, some of these proteins could be considered as potential biomarkers for early PD diagnosis.
Collapse
Affiliation(s)
- Ruilai Jiang
- Department of Emergency, the Second People's Hospital of Lishui, Lishui, Zhejiang Province
| | - Chunjiao Rong
- Department of Emergency, the Second People's Hospital of Lishui, Lishui, Zhejiang Province
| | - Ronghu Ke
- Department of Plastic and Reconstructive Surgery
| | - Shuiyan Meng
- Department of Emergency, the Second People's Hospital of Lishui, Lishui, Zhejiang Province
| | - Xiumei Yan
- Department of Emergency, the Second People's Hospital of Lishui, Lishui, Zhejiang Province
| | - Honglin Ke
- Department of Emergency, Huashan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Shaochang Wu
- Department of Emergency, the Second People's Hospital of Lishui, Lishui, Zhejiang Province
| |
Collapse
|
19
|
Hammond TR, Marsh SE, Stevens B. Immune Signaling in Neurodegeneration. Immunity 2019; 50:955-974. [PMID: 30995509 PMCID: PMC6822103 DOI: 10.1016/j.immuni.2019.03.016] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases of the central nervous system progressively rob patients of their memory, motor function, and ability to perform daily tasks. Advances in genetics and animal models are beginning to unearth an unexpected role of the immune system in disease onset and pathogenesis; however, the role of cytokines, growth factors, and other immune signaling pathways in disease pathogenesis is still being examined. Here we review recent genetic risk and genome-wide association studies and emerging mechanisms for three key immune pathways implicated in disease, the growth factor TGF-β, the complement cascade, and the extracellular receptor TREM2. These immune signaling pathways are important under both healthy and neurodegenerative conditions, and recent work has highlighted new functional aspects of their signaling. Finally, we assess future directions for immune-related research in neurodegeneration and potential avenues for immune-related therapies.
Collapse
Affiliation(s)
- Timothy R Hammond
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel E Marsh
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
20
|
Carpanini SM, Torvell M, Morgan BP. Therapeutic Inhibition of the Complement System in Diseases of the Central Nervous System. Front Immunol 2019; 10:362. [PMID: 30886620 PMCID: PMC6409326 DOI: 10.3389/fimmu.2019.00362] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system plays critical roles in development, homeostasis, and regeneration in the central nervous system (CNS) throughout life; however, complement dysregulation in the CNS can lead to damage and disease. Complement proteins, regulators, and receptors are widely expressed throughout the CNS and, in many cases, are upregulated in disease. Genetic and epidemiological studies, cerebrospinal fluid (CSF) and plasma biomarker measurements and pathological analysis of post-mortem tissues have all implicated complement in multiple CNS diseases including multiple sclerosis (MS), neuromyelitis optica (NMO), neurotrauma, stroke, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Given this body of evidence implicating complement in diverse brain diseases, manipulating complement in the brain is an attractive prospect; however, the blood-brain barrier (BBB), critical to protect the brain from potentially harmful agents in the circulation, is also impermeable to current complement-targeting therapeutics, making drug design much more challenging. For example, antibody therapeutics administered systemically are essentially excluded from the brain. Recent protocols have utilized "Trojan horse" techniques to transport therapeutics across the BBB or used osmotic shock or ultrasound to temporarily disrupt the BBB. Most research to date exploring the impact of complement inhibition on CNS diseases has been in animal models, and some of these studies have generated convincing data; for example, in models of MS, NMO, and stroke. There have been a few recent clinical trials of available anti-complement drugs in CNS diseases associated with BBB impairment, for example the use of the anti-C5 monoclonal antibody (mAb) eculizumab in NMO, but for most CNS diseases there have been no human trials of anti-complement therapies. Here we will review the evidence implicating complement in diverse CNS disorders, from acute, such as traumatic brain or spine injury, to chronic, including demyelinating, neuroinflammatory, and neurodegenerative diseases. We will discuss the particular problems of drug access into the CNS and explore ways in which anti-complement therapies might be tailored for CNS disease.
Collapse
Affiliation(s)
- Sarah M Carpanini
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Megan Torvell
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Bryan Paul Morgan
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Tenner AJ, Stevens B, Woodruff TM. New tricks for an ancient system: Physiological and pathological roles of complement in the CNS. Mol Immunol 2018; 102:3-13. [PMID: 29958698 DOI: 10.1016/j.molimm.2018.06.264] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
While the mechanisms underlying the functions of the complement system in the central nervous system (CNS) and systemically, namely opsonization, chemotaxis, membrane lysis, and regulation of inflammation are the same, the plethora of functions that complement orchestrates in the central nervous system (CNS) is complex. Strictly controlled expression of complement effector molecules, regulators and receptors across the gamut of life stages (embryogenesis, development and maturation, aging and disease) dictate fascinating contributions for this ancient system. Furthermore, it is becoming apparent that complement functions differ widely across distinct brain regions. This review provides a comprehensive overview of the newly identified roles for complement in the brain, including its roles in CNS development and function, during aging and in the processes of neurodegeneration. The diversity and selectively of beneficial and detrimental activities of complement, while challenging, should lead to precision targeting of specific components to provide disease modifying treatments for devastating psychiatric and neurodegenerative disorders that are still without effective treatment.
Collapse
Affiliation(s)
- Andrea J Tenner
- Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, CA, United States.
| | - Beth Stevens
- F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Wilhelmsson U, Andersson D, de Pablo Y, Pekny R, Ståhlberg A, Mulder J, Mitsios N, Hortobágyi T, Pekny M, Pekna M. Injury Leads to the Appearance of Cells with Characteristics of Both Microglia and Astrocytes in Mouse and Human Brain. Cereb Cortex 2018; 27:3360-3377. [PMID: 28398520 DOI: 10.1093/cercor/bhx069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 12/21/2022] Open
Abstract
Microglia and astrocytes have been considered until now as cells with very distinct identities. Here, we assessed the heterogeneity within microglia/monocyte cell population in mouse hippocampus and determined their response to injury, by using single-cell gene expression profiling of cells isolated from uninjured and deafferented hippocampus. We found that in individual cells, microglial markers Cx3cr1, Aif1, Itgam, and Cd68 were co-expressed. Interestingly, injury led to the co-expression of the astrocyte marker Gfap in a subpopulation of Cx3cr1-expressing cells from both the injured and contralesional hippocampus. Cells co-expressing astrocyte and microglia markers were also detected in the in vitro LPS activation/injury model and in sections from human brain affected by stroke, Alzheimer's disease, and Lewy body dementia. Our findings indicate that injury and chronic neurodegeneration lead to the appearance of cells that share molecular characteristics of both microglia and astrocytes, 2 cell types with distinct embryologic origin and function.
Collapse
Affiliation(s)
- Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Daniel Andersson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Roy Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Anders Ståhlberg
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jan Mulder
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas Mitsios
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Hungary.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| |
Collapse
|
23
|
Itoh Y, Voskuhl RR. Cell specificity dictates similarities in gene expression in multiple sclerosis, Parkinson's disease, and Alzheimer's disease. PLoS One 2017; 12:e0181349. [PMID: 28715462 PMCID: PMC5513529 DOI: 10.1371/journal.pone.0181349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Drug repurposing is an efficient approach in new treatment development since it leverages previous work from one disease to another. While multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are all neurodegenerative diseases of the central nervous system (CNS) and differ in many clinical and pathological aspects, it is possible that they may share some mechanistic features. We hypothesized that focusing on gene expression in a CNS cell type specific manner might uncover similarities between diseases that could be missed using whole tissue gene expression analyses. We found similarities and differences in gene expression in these three distinct diseases, depending upon cell type. Microglia genes were increased in all three diseases, and gene expression levels were correlated strongly among these three neurodegenerative diseases. In astrocytes and endothelia, upregulation and correlations were observed only between MS and PD, but not AD. Neuronal genes were down-regulated in all three diseases, but correlations of changes of individual genes between diseases were not strong. Oligodendrocyte showed gene expression changes that were not shared among the three diseases. Together these data suggest that treatments targeting microglia are most amenable to drug repurposing in MS, PD, and AD, while treatments targeting other CNS cells must be tailored to each disease.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Rhonda R. Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
24
|
Dugue R, Barone FC. Ischemic, traumatic and neurodegenerative brain inflammatory changes. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl.16.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review serves to link the role of the immune system in the neuropathology of acute ischemic stroke, traumatic brain injury and neurodegenerative disease. The blood–brain barrier delineates the CNS from the peripheral immune system. However, the blood–cerebrospinal fluid barrier acts as a gate between the periphery and the brain, permitting immune activity crosstalk and modulation. In acute ischemic stroke, traumatic brain injury and other neurodegenerative diseases, the blood–brain barrier is compromised and an influx of inflammatory cells and plasma proteins occurs, resulting in edema, demyelination, cell dysfunction and death, and neurobehavioral changes. The role of the complement system, key cytokines, microglia and other neuroglia in brain degenerative pathology will be discussed.
Collapse
Affiliation(s)
- Rachelle Dugue
- Departments of Neurology & Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Frank C Barone
- Departments of Neurology & Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
25
|
Keber U, Klietz M, Carlsson T, Oertel WH, Weihe E, Schäfer MKH, Höglinger GU, Depboylu C. Striatal tyrosine hydroxylase-positive neurons are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Neuroscience 2015; 298:302-17. [PMID: 25892702 DOI: 10.1016/j.neuroscience.2015.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 12/28/2022]
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) is the therapeutic gold standard in Parkinson's disease. However, long-term treatment is complicated by the induction of debilitating abnormal involuntary movements termed L-DOPA-induced dyskinesias (LIDs). Until today the underlying mechanisms of LID pathogenesis are not fully understood. The aim of this study was to reveal new factors, which may be involved in the induction of LID. We have focused on the expression of striatal tyrosine hydroxylase-positive (TH+) neurons, which are capable of producing either L-DOPA or dopamine (DA) in target areas of ventral midbrain DAergic neurons. To address this issue, a daily L-DOPA dose was administered over the course of 15 days to mice with unilateral 6-hydroxydopamine-induced lesions of the medial forebrain bundle and LIDs were evaluated. Remarkably, the number of striatal TH+ neurons strongly correlated with both induction and severity of LID as well as ΔFosB expression as an established molecular marker for LID. Furthermore, dyskinetic mice showed a marked augmentation of serotonergic fiber innervation in the striatum, enabling the decarboxylation of L-DOPA to DA. Axial, limb and orolingual dyskinesias were predominantly associated with TH+ neurons in the lateral striatum, whereas medially located TH+ neurons triggered locomotive rotations. In contrast, identified accumbal and cortical TH+ cells did not contribute to the generation of LID. Thus, striatal TH+ cells and serotonergic terminals may cooperatively synthesize DA and subsequently contribute to supraphysiological synaptic DA concentrations, an accepted cause in LID pathogenesis.
Collapse
Affiliation(s)
- U Keber
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - M Klietz
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany; Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - T Carlsson
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany; Section of Pharmacology, Institute for Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden(†)
| | - W H Oertel
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - E Weihe
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - M K-H Schäfer
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - G U Höglinger
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany(†); Department of Neurology, Technical University, Munich, Germany
| | - C Depboylu
- Experimental Neurology, Department of Neurology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
26
|
Depboylu C, Rösler TW, de Andrade A, Oertel WH, Höglinger GU. Systemically administered neuregulin-1β1 rescues nigral dopaminergic neurons via the ErbB4 receptor tyrosine kinase in MPTP mouse models of Parkinson's disease. J Neurochem 2015; 133:590-7. [PMID: 25581060 DOI: 10.1111/jnc.13026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
Previously, we demonstrated that systemically injected extracellular domain of neuregulin-1β1 (Nrg1β1), a nerve growth and differentiation factor, passes the blood-brain barrier and rescues dopaminergic neurons of substantia nigra in the 6-hydroxydopamine-mouse model of Parkinson's disease (PD). Here, we studied the effects of peripherally administered Nrg1β1 in another toxin-based mouse model of PD. For this purpose, (i) nigrostriatal pathway injury was induced by treatment of adult wild-type mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in acute and subchronic paradigms; and (ii) Nrg1β1 or saline (control) were administered 1 h before each MPTP injection. We found that Nrg1β1 significantly reduced the loss of nigral dopaminergic neurons in both intoxication paradigms (7 days post-injection). However, Nrg1β1 did not reverse MPTP-induced decrease in dopamine levels and dopaminergic fibers in the striatum. We also show that MPTP conversion to its toxic metabolite 1-methyl-4-phenylpyridinium as well as levels of dopamine transporter, mediating intracellular uptake of 1-methyl-4-phenylpyridinium, are unaffected by Nrg1β1. Finally, neuroprotective properties of Nrg1β1 on nigral dopaminergic neurons are specifically mediated by ErbB4 as revealed through the study of ErbB4 knockout mice. In conclusion, systemically administered Nrg1β1 protects midbrain dopaminergic neurons against this PD-related toxic insult. Thus, Nrg1β1 may have a benefit in the treatment of PD patients. Previously, we demonstrated that systemically administered neuregulin-1β1 (Nrg1β1) passes the blood-brain barrier, phosphorylates ErbB4 receptors and elevates dopamine (DA) levels in the nigrostriatal system of healthy mice. Nrg1β1 protects nigral DAergic neurons in the 6-hydroxydopamine (6-OHDA) mouse model of Parkinson's disease (PD). Here, we show that Nrg1β1 rescues nigral DAergic neurons also against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced cell death. ErbB4 expression is essential for the neuroprotective effect of Nrg1β1 on midbrain DAergic neurons. Nrg1β1 might be beneficial in PD treatment.
Collapse
Affiliation(s)
- Candan Depboylu
- Department of Neurology, Philipps University, Marburg, Germany
| | | | | | | | | |
Collapse
|
27
|
Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni MG. Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Front Cell Neurosci 2014; 8:380. [PMID: 25426028 PMCID: PMC4224073 DOI: 10.3389/fncel.2014.00380] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/22/2014] [Indexed: 01/30/2023] Open
Abstract
The immune response after brain injury is highly complex and involves both local and systemic events at the cellular and molecular level. It is associated to a dramatic over-activation of enzyme systems, the expression of proinflammatory genes and the activation/recruitment of immune cells. The complement system represents a powerful component of the innate immunity and is highly involved in the inflammatory response. Complement components are synthesized predominantly by the liver and circulate in the bloodstream primed for activation. Moreover, brain cells can produce complement proteins and receptors. After acute brain injury, the rapid and uncontrolled activation of the complement leads to massive release of inflammatory anaphylatoxins, recruitment of cells to the injury site, phagocytosis and induction of blood brain barrier (BBB) damage. Brain endothelial cells are particularly susceptible to complement-mediated effects, since they are exposed to both circulating and locally synthesized complement proteins. Conversely, during neurodegenerative disorders, complement factors play distinct roles depending on the stage and degree of neuropathology. In addition to the deleterious role of the complement, increasing evidence suggest that it may also play a role in normal nervous system development (wiring the brain) and adulthood (either maintaining brain homeostasis or supporting regeneration after brain injury). This article represents a compendium of the current knowledge on the complement role in the brain, prompting a novel view that complement activation can result in either protective or detrimental effects in brain conditions that depend exquisitely on the nature, the timing and the degree of the stimuli that induce its activation. A deeper understanding of the acute, subacute and chronic consequences of complement activation is needed and may lead to new therapeutic strategies, including the ability of targeting selective step in the complement cascade.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| | - Daiana De Blasio
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy ; Department of Experimental and Clinical Sciences, University of Chieti Pescara, Italy
| | - Rosalia Zangari
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy ; Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan Milan, Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| |
Collapse
|
28
|
Transcriptional and structural plasticity of tyrosine hydroxylase expressing neurons in both striatum and nucleus accumbens following dopaminergic denervation. J Chem Neuroanat 2014; 61-62:169-75. [DOI: 10.1016/j.jchemneu.2014.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/19/2014] [Accepted: 10/19/2014] [Indexed: 01/20/2023]
|
29
|
Non-serine-phosphorylated tyrosine hydroxylase expressing neurons are present in mouse striatum, accumbens and cortex that increase in number following dopaminergic denervation. J Chem Neuroanat 2014; 56:35-44. [DOI: 10.1016/j.jchemneu.2014.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/23/2014] [Accepted: 02/06/2014] [Indexed: 01/08/2023]
|
30
|
C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice. Proc Natl Acad Sci U S A 2013; 110:E4385-92. [PMID: 24170856 DOI: 10.1073/pnas.1318309110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence from mice expressing ALS-causing mutations in superoxide dismutase (SOD1) has implicated pathological immune responses in motor neuron degeneration. This includes microglial activation, lymphocyte infiltration, and the induction of C1q, the initiating component of the classic complement system that is the protein-based arm of the innate immune response, in motor neurons of multiple ALS mouse models expressing dismutase active or inactive SOD1 mutants. Robust induction early in disease course is now identified for multiple complement components (including C1q, C4, and C3) in spinal cords of SOD1 mutant-expressing mice, consistent with initial intraneuronal C1q induction, followed by global activation of the complement pathway. We now test if this activation is a mechanistic contributor to disease. Deletion of the C1q gene in mice expressing an ALS-causing mutant in SOD1 to eliminate C1q induction, and complement cascade activation that follows from it, is demonstrated to produce changes in microglial morphology accompanied by enhanced loss, not retention, of synaptic densities during disease. C1q-dependent synaptic loss is shown to be especially prominent for cholinergic C-bouton nerve terminal input onto motor neurons in affected C1q-deleted SOD1 mutant mice. Nevertheless, overall onset and progression of disease are unaffected in C1q- and C3-deleted ALS mice, thus establishing that C1q induction and classic or alternative complement pathway activation do not contribute significantly to SOD1 mutant-mediated ALS pathogenesis in mice.
Collapse
|
31
|
Rodrigues MCO, Sanberg PR, Cruz LE, Garbuzova-Davis S. The innate and adaptive immunological aspects in neurodegenerative diseases. J Neuroimmunol 2013; 269:1-8. [PMID: 24161471 DOI: 10.1016/j.jneuroim.2013.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/03/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases affect a considerable percentage of the elderly population. New therapeutic approaches are warranted, aiming to at least delay and possibly reverse disease progression. Strategies to elaborate such approaches require knowledge of specific immune system involvement in disease pathogenesis. In this review, innate and adaptive immunological aspects of neurodegenerative disorders, in particular Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS), are discussed. Initiating disease factors, as well as common mechanistic pathways, are detailed and potential immunological therapeutic targets are identified.
Collapse
Affiliation(s)
- Maria C O Rodrigues
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto School of Medicine, University of Sao Paulo, Brazil
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States
| | - Luis Eduardo Cruz
- Cryopraxis, Cell Praxis, BioRio, Polo de Biotechnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States.
| |
Collapse
|
32
|
Park G, Kim HG, Ju MS, Ha SK, Park Y, Kim SY, Oh MS. 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson's disease models via anti-neuroinflammation. Acta Pharmacol Sin 2013; 34:1131-9. [PMID: 23811724 PMCID: PMC4003157 DOI: 10.1038/aps.2013.57] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/12/2013] [Indexed: 12/27/2022]
Abstract
AIM 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown various neurobiological and anti-inflammatory effects. The aim of this study was to examine the effects of 6-shogaol on neuroinflammatory-induced damage of dopaminergic (DA) neurons in Parkinson's disease (PD) models. METHODS Cultured rat mesencephalic cells were treated with 6-shogaol (0.001 and 0.01 μmol/L) for 1 h, then with MPP(+)(10 μmol/L) for another 23 h. The levels of TNF-α and NO in medium were analyzed spectrophotometrically. C57/BL mice were administered 6-shogaol (10 mg·kg(-1)·d(-1), po) for 3 d, and then MPTP (30 mg/kg, ip) for 5 d. Seven days after the last MPTP injection, behavioral testings were performed. The levels of tyrosine hydroxylase (TH) and macrophage antigen (MAC)-1 were determined with immunohistochemistry. The expression of iNOS and COX-2 was measured using RT PCR. RESULTS In MPP(+)-treated rat mesencephalic cultures, 6-shogaol significantly increased the number of TH-IR neurons and suppressed TNF-α and NO levels. In C57/BL mice, treatment with 6-shogaol reversed MPTP-induced changes in motor coordination and bradykinesia. Furthermore, 6-shogaol reversed MPTP-induced reductions in TH-positive cell number in the substantia nigra pars compacta (SNpc) and TH-IR fiber intensity in stratum (ST). Moreover, 6-shogaol significantly inhibited the MPTP-induced microglial activation and increases in the levels of TNF-α, NO, iNOS, and COX-2 in both SNpc and ST. CONCLUSION 6-Shogaol exerts neuroprotective effects on DA neurons in in vitro and in vivo PD models.
Collapse
Affiliation(s)
- Gunhyuk Park
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130–701, Republic of Korea
| | - Hyo Geun Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 130–701, Republic of Korea
| | - Mi Sun Ju
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 130–701, Republic of Korea
| | - Sang Keun Ha
- Functional Materials Research Group, Korea Food Research Institute, Gyeonggi 463–746, Republic of Korea
| | - Yongkon Park
- Functional Materials Research Group, Korea Food Research Institute, Gyeonggi 463–746, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 406–799, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130–701, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 130–701, Republic of Korea
| |
Collapse
|
33
|
Sanchez-Guajardo V, Barnum C, Tansey M, Romero-Ramos M. Neuroimmunological processes in Parkinson's disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 2013; 5:113-39. [PMID: 23506036 PMCID: PMC3639751 DOI: 10.1042/an20120066] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
The role of neuroinflammation and the adaptive immune system in PD (Parkinson's disease) has been the subject of intense investigation in recent years, both in animal models of parkinsonism and in post-mortem PD brains. However, how these processes relate to and modulate α-syn (α-synuclein) pathology and microglia activation is still poorly understood. Specifically, how the peripheral immune system interacts, regulates and/or is induced by neuroinflammatory processes taking place during PD is still undetermined. We present herein a comprehensive review of the features and impact that neuroinflamation has on neurodegeneration in different animal models of nigral cell death, how this neuroinflammation relates to microglia activation and the way microglia respond to α-syn in vivo. We also discuss a possible role for the peripheral immune system in animal models of parkinsonism, how these findings relate to the state of microglia activation observed in these animal models and how these findings compare with what has been observed in humans with PD. Together, the available data points to the need for development of dual therapeutic strategies that modulate microglia activation to change not only the way microglia interact with the peripheral immune system, but also to modulate the manner in which microglia respond to encounters with α-syn. Lastly, we discuss the immune-modulatory strategies currently under investigation in animal models of parkinsonism and the degree to which one might expect their outcomes to translate faithfully to a clinical setting.
Collapse
Key Words
- lymphocytes
- m1/m2 phenotype
- microglia
- neuroinflammation
- parkinson’s disease
- α-synuclein
- 6-ohda, 6-hydroxydopamine
- ad, alzheimer’s disease
- apc, antigen-presenting cell
- α-syn, α-synuclein
- bbb, brain–blood barrier
- bcg, bacille calmette–guérin
- bm, bone marrow
- cfa, complete freund’s adjuvant
- cm, conditioned media
- cns, central nervous system
- cox, cyclooxygenase
- cr, complement receptor
- csf, cerebrospinal fluid
- da, dopamine
- eae, experimental autoimmune encephalomyelitis
- ga, galatiramer acetate
- gdnf, glial-derived neurotrophic factor
- gfp, green fluorescent protein
- hla-dr, human leucocyte antigen type dr
- ifnγ, interferon γ
- igg, immunoglobulin g
- il, interleukin
- inos, inducible nitric oxide synthase
- lamp, lysosome-associated membrane protein
- lb, lewy body
- lps, lipopolysaccharide
- mhc, major histocompatibility complex
- mptp, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- nfκb, nuclear factor κb
- nk, natural killer
- no, nitric oxide
- pd, parkinson’s disease
- pet, positron-emission tomography
- prp, prion protein
- raav, recombinant adeno-associated virus
- rns, reactive nitrogen species
- ros, reactive oxygen species
- sn, substantia nigra
- snp, single nucleotide polymorphism
- tcr, t-cell receptor
- tgfβ, tumour growth factor β
- th, tyrosine hydroxylase
- th1, t helper 1
- tlr, toll-like receptor
- tnf, tumour necrosis factor
- treg, regulatory t-cell
- vip, vasoactive intestinal peptide
- wt, wild-type
Collapse
Affiliation(s)
- Vanesa Sanchez-Guajardo
- *CNS Disease Modeling Group, Department of Biomedicine, Ole Worms Allé 3,
Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christopher J. Barnum
- †Department of Physiology, Emory University, School of Medicine, Atlanta, GA
30233, U.S.A
| | - Malú G. Tansey
- †Department of Physiology, Emory University, School of Medicine, Atlanta, GA
30233, U.S.A
| | - Marina Romero-Ramos
- *CNS Disease Modeling Group, Department of Biomedicine, Ole Worms Allé 3,
Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Noelker C, Morel L, Lescot T, Osterloh A, Alvarez-Fischer D, Breloer M, Henze C, Depboylu C, Skrzydelski D, Michel PP, Dodel RC, Lu L, Hirsch EC, Hunot S, Hartmann A. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci Rep 2013; 3:1393. [PMID: 23462811 PMCID: PMC3589722 DOI: 10.1038/srep01393] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 01/18/2013] [Indexed: 01/18/2023] Open
Abstract
In mammalians, toll-like receptors (TLR) signal-transduction pathways induce the expression of a variety of immune-response genes, including inflammatory cytokines. It is therefore plausible to assume that TLRs are mediators in glial cells triggering the release of cytokines that ultimately kill DA neurons in the substantia nigra in Parkinson disease (PD). Accordingly, recent data indicate that TLR4 is up-regulated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in a mouse model of PD. Here, we wished to evaluate the role of TLR4 in the acute mouse MPTP model of PD: TLR4-deficient mice and wild-type littermates control mice were used for the acute administration way of MPTP or a corresponding volume of saline. We demonstrate that TLR4-deficient mice are less vulnerable to MPTP intoxication than wild-type mice and display a decreased number of Iba1+ and MHC II+ activated microglial cells after MPTP application, suggesting that the TLR4 pathway is involved in experimental PD.
Collapse
Affiliation(s)
- Carmen Noelker
- INSERM UMR_S975, Université Pierre et Marie Curie Paris 06 UMR_S975, CNRS UMR 7225, CR-ICM, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France,Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Lydie Morel
- INSERM UMR_S975, Université Pierre et Marie Curie Paris 06 UMR_S975, CNRS UMR 7225, CR-ICM, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Thomas Lescot
- INSERM UMR_S975, Université Pierre et Marie Curie Paris 06 UMR_S975, CNRS UMR 7225, CR-ICM, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Anke Osterloh
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20324 Germany
| | - Daniel Alvarez-Fischer
- INSERM UMR_S975, Université Pierre et Marie Curie Paris 06 UMR_S975, CNRS UMR 7225, CR-ICM, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France,Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20324 Germany
| | - Carmen Henze
- INSERM UMR_S975, Université Pierre et Marie Curie Paris 06 UMR_S975, CNRS UMR 7225, CR-ICM, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Candan Depboylu
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Delphine Skrzydelski
- INSERM UMR_S975, Université Pierre et Marie Curie Paris 06 UMR_S975, CNRS UMR 7225, CR-ICM, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Patrick P. Michel
- INSERM UMR_S975, Université Pierre et Marie Curie Paris 06 UMR_S975, CNRS UMR 7225, CR-ICM, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Richard C. Dodel
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Lixia Lu
- INSERM UMR_S975, Université Pierre et Marie Curie Paris 06 UMR_S975, CNRS UMR 7225, CR-ICM, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Etienne C. Hirsch
- INSERM UMR_S975, Université Pierre et Marie Curie Paris 06 UMR_S975, CNRS UMR 7225, CR-ICM, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Stéphane Hunot
- INSERM UMR_S975, Université Pierre et Marie Curie Paris 06 UMR_S975, CNRS UMR 7225, CR-ICM, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France,
| | - Andreas Hartmann
- INSERM UMR_S975, Université Pierre et Marie Curie Paris 06 UMR_S975, CNRS UMR 7225, CR-ICM, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France,
| |
Collapse
|
35
|
Lopez ME, Klein AD, Scott MP. Complement is dispensable for neurodegeneration in Niemann-Pick disease type C. J Neuroinflammation 2012; 9:216. [PMID: 22985423 PMCID: PMC3511250 DOI: 10.1186/1742-2094-9-216] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background The immune system has been implicated in neurodegeneration during development and disease. In various studies, the absence of complement (that is, C1q deficiency) impeded the elimination of apoptotic neurons, allowing survival. In the genetic lysosomal storage disease Niemann-Pick C (NPC), caused by loss of NPC1 function, the expression of complement system components, C1q especially, is elevated in degenerating brain regions of Npc1-/- mice. Here we test whether complement is mediating neurodegeneration in NPC disease. Findings In normal mature mice, C1q mRNA was found in neurons, particularly cerebellar Purkinje neurons (PNs). In Npc1-/- mice, C1q mRNA was additionally found in activated microglia, which accumulate during disease progression and PN loss. Interestingly, C1q was not enriched on or near degenerating neurons. Instead, C1q was concentrated in other brain regions, where it partially co-localized with a potential C1q inhibitor, chondroitin sulfate proteoglycan (CSPG). Genetic deletion of C1q, or of the downstream complement pathway component C3, did not significantly alter patterned neuron loss or disease progression. Deletion of other immune response factors, a Toll-like receptor, a matrix metalloprotease, or the apoptosis facilitator BIM, also failed to alter neuron loss. Conclusion We conclude that complement is not involved in the death and clearance of neurons in NPC disease. This study supports a view of neuroinflammation as a secondary response with non-causal relationship to neuron injury in the disease. This disease model may prove useful for understanding the conditions in which complement and immunity do contribute to neurodegeneration in other disorders.
Collapse
Affiliation(s)
- Manuel E Lopez
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Clark Center W200, 318 Campus Drive, Stanford, CA, USA
| | | | | |
Collapse
|
36
|
Depboylu C, Stricker S, Ghobril JP, Oertel WH, Priller J, Höglinger GU. Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease. Exp Neurol 2012; 238:183-91. [PMID: 22964486 DOI: 10.1016/j.expneurol.2012.08.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 11/16/2022]
Abstract
Parkinson disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra (SN). Recent evidence suggests that innate and adaptive immune responses can influence dopaminergic cell death in animal models of PD. However, the precise role of mononuclear phagocytes, key players in damaged tissue clearance and cross-talk with cells of adaptive immune system, remains open in PD. Mononuclear phagocytes in the brain occur as brain-resident microglia and as brain-infiltrating myeloid cells. To elucidate their differential contribution in the uptake of dopaminergic cell debris and antigen presentation capacity, we labeled nigral dopaminergic neurons retrogradely with inert rhodamine-conjugated latex retrobeads before inducing their degeneration by subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. We used green fluorescent protein (GFP)-expressing bone marrow chimeric mice to differentiate brain-infiltrating from brain-resident myeloid cells. We found that half of both endogenous (GFP-) and exogenous (GFP+) microglia (Iba1+) in the SN incorporated the tracer from degenerating dopaminergic neurons 1d after MPTP intoxication. In absolute numbers, endogenous microglia were much more activated to macrophages compared to exogenous myeloid cells at 1d after MPTP. Mainly the endogenous, tracer-phagocytosing microglia expressed the major histocompatibility complex (MHC) class II molecule for antigen presentation. Additionally, T-lymphocytes (Iba1-/GFP+/CD3+), which infiltrate the MPTP-lesioned SN, were mainly in direct contact with MHCII+ endogenous microglia. Our data suggest that brain-resident microglia are predominantly implicated in the removal of dopaminergic cell debris and the cross-talk with infiltrating T-lymphocytes in the SN in the MPTP mouse model of PD.
Collapse
Affiliation(s)
- Candan Depboylu
- Department of Neurology and Laboratory of Experimental Neurology, Philipps University, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett 2011; 585:3798-805. [PMID: 21889505 DOI: 10.1016/j.febslet.2011.08.033] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 12/26/2022]
Abstract
There is increasing confusion about the meaning of the terms inflammation, neuroinflammation, and microglial inflammation. We aim in this review to achieve greater clarity regarding these terms, which are essential for our understanding of the role of microglia in CNS inflammatory conditions. The important concept of sterile inflammation is explained against the backdrop of classical inflammation, and its key differences from what researchers refer to when they use the terms neuroinflammation and microglial inflammation are illustrated. We propose to replace the term "neuroinflammation" with "microglial activation" or "CNS pseudo-inflammation", if microglial activation does not suffice. In addition, we recommend abandoning the terms "microglial inflammation" and "inflamed microglia" because of the lack of a clear concept behind them.
Collapse
Affiliation(s)
- Manuel B Graeber
- Brain Tumor Research Laboratories, The Brain and Mind Research Institute, University of Sydney, Camperdown, Sydney, NSW 2050, Australia.
| | | | | |
Collapse
|