1
|
Wang J, Wang X, Cheng H, Ye L. YKL-40 levels in cerebrospinal fluid serve as a diagnostic biomarker for post-neurosurgical bacterial meningitis in patients with stroke. Clin Biochem 2025; 135:110864. [PMID: 39675654 DOI: 10.1016/j.clinbiochem.2024.110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Previous studies have reported that YKL-40 can serve as a biomarker of infectious diseases and different stroke types. However, evidence supporting its role in diagnosing post-neurosurgical bacterial meningitis (PNBM) remains lacking. METHODS A total of 110 patients with stroke who underwent neurosurgical treatment were recruited. Among these, 36 were diagnosed with PNBM based on the results of bacterial culture/Gram staining or cerebrospinal fluid (CSF) characteristics. CSF levels of YKL-40 and other biomarkers with potential diagnostic utility for PNBM were statistically analysed using univariate and logistic regression models. Receiver operating characteristic (ROC) analysis was performed to investigate diagnostic efficiency. RESULTS According to univariate analysis, CSF levels of glucose, total protein, white blood cells, polymorphocytes, and YKL-40, as well as the CSF-to-blood glucose ratio, were significantly different between the PNBM and non-PNBM groups. Logistic regression analysis revealed that glucose (p = 0.026), total protein (p = 0.028), and YKL-40 (p = 0.006) levels in the CSF may have independent diagnostic utility for PNBM. Among the three biomarkers, CSF-to-blood glucose (area under the receiver operating characteristic curve [AUC] 0.9208) and YKL-40 (AUC 0.9587) demonstrated strong diagnostic utility. CONCLUSION CSF levels of YKL-40, glucose, and total protein played independent roles in the diagnosis of PNBM in patients with stroke.
Collapse
Affiliation(s)
- Jingtao Wang
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, Anhui, PR China
| | - Xiaofeng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, Anhui, PR China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, Anhui, PR China.
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, Anhui, PR China.
| |
Collapse
|
2
|
Liu G, Wang D, Jia J, Hao C, Ge Q, Xu L, Zhang C, Li X, Mi Y, Wang H, Miao L, Chen Y, Zhou J, Xu X, Liu Y. Neuroprotection of Human Umbilical Cord-Derived Mesenchymal Stem Cells (hUC-MSCs) in Alleviating Ischemic Stroke-Induced Brain Injury by Regulating Inflammation and Oxidative Stress. Neurochem Res 2024; 49:2871-2887. [PMID: 39026086 DOI: 10.1007/s11064-024-04212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Brain injury caused by stroke has a high rate of mortality and remains a major medical challenge worldwide. In recent years, there has been significant attention given to the use of human Umbilical cord-derived Mesenchymal Stem Cells (hUC-MSCs) for the treatment of stroke in different adult and neonate animal models of stroke. However, using hUC-MSCs by systemic administration to treat ischemic stroke has not been investigated sufficiently. In this study, we conducted various experiments to explore the neuroprotection of hUC-MSCs in rats. Our findings demonstrate that an intravenous injection of a high dose of hUC-MSCs at 2 × 10^7 cells/kg markedly ameliorated brain injury resulting from ischemic stroke. This improvement was observed one day after inducing transient middle cerebral artery occlusion (MCAO) and subsequent reperfusion in rats. Notably, the efficacy of this single administration of hUC-MSCs surpassed that of edaravone, even when the latter was used continuously over three days. Mechanistically, secretory factors derived from hUC-MSCs, such as HGF, BDNF, and TNFR1, ameliorated the levels of MDA and T-SOD to regulate oxidative stress. In particular, TNFR1 also improved the expression of NQO-1 and HO-1, important proteins associated with oxidative stress. More importantly, TNFR1 played a significant role in reducing inflammation by modulating IL-6 levels in the blood. Furthermore, TNFR1 was observed to influence the permeability of the blood-brain barrier (BBB) as demonstrated in the evan's blue experiment and protein expression of ZO-1. This study represented a breakthrough in traditional methods and provided a novel strategy for clinical medication and trials.
Collapse
Affiliation(s)
- Guangyang Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Daohui Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Jianru Jia
- Baoding People's Hospital, Baoding, China
| | - Chunhua Hao
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Qinggang Ge
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Liqiang Xu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Chenliang Zhang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Xin Li
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yi Mi
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Herui Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Li Miao
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yaoyao Chen
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Jingwen Zhou
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Xiaodan Xu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yongjun Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China.
| |
Collapse
|
3
|
Liu Y, Chen S, Liu S, Wallace KL, Zille M, Zhang J, Wang J, Jiang C. T-cell receptor signaling modulated by the co-receptors: Potential targets for stroke treatment. Pharmacol Res 2023; 192:106797. [PMID: 37211238 DOI: 10.1016/j.phrs.2023.106797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Stroke is a severe and life-threatening disease, necessitating more research on new treatment strategies. Infiltrated T lymphocytes, an essential adaptive immune cell with extensive effector function, are crucially involved in post-stroke inflammation. Immediately after the initiation of the innate immune response triggered by microglia/macrophages, the adaptive immune response associated with T lymphocytes also participates in the complex pathophysiology of stroke and partially informs the outcome of stroke. Preclinical and clinical studies have revealed the conflicting roles of T cells in post-stroke inflammation and as potential therapeutic targets. Therefore, exploring the mechanisms that underlie the adaptive immune response associated with T lymphocytes in stroke is essential. The T-cell receptor (TCR) and its downstream signaling regulate T lymphocyte differentiation and activation. This review comprehensively summarizes the various molecules that regulate TCR signaling and the T-cell response. It covers both the co-stimulatory and co-inhibitory molecules and their roles in stroke. Because immunoregulatory therapies targeting TCR and its mediators have achieved great success in some proliferative diseases, this article also summarizes the advances in therapeutic strategies related to TCR signaling in lymphocytes after stroke, which can facilitate translation. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shuai Chen
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Simon Liu
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, 20814, USA
| | - Kevin L Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, 450000, Zhengzhou, P. R. China.
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China; Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, P. R. China.
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
4
|
Deng Y, Huang P, Zhang F, Chen T. Association of MicroRNAs With Risk of Stroke: A Meta-Analysis. Front Neurol 2022; 13:865265. [PMID: 35665049 PMCID: PMC9160310 DOI: 10.3389/fneur.2022.865265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Altered expression of microRNAs (miRNAs) may contribute to disease vulnerability. Studies have reported the involvement of miRNA in the pathophysiology of ischemic stroke. Methods We performed a meta-analysis of data from 6 studies that used a panel of miRNAs with altered expressions to diagnose ischemic stroke with the Bayesian framework. The I2 test and Cochran's Q-statistic were used to assess heterogeneity. Funnel plots were generated and publication bias was assessed using Begg and Egger tests. Results On summary receiver operating characteristics (SROC) curve analysis, the pooled sensitivity and specificity of altered miRNA expressions for diagnosis of ischemic stroke was 0.92 (95% confidence interval [CI] 0.80–0.97) and 0.83 (95% CI 0.71–0.90), respectively; the diagnostic odds ratio was 54.35 (95% CI 20.39–144.92), and the area under the SROC curve was 0.93 (95% CI 0.90–0.95). Conclusions Our results showed a link between dysregulation of miRNAs and the occurrence of ischemic stroke. Abnormal miRNA expression may be a potential biomarker for ischemic stroke.
Collapse
|
5
|
Zhang H, Guan J, Lee H, Wu C, Dong K, Liu Z, Cui L, Song H, Ding Y, Meng R. Immunocytes Rapid Responses Post-ischemic Stroke in Peripheral Blood in Patients With Different Ages. Front Neurol 2022; 13:887526. [PMID: 35645988 PMCID: PMC9135975 DOI: 10.3389/fneur.2022.887526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To explore the alterations in immune cell composition in peripheral blood in patients with acute ischemic stroke (AIS) based on their age group. Methods Patients with imaging confirmed AIS were enrolled from April 2019 to January 2020 and were divided into three groups according to their ages: <55 years (group-A), 55–65 years (group-B), and >65 years (group-C). Blood samples were collected immediately when the patients were admitted to our ward prior to any intervention. Flow cytometry was used to analyze immune cell composition in peripheral blood. Results A total of 41 eligible patients were included for final analysis. Among the three groups, the proportions of CD56+ CD16dim NK cells were least to greatest in group-B, group-A, then group-C, respectively. With increasing age, there was a decrease in the proportion of CD3+ T-cells (group-A vs. group-C, P = 0.016) and CD3+CD4+ T-cells (group-C vs. group-A, P = 0.008; group-C vs. group-B P = 0.026). Meanwhile, no significant differences in proportions of monocytes and B cells were observed. Conclusions The compositions of immune cells in peripheral blood of AIS patients were distinct when divided by age groups. Differences in immune cell ratios may affect clinical outcomes and foreshadows possible need for customized treatment of AIS in different age groups.
Collapse
Affiliation(s)
- Haiyue Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingwei Guan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kai Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- *Correspondence: Ran Meng ; orcid.org/0000-0003-1190-4710
| |
Collapse
|
6
|
Infantino R, Schiano C, Luongo L, Paino S, Mansueto G, Boccella S, Guida F, Ricciardi F, Iannotta M, Belardo C, Marabese I, Pieretti G, Serra N, Napoli C, Maione S. MED1/BDNF/TrkB pathway is involved in thalamic hemorrhage-induced pain and depression by regulating microglia. Neurobiol Dis 2022; 164:105611. [PMID: 34995755 DOI: 10.1016/j.nbd.2022.105611] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Central post-stroke pain (CPSP) and associated depression remain poorly understood and pharmacological treatments are unsatisfactory. Recently, microglia activation was suggested to be involved in CPSP pathophysiology. The goal of this study was to investigate the effectiveness of a co-ultramicronized combination of N-palmitoylethanolamide and luteolin (PEALut) in a mouse model of thalamic hemorrhage (TH)-induced CPSP. TH was established through the collagenase-IV injection in thalamic ventral-posterolateral-nucleus. PEALut effects in CPSP-associated behaviors were evaluated during a 28-days observation period. We found that repeated administrations of co-ultra PEALut significantly reduced mechanical hypersensitivity after TH, as compared to vehicle, by reducing the early microglial activation in the perilesional site. Moreover, PEALut prevented the development of depressive-like behavior (21 days post-TH). These effects were associated with the restoration of synaptic plasticity in LEC-DG pathway and monoamines levels found impaired in TH mice. Hippocampal MED1 and TrkB expressions were significantly increased in TH compared to sham mice 21 days post-TH, whereas BDNF levels were decreased. PEALut restored MED1/TrkB/BDNF expression in mice. Remarkably, we found significant overexpression of MED1 in the human autoptic brain specimens after stroke, indicating a translational potential of our findings. These results pave the way for better-investigating depression in TH- induced CPSP, together with the involvement of MED1/TrkB/BDNF pathway, proposing PEALut as an adjuvant treatment.
Collapse
Affiliation(s)
- Rosmara Infantino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Salvatore Paino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy; Legal Medicine Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Surgical and Dental Specialities, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Serra
- Department of Public Health, University Federico II, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCSS, Neuromed, Pozzilli, Italy.
| |
Collapse
|
7
|
Foschi M, Padroni M, Abu-Rumeileh S, Abdelhak A, Russo M, D'Anna L, Guarino M. Diagnostic and Prognostic Blood Biomarkers in Transient Ischemic Attack and Minor Ischemic Stroke: An Up-To-Date Narrative Review. J Stroke Cerebrovasc Dis 2022; 31:106292. [PMID: 35026496 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Early diagnosis and correct risk stratification in patients with transient ischemic attack (TIA) and minor ischemic stroke (MIS) is crucial for the high rate of subsequent disabling stroke. Although highly improved, diagnosis and prognostication of TIA/MIS patients remain still based on clinical and neuroimaging findings, with some inter-rater variability even among trained neurologists. OBJECTIVES To provide an up-to-date overview of diagnostic and prognostic blood biomarkers in TIA and MIS patients. MATERIAL AND METHODS We performed a bibliographic search on PubMed database with last access on July 10th 2021. More than 680 articles were screened and we finally included only primary studies on blood biomarkers. RESULTS In a narrative fashion, we discussed about blood biomarkers investigated in TIA/MIS patients, including inflammatory, thrombosis, neuronal injury and cardiac analytes, antibodies and microRNAs. Other soluble molecules have been demonstrated to predict the risk of recurrent cerebrovascular events or treatment response in these patients. A rapid point of care assay, combining the determination of different biomarkers, has been developed to improve triage recognition of acute cerebrovascular accidents. CONCLUSIONS The implementation of blood biomarkers in the clinical management of TIA/MIS could ameliorate urgent identification, risk stratification and individual treatment choice. Large prospective and longitudinal studies, adopting standardized sampling and analytic procedures, are needed to clarify blood biomarkers kinetic and their relationship with TIA and minor stroke etiology.
Collapse
Affiliation(s)
- Matteo Foschi
- Department of Neuroscience, Neurology Unit, S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Marina Padroni
- Neurology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA; Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Michele Russo
- Department of Cardiovascular Diseases, Division of Cardiology - S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London, NHS Healthcare Trust, London, United Kingdom; Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Maria Guarino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
8
|
Association of CYP26C1 Promoter Hypomethylation with Small Vessel Occlusion in Korean Subjects. Genes (Basel) 2021; 12:genes12101622. [PMID: 34681016 PMCID: PMC8535232 DOI: 10.3390/genes12101622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
The risk factors for stroke, a fatal disease, include type two diabetes, hypertension, and genetic influences. Small vessel occlusion (SVO) can be affected by epigenetic alterations, but an association between SVO and the methylation of cytochrome P450 family 26 subfamily C member 1 (CYP26C1) has not been identified. In this study, we measured the level of DNA methylation in the CYP26C1 promoter and the 5′ untranslated region of 115 normal subjects and 56 patients with SVO in Korea. The DNA methylation level of each subject was measured by bisulfite amplicon sequencing, and statistical analysis was performed using the general linear model or Pearson’s correlation. The average level of DNA methylation was markedly lower in patients with SVO than in normal subjects (20.4% vs. 17.5%). We found that the methylation of CYP26C1 has a significant positive correlation with blood parameters including white blood cells, hematocrit, lactate dehydrogenase, and Na+ in subjects with SVO. We predicted that binding of RXR-α and RAR-β might be affected by CYP26C1 methylation at CpG sites −246–237 and −294–285. These findings suggest that CYP26C1 methylation in the promoter region may be a predictor of SVO.
Collapse
|
9
|
Lyu Z, Park J, Kim KM, Jin HJ, Wu H, Rajadas J, Kim DH, Steinberg GK, Lee W. A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke. Nat Biomed Eng 2021; 5:847-863. [PMID: 34385693 PMCID: PMC8524779 DOI: 10.1038/s41551-021-00744-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
The therapeutic efficacy of stem cells transplanted into an ischaemic brain depends primarily on the responses of the neurovascular unit. Here, we report the development and applicability of a functional neurovascular unit on a microfluidic chip as a microphysiological model of ischaemic stroke that recapitulates the function of the blood-brain barrier as well as interactions between therapeutic stem cells and host cells (human brain microvascular endothelial cells, pericytes, astrocytes, microglia and neurons). We used the model to track the infiltration of a number of candidate stem cells and to characterize the expression levels of genes associated with post-stroke pathologies. We observed that each type of stem cell showed unique neurorestorative effects, primarily by supporting endogenous recovery rather than through direct cell replacement, and that the recovery of synaptic activities is correlated with the recovery of the structural and functional integrity of the neurovascular unit rather than with the regeneration of neurons.
Collapse
Affiliation(s)
- Zhonglin Lyu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jon Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kwang-Min Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hye-Jin Jin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haodi Wu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jayakumar Rajadas
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deok-Ho Kim
- Departments of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A.,Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Gary K. Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wonjae Lee
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA.,Correspondence and requests for materials should be addressed to: Corresponding author, Wonjae Lee, or
| |
Collapse
|
10
|
Duwa R, Jeong JH, Yook S. Development of immunotherapy and nanoparticles-based strategies for the treatment of Parkinson’s disease. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00521-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Zhong L, Yan J, Li H, Meng L. HDAC9 Silencing Exerts Neuroprotection Against Ischemic Brain Injury via miR-20a-Dependent Downregulation of NeuroD1. Front Cell Neurosci 2021; 14:544285. [PMID: 33584204 PMCID: PMC7873949 DOI: 10.3389/fncel.2020.544285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebral stroke is an acute cerebrovascular disease that is a leading cause of death and disability worldwide. Stroke includes ischemic stroke and hemorrhagic strokes, of which the incidence of ischemic stroke accounts for 60–70% of the total number of strokes. Existing preclinical evidence suggests that inhibitors of histone deacetylases (HDACs) are a promising therapeutic intervention for stroke. In this study, the purpose was to investigate the possible effect of HDAC9 on ischemic brain injury, with the underlying mechanism related to microRNA-20a (miR-20a)/neurogenic differentiation 1 (NeuroD1) explored. The expression of HDAC9 was first detected in the constructed middle cerebral artery occlusion (MCAO)-provoked mouse model and oxygen-glucose deprivation (OGD)-induced cell model. Next, primary neuronal apoptosis, expression of apoptosis-related factors (Bax, cleaved caspase3 and bcl-2), LDH leakage rate, as well as the release of inflammatory factors (TNF-α, IL-1β, and IL-6) were evaluated by assays of TUNEL, Western blot, and ELISA. The relationships among HDAC9, miR-20a, and NeuroD1 were validated by in silico analysis and ChIP assay. HDAC9 was highly-expressed in MCAO mice and OGD-stimulated cells. Silencing of HDAC9 inhibited neuronal apoptosis and inflammatory factor release in vitro. HDAC9 downregulated miR-20a by enriching in its promoter region, while silencing of HDCA9 promoted miR-20a expression. miR-20a targeted Neurod1 and down-regulated its expression. Silencing of HDAC9 diminished OGD-induced neuronal apoptosis and inflammatory factor release in vitro as well as ischemic brain injury in vivo by regulating the miR-20a/NeuroD1 signaling. Overall, our study revealed that HDAC9 silencing could retard ischemic brain injury through the miR-20a/Neurod1 signaling.
Collapse
Affiliation(s)
- Liangjun Zhong
- Department of Neurosurgery, Pingyin County People's Hospital, Jinan, China
| | - Jinxiang Yan
- Department of Neurosurgery, Ningyang No. 1 People's Hospital, Tai'an, China
| | - Haitao Li
- Department of Neurology, Qihe County People's Hospital, Dezhou, China
| | - Lei Meng
- Department of Neurosurgery, Shandong Provincial Hospital, Jinan, China
| |
Collapse
|
12
|
Liao Y, Li X, Mou T, Zhou X, Li D, Wang L, Zhang Y, Dong X, Zheng H, Guo L, Liang Y, Jiang G, Fan S, Xu X, Xie Z, Chen H, Liu L, Li Q. Distinct infection process of SARS-CoV-2 in human bronchial epithelial cell lines. J Med Virol 2020; 92:2830-2838. [PMID: 32558946 PMCID: PMC7323243 DOI: 10.1002/jmv.26200] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2), leads to a series of clinical symptoms of respiratory and pulmonary inflammatory reactions via unknown pathologic mechanisms related to the viral infection process in tracheal or bronchial epithelial cells. Investigation of this viral infection in the human bronchial epithelial cell line (16HBE) suggests that SARS‐CoV‐2 can enter these cells through interaction between its membrane‐localized S protein with the angiotensin‐converting enzyme 2 molecule on the host cell membrane. Further observation indicates distinct viral replication with a dynamic and moderate increase, whereby viral replication does not lead to a specific cytopathic effect but maintains a continuous release of progeny virions from infected cells. Although messenger RNA expression of various innate immune signaling molecules is altered in the cells, transcription of interferons‐α (IFN‐α), IFN‐β, and IFN‐γ is unchanged. Furthermore, expression of some interleukins (IL) related to inflammatory reactions, such as IL‐6, IL‐2, and IL‐8, is maintained at low levels, whereas that of ILs involved in immune regulation is upregulated. Interestingly, IL‐22, an IL that functions mainly in tissue repair, shows very high expression. Collectively, these data suggest a distinct infection process for this virus in respiratory epithelial cells, which may be linked to its clinicopathological mechanism. SARS‐CoV‐2 does not lead to a specific cytopathic effect in 16HBE cells, but maintains continuous release of progeny virions from infected cells. During infection, IL‐22, an interleukin that functions mainly in tissue repair, showed very high expression.
Collapse
Affiliation(s)
- Yun Liao
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Xueqi Li
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Tangwei Mou
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Xiaofang Zhou
- Acute Infectious Disease Laboratory, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, China
| | - Dandan Li
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Xingqi Dong
- Infectious Disease Laboratory, Yunnan Provincial Infectious Disease Hospital, Kunming, Yunnan, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yan Liang
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Zhongping Xie
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Hongbo Chen
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medicine Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| |
Collapse
|
13
|
CDDO-Me Inhibits Microglial Activation and Monocyte Infiltration by Abrogating NFκB- and p38 MAPK-Mediated Signaling Pathways Following Status Epilepticus. Cells 2020; 9:cells9051123. [PMID: 32370011 PMCID: PMC7290793 DOI: 10.3390/cells9051123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Following status epilepticus (SE, a prolonged seizure activity), microglial activation, and monocyte infiltration result in the inflammatory responses in the brain that is involved in the epileptogenesis. Therefore, the regulation of microglia/monocyte-mediated neuroinflammation is one of the therapeutic strategies for avoidance of secondary brain injury induced by SE. 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is an activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), which regulates intracellular redox homeostasis. In addition, CDDO-Me has anti-inflammatory properties that suppress microglial proliferation and its activation, although the underlying mechanisms have not been clarified. In the present study, CDDO-Me ameliorated monocyte infiltration without vasogenic edema formation in the frontoparietal cortex (FPC) following SE, accompanied by abrogating monocyte chemotactic protein-1 (MCP-1)/tumor necrosis factor-α (TNF-α) expressions and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation. Furthermore, CDDO-Me inhibited nuclear factor-κB (NFκB)-S276 phosphorylation and microglial transformation, independent of Nrf2 expression. Similar to CDDO-Me, SN50 (an NFκB inhibitor) mitigated monocyte infiltration by reducing MCP-1 and p38 MAPK phosphorylation in the FPC following SE. Therefore, these findings suggest, for the first time, that CDDO-Me may attenuate microglia/monocyte-mediated neuroinflammation via modulating NFκB- and p38 MAPK-MCP-1 signaling pathways following SE.
Collapse
|
14
|
Crimi E, Cirri S, Benincasa G, Napoli C. Epigenetics Mechanisms in Multiorgan Dysfunction Syndrome. Anesth Analg 2020; 129:1422-1432. [PMID: 31397699 DOI: 10.1213/ane.0000000000004331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic mechanisms including deoxyribonucleic acid (DNA) methylation, histone modifications (eg, histone acetylation), and microribonucleic acids (miRNAs) have gained much scientific interest in the last decade as regulators of genes expression and cellular function. Epigenetic control is involved in the modulation of inflammation and immunity, and its dysregulation can contribute to cell damage and organ dysfunction. There is growing evidence that epigenetic changes can contribute to the development of multiorgan dysfunction syndrome (MODS), a leading cause of mortality in the intensive care unit (ICU). DNA hypermethylation, histone deacetylation, and miRNA dysregulation can influence cytokine and immune cell expression and promote endothelial dysfunction, apoptosis, and end-organ injury, contributing to the development of MODS after a critical injury. Epigenetics processes, particularly miRNAs, are emerging as potential biomarkers of severity of disease, organ damage, and prognostic factors in critical illness. Targeting epigenetics modifications can represent a novel therapeutic approach in critical care. Inhibitors of histone deacetylases (HDCAIs) with anti-inflammatory and antiapoptotic activities represent the first class of drugs that reverse epigenetics modifications with human application. Further studies are required to acquire a complete knowledge of epigenetics processes, full understanding of their individual variability, to expand their use as accurate and reliable biomarkers and as safe target to prevent or attenuate MODS in critical disease.
Collapse
Affiliation(s)
- Ettore Crimi
- From the University of Central Florida, College of Medicine, Orlando, Florida.,Department of Anesthesiology and Critical Care Medicine, Ocala Health, Ocala, Florida
| | - Silvia Cirri
- Division of Anesthesiology and Intensive Care, Cardiothoracic Department, Istituto Clinico Sant'Ambrogio, Gruppo Ospedaliero San Donato, Milan, Italy
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation SDN, Naples, Italy
| |
Collapse
|
15
|
Hsia CH, Jayakumar T, Sheu JR, Hsia CW, Huang WC, Velusamy M, Lien LM. Synthetic Ruthenium Complex TQ-6 Potently Recovers Cerebral Ischemic Stroke: Attenuation of Microglia and Platelet Activation. J Clin Med 2020; 9:jcm9040996. [PMID: 32252398 PMCID: PMC7230480 DOI: 10.3390/jcm9040996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Activated microglia are crucial in the regulation of neuronal homeostasis and neuroinflammation. They also contribute to neuropathological processes after ischemic stroke. Thus, finding new approaches for reducing neuroinflammation has gained considerable attention. The metal ruthenium has gained notable attention because of its ability to form new complexes that can be used in disease treatment. [Ru(η6-cymene)2-(1H-benzoimidazol-2-yl)-quinoline Cl]BF4 (TQ-6), a potent ruthenium (II)-derived compound, was used in this study to investigate its neuroprotective action against microglia activation, middle cerebral artery occlusion (MCAO)-induced embolic stroke, and platelet activation, respectively. TQ-6 (2 μM) potently diminished inflammatory mediators (nitric oxide/inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)) expression, nuclear factor kappa B (NF-κB) p65 phosphorylation, nuclear translocation, and hydroxyl radical (OH•) formation in LPS-stimulated microglia. Conversely, TQ-6 increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Moreover, it significantly reduced brain infarct volume and edema in MCAO mice. Additionally, it drastically inhibited platelet aggregation and OH• production in mice platelets. This study confirmed that TQ-6 exerts an anti-neuroinflammatory effect on microglia activation through neuroprotection, antiplatelet activation, and free radical scavenging. The authors propose that TQ-6 might mitigate neurodegenerative pathology by inhibiting the NF-κB-mediated downstream pathway (iNOS and COX-2) and enhancing Nrf2/HO-1 signaling molecules in microglia.
Collapse
Affiliation(s)
- Chih-Hsuan Hsia
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
| | - Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
| | - Wei-Chieh Huang
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India;
| | - Li-Ming Lien
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- Correspondence: ; Tel.: +886-2-283-322-11 (ext. 2071)
| |
Collapse
|
16
|
Romoli M, Mazzocchetti P, D'Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, Calabresi P, Costa C. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr Neuropharmacol 2020; 17:926-946. [PMID: 30592252 PMCID: PMC7052829 DOI: 10.2174/1570159x17666181227165722] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
After more than a century from its discovery, valproic acid (VPA) still represents one of the most efficient antiepi-leptic drugs (AEDs). Pre and post-synaptic effects of VPA depend on a very broad spectrum of actions, including the regu-lation of ionic currents and the facilitation of GABAergic over glutamatergic transmission. As a result, VPA indirectly mod-ulates neurotransmitter release and strengthens the threshold for seizure activity. However, even though participating to the anticonvulsant action, such mechanisms seem to have minor impact on epileptogenesis. Nonetheless, VPA has been reported to exert anti-epileptogenic effects. Epigenetic mechanisms, including histone deacetylases (HDACs), BDNF and GDNF modulation are pivotal to orientate neurons toward a neuroprotective status and promote dendritic spines organization. From such broad spectrum of actions comes constantly enlarging indications for VPA. It represents a drug of choice in child and adult with epilepsy, with either general or focal seizures, and is a consistent and safe IV option in generalized convulsive sta-tus epilepticus. Moreover, since VPA modulates DNA transcription through HDACs, recent evidences point to its use as an anti-nociceptive in migraine prophylaxis, and, even more interestingly, as a positive modulator of chemotherapy in cancer treatment. Furthermore, VPA-induced neuroprotection is under investigation for benefit in stroke and traumatic brain injury. Hence, VPA has still got its place in epilepsy, and yet deserves attention for its use far beyond neurological diseases. In this review, we aim to highlight, with a translational intent, the molecular basis and the clinical indications of VPA.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Petra Mazzocchetti
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Renato D'Alonzo
- Pediatric Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Victoria Elisa Rinaldi
- Pediatric Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila - San Salvatore Hospital, L'Aquila, Italy
| | - Paolo Calabresi
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,IRCCS "Santa Lucia", Rome, Italy
| | - Cinzia Costa
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
17
|
Schwab AD, Thurston MJ, Machhi J, Olson KE, Namminga KL, Gendelman HE, Mosley RL. Immunotherapy for Parkinson's disease. Neurobiol Dis 2020; 137:104760. [PMID: 31978602 PMCID: PMC7933730 DOI: 10.1016/j.nbd.2020.104760] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
With the increasing prevalence of Parkinson’s disease (PD), there is an immediate need to interdict disease signs and symptoms. In recent years this need was met through therapeutic approaches focused on regenerative stem cell replacement and alpha-synuclein clearance. However, neither have shown long-term clinical benefit. A novel therapeutic approach designed to affect disease is focused on transforming the brain’s immune microenvironment. As disordered innate and adaptive immune functions are primary components of neurodegenerative disease pathogenesis, this has emerged as a clear opportunity for therapeutic development. Interventions that immunologically restore the brain’s homeostatic environment can lead to neuroprotective outcomes. These have recently been demonstrated in both laboratory and early clinical investigations. To these ends, efforts to increase the numbers and function of regulatory T cells over dominant effector cells that exacerbate systemic inflammation and neurodegeneration have emerged as a primary research focus. These therapeutics show broad promise in affecting disease outcomes beyond PD, such as for Alzheimer’s disease, stroke and traumatic brain injuries, which share common neurodegenerative disease processes.
Collapse
Affiliation(s)
- Aaron D Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Mackenzie J Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America.
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| |
Collapse
|
18
|
Stanzione R, Cotugno M, Bianchi F, Marchitti S, Forte M, Volpe M, Rubattu S. Pathogenesis of Ischemic Stroke: Role of Epigenetic Mechanisms. Genes (Basel) 2020; 11:genes11010089. [PMID: 31941075 PMCID: PMC7017187 DOI: 10.3390/genes11010089] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/29/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is the branch of molecular biology that studies modifications able to change gene expression without altering the DNA sequence. Epigenetic modulations include DNA methylation, histone modifications, and noncoding RNAs. These gene modifications are heritable and modifiable and can be triggered by lifestyle and nutritional factors. In recent years, epigenetic changes have been associated with the pathogenesis of several diseases such as diabetes, obesity, renal pathology, and different types of cancer. They have also been related with the pathogenesis of cardiovascular diseases including ischemic stroke. Importantly, since epigenetic modifications are reversible processes they could assist with the development of new therapeutic approaches for the treatment of human diseases. In the present review article, we aim to collect the most recent evidence concerning the impact of epigenetic modifications on the pathogenesis of ischemic stroke in both animal models and humans.
Collapse
Affiliation(s)
- Rosita Stanzione
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
- Correspondence: ; Tel.: +86-5915224
| | - Maria Cotugno
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
| | - Franca Bianchi
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
| | - Simona Marchitti
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
| | - Maurizio Forte
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
| | - Massimo Volpe
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
19
|
Dabrowska S, Andrzejewska A, Lukomska B, Janowski M. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation 2019; 16:178. [PMID: 31514749 PMCID: PMC6743114 DOI: 10.1186/s12974-019-1571-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is the third cause of death in the developed countries and the main reason of severe disability. Brain ischemia leads to the production of damage-associated molecular patterns (DAMPs) by neurons and glial cells which results in astrocyte and microglia activation, pro-inflammatory cytokines and chemokines production, blood-brain barrier (BBB) disruption, infiltration of leukocytes from the peripheral blood into the infarcted area, and further exacerbation of tissue damage. However, some immune cells such as microglia or monocytes are capable to change their phenotype to anti-inflammatory, produce anti-inflammatory cytokines, and protect injured nervous tissue. In this situation, therapies, which will modulate the immune response after brain ischemia, such as transplantation of mesenchymal stem cells (MSCs) are catching interest. Many experimental studies of ischemic stroke revealed that MSCs are able to modulate immune response and act neuroprotective, through stimulation of neurogenesis, oligodendrogenesis, astrogenesis, and angiogenesis. MSCs may also have an ability to replace injured cells, but the release of paracrine factors directly into the environment or via extracellular vesicles (EVs) seems to play the most pronounced role. EVs are membrane structures containing proteins, lipids, and nucleic acids, and they express similar properties as the cells from which they are derived. However, EVs have lower immunogenicity, do not express the risk of vessel blockage, and have the capacity to cross the blood-brain barrier. Experimental studies of ischemic stroke showed that EVs have immunomodulatory and neuroprotective properties; therefore, they can stimulate neurogenesis and angiogenesis. Up to now, 20 clinical trials with MSC transplantation into patients after stroke were performed, from which two concerned on only hemorrhagic stroke and 13 studied only on ischemic stroke. There is no clinical trial with EV injection into patients after brain ischemia so far, but the case with miR-124-enriched EVs administration is planned and probably there will be more clinical studies with EV transplantation in the near future.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, HSF III, 620 W. Baltimore street, Baltimore, MD, 21201, USA.
| |
Collapse
|
20
|
Chen W, Sinha B, Li Y, Benowitz L, Chen Q, Zhang Z, Patel NJ, Aziz-Sultan AM, Chiocca AE, Wang X. Monogenic, Polygenic, and MicroRNA Markers for Ischemic Stroke. Mol Neurobiol 2019; 56:1330-1343. [PMID: 29948938 PMCID: PMC7358039 DOI: 10.1007/s12035-018-1055-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/29/2018] [Indexed: 02/08/2023]
Abstract
Ischemic stroke (IS) is a leading disease with high mortality and disability, as well as with limited therapeutic window. Biomarkers for earlier diagnosis of IS have long been pursued. Family and twin studies confirm that genetic variations play an important role in IS pathogenesis. Besides DNA mutations found previously by genetic linkage analysis for monogenic IS (Mendelian inheritance), recent studies using genome-wide associated study (GWAS) and microRNA expression profiling have resulted in a large number of DNA and microRNA biomarkers in polygenic IS (sporadic IS), especially in different IS subtypes and imaging phenotypes. The present review summarizes genetic markers discovered by clinical studies and discusses their pathogenic molecular mechanisms involved in developmental or regenerative anomalies of blood vessel walls, neuronal apoptosis, excitotoxic death, inflammation, neurogenesis, and angiogenesis. The possible impact of environment on genetics is addressed as well. We also include a perspective on further studies and clinical application of these IS biomarkers.
Collapse
Affiliation(s)
- Wu Chen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, China.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Newborn Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Yi Li
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, China
| | - Larry Benowitz
- Department of Neurosurgery, Boston Children's Hospital, F.M. Kirby Neurobiology Center for Life Science, Harvard Medical School, Boston, MA, 02115, USA
| | - Qinhua Chen
- Experimental Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, China
| | - Zhenghong Zhang
- Department of Neurology, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, China
| | - Nirav J Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali M Aziz-Sultan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Antonio E Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Zhang YY, Huang NN, Zhao YX, Li YS, Wang D, Fan YC, Li XH. Elevated Tumor Necrosis Factor-a-induced Protein 8-like 2 mRNA from Peripheral Blood Mononuclear Cells in Patients with Acute Ischemic Stroke. Int J Med Sci 2018; 15:1713-1722. [PMID: 30588195 PMCID: PMC6299423 DOI: 10.7150/ijms.27817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Tumor necrosis factor-a-induced protein 8-like 2 (TIPE2) is a novel regulator of immunity and protects against experimental stroke. However, the expression and function of TIPE2 in patients with acute ischemic stroke has not been well demonstrated. Methods: A total of 182 consecutive patients with acute ischemic stroke and 40 healthy controls were included during November 2015 to June 2016. The mRNA levels of TIPE2, interleukin(IL)-1β, IL-10, IL-6, nuclear factor(NF)-κβ, activator protein(AP)-1, interferon(IFN)-γ and tumor necrosis factor(TNF)-α from peripheral blood mononuclear cells were determined using real time quantitative reverse transcriptase polymerase chain reaction. The severity of stroke was assessed using the National Institutes of Health Stroke Scale (NIHSS) score. Results: The median mRNA levels of TIPE2, TNF-α, AP-1, IFN-γ and NF-κβ in patients with acute ischemic stroke were significantly higher than healthy controls (all P<0.001, respectively). Of note, TIPE2 mRNA showed an increasing trend on a time-dependent manner after the onset of stroke. Furthermore, TIPE2 mRNA was negatively associated with lesion volumes (r=-0.23, P<0.01), NIHSS(r=-0.15, P<0.05), TNF-α(r=-0.33,P<0.001), AP-1(r=-0.28,P<0.001), IFN-γ (r=-0.16, P<0.05) and NF-κβ (r=-0.13, P<0.05), but positively associated with IL-6(r=0.14, P<0.05) and IL-10(r=-0.31, P<0.001). Hierarchy cluster analysis showed that TIPE2 mRNA has nearest membership with TNF-α, followed by IL-6, NF-κβ, AP-1, IL-10, IL-1β and IFN-γ. In addition, TIPE2 mRNA in survivals (n=149) was significantly higher than nonsurvivals (n=33) (P<0.001), and showed a great odd ratio (0.52, 95% confidence interval: 0.349-0.760, P<0.001) on 3-month mortality. Conclusions: TIPE2 mRNA contributed to the immune response of stroke and might be a potential biomarker for the mortality of acute ischemic stroke.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| | - Na-Na Huang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| | - Yan-Xin Zhao
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| | - Yan-Shuang Li
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| | - Dong Wang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiao-Hong Li
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| |
Collapse
|
22
|
Sommese L, Benincasa G, Lanza M, Sorriento A, Schiano C, Lucchese R, Alfano R, Nicoletti GF, Napoli C. Novel epigenetic-sensitive clinical challenges both in type 1 and type 2 diabetes. J Diabetes Complications 2018; 32:1076-1084. [PMID: 30190170 DOI: 10.1016/j.jdiacomp.2018.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Epigenetics modulated tissue-specific gene expression during the onset of type 1 and type 2 diabetes and their complications. METHODS We searched the PubMed recent studies about the main epigenetic tags involved in type 1 and type 2 diabetes onset and their clinical complications. PubMed studies about the epigenetic tags involved in type 1 and 2 diabetes onset was searched. RESULTS The epigenetic methylation maps of cord blood samples highlighted differences in the methylation status of CpG sites within the MHC genes between carriers of diabetes type 1 DR3-DQ2 and DR4-DQ8 risk haplotypes. β cell-derived unmethylated INS DNA showed the decline of β-cell mass preserving insulin secretion. Differentially methylated regions in pancreatic islets from type 2 diabetes covered PDX1, TCF7L2, and ADCY5 promoters during islet dysfunction. The recruitment of SET7 and SUV39H1 histone methyltransferases and LSD-1 lysine-specific demethylase-1 at NF-kβ-p65 promoter in vascular cells was involved in coronary heart disease. Neutrophil extracellular trap, activated by protein arginine deiminase-4, impaired wound healing from diabetic foot ulcers. MiR-199a-3p over-expression induced coagulative cascade, swelling and pain by a down-regulation of SERPIN-E2 in diabetic peripheral neuropathy. A DNA hypo-methylation and histone hyper-acetylation at MIOX promoter led an overexpression of ROS, fibronectin, HIF-1α, and NOX-4 associated with diabetic tubulopathy. A hypo-methylation of H3K4 at SOD2 promoter by LSD-1 increased ROS causing diabetic retinopathy. CONCLUSIONS Epigenetics played a relevant role in prevention, diagnosis, and treatment of diabetes.
Collapse
MESH Headings
- Biomarkers/analysis
- DNA Methylation/physiology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/therapy
- Diabetic Foot/genetics
- Epigenesis, Genetic/physiology
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Precision Medicine/methods
- Precision Medicine/trends
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Linda Sommese
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Giuditta Benincasa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Michele Lanza
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università della Campania Luigi Vanvitelli, Napoli, Italy
| | - Antonio Sorriento
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | | | - Roberta Lucchese
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Roberto Alfano
- Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università della Campania Luigi Vanvitelli, Napoli, Italy
| | - Claudio Napoli
- IRCCS SDN, Naples, Italy; Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| |
Collapse
|
23
|
He Q, Shi X, Zhou B, Teng J, Zhang C, Liu S, Lian J, Luo B, Zhao G, Lu H, Xu Y, Lian Y, Jia Y, Zhang Y. Interleukin 8 (CXCL8)-CXC chemokine receptor 2 (CXCR2) axis contributes to MiR-4437-associated recruitment of granulocytes and natural killer cells in ischemic stroke. Mol Immunol 2018; 101:440-449. [PMID: 30096583 DOI: 10.1016/j.molimm.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023]
Abstract
Granulocytes and natural killer (NK) cells have been linked to brain injury in ischemic stroke. However, their recruitment from peripheral leucocytes in stroke patients is not well understood. Here, the expression of the interleukin 8 (CXCL8) in plasma, and CXC chemokine receptor 2 (CXCR2) in peripheral leucocytes of patients with ischemic stroke were evaluated. Based on the results, CXCR2 expression positively correlated with granulocytes and NK cells, which were in turn attracted by CXCL8. The results also indicated that CXCR2 was a direct target of microRNA (miR)-4437, a negative regulator of CXCR2, which was downregulated in peripheral leucocytes from patients with ischemic stroke. Furthermore, serum CXCL8 levels were associated with the infarct volume and functional outcomes in patients with ischemic stroke. The results of the receiver operating characteristic curve analysis with an optimal cut-off value of 34 pg/mL indicated serum CXCL8 levels could be a prognostic indicator for ischemic stroke. In conclusion, these data highlighted the involvement of the CXCL8-CXCR2 chemotactic axis in the recruitment of granulocytes and NK cells in ischemic stroke. Furthermore, miR-4437 was suggested as a novel target for treating ischemic stroke, while the serum CXCL8 level could be a prognostic factor for ischemic stroke.
Collapse
Affiliation(s)
- Qianyi He
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaojuan Shi
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bin Zhou
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Junfang Teng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chaoqi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Shasha Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jingyao Lian
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hong Lu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yajun Lian
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yanjie Jia
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Key Laboratory for Tumor Immunology and Immunotherapy of Henan Province, Zhengzhou 450052, Henan, China.
| |
Collapse
|
24
|
Sommese L, Paolillo R, Cacciatore F, Grimaldi V, Sabia C, Esposito A, Sorriento A, Iannone C, Rupealta N, Sarno G, Santangelo M, De Rosa P, Nicoletti G, Napoli C. HLA-G and anti-HCV in patients on the waiting list for kidney transplantation. Adv Med Sci 2018; 63:317-322. [PMID: 30015095 DOI: 10.1016/j.advms.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE Human leukocyte antigen (HLA)-G is a non-classic major histocompatibility complex HLA class I molecule. HLA-G may have tolerogenic properties which are linked to epigenetic-sensitive pathways. There is a correlation of sHLA-G levels and graft acceptance in transplantation studies. There are previous data on correlation of sHLA-G with graft rejection as well as with viral infections such as hepatitis C virus (HCV) in kidney transplanted patients. Here, we report the sHLA-G expression in patients on the waiting list for kidney transplantation, with and without anti-HCV compared to a control group. METHODS Serum of 67 patients on the waiting list for kidney transplantation (n = 43 with anti-HCV and n = 24 without anti-HCV) was analyzed. Among these patients, n = 39 were on the waiting list for the first transplantation, while n = 28 were patients who returned in the list. The control group included n = 23 blood donors with anti-HCV (n = 13) and without anti-HCV (n = 10). RESULTS The expression of sHLA-G was significantly lower in the control group (39.6 ± 34.1 U/ml) compared to both - patients on the waiting list for the first transplantation (62.5 ± 42.4 U/ml, p=0.031) and patients who returned in the list (76.7 ± 53.9 U/ml, p=0.006). No significant differences were observed in all anti-HCV positive groups. A positive linear correlation between sHLA-G and TNF-α, and patient age was observed. CONCLUSIONS Serum sHLA-G values were significantly increased in both - patients on the waiting list for the first transplantation and patients who returned in the list, as compared to control group. Our findings confirm the key tolerogenic role of sHLA-G levels as epigenetic-related marker for measuring the state of kidney allograft acceptance.
Collapse
Affiliation(s)
- Linda Sommese
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria (AOU), Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Rossella Paolillo
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Francesco Cacciatore
- IRCCS Salvatore Maugeri Foundation, Scientific Institute of Telese, Benevento, Italy
| | - Vincenzo Grimaldi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Chiara Sabia
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonella Esposito
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonio Sorriento
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria (AOU), Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Carmela Iannone
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | | | - Gerardo Sarno
- San Giovanni di Dio e Ruggi D'Aragona, Università Ospedaliera, Salerno, Italy
| | | | - Paride De Rosa
- San Giovanni di Dio e Ruggi D'Aragona, Università Ospedaliera, Salerno, Italy
| | - Gianfranco Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Napoli
- Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|
25
|
Sommese L, Zullo A, Schiano C, Mancini FP, Napoli C. Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Rev Rep 2017; 13:170-191. [PMID: 28058671 DOI: 10.1007/s12015-016-9711-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.
Collapse
Affiliation(s)
- Linda Sommese
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.
| | - Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.,CEINGE Advanced Biotechnologies, s.c.ar.l, Naples, Italy
| | | | - Francesco P Mancini
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Claudio Napoli
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.,IRCCS Foundation SDN, Naples, Italy
| |
Collapse
|
26
|
麦 汉, 姜 涛, 张 爱, 吕 田, 杨 灿, 覃 偲. [Expression of HDAC9 in different brain regions in mice with cerebral ischemic stroke]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:812-816. [PMID: 28669958 PMCID: PMC6744151 DOI: 10.3969/j.issn.1673-4254.2017.06.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the expression and the subcellular localization of HDAC9 in different brain regions of mice after cerebral ischemic injury and explore the association between HDAC9 and ischemic stroke. METHODS Twenty-one male C57BL/6 mice were randomly divided into sham-operated group (n=9) and operated group (n=12). In the latter group, the mice with Zea-Longa neurological deficit scores of 2 or 3 following middle cerebral artery occlusion (MCAO) were assigned into MCAO group (n=9). Immunofluorescence was performed to investigate the subcellular localization of HDAC9 in the brain tissues on day 3 after MCAO. Western blotting and qRT-PCR were used to analyze the expression of HDAC9 in different regions of the brain. Results Immunofluorescence showed more intense HDAC9 expressions in the brain tissues around the infarct focus, and in the cells surrounding the infarct, HDAC9 expression was obviously increased in the cytoplasm and reduced in the cell nuclei. Compared with the other brain regions, the ipsilesional cortex with MCAO showed more abundant HDAC9 expressions at both the mRNA and protein levels (P<0.05). CONCLUSION HDAC9 may be closely related to cerebral ischemic injury and participate in the pathophysiological process of ischemic stroke.
Collapse
Affiliation(s)
- 汉滔 麦
- 南方医科大学第三附属医院神经内科,广东 广州 510630Department of Neurology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 涛 姜
- 南方医科大学第三附属医院神经内科,广东 广州 510630Department of Neurology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 爱武 张
- 中山大学附属第一医院神经内科,广东 广州 510080Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - 田明 吕
- 南方医科大学第三附属医院神经内科,广东 广州 510630Department of Neurology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 灿洪 杨
- 南方医科大学第三附属医院神经内科,广东 广州 510630Department of Neurology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 偲偲 覃
- 南方医科大学第三附属医院神经内科,广东 广州 510630Department of Neurology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
27
|
Xiang Z, Yang Y, Chang C, Lu Q. The epigenetic mechanism for discordance of autoimmunity in monozygotic twins. J Autoimmun 2017; 83:43-50. [PMID: 28412046 DOI: 10.1016/j.jaut.2017.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
Abstract
Monozygotic twins share an identical DNA sequence but are not truly "identical". In fact, when it comes to health and disease, they may often display some level of phenotypic discordance. The cause of this discordance is often unknown. Epigenetic modifications such as DNA methylation, histone modification, and microRNAs-mediated regulation regulate gene expression and are sensitive to external stimuli. These modifications may be seen to bridge the gap between genetics and the environment. Over the years, the importance of epigenetics as a primary mechanism for the role that the environment plays in defining phenotype has been increasingly appreciated. Mechanisms of epigenetics include DNA methylation, histone modifications and microRNAs. Discordance rates in monozygotic twins vary depending on the specific condition, from 11% in SLE to 64% in psoriasis and 77% in PBC. Other autoimmune diseases in which discordance is found among monozygotic twins has also been studied include type 1 diabetes, multiple sclerosis, rheumatoid arthritis, dermatomyositis and systemic sclerosis. In some cases, the differences in various epigenetic modifications is slight, even though the concordance rate is low, suggesting that epigenetics is not the only factor that needs to be considered. Nonetheless, the study of phenotypic discordance in monozygotic twins may shed light on the pathogenesis of autoimmune diseases and contribute to the development of new methodologies for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhongyuan Xiang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuanqing Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, United States
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
28
|
Kwon YW, Cheon SY, Park SY, Song J, Lee JH. Tryptanthrin Suppresses the Activation of the LPS-Treated BV2 Microglial Cell Line via Nrf2/HO-1 Antioxidant Signaling. Front Cell Neurosci 2017; 11:18. [PMID: 28210215 PMCID: PMC5288339 DOI: 10.3389/fncel.2017.00018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/20/2017] [Indexed: 12/31/2022] Open
Abstract
Microglia are the resident macrophages in the central nervous system (CNS) and play essential roles in neuronal homeostasis and neuroinflammatory pathologies. Recently, microglia have been shown to contribute decisively to neuropathologic processes after ischemic stroke. Furthermore, natural compounds have been reported to attenuate inflammation and pathologies associated with neuroinflammation. Tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) is a phytoalkaloid with known anti-inflammatory effects in cells. In present study, the authors confirmed middle cerebral artery occlusion (MCAO) injury triggers the activation of microglia in brain tissue, and investigated whether tryptanthrin influences the function of mouse murine BV2 microglia under LPS-induced inflammatory conditions in vitro. It was found tryptanthrin protected BV2 microglia cells against LPS-induced inflammation and inhibited the induction of M1 phenotype microglia under inflammatory conditions. In addition, tryptanthrin reduced the production of pro-inflammatory cytokines in BV2 microglia cells via nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling and NF-κB signaling. The authors suggest that tryptanthrin might alleviate the progress of neuropathologies by controlling microglial functions under neuroinflammatory conditions.
Collapse
Affiliation(s)
- Young-Won Kwon
- College of Korean Medicine, Dongguk University Goyang, South Korea
| | - So Yeong Cheon
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine Seoul, South Korea
| | - Sung Yun Park
- College of Korean Medicine, Dongguk University Goyang, South Korea
| | - Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University Gwangju, South Korea
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University Goyang, South Korea
| |
Collapse
|
29
|
Sommese L, Zullo A, Mancini FP, Fabbricini R, Soricelli A, Napoli C. Clinical relevance of epigenetics in the onset and management of type 2 diabetes mellitus. Epigenetics 2017; 12:401-415. [PMID: 28059593 DOI: 10.1080/15592294.2016.1278097] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetics is involved in the altered expression of gene networks that underlie insulin resistance and insufficiency. Major genes controlling β-cell differentiation and function, such as PAX4, PDX1, and GLP1 receptor, are epigenetically controlled. Epigenetics can cause insulin resistance through immunomediated pro-inflammatory actions related to several factors, such as NF-kB, osteopontin, and Toll-like receptors. Hereafter, we provide a critical and comprehensive summary on this topic with a particular emphasis on translational and clinical aspects. We discuss the effect of epigenetics on β-cell regeneration for cell replacement therapy, the emerging bioinformatics approaches for analyzing the epigenetic contribution to type 2 diabetes mellitus (T2DM), the epigenetic core of the transgenerational inheritance hypothesis in T2DM, and the epigenetic clinical trials on T2DM. Therefore, prevention or reversion of the epigenetic changes occurring during T2DM development may reduce the individual and societal burden of the disease.
Collapse
Affiliation(s)
- Linda Sommese
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy.,b Department of Experimental Medicine , Second University of Naples , Italy
| | - Alberto Zullo
- c Department of Sciences and Technologies , University of Sannio , Benevento , Italy.,d CEINGE-Advanced Biotechnologies , Naples , Italy
| | | | - Rossella Fabbricini
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy
| | - Andrea Soricelli
- e IRCCS Research Institute SDN , Naples , Italy.,f Department of Studies of Institutions and Territorial Systems , University of Naples Parthenope , Naples , Italy
| | - Claudio Napoli
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy.,e IRCCS Research Institute SDN , Naples , Italy.,g Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences , Second University of Naples , Italy
| |
Collapse
|
30
|
Tian C, Li Z, Yang Z, Huang Q, Liu J, Hong B. Plasma MicroRNA-16 Is a Biomarker for Diagnosis, Stratification, and Prognosis of Hyperacute Cerebral Infarction. PLoS One 2016; 11:e0166688. [PMID: 27846323 PMCID: PMC5112925 DOI: 10.1371/journal.pone.0166688] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Indices for the diagnosis of hyperacute cerebral infarction (HACI) and the prediction of prognosis are essential for timely and appropriate management. MicroRNAs (miRNAs) that regulate gene expression following stroke have potential use as prognostic markers of HACI. Here, we explored whether concentrations of circulating miRNAs correlate with clinical outcomes and thus form a system of stroke stratification. Plasma samples from patients with HACI (n = 7) and age-matched healthy volunteers (HVT, n = 4) were screened by microarray to find differentially expressed miRNAs, some of which were further verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) (HACI:HVT = 33:23). The target genes of the miRNAs with verified differential expression were investigated by GO and KEEG analyses. Using the TOAST (OCSP) criteria and the 3-month modified Rankin Score (mRS), relationships among the expression patterns of specific miRNAs, stroke stratification, and clinical prognosis were determined. The microarray analysis revealed 12 differentially expressed miRNAs. Among seven selected miRNAs verified with qRT-PCR, miR-16 expression in the HACI group was the most significantly different from the HVT group (P < 0.01). Bioinformatics analysis showed that the potential target genes of miR-16 were mainly involved in programmed cell death and the p53 signaling pathways. Receiver operating characteristic (ROC) analysis showed that the area under the curve (AUC) of miR-16 was 0.775 (sensitivity 69.7% and specificity 87%) and 0.952 (sensitivity 100% and specificity 91.3%) in overall patients and patients with large artery atherosclerosis (LAAS), respectively. Elevated miR-16 expression was associated with the stroke subtype of LAAS, total anterior circulation infarction, partial anterior circulation infarction, and poor prognosis (P < 0.05). A diagnostic method based on rapid measurement of plasma miR-16 has the potential to identify hyperacute cerebral infarction with LAAS with high sensitivity and specificity, which would inform and improve early treatment decisions and disease management.
Collapse
Affiliation(s)
- Chunou Tian
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department of Neurosurgery, Number 422 Hospital of PLA, Zhanjiang, Guangdong, China
| | - Zifu Li
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhigang Yang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qinghai Huang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bo Hong
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
31
|
Picascia A, Grimaldi V, Napoli C. From HLA typing to anti-HLA antibody detection and beyond: The road ahead. Transplant Rev (Orlando) 2016; 30:187-94. [DOI: 10.1016/j.trre.2016.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/07/2016] [Accepted: 07/22/2016] [Indexed: 01/27/2023]
|
32
|
Meng HL, Li XX, Chen YT, Yu LJ, Zhang H, Lao JM, Zhang X, Xu Y. Neuronal Soluble Fas Ligand Drives M1-Microglia Polarization after Cerebral Ischemia. CNS Neurosci Ther 2016; 22:771-81. [PMID: 27283206 DOI: 10.1111/cns.12575] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 12/13/2022] Open
Abstract
AIMS This study explored sFasL expression in neurons and the potential role of neuronal sFasL in modulating the microglial phenotypes. METHODS In vivo, middle cerebral artery occlusion (MCAO) was induced in both FasL-mutant (gld) and wild-type (wt) mice. In vitro, primary cortical neuron or microglia or coculture from wt/gld mice was subjected to oxygen glucose deprivation (OGD). sFasL level in the supernatant was evaluated by ELISA. Neuronal-conditioned medium (NCM) or exogenous sFasL was applied to primary microglia with or without FasL neutralizing antibody. Protein expression of JAK2/STAT3 and NF-κB pathways were determined by Western blot. The effect of microglia phenotype from wt/gld mice on the fate of ischemic neurons was further elucidated. RESULTS In vivo, compared with wild-type mice, M1 markers (CD16, CD32 and iNOS) were attenuated in gld mice after MCAO. In vitro, post-OGD neuron released more sFasL. Both post-OGD NCM and exogenous sFasL could trigger M1-microglial polarization. However, this M1 phenotype shift was partially blocked by utilization of FasL neutralizing antibody or gld NCM. Consistently, JAK2/STAT3 and NF-κB signal pathways were both activated in microglia after exogenous sFasL treatment. Compared with wild-type mice, M1-conditioned medium prepared from gld mice protected neuron against OGD injury. CONCLUSIONS Ischemic neurons release sFasL, which contributes to M1-microglial polarization. The underlying mechanisms may involve the activation of JAK2/STAT3 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Hai-Lan Meng
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiao-Xi Li
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yan-Ting Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - He Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jia-Min Lao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|