1
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
2
|
Llorca-Bofí V, Mur M, Font M, Palacios-Garrán R, Sellart M, del Agua-Martínez E, Bioque M, Arteaga-Henríquez G. Differences in total and differential white blood cell counts and in inflammatory parameters between psychiatric inpatients with and without recent consumption of cannabinoids, opioids, or cocaine: A retrospective single-center study. Brain Behav Immun Health 2024; 42:100898. [PMID: 39634076 PMCID: PMC11615885 DOI: 10.1016/j.bbih.2024.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/08/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024] Open
Abstract
Several drugs of abuse may exert their action by modulating the immune system. Despite this, individuals using substances of abuse are often excluded from immunopsychiatry studies. We conducted a retrospective, single-center study to examine differences in circulating immune/inflammatory parameters (i.e., total and differential white blood cell (WBC) counts, neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte (MLR) ratio, platelet-to-lymphocyte ratio, and C-reactive protein) between psychiatric inpatients with a positive urine test to cannabinoids, opioids, or cocaine, and those with negative toxicology. A total of 927 inpatients were included. Patients with positive toxicology (n = 208) had significantly higher WBC counts (P < 0.001, η 2p = 0.02), as well as increased neutrophils (P = 0.002, η 2p = 0.01), monocytes (P < 0.001, η 2p = 0.02), lymphocytes (P < 0.001, η 2p = 0.02), and eosinophils (P = 0.01, η 2p = 0.01) compared to those with negative toxicology (n = 719). The increase in neutrophil counts was particularly evident in patients who tested positive for cannabinoids (n = 168; P < 0.001, η 2p = 0.02). In contrast, eosinophil counts were particularly increased in the cocaine-positive subgroup (n = 27; P = 0.004, η 2p = 0.01). Patients with a positive urine test to opioids (n = 13) were characterized by a significantly lower MLR (P = 0.03, η 2p = 0.005). The type of psychiatric diagnosis moderated the differences in neutrophil counts between patients with a positive and negative toxicology to cannabinoids. Notably, significantly higher neutrophil counts were found only in patients diagnosed with a psychotic disorder (P < 0.001, η 2p = 0.03). Taken together, our findings suggest that drugs of abuse may differently impact the immune/inflammatory response system in individuals diagnosed with psychiatric conditions. Specifically, recent cannabinoids use may be associated with an acute activation of the inflammatory response system, particularly in individuals with a psychotic disorder, while cocaine and opioid use may be associated with eosinophilia and a decrease in the MLR, respectively, regardless of the primary psychiatric diagnosis.
Collapse
Affiliation(s)
- Vicent Llorca-Bofí
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
- Department of Medicine, University of Barcelona, Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine and Surgery, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Maria Mur
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
- Department of Medicine and Surgery, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Maria Font
- Laboratory Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Roberto Palacios-Garrán
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
- Mental Health Unit, Hospital Universitario Jerez de la Frontera, University of Cádiz, Cádiz, Spain
| | - Maite Sellart
- Department of Psychiatry, Hospital Universitari Santa Maria, Lleida, Spain
| | | | - Miquel Bioque
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Department of Medicine, University of Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Gara Arteaga-Henríquez
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- NCRR-National Center for Register-based Research, Aahrus University, Aahrus, Denmark
| |
Collapse
|
3
|
Moulton CD, Malys M, Hopkins CWP, Rokakis AS, Young AH, Powell N. Activation of the interleukin-23/Th17 axis in major depression: a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01864-2. [PMID: 39012496 DOI: 10.1007/s00406-024-01864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
The interleukin-23/Th17 axis is a promising modifiable target for depression. However, its association with depression has not been systematically evaluated. We systematically searched four databases (EMBASE, Web of Science, Pubmed and PsycINFO) for studies comparing patients with major depression and healthy controls for plasma/serum levels of Th17 cells and their canonical cytokines (interleukin-17A [IL-17A], IL-22, granulocyte macrophage colony stimulating factor [GM-CSF]). We also compared counts of Th1, Th2 and Th9 cells between depressed/non-depressed patients and their respective canonical cytokines. We performed random-effects meta-analysis of the standardised mean difference (SMD) in immune measures between groups. Risk of bias was assessed using the Newcastle-Ottawa scale. Of 3154 studies screened, 36 studies were included in meta-analysis. Patients with depression had elevated IL-17A compared to controls (SMD = 0.80 [95% CI 0.03 to 1.58], p = 0.042), an association moderated by antidepressant use (Z = 2.12, p = 0.034). Patients with depression had elevated GM-CSF (SMD = 0.54 [95% CI 0.16 to 0.91], p = 0.0047), and a trend towards higher Th17 counts (SMD = 0.44 [- 0.01 to 0.88], p = 0.052). Whilst the Th2-associated cytokine IL-5 was elevated in depression (SMD = 0.36 [95% CI 0.05 to 0.66], p = 0.02), Th2 cell counts (p = 0.97), Th1 cell counts (p = 0.17) and interferon-γ (p = 0.22) were not. Data for Th9 cells, IL-9 and IL-22 were insufficient for meta-analysis. Respectively, 22, 25 and 5 studies were good, fair and poor in quality. Patients with major depression show peripheral over-activation of the IL-23/Th17 axis. Future interventional studies should test whether this is a modifiable target for depression.
Collapse
Affiliation(s)
- Calum D Moulton
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Department of Psychiatry, Division of Brain Sciences, Imperial College London, London, UK.
- St Mark's Hospital, London, UK.
| | - Mantas Malys
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | | | - Anna S Rokakis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Nick Powell
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
4
|
Ioannou M, Simon MS, Borkent J, Wijkhuijs A, Berghmans R, Haarman BC, Drexhage HA. Higher T central and lower effector memory cells in bipolar disorder: A differentiation abnormality? Brain Behav Immun Health 2024; 38:100764. [PMID: 38600952 PMCID: PMC11004065 DOI: 10.1016/j.bbih.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The aim of this study was to elucidate the nature of T cell abnormalities in bipolar disorder (BD). With the use of multicolor flow cytometry, we first quantified the composition of the different memory and pro-inflammatory immune subpopulations in samples of 58 patients with BD and compared them to 113 healthy controls. Second, to assess if cytomegalovirus infection was related to the resulted immune subpopulation compositions in the two groups, we measured cytomegalovirus-specific antibodies in serum. Thirdly, we assessed differences between the two groups in the serum levels of the immune cell differentiation factor interleukin-7. Compared to healthy controls, patients showed significantly higher T helper-17, T regulatory and T central memory cells (CD4+ and CD8+). Besides, patients showed significantly lower CD4+ T effector memory and CD4+ T effector memory re-expressing RA cells. Cytomegalovirus infection was not related to the observed abnormalities, with the exception of T helper-17 cells. This immune subpopulation was significantly higher only in patients seropositive to cytomegalovirus infection. Finally, interleukin-7 levels were significantly lower in BD compared to healthy controls. In conclusion, the aberrant levels of T memory cell populations in BD may suggest a T cell differentiation abnormality. The role of interleukin-7 in this putative abnormality should be further investigated.
Collapse
Affiliation(s)
- Magdalini Ioannou
- Department of Psychiatry, University of Groningen and University Medical Centre Groningen, Groningen, the Netherlands
| | - Maria S. Simon
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University, Munich, Germany
| | - Jenny Borkent
- Department of Psychiatry, University of Groningen and University Medical Centre Groningen, Groningen, the Netherlands
| | - Annemarie Wijkhuijs
- Department of Immunology, Erasmus Universiteit Rotterdam and University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Raf Berghmans
- Advanced Practical Diagnostics BV, Turnhout, Belgium
| | - Bartholomeus C.M. Haarman
- Department of Psychiatry, University of Groningen and University Medical Centre Groningen, Groningen, the Netherlands
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus Universiteit Rotterdam and University Medical Centre Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Poletti S, Mazza MG, Benedetti F. Inflammatory mediators in major depression and bipolar disorder. Transl Psychiatry 2024; 14:247. [PMID: 38851764 PMCID: PMC11162479 DOI: 10.1038/s41398-024-02921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) are highly disabling illnesses defined by different psychopathological, neuroimaging, and cognitive profiles. In the last decades, immune dysregulation has received increasing attention as a central factor in the pathophysiology of these disorders. Several aspects of immune dysregulations have been investigated, including, low-grade inflammation cytokines, chemokines, cell populations, gene expression, and markers of both peripheral and central immune activation. Understanding the distinct immune profiles characterizing the two disorders is indeed of crucial importance for differential diagnosis and the implementation of personalized treatment strategies. In this paper, we reviewed the current literature on the dysregulation of the immune response system focusing our attention on studies using inflammatory markers to discriminate between MDD and BD. High heterogeneity characterized the available literature, reflecting the heterogeneity of the disorders. Common alterations in the immune response system include high pro-inflammatory cytokines such as IL-6 and TNF-α. On the contrary, a greater involvement of chemokines and markers associated with innate immunity has been reported in BD together with dynamic changes in T cells with differentiation defects during childhood which normalize in adulthood, whereas classic mediators of immune responses such as IL-4 and IL-10 are present in MDD together with signs of immune-senescence.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Rachayon M, Jirakran K, Sodsai P, Sughondhabirom A, Maes M. T cell activation and deficits in T regulatory cells are associated with major depressive disorder and severity of depression. Sci Rep 2024; 14:11177. [PMID: 38750122 PMCID: PMC11096341 DOI: 10.1038/s41598-024-61865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Major depressive disorder (MDD) is associated with T cell activation, but no studies have examined the combined effects of T cell activation and deficits in T regulatory (Treg) cells on the severity of acute phase MDD. Using flow cytometry, we determined the percentage and median fluorescence intensity of CD69, CD71, CD40L, and HLADR-bearing CD3+, CD4+, and CD8+ cells, and cannabinoid type 1 receptor (CB1), CD152 and GARP (glycoprotein A repetitions predominant)-bearing CD25+ FoxP3 T regulatory (Treg) cells in 30 MDD patients and 20 healthy controls in unstimulated and stimulated (anti-CD3/CD28) conditions. Based on cytokine levels, we assessed M1 macrophage, T helper (Th)-1 cell, immune-inflammatory response system (IRS), T cell growth, and neurotoxicity immune profiles. We found that the immune profiles (including IRS and neurotoxicity) were significantly predicted by decreased numbers of CD152 or GARP-bearing CD25+ FoxP3 cells or CD152 and GARP expression in combination with increases in activated T cells (especially CD8+ CD40L+ percentage and expression). MDD patients showed significantly increased numbers of CD3+ CD71+, CD3+ CD40L+, CD4+ CD71+, CD4+ CD40L+, CD4+ HLADR+, and CD8+ HLADR+ T cells, increased CD3+ CD71+, CD4+ CD71+ and CD4+ HLADR+ expression, and lowered CD25+ FoxP3 expression and CD25+ FoxP+ CB1+ numbers as compared with controls. The Hamilton Depression Rating Scale score was strongly predicted (between 30 and 40% of its variance) by a lower number of CB1 or GARP-bearing Treg cells and one or more activated T cell subtypes (especially CD8+ CD40L+). In conclusion, increased T helper and cytotoxic cell activation along with decreased Treg homeostatic defenses are important parts of MDD that lead to enhanced immune responses and, as a result, neuroimmunotoxicity.
Collapse
Affiliation(s)
- Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Maximizing Children's Developmental Potential, Chulalongkorn University, Bangkok, Thailand
| | - Pimpayao Sodsai
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand.
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
7
|
Poletti S, Zanardi R, Mandelli A, Aggio V, Finardi A, Lorenzi C, Borsellino G, Carminati M, Manfredi E, Tomasi E, Spadini S, Colombo C, Drexhage HA, Furlan R, Benedetti F. Low-dose interleukin 2 antidepressant potentiation in unipolar and bipolar depression: Safety, efficacy, and immunological biomarkers. Brain Behav Immun 2024; 118:52-68. [PMID: 38367846 DOI: 10.1016/j.bbi.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
Immune-inflammatory mechanisms are promising targets for antidepressant pharmacology. Immune cell abnormalities have been reported in mood disorders showing a partial T cell defect. Following this line of reasoning we defined an antidepressant potentiation treatment with add-on low-dose interleukin 2 (IL-2). IL-2 is a T-cell growth factor which has proven anti-inflammatory efficacy in autoimmune conditions, increasing thymic production of naïve CD4 + T cells, and possibly correcting the partial T cell defect observed in mood disorders. We performed a single-center, randomised, double-blind, placebo-controlled phase II trial evaluating the safety, clinical efficacy and biological responses of low-dose IL-2 in depressed patients with major depressive (MDD) or bipolar disorder (BD). 36 consecutively recruited inpatients at the Mood Disorder Unit were randomised in a 2:1 ratio to receive either aldesleukin (12 MDD and 12 BD) or placebo (6 MDD and 6 BD). Active treatment significantly potentiated antidepressant response to ongoing SSRI/SNRI treatment in both diagnostic groups, and expanded the population of T regulatory, T helper 2, and percentage of Naive CD4+/CD8 + immune cells. Changes in cell frequences were rapidly induced in the first five days of treatment, and predicted the later improvement of depression severity. No serious adverse effect was observed. This is the first randomised control trial (RCT) evidence supporting the hypothesis that treatment to strengthen the T cell system could be a successful way to correct the immuno-inflammatory abnormalities associated with mood disorders, and potentiate antidepressant response.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy.
| | - Raffaella Zanardi
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Veronica Aggio
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | | | - Matteo Carminati
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Elena Manfredi
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Enrico Tomasi
- Hospital Pharmacy, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Sara Spadini
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorder Unit, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Hemmo A Drexhage
- Coordinator EU consortium MoodStratification, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roberto Furlan
- Vita-Salute San Raffaele University, Milano, Italy; Clinical Neuroimmunology, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
8
|
Escelsior A, Inuggi A, Sterlini B, Bovio A, Marenco G, Bode J, Favilla L, Tardito S, Altosole T, Pereira da Silva B, Fenoglio D, Filaci G, Amore M, Serafini G. T-cell immunophenotype correlations with cortical thickness and white matter microstructure in bipolar disorder. J Affect Disord 2024; 348:179-190. [PMID: 38154587 DOI: 10.1016/j.jad.2023.12.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Inflammation and immunological alterations, such as T-cell and cytokine changes, are implicated in bipolar disorder (BD), with some evidence linking them to brain structural changes (e.g., cortical thickness (CT), gray matter (GM) volume and white matter (WM) microstructure). However, the connection between specific peripheral cell types, such as T-cells, and neuroimaging in BD remains scarcely investigated. AIMS OF THE STUDY This study aims to explore the link between T-cell immunophenotype and neuroradiological findings in BD. METHODS Our study investigated 43 type I BD subjects (22 depressive, 21 manic) and 26 healthy controls (HC), analyzing T lymphocyte immunophenotype and employing neuroimaging to assess CT for GM and fractional anisotropy (FA) for WM. RESULTS In lymphocyte populations, BD patients exhibited elevated CD4+ and CD4+ central memory (TCM) cells frequencies, but lower CD8+ effector memory (TEM) and terminal effector memory (TTEM) cells. Neuroimaging analysis revealed reduced CT in multiple brain regions in BD patients; and significant negative correlations between CD4 + TCM levels and CT of precuneus and fusiform gyrus. Tract-based spatial statistics (TBSS) analysis showed widespread alteration in WM microstructure in BD patients, with negative and positive correlations respectively between FA and radial diffusivity (RD) and CD4 + TCM. Additionally, positive and negative correlations were found respectively between FA and RD and the CD8 + TEM and CD8 + TTEM subsets. CONCLUSIONS Our research revealed distinct T lymphocyte changes and brain structure alterations in BD, underscoring possible immune-brain interactions, warranting further study and therapeutic exploration.
Collapse
Affiliation(s)
- Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Alberto Inuggi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Anna Bovio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Giacomo Marenco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Juxhin Bode
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Luca Favilla
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Samuele Tardito
- Center for Cancer & Immunology Research, Children's National Hospital, 111 Michigan Ave NW (5th floor), Washington, DC 20010, United States of America.
| | | | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| |
Collapse
|
9
|
Li S, Lv D, Qian C, Jiang J, Zhang P, Xi C, Wu L, Gao X, Fu Y, Zhang D, Chen Y, Huang H, Zhu Y, Wang X, Lai J, Hu S. Circulating T-cell subsets discrepancy between bipolar disorder and major depressive disorder during mood episodes: A naturalistic, retrospective study of 1015 cases. CNS Neurosci Ther 2024; 30:e14361. [PMID: 37491837 PMCID: PMC10848094 DOI: 10.1111/cns.14361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
AIMS We aimed to investigate whether peripheral T-cell subsets could be a biomarker to distinguish major depressive disorder (MDD) and bipolar disorder (BD). METHODS Medical records of hospitalized patients in the Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, from January 2015 to September 2020 with a discharge diagnosis of MDD or BD were reviewed. Patients who underwent peripheral blood examination of T-cell subtype proportions, including CD3+, CD4+, CD8+ T-cell, and natural killer (NK) cells, were enrolled. The Chi-square test, t-test, or one-way analysis of variance were used to analyze group differences. Demographic profiles and T-cell data were used to construct a random forest classifier-based diagnostic model. RESULTS Totally, 98 cases of BD mania, 459 cases of BD depression (BD-D), and 458 cases of MDD were included. There were significant differences in the proportions of CD3+, CD4+, CD8+ T-cell, and NK cells among the three groups. Compared with MDD, the BD-D group showed higher CD8+ but lower CD4+ T-cell and a significantly lower ratio of CD4+ and CD8+ proportions. The random forest model achieved an area under the curve of 0.77 (95% confidence interval: 0.71-0.83) to distinguish BD-D from MDD patients. CONCLUSION These findings imply that BD and MDD patients may harbor different T-cell inflammatory patterns, which could be a potential diagnostic biomarker for mood disorders.
Collapse
Affiliation(s)
- Shaoli Li
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Department of Medical Oncology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
| | - Duo Lv
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chao Qian
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Shaoxing 7th People's HospitalShaoxingChina
| | - Jiajun Jiang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peifen Zhang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Caixi Xi
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lingling Wu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xingle Gao
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danhua Zhang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yiqing Chen
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | | | - Yiyi Zhu
- Wenzhou Medical UniversityWenzhouChina
| | - Xiaorong Wang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhouChina
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
10
|
Bravi B, Melloni EMT, Paolini M, Palladini M, Calesella F, Servidio L, Agnoletto E, Poletti S, Lorenzi C, Colombo C, Benedetti F. Choroid plexus volume is increased in mood disorders and associates with circulating inflammatory cytokines. Brain Behav Immun 2024; 116:52-61. [PMID: 38030049 DOI: 10.1016/j.bbi.2023.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Depressed patients exhibit altered levels of immune-inflammatory markers both in the peripheral blood and in the cerebrospinal fluid (CSF) and inflammatory processes have been widely implicated in the pathophysiology of mood disorders. The Choroid Plexus (ChP), located at the base of each of the four brain ventricles, regulates the exchange of substances between the blood and CSF and several evidence supported a key role for ChP as a neuro-immunological interface between the brain and circulating immune cells. Given the role of ChP as a regulatory gate between periphery, CSF spaces and the brain, we compared ChP volumes in patients with bipolar disorder (BP) or major depressive disorder (MDD) and healthy controls, exploring their association with history of illness and levels of circulating cytokines. Plasma levels of inflammatory markers and MRI scans were acquired for 73 MDD, 79 BD and 72 age- and sex-matched healthy controls (HC). Patients with either BD or MDD had higher ChP volumes than HC. With increasing age, the bilateral ChP volume was larger in patients, an effect driven by the duration of illness; while only minor effects were observed in HC. Right ChP volumes were proportional to higher levels of circulating cytokines in the clinical groups, including IFN-γ, IL-13 and IL-17. Specific effects in the two diagnostic groups were observed when considering the left ChP, with positive association with IL-1ra, IL-13, IL-17, and CCL3 in BD, and negative associations with IL-2, IL-4, IL-1ra, and IFN-γ in MDD. These results suggest that ChP could represent a reliable and easy-to-assess biomarker to evaluate the brain effects of inflammatory status in mood disorders, contributing to personalized diagnosis and tailored treatment strategies.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy.
| | - Elisa Maria Teresa Melloni
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Mariagrazia Palladini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Federico Calesella
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Laura Servidio
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Elena Agnoletto
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Milan, Italy; Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
11
|
Aggio V, Fabbella L, Poletti S, Lorenzi C, Finardi A, Colombo C, Zanardi R, Furlan R, Benedetti F. Circulating cytotoxic immune cell composition, activation status and toxins expression associate with white matter microstructure in bipolar disorder. Sci Rep 2023; 13:22209. [PMID: 38097657 PMCID: PMC10721611 DOI: 10.1038/s41598-023-49146-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with bipolar disorder (BD) show higher immuno-inflammatory setpoints, with in vivo alterations in white matter (WM) microstructure and post-mortem infiltration of T cells in the brain. Cytotoxic CD8+ T cells can enter and damage the brain in inflammatory disorders, but little is known in BD. Our study aimed to investigate the relationship between cytotoxic T cells and WM alterations in BD. In a sample of 83 inpatients with BD in an active phase of illness (68 depressive, 15 manic), we performed flow cytometry immunophenotyping to investigate frequencies, activation status, and expression of cytotoxic markers in CD8+ and tested for their association with diffusion tensor imaging (DTI) measures of WM microstructure. Frequencies of naïve and activated CD8+ cell populations expressing Perforin, or both Perforin and Granzyme, negatively associated with WM microstructure. CD8+ Naïve cells negative for Granzyme and Perforin positively associates with indexes of WM integrity, while the frequency of CD8+ memory cells negatively associates with index of WM microstructure, irrespective of toxins expression. The resulting associations involve measures representative of orientational coherence and myelination of the fibers (FA and RD), suggesting disrupted oligodendrocyte-mediated myelination. These findings seems to support the hypothesis that immunosenescence (less naïve, more memory T cells) can detrimentally influence WM microstructure in BD and that peripheral CD8+ T cells may participate in inducing an immune-related WM damage in BD mediated by killer proteins.
Collapse
Affiliation(s)
- Veronica Aggio
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Lorena Fabbella
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milan, Italy
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Raffaella Zanardi
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Roberto Furlan
- Vita-Salute San Raffaele University, Milan, Italy
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
12
|
Romeo B, Lestra V, Martelli C, Amirouche A, Benyamina A, Hamdani N. The Modulated Role of Toxoplasma gondii on Eosinophils in Psychiatric Disorders after Cannabis Cessation. Pathogens 2023; 12:1333. [PMID: 38003797 PMCID: PMC10675363 DOI: 10.3390/pathogens12111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of our study was to evaluate the impact of T. gondii status on eosinophils count (EOS), the eosinophil-to-lymphocyte ratio (ELR), and the eosinophil-to-neutrophil-to-lymphocytes ratio (ENLR) before and after cannabis cessation in patients with psychiatric disorders. One hundred and eighty-eight patients were included in the study. T. gondii, EOS, ELR, ENLR, and urinary cannabis were measured at baseline and after 4 weeks of cannabis cessation. Highest levels and increase of PNE (p = 0.02), ENLR levels (p = 0.031) and highest level of ELR (p = 0.03) were found in patients after cannabis cessation only in patients positive for T. gondii serology (Toxo+ group). At four weeks, significant interactions between cannabis and T. gondii status for EOS (p = 0.038), and for ENLR (p = 0.043) levels were found, as well as for the evolution between baseline and 4 weeks for ENLR level (p = 0.049). After cannabis cessation, we found a positive correlation between negative symptoms and EOS levels at 4 weeks in the Toxo+ group. This study shows that the increase of inflammation after cannabis cessation might be modulated by T. gondii seropositivity status in patients after cannabis cessation.
Collapse
Affiliation(s)
- Bruno Romeo
- Department of Psychiatry and Addictology, Paul Brousse Hospital, APHP, 94800 Villejuif, France; (V.L.); (C.M.); (A.A.); (A.B.)
- Unité de Recherche UR, Psychiatrie-Comorbidités-Addictions (PSYCOMadd), Paris Saclay University, 94800 Villejuif, France;
| | - Valentine Lestra
- Department of Psychiatry and Addictology, Paul Brousse Hospital, APHP, 94800 Villejuif, France; (V.L.); (C.M.); (A.A.); (A.B.)
| | - Catherine Martelli
- Department of Psychiatry and Addictology, Paul Brousse Hospital, APHP, 94800 Villejuif, France; (V.L.); (C.M.); (A.A.); (A.B.)
- Unité de Recherche UR, Psychiatrie-Comorbidités-Addictions (PSYCOMadd), Paris Saclay University, 94800 Villejuif, France;
- Institut National de la Santé et de la Recherche Médicale U1299, Research unit, NeuroImaging and Psychiatry, Paris Sud University-Paris Saclay University, Paris Descartes University, Digiteo Labs, 91190 Gif-sur-Yvette, France
| | - Ammar Amirouche
- Department of Psychiatry and Addictology, Paul Brousse Hospital, APHP, 94800 Villejuif, France; (V.L.); (C.M.); (A.A.); (A.B.)
- Unité de Recherche UR, Psychiatrie-Comorbidités-Addictions (PSYCOMadd), Paris Saclay University, 94800 Villejuif, France;
| | - Amine Benyamina
- Department of Psychiatry and Addictology, Paul Brousse Hospital, APHP, 94800 Villejuif, France; (V.L.); (C.M.); (A.A.); (A.B.)
- Unité de Recherche UR, Psychiatrie-Comorbidités-Addictions (PSYCOMadd), Paris Saclay University, 94800 Villejuif, France;
| | - Nora Hamdani
- Unité de Recherche UR, Psychiatrie-Comorbidités-Addictions (PSYCOMadd), Paris Saclay University, 94800 Villejuif, France;
- Cédiapsy, 75006 Paris, France
| |
Collapse
|
13
|
Szałach ŁP, Lisowska KA, Cubała WJ, Barbuti M, Perugi G. The immunomodulatory effect of lithium as a mechanism of action in bipolar disorder. Front Neurosci 2023; 17:1213766. [PMID: 37662097 PMCID: PMC10469704 DOI: 10.3389/fnins.2023.1213766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Bipolar disorder (BD) is a chronic mental disorder characterized by recurrent episodes of mania and depression alternating with periods of euthymia. Although environmental and genetic factors have been described, their pathogenesis is not fully understood. Much evidence suggests a role for inflammatory mediators and immune dysregulation in the development of BD. The first-line treatment in BD are mood-stabilizing agents, one of which is lithium (Li) salts. The Li mechanism of action is not fully understood, but it has been proposed that its robust immunomodulatory properties might be one of the mechanisms responsible for its effectiveness. In this article, the authors present the current knowledge about immune system changes accompanying BD, as well as the immunomodulatory effect of lithium. The results of studies describing connections between immune system changes and lithium effectiveness are often incoherent. Further research is needed to understand the connection between immune system modulation and the therapeutic action of lithium in BD.
Collapse
Affiliation(s)
- Łukasz P. Szałach
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna A. Lisowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Wiesław J. Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Margherita Barbuti
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulio Perugi
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Foiselle M, Lajnef M, Hamdani N, Boukouaci W, Wu CL, Naamoune S, Chami L, Mezoued E, Richard JR, Bouassida J, Sugunasabesan S, Le Corvoisier P, Barrau C, Yolken R, Leboyer M, Tamouza R. Immune cell subsets in patients with bipolar disorder or schizophrenia with history of childhood maltreatment. Brain Behav Immun 2023; 112:42-50. [PMID: 37263365 DOI: 10.1016/j.bbi.2023.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/06/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
A history of Childhood Maltreatment (CM) has been repeatedly associated with an increased risk of developing bipolar disorders (BD) or schizophrenia (SZ). The impact of severe stress induced by CM has been proposed to be mediated by elevated inflammation reflected by dysregulated inflammatory processes. Little is known about the potential impact of CM on lymphocyte subpopulations or the role of pre-existing infections on CM physiological consequences. This study therefore explored the role of CM and past infection exposure impact on lymphocyte subpopulations to give an indication of their relevance as stressors in the pathoetiology of major mood and psychotic disorders. 118 adult patients with SZ, and 152 with BD were included in the analysis. CM history was assessed by the Childhood Trauma Questionnaire (CTQ), with current and past psychiatric symptomatology also evaluated. Circulating immune cell subsets were analyzed using flow cytometry-based analysis. Past exposure to common infectious stigma including toxoplasma, cytomegalovirus (CMV) and Epstein-Barr virus (EBV) were measured by solid phase-enzyme microplate and ELISA immunoassays. The relationship between CM, biological phenotypes (including immune cell subsets distribution and past infectious status) and clinical phenotypes were analyzed using univariate and multivariate analyses. BD patients with, versus without, CM had higher levels of CD3+CD8+ cytotoxic T cells and CMV antibodies along with decreased levels of CD45RA+CCR7+CD8+ naïve CD8+ T cells, and a more severe clinical profile. CMV antibody levels were inversely associated with the CD3 + CD8 + lymphocyte subset level. SZ patients with, versus without, CM, showed lower levels of CD14 + monocytes and no specific clinical characteristics. The accumulation of different types of maltreatment associated with increased body mass index and CMV autoantibodies as well as decreased levels of CD14 + monocytes. In both BD and SZ, further analysis according to the type and the number of CM subtypes showed association with specific changes in lymphocyte cell subsets, clinical profile, and infectious stigma. Adults with BD or SZ exposed to CM exhibit specific immune cell subset profiles, clinical features, and stigma of past infections. In BD, our data indicate an interplay between CM and CMV infections, which may possibly contribute to premature aging and cellular senescence, both of which have previously been shown to associate with mood disorders. Longitudinal studies of CM-exposed patients are required to clarify the interactions of CM and viral infections, including as to the pathophysiological processes driving patient symptomatology.
Collapse
Affiliation(s)
- Marianne Foiselle
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Mohamed Lajnef
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Nora Hamdani
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Wahid Boukouaci
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Ching-Lien Wu
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Soumia Naamoune
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Leïla Chami
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Esma Mezoued
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Jean-Romain Richard
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Jihène Bouassida
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Sobika Sugunasabesan
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Philippe Le Corvoisier
- Inserm, Centre d'Investigation Clinique 1430 et AP-HP, Hôpitaux Universitaires Henri Mondor, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Caroline Barrau
- Plateforme de Ressources Biologiques, HU Henri Mondor, AP-HP, Créteil F94010, France
| | - Robert Yolken
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marion Leboyer
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| | - Ryad Tamouza
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Fondation FondaMental, F-94010 Créteil, France
| |
Collapse
|
15
|
Ortega MA, Álvarez-Mon MA, García-Montero C, Fraile-Martínez Ó, Monserrat J, Martinez-Rozas L, Rodríguez-Jiménez R, Álvarez-Mon M, Lahera G. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry 2023; 28:2645-2673. [PMID: 36707651 PMCID: PMC10615769 DOI: 10.1038/s41380-023-01964-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Bipolar disorders (BD) represent a severe leading disabling mental condition worldwide characterized by episodic and often progressive mood fluctuations with manic and depressive stages. The biological mechanisms underlying the pathophysiology of BD remain incompletely understood, but it seems that there is a complex picture of genetic and environmental factors implicated. Nowadays, gut microbiota is in the spotlight of new research related to this kind of psychiatric disorder, as it can be consistently related to several pathophysiological events observed in BD. In the context of the so-called microbiota-gut-brain (MGB) axis, it is shown to have a strong influence on host neuromodulation and endocrine functions (i.e., controlling the synthesis of neurotransmitters like serotonin or mediating the activation of the hypothalamic-pituitary-adrenal axis), as well as in modulation of host immune responses, critically regulating intestinal, systemic and brain inflammation (neuroinflammation). The present review aims to elucidate pathophysiological mechanisms derived from the MGB axis disruption and possible therapeutic approaches mainly focusing on gut microbiota in the complex network of BD. Understanding the mechanisms of gut microbiota and its bidirectional communication with the immune and other systems can shed light on the discovery of new therapies for improving the clinical management of these patients. Besides, the effect of psychiatric drugs on gut microbiota currently used in BD patients, together with new therapeutical approaches targeting this ecosystem (dietary patterns, probiotics, prebiotics, and other novelties) will also be contemplated.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Lucia Martinez-Rozas
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), Alcalá de Henares, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| |
Collapse
|
16
|
Chen Z, Huang Y, Wang B, Peng H, Wang X, Wu H, Chen W, Wang M. T cells: an emerging cast of roles in bipolar disorder. Transl Psychiatry 2023; 13:153. [PMID: 37156764 PMCID: PMC10167236 DOI: 10.1038/s41398-023-02445-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Bipolar disorder (BD) is a distinctly heterogeneous and multifactorial disorder with a high individual and social burden. Immune pathway dysregulation is an important pathophysiological feature of BD. Recent studies have suggested a potential role for T lymphocytes in the pathogenesis of BD. Therefore, greater insight into T lymphocytes' functioning in patients with BD is essential. In this narrative review, we describe the presence of an imbalance in the ratio and altered function of T lymphocyte subsets in BD patients, mainly in T helper (Th) 1, Th2, Th17 cells and regulatory T cells, and alterations in hormones, intracellular signaling, and microbiomes may be potential causes. Abnormal T cell presence explains the elevated rates of comorbid inflammatory illnesses in the BD population. We also update the findings on T cell-targeting drugs as potentially immunomodulatory therapeutic agents for BD disease in addition to classical mood stabilizers (lithium, valproic acid). In conclusion, an imbalance in T lymphocyte subpopulation ratios and altered function may be involved in the development of BD, and maintaining T cell immune homeostasis may provide an overall therapeutic benefit.
Collapse
Affiliation(s)
- Zhenni Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yiran Huang
- School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Bingqi Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huanqie Peng
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaofan Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hongzheng Wu
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wanxin Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
17
|
Manusama O, Singh S, Brooimans RA, Wijkhuijs A, van der Ent M, Drexhage HA, Dalm VA. Reduced numbers of naïve CD4 + T cells and an altered CD4/CD8 balance in depressed common variable immune deficiency (CVID) patients. Is thymosin-α1 a possible treatment? Int Immunopharmacol 2023; 119:110168. [PMID: 37086677 DOI: 10.1016/j.intimp.2023.110168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/24/2023]
Abstract
In the 1990's the macrophage-T-cell-theory of depression was posed stating that low grade inflammation and an abnormal T cell system destabilize the development and function of the emotional brain in such a way, that individuals become ultrasensitive to stress. Recently we gathered evidence that indeed higher frequencies of CD4+ memory T cells, lower frequencies of naive CD4 + T cells, higher frequencies of CD8 + T cells (the latter two in part elicited by Cytomegalovirus, CMV, infection) are a characteristic of Major Depressive Disorder (MDD). In MDD patients with a history of childhood trauma and severe depression monocytes are inflammatory activated. Low grade inflammation and T cell system defects have also been reported in patients with Common Variable Immune Deficiency (CVID) (next to antibody production defects). CVID patients show a higher prevalence of mild depression. The aim of this study was to determine T cell frequencies and monocyte inflammatory activation in CVID patients with and without depression. This study confirms that CVID patients have CMV independent decreases in the frequency of naïve CD4 + T cells and it de novo shows a CMV dependent increase in the expression of inflammatory genes in monocytes. CVID patients with depression are additionally characterized by a CMV independent increase in the frequency of naïve CD8 + T cells, while lacking monocyte inflammatory activation. In conclusion, depressed CVID patients have T cell abnormalities comparable to that of patients with regular MDD. These abnormalities are presently targeted by thymosin α1 in an open-label proof of concept trial.
Collapse
Affiliation(s)
- Olivia Manusama
- Dept of Immunology, ErasmusMC, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sajni Singh
- Dept of Immunology, ErasmusMC, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rik A Brooimans
- Dept of Immunology, ErasmusMC, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Annemarie Wijkhuijs
- Dept of Immunology, ErasmusMC, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marianne van der Ent
- Dept of Immunology, ErasmusMC, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hemmo A Drexhage
- Dept of Immunology, ErasmusMC, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Virgil A Dalm
- Dept of Immunology, ErasmusMC, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Wang Q, Zhong Y, Chen N, Chen J. From the immune system to mood disorders especially induced by Toxoplasma gondii: CD4+ T cell as a bridge. Front Cell Infect Microbiol 2023; 13:1078984. [PMID: 37077528 PMCID: PMC10106765 DOI: 10.3389/fcimb.2023.1078984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii), a ubiquitous and obligatory intracellular protozoa, not only alters peripheral immune status, but crosses the blood-brain barrier to trigger brain parenchymal injury and central neuroinflammation to establish latent cerebral infection in humans and other vertebrates. Recent findings underscore the strong correlation between alterations in the peripheral and central immune environment and mood disorders. Th17 and Th1 cells are important pro-inflammatory cells that can drive the pathology of mood disorders by promoting neuroinflammation. As opposed to Th17 and Th1, regulatory T cells have inhibitory inflammatory and neuroprotective functions that can ameliorate mood disorders. T. gondii induces neuroinflammation, which can be mediated by CD4+ T cells (such as Tregs, Th17, Th1, and Th2). Though the pathophysiology and treatment of mood disorder have been currently studied, emerging evidence points to unique role of CD4+ T cells in mood disorder, especially those caused by T. gondii infection. In this review, we explore some recent studies that extend our understanding of the relationship between mood disorders and T. gondii.
Collapse
|
19
|
Foley ÉM, Parkinson JT, Mitchell RE, Turner L, Khandaker GM. Peripheral blood cellular immunophenotype in depression: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:1004-1019. [PMID: 36577838 PMCID: PMC10005954 DOI: 10.1038/s41380-022-01919-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Meta-analyses implicate immune dysfunction in depression confirming increased levels of circulating immune proteins (e.g., cytokines) in depression cases compared to controls. White blood cells (WBC) both produce and are influenced by cytokines, and play key roles in orchestrating innate and adaptive immune responses, but their role in depression remains unclear. Therefore, a systematic review of studies of various WBC subsets in depression is required for a greater understanding of the nature of immune dysfunction in this illness. METHODS We searched PubMed and PsycINFO databases (inception to 5th April 2022) and conducted a systematic review and meta-analysis of identified studies comparing absolute count and/or relative percentage of flow cytometry-derived WBC subsets between depression cases and controls. Selected studies were quality assessed. Random-effect meta-analysis was performed. RESULTS Thirty-three studies were included and 27 studies (n = 2277) were meta-analysed. We report an increase in mean absolute counts of WBC (seven studies; standardised mean difference [SMD] = 1.07; 95% CI, 0.61-1.53; P < 0.01; I2 = 64%), granulocytes (two studies; SMD = 2.07; 95% CI, 1.45-2.68; P < 0.01; I2 = 0%), neutrophils (four studies; SMD = 0.91; 95% CI, 0.23-1.58; P < 0.01; I2 = 82%), monocytes (seven studies; SMD = 0.60; 95% CI, 0.19-1.01; P < 0.01; I2 = 66%), CD4+ helper T cells (11 studies; SMD = 0.30; 95% CI, 0.15-0.45; P < 0.01; I2 = 0%), natural killer cells (11 studies; SMD = 1.23; 95% CI, 0.38-2.08; P < 0.01; I2 = 95%), B cells (10 studies; SMD = 0.30; 95% CI, 0.03-0.57; P = 0.03; I2 = 56%), and activated T cells (eight studies; SMD = 0.45; 95% CI, 0.24-0.66; P < 0.01; I2 = 0%) in depression, compared to controls. Fewer studies reported relative percentage, indicating increased neutrophils and decreased total lymphocytes, Th1, and Th2 cells in depression. CONCLUSIONS Depression is characterised by widespread alterations in circulating myeloid and lymphoid cells, consistent with dysfunction in both innate and adaptive immunity. Immune cells could be useful biomarkers for illness subtyping and patient stratification in future immunotherapy trials of depression, along with cytokines, other biomarkers, and clinical measures.
Collapse
Affiliation(s)
- Éimear M Foley
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Joel T Parkinson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
- bit.bio, Babraham Research Campus, Cambridge, UK
| | - Golam M Khandaker
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| |
Collapse
|
20
|
Wang C, Zhou Y, Feinstein A. Neuro-immune crosstalk in depressive symptoms of multiple sclerosis. Neurobiol Dis 2023; 177:106005. [PMID: 36680805 DOI: 10.1016/j.nbd.2023.106005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Depressive disorders can occur in up to 50% of people with multiple sclerosis in their lifetime. If left untreated, comorbid major depressive disorders may not spontaneously remit and is associated with an increased morbidity and mortality. Conversely, epidemiological evidence supports increased psychiatric visit as a significant prodromal event prior to diagnosis of MS. Are there common molecular pathways that contribute to the co-development of MS and psychiatric illnesses? We discuss immune cells that are dysregulated in MS and how such dysregulation can induce or protect against depressive symptoms. This is not meant to be a comprehensive review of all molecular pathways but rather a framework to guide future investigations of immune responses in depressed versus euthymic people with MS. Currently, there is weak evidence supporting the use of antidepressant medication in comorbid MS patients. It is our hope that by better understanding the neuroimmune crosstalk in the context of depression in MS, we can enhance the potential for future therapeutic options.
Collapse
Affiliation(s)
- Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yulin Zhou
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Anthony Feinstein
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Immune cell composition in unipolar depression: a comprehensive systematic review and meta-analysis. Mol Psychiatry 2023; 28:391-401. [PMID: 36517638 DOI: 10.1038/s41380-022-01905-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Depression has been associated with inflammatory pathophysiological mechanisms, including alterations in amount of circulating immune cells. However, no meta-analysis within the past 20 years have reevaluated the circulating immune cells in blood and cerebrospinal fluid (CSF) from patients with depression compared to healthy controls. The aim of this study was to systematically evaluate the circulating immune cells in blood and CSF from patients with unipolar depression compared to healthy controls. Databases were searched up until February 12, 2021. Data-extraction was performed by two independent reviewers. 104 studies were included in the meta-analysis using fixed and random-effects models. Patients with depression had a significantly higher overall leukocyte count (35 studies; SMD, 0.46; 95% CI: 0.31-0.60, I2 = 68%), higher neutrophil count (24 studies; SMD, 0.52; 95% CI: 0.33-0.71, I2 = 77%) and higher monocyte count (27 studies; SMD, 0.32; 95% CI: 0.11-0.53, I2 = 77%) compared to healthy controls. Leukocyte counts were higher in inpatients, indicating a relation to depression severity. Furthermore, there were significant alterations in several lymphocyte subsets, including higher natural killer cells and T cell subsets. Higher neutrophil/lymphocyte ratio (11 studies; SMD = 0.24; 95% CI: 0.06-0.42, I2 = 73%), CD4/CD8 cell-ratio (26 studies; SMD = 0.14; 95% CI: 0.01-0.28, I2 = 42%) and T helper 17/T regulatory ratio (2 studies; SMD = 1.05; 95% CI: 0.15-1.95, I2 = 86%) were found in patients compared to healthy controls. CSF white cell count was higher in patients compared to controls (3 studies; SMD = 0.20; 95% CI: 0.01-0.38, I2 = 0%). There were no data for CSF cell subsets. This study suggests that there are several blood immune cell alterations in patients with unipolar depression compared to healthy controls, both in major leukocyte subsets and more specialized immune cell subsets.
Collapse
|
22
|
Changes in T-Cell Subpopulations and Cytokine Levels in Patients with Treatment-Resistant Depression-A Preliminary Study. Int J Mol Sci 2022; 24:ijms24010479. [PMID: 36613927 PMCID: PMC9820349 DOI: 10.3390/ijms24010479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Although there is some evidence for the involvement of cytokines and T cells in the pathophysiology of treatment-resistant depression (TRD), the nature of this relationship is not entirely clear. Therefore, we compared T-cell subpopulations and serum cytokine levels in TRD patients to find relationships between their immunological profiles, clinical presentation, and episode severity. Blood samples from TRD patients (n = 20) and healthy people (n = 13) were collected and analyzed by flow cytometry. We analyzed the percentages of helper and cytotoxic T cells according to the expression of selected activation markers, including CD28, CD69, CD25, CD95, and HLA-DR. The serum levels of inflammatory cytokines IL12p70, TNF-α, IL-10, IL-6, IL-1β, and IL-8 were also determined. TRD patients had a lower percentage of CD3+CD4+CD25+ and CD3+CD8+CD95+ cells than healthy people. They also had lower serum levels of IL-12p70 and TNF-α, whereas IL-8 levels were significantly higher. Receiver operating characteristic (ROC) analysis demonstrated that serum IL-8 values above 19.55 pg/mL were associated with a 10.26 likelihood ratio of developing TRD. No connections were found between the MADRS score and immunological parameters. These results show that TRD patients have reduced percentages of T cells expressing activation antigens (CD25 and CD95) and higher serum concentrations of proinflammatory and chemotactic IL-8. These changes may indicate reduced activity of the immune system and the important role of IL-8 in maintaining chronic inflammation in the course of depression.
Collapse
|
23
|
Brasanac J, Ramien C, Gamradt S, Taenzer A, Glau L, Ritter K, Patas K, Agorastos A, Wiedemann K, Demiralay C, Fischer F, Otte C, Bellmann-Strobl J, Friese MA, Tolosa E, Paul F, Heesen C, Weygandt M, Gold SM. Immune signature of multiple sclerosis-associated depression. Brain Behav Immun 2022; 100:174-182. [PMID: 34863857 DOI: 10.1016/j.bbi.2021.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple neurobiological pathways have been implicated in the pathobiology of major depressive disorder (MDD). The identification of reliable biological substrates across the entire MDD spectrum, however, is hampered by a vast heterogeneity in the clinical presentation, presumably as a consequence of heterogeneous pathobiology. One way to overcome this limitation could be to explore disease subtypes based on biological similarity such as "inflammatory depression". As such a subtype may be particularly enriched in depressed patients with an underlying inflammatory condition, multiple sclerosis (MS) could provide an informative disease context for this approach. Few studies have explored immune markers of MS-associated depression and replications are missing. To address this, we analyzed data from two independent case-control studies on immune signatures of MS-associated depression, conducted at two different academic MS centers (overall sample size of n = 132). Using a stepwise data-driven approach, we identified CD4+CCR7lowTCM cell frequencies as a robust correlate of depression in MS. This signature was associated with core symptoms of depression and depression severity (but not MS severity per se) and linked to neuroinflammation as determined by magnetic resonance imaging (MRI). Furthermore, exploratory analyses of T cell polarization revealed this was largely driven by cells with a TH1-like phenotype. Our findings suggest (neuro)immune pathways linked to affective symptoms of autoimmune disorders such as MS, with potential relevance for the understanding of "inflammatory" subtypes of depression.
Collapse
Affiliation(s)
- Jelena Brasanac
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center (NCRC), Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Caren Ramien
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Falkenried, 94, 20251 Hamburg, Germany
| | - Stefanie Gamradt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Aline Taenzer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Kristin Ritter
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kostas Patas
- Laboratory of Biopathology and Immunology, Eginition University Hospital, Ave. Vassilissis Sophias, 72-74, 115 28 Athens, Greece
| | - Agorastos Agorastos
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Martinistraße, 52, 20246 Hamburg, Germany; II. Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Lagkada Str, 196, 56430 Thessaloniki, Greece
| | - Klaus Wiedemann
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Martinistraße, 52, 20246 Hamburg, Germany
| | - Cüneyt Demiralay
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Martinistraße, 52, 20246 Hamburg, Germany
| | - Felix Fischer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin, Hindenburgdamm, 30, 12203 Berlin, Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center (NCRC), Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Falkenried, 94, 20251 Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center (NCRC), Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Falkenried, 94, 20251 Hamburg, Germany
| | - Martin Weygandt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center (NCRC), Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Falkenried, 94, 20251 Hamburg, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin, Hindenburgdamm, 30, 12203 Berlin, Germany.
| |
Collapse
|
24
|
Comai S, Melloni E, Lorenzi C, Bollettini I, Vai B, Zanardi R, Colombo C, Valtorta F, Benedetti F, Poletti S. Selective association of cytokine levels and kynurenine/tryptophan ratio with alterations in white matter microstructure in bipolar but not in unipolar depression. Eur Neuropsychopharmacol 2022; 55:96-109. [PMID: 34847455 DOI: 10.1016/j.euroneuro.2021.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Bipolar (BD) and major depression (MDD) disorders are severe mental illnesses characterised by altered levels of immune/inflammatory markers and disrupted white matter (WM) microstructure. A pro-inflammatory state was suggested to activate indoleamine 2,3-dioxygenase which, in turn, increases the amount of tryptophan (Trp) converted into kynurenine (Kyn). We investigated whether plasma levels of Trp, Kyn and Kyn/Trp ratio are associated with peripheral levels of immune/inflammatory markers and whether they are related to WM integrity in 100 MDD and 66 BD patients. Patients also underwent MRI, and fractional anisotropy (FA) was estimated as a measure of WM microstructure. BD patients showed higher Kyn levels and Kyn/Trp ratio than MDD patients, and lower FA in several WM tracts, including the corpus callosum and the inferior fronto-occipital fasciculus (IFO). Lower Trp levels associated with a more severe depressive symptomatology irrespective of diagnosis and with lower FA in the corpus callosum (CC) and external capsule (EC). We found an association of immune/inflammatory markers with Kyn/Trp ratio selectively in BD patients: IL-1β and TNF-α showed a positive relationship and IL-2 and IL-9 a negative relationship; in addition, higher IL-4 correlated with lower Kyn levels; higher Kyn/Trp ratio and IL-1β correlated with lower FA in the CC and IFO. Notably, the detrimental effect of IL-1β on the IFO was moderated by the Kyn/Trp ratio. These data suggest that in BD, cytokines and the conversion of Trp into Kyn may affect WM microstructure and support the idea that distinct mechanisms underlie the pathophysiology of BD and MDD.
Collapse
Affiliation(s)
- Stefano Comai
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Psychiatry, McGill University, Montreal, Canada.
| | - Elisa Melloni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Lorenzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Irene Bollettini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Benedetta Vai
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaella Zanardi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Colombo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Benedetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Poletti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
25
|
Su L, Shuai Y, Mou S, Shen Y, Shen X, Shen Z, Zhang X. Development and validation of a nomogram based on lymphocyte subsets to distinguish bipolar depression from major depressive disorder. Front Psychiatry 2022; 13:1017888. [PMID: 36276314 PMCID: PMC9583168 DOI: 10.3389/fpsyt.2022.1017888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Bipolar depression (BD) and major depressive disorder (MDD) are both common affective disorders. The common depression episodes make it difficult to distinguish between them, even for experienced clinicians. Failure to properly diagnose them in a timely manner leads to inappropriate treatment strategies. Therefore, it is important to distinguish between BD and MDD. The aim of this study was to develop and validate a nomogram model that distinguishes BD from MDD based on the characteristics of lymphocyte subsets. MATERIALS AND METHODS A prospective cross-sectional study was performed. Blood samples were obtained from participants who met the inclusion criteria. The least absolute shrinkage and selection operator (LASSO) regression model was used for factor selection. A differential diagnosis nomogram for BD and MDD was developed using multivariable logistic regression and the area under the curve (AUC) with 95% confidence interval (CI) was calculated, as well as the internal validation using a bootstrap algorithm with 1,000 repetitions. Calibration curve and decision curve analysis (DCA) were used to evaluate the calibration and clinical utility of the nomogram, respectively. RESULTS A total of 166 participants who were diagnosed with BD (83 cases) or MDD (83 cases), as well as 101 healthy controls (HCs) between June 2018 and January 2022 were enrolled in this study. CD19+ B cells, CD3+ T cells, CD3-CD16/56+ NK cells, and total lymphocyte counts were strong predictors of the diagnosis of BD and MDD and were included in the differential diagnosis nomogram. The AUC of the nomogram and internal validation were 0.922 (95%; CI, 0.879-0.965), and 0.911 (95% CI, 0.838-0.844), respectively. The calibration curve used to discriminate BD from MDD showed optimal agreement between the nomogram and the actual diagnosis. The results of DCA showed that the net clinical benefit was significant. CONCLUSION This is an easy-to-use, repeatable, and economical nomogram for differential diagnosis that can help clinicians in the individual diagnosis of BD and MDD patients, reduce the risk of misdiagnosis, facilitate the formulation of appropriate treatment strategies and intervention plans.
Collapse
Affiliation(s)
- Liming Su
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Yibing Shuai
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Shaoqi Mou
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Yue Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Xinhua Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Zhongxia Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Xiaomei Zhang
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
26
|
Leite Dantas R, Freff J, Ambrée O, Beins EC, Forstner AJ, Dannlowski U, Baune BT, Scheu S, Alferink J. Dendritic Cells: Neglected Modulators of Peripheral Immune Responses and Neuroinflammation in Mood Disorders? Cells 2021; 10:941. [PMID: 33921690 PMCID: PMC8072712 DOI: 10.3390/cells10040941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Affective disorders (AD) including major depressive disorder (MDD) and bipolar disorder (BD) are common mood disorders associated with increased disability and poor health outcomes. Altered immune responses characterized by increased serum levels of pro-inflammatory cytokines and neuroinflammation are common findings in patients with AD and in corresponding animal models. Dendritic cells (DCs) represent a heterogeneous population of myeloid cells that orchestrate innate and adaptive immune responses and self-tolerance. Upon sensing exogenous and endogenous danger signals, mature DCs secrete proinflammatory factors, acquire migratory and antigen presenting capacities and thus contribute to neuroinflammation in trauma, autoimmunity, and neurodegenerative diseases. However, little is known about the involvement of DCs in the pathogenesis of AD. In this review, we summarize the current knowledge on DCs in peripheral immune responses and neuroinflammation in MDD and BD. In addition, we consider the impact of DCs on neuroinflammation and behavior in animal models of AD. Finally, we will discuss therapeutic perspectives targeting DCs and their effector molecules in mood disorders.
Collapse
Affiliation(s)
- Rafael Leite Dantas
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Jana Freff
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Oliver Ambrée
- Department of Behavioural Biology, University of Osnabrück, 49076 Osnabrück, Germany;
- Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Eva C. Beins
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
| | - Andreas J. Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, 52428 Jülich, Germany
| | - Udo Dannlowski
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
| | - Bernhard T. Baune
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany;
| | - Judith Alferink
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|
27
|
Expansion of CD4 T Lymphocytes Expressing Interleukin 17 and Tumor Necrosis Factor in Patients with Major Depressive Disorder. J Pers Med 2021; 11:jpm11030220. [PMID: 33808804 PMCID: PMC8003656 DOI: 10.3390/jpm11030220] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We have investigated the distribution of the Th1, Th2 and Th17 subsets in circulating CD4+ T lymphocytes and their naïve (TN), effector (TE), central (TCM) and effector memory (TEM) activation/differentiation stages in patients with major depressive disorder (MDD). METHODS Thirty MDD patients and 30 healthy controls were studied. The counts of circulating CD4+ T lymphocytes and their distribution on the TN, TE, TCM and TEM activation/differentiation stages were analyzed by polychromatic flow cytometry. The intracytoplasmic interferon gamma (IFNγ), interleukin (IL)-4, IL-17A and tumor necrosis factor alpha (TNF-alpha) and membrane CD28 expression were also measured. The serum IFNγ, IL-4, Il-17A and TNF-alpha were measured by Luminex, respectively. RESULTS MDD patients had normal counts of CD4+ T lymphocytes and of their TN, TCM and TEM subsets but increased number and percentage of TE CD4+ subset. CD4+ T lymphocytes had significantly enhanced percentage of cells that express IL-17 and TNF-alpha explained by the expansions found in the TN, TCM and, TEM and TCM, TEM and TE activation/differentiation stages, respectively. A selective increase in the percentages of TCM and TEM expressing IFNγ was also observed. We found a significant correlation between the percentages of CD4+ T lymphocytes expressing IFNγ and TNF-alpha in these patients. MDD patients showed increased serum levels of IL-17 and TNF-alpha, but normal IFNγ and IL-4 concentration. LIMITATIONS the cross-sectional nature of the study could be considered a limitation. CONCLUSIONS MDD patients have abnormal circulating CD4+ T lymphocytes with expansion of the IL-17 and TNF-alpha expressing cells as well as increased levels of circulating IL-17 and TNF-alpha.
Collapse
|
28
|
A peripheral inflammatory signature discriminates bipolar from unipolar depression: A machine learning approach. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110136. [PMID: 33045321 DOI: 10.1016/j.pnpbp.2020.110136] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mood disorders (major depressive disorder, MDD, and bipolar disorder, BD) are considered leading causes of life-long disability worldwide, where high rates of no response to treatment or relapse and delays in receiving a proper diagnosis (~60% of depressed BD patients are initially misdiagnosed as MDD) contribute to a growing personal and socio-economic burden. The immune system may represent a new target to develop novel diagnostic and therapeutic procedures but reliable biomarkers still need to be found. METHODS In our study we predicted the differential diagnosis of mood disorders by considering the plasma levels of 54 cytokines, chemokines and growth factors of 81 BD and 127 MDD depressed patients. Clinical diagnoses were predicted also against 32 healthy controls. Elastic net models, including 5000 non-parametric bootstrapping procedure and inner and outer 10-fold nested cross-validation were performed in order to identify the signatures for the disorders. RESULTS Results showed that the immune-inflammatory signature classifies the two disorders with a high accuracy (AUC = 97%), specifically 92% and 86% respectively for MDD and BD. MDD diagnosis was predicted by high levels of markers related to both pro-inflammatory (i.e. IL-1β, IL-6, IL-7, IL-16) and regulatory responses (IL-2, IL-4, and IL-10), whereas BD by high levels of inflammatory markers (CCL3, CCL4, CCL5, CCL11, CCL25, CCL27, CXCL11, IL-9 and TNF-α). CONCLUSIONS Our findings provide novel tools for early diagnosis of BD, strengthening the impact of biomarkers research into clinical practice, and new insights for the development of innovative therapeutic strategies for depressive disorders.
Collapse
|
29
|
Inflammation-Related Changes in Mood Disorders and the Immunomodulatory Role of Lithium. Int J Mol Sci 2021; 22:ijms22041532. [PMID: 33546417 PMCID: PMC7913492 DOI: 10.3390/ijms22041532] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Mood disorders are chronic, recurrent diseases characterized by changes in mood and emotions. The most common are major depressive disorder (MDD) and bipolar disorder (BD). Molecular biology studies have indicated an involvement of the immune system in the pathogenesis of mood disorders, and showed their correlation with altered levels of inflammatory markers and energy metabolism. Previous reports, including meta-analyses, also suggested the role of microglia activation in the M1 polarized macrophages, reflecting the pro-inflammatory phenotype. Lithium is an effective mood stabilizer used to treat both manic and depressive episodes in bipolar disorder, and as an augmentation of the antidepressant treatment of depression with a multidimensional mode of action. This review aims to summarize the molecular studies regarding inflammation, microglia activation and energy metabolism changes in mood disorders. We also aimed to outline the impact of lithium on these changes and discuss its immunomodulatory effect in mood disorders.
Collapse
|
30
|
Lynall ME, Turner L, Bhatti J, Cavanagh J, de Boer P, Mondelli V, Jones D, Drevets WC, Cowen P, Harrison NA, Pariante CM, Pointon L, Clatworthy MR, Bullmore E. Peripheral Blood Cell-Stratified Subgroups of Inflamed Depression. Biol Psychiatry 2020; 88:185-196. [PMID: 32000983 DOI: 10.1016/j.biopsych.2019.11.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Depression has been associated with increased inflammatory proteins, but changes in circulating immune cells are less well defined. METHODS We used multiparametric flow cytometry to count 14 subsets of peripheral blood cells in 206 depression cases and 77 age- and sex-matched controls (N = 283). We used univariate and multivariate analyses to investigate the immunophenotypes associated with depression and depression severity. RESULTS Depression cases, compared with controls, had significantly increased immune cell counts, especially neutrophils, CD4+ T cells, and monocytes, and increased inflammatory proteins (C-reactive protein and interleukin-6). Within-group analysis of cases demonstrated significant associations between the severity of depressive symptoms and increased myeloid and CD4+ T-cell counts. Depression cases were partitioned into 2 subgroups by forced binary clustering of cell counts: the inflamed depression subgroup (n = 81 out of 206; 39%) had increased monocyte, CD4+, and neutrophil counts; increased C-reactive protein and interleukin-6; and more severe depression than the uninflamed majority of cases. Relaxing the presumption of a binary classification, data-driven analysis identified 4 subgroups of depression cases, 2 of which (n = 38 and n = 100; 67% collectively) were associated with increased inflammatory proteins and more severe depression but differed in terms of myeloid and lymphoid cell counts. Results were robust to potentially confounding effects of age, sex, body mass index, recent infection, and tobacco use. CONCLUSIONS Peripheral immune cell counts were used to distinguish inflamed and uninflamed subgroups of depression and to indicate that there may be mechanistically distinct subgroups of inflamed depression.
Collapse
Affiliation(s)
- Mary-Ellen Lynall
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom.
| | - Lorinda Turner
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Junaid Bhatti
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Cavanagh
- Centre for Immunobiology, University of Glasgow and Sackler Institute of Psychobiological Research, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Peter de Boer
- Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, United Kingdom; National Institute for Health Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom
| | - Declan Jones
- Neuroscience External Innovation, Janssen Pharmaceuticals, London, United Kingdom
| | - Wayne C Drevets
- Neuroscience Therapeutic Area, Janssen Research & Development, San Diego, California
| | - Philip Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Neil A Harrison
- School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, United Kingdom
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Linda Pointon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Menna R Clatworthy
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edward Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
31
|
Jahangard L, Behzad M. Diminished functional properties of T regulatory cells in major depressive disorder: The influence of selective serotonin reuptake inhibitor. J Neuroimmunol 2020; 344:577250. [PMID: 32344162 DOI: 10.1016/j.jneuroim.2020.577250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022]
Abstract
The properties of CD4+CD25hi T regulatory cells (Tregs), and interleukin (IL)-2 pathway were investigated in major depressive disorder (MDD) patients treated with or without selective serotonin reuptake inhibitor (SSRI). The frequencies of FOXP3 and pSTAT5 in peripheral Tregs were found to be diminished in untreated patients (SSRI-) versus HCs (p < .001 for both), while their percentages were increased in treated patients (SSRI+) versus untreated patients (p < .001 and p = .04). The proliferation of CD4+ T cells was higher in SSRI-MDD patients versus HCs (p = .03). The SSRI-MDD patients showed a lower concentration of supernatant TGF-β than HCs (p = .001), while the production of TGF-β was enhanced in SSRI+MDD versus SSRI-MDD patients (p = .003). The number of CD45RA-expressing Tregs, the expression of JAK1 and JAK3, and the levels of IL-2 and IL-10 were similar between the patients and HCs. The study results showed that untreated patients have an impaired IL-2 signaling pathway and defective Tregs, and SSRI treatment may improve the Tregs function.
Collapse
Affiliation(s)
- Leila Jahangard
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Behzad
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
32
|
Moschny N, Jahn K, Maier HB, Khan AQ, Ballmaier M, Liepach K, Sack M, Skripuletz T, Bleich S, Frieling H, Neyazi A. Electroconvulsive therapy, changes in immune cell ratios, and their association with seizure quality and clinical outcome in depressed patients. Eur Neuropsychopharmacol 2020; 36:18-28. [PMID: 32446707 DOI: 10.1016/j.euroneuro.2020.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 01/25/2023]
Abstract
Major Depressive Disorder (MDD) is a major contributor to the global burden of disease. Approximately 30-50% of depressed patients fail to reach remission with standard treatment approaches. Electroconvulsive therapy (ECT) is one of the most effective options for these patients. Its exact therapeutic mechanism remains elusive, and reliable predictors of response are absent in the routine clinical practice. To characterize its mode of action and to facilitate treatment decision-making, we analyzed ECT's acute and chronic effects on various immune cell subsets. For this purpose, blood was withdrawn from depressed patients (n=21) directly before and 15 min after the first and last ECT session, respectively. After isolating peripheral blood mononuclear cells, we investigated defined populations of immune cells and their proportional changes upon ECT treatment using flow cytometry. By these means, we found ECT remitters (R; n=10) and non-remitters (NR; n=11) to differ in their relative proportion of putative immunoregulatory CD56highCD16-/dim and cytotoxic CD56dimCD16+ natural killer (NK) cells (CD56highCD16-/dim/CD56dimCD16+: R=0.064(±0.005), NR=0.047(±0.005), p<0.05; linear mixed models) and thus in their NK cell cytotoxicity. NK cell cytotoxicity was further increased after a single ECT session (before=0.066(±0.005), after=0.045(±0.005), p<0.001) and was associated with ECT quality parameters (maximum sustained coherence: r2=0.389, β=-0.656, p<0.001) and long-term BDI-II rating changes (r2=0.459, β=-0.726, p<0.05; both linear regression analysis). To conclude, particular NK cell subsets seem to be involved in ECT's acute effect and its clinical outcome. Due to the limited number of patients participating in our pilot study, future approaches are required to replicate our findings.
Collapse
Affiliation(s)
- Nicole Moschny
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Center for Systems Neuroscience, HGNI, University of Veterinary Medicine, Bünteweg 2, 30559 Hannover, Germany.
| | - Kirsten Jahn
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Hannah Benedictine Maier
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Abdul Qayyum Khan
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Matthias Ballmaier
- Cell Sorting Core Facility, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Kyra Liepach
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Mareike Sack
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Center for Systems Neuroscience, HGNI, University of Veterinary Medicine, Bünteweg 2, 30559 Hannover, Germany.
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Center for Systems Neuroscience, HGNI, University of Veterinary Medicine, Bünteweg 2, 30559 Hannover, Germany.
| | - Alexandra Neyazi
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Center for Systems Neuroscience, HGNI, University of Veterinary Medicine, Bünteweg 2, 30559 Hannover, Germany.
| |
Collapse
|
33
|
Osborne LM, Gilden J, Kamperman AM, Hoogendijk WJ, Spicer J, Drexhage HA, Bergink V. T-cell defects and postpartum depression. Brain Behav Immun 2020; 87:397-403. [PMID: 31926288 PMCID: PMC7316619 DOI: 10.1016/j.bbi.2020.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Most studies of immune dysregulation in perinatal mood and anxiety disorders have focused on peripheral cytokines, but literature from non-perinatal mood disorders also implicates T-cell defects. We sought to characterize proportions of T-cell subtypes in women with postpartum depression. MATERIALS AND METHODS We enrolled 21 women with postpartum depression (PPD), 39 healthy postpartum controls, and 114 healthy non-postpartum women. Blood was collected in sodium-heparin EDTA tubes and was analyzed using flow cytometry. We conducted statistical tests including linear regression analysis that were aimed at determining differences in proportions of T cell populations among groups. RESULTS Mean counts of T-cells (all CD3+ T cells), T-helper cells, (CD3+CD4+ T cells), and T-cytotoxic cells (CD3+CD8+ T cells) were significantly increased in healthy postpartum women compared to healthy non-postpartum controls (p < 0.001, p = 0.007, and p = 0.002, respectively), but not in women with PPD. The increases in healthy postpartum women were driven by increases in TH1 cells and T regulatory cells, increases that were nonexistent or attenuated in women with postpartum depression. Mean counts of CD4+ T-helper memory cells were also increased in healthy postpartum women (p = 0.009), but slightly decreased in women with PPD (p = 0.066), when compared to healthy non-postpartum controls. CONCLUSIONS Our study confirms that the postpartum period in healthy women is a time of enhanced T cell activity. Women with postpartum depression failed to show physiological enhanced T-cell activity postpartum, and future research is needed to elucidate etiological mechanisms and consequences.
Collapse
Affiliation(s)
- Lauren M. Osborne
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding author: Lauren M. Osborne, MD, Women’s Mood Disorders Center, Johns Hopkins University School of Medicine, 550 N. Broadway, Suite 305, Baltimore, MD 21205, 410-955-9986 (phone),
| | - Janneke Gilden
- Department of Psychiatry, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Astrid M Kamperman
- Department of Psychiatry, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Julie Spicer
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands,Department of Psychiatry, Icahn School of Medicine at Mt. Sinai,Department of Obstetrics & Gynecology, Icahn School of Medicine at Mt. Sinai
| |
Collapse
|
34
|
Schiweck C, Valles-Colomer M, Arolt V, Müller N, Raes J, Wijkhuijs A, Claes S, Drexhage H, Vrieze E. Depression and suicidality: A link to premature T helper cell aging and increased Th17 cells. Brain Behav Immun 2020; 87:603-609. [PMID: 32061905 DOI: 10.1016/j.bbi.2020.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Previous research has demonstrated a strong link between immune system abnormalities and Major Depressive Disorder (MDD). High suicide risk is a major complication of MDD and has recently been linked to strong (neuro-)immune alterations, but little is known on the link between circulating immune cell composition and suicidal risk status. METHODS Here, we assessed percentages of circulating peripheral blood mononuclear cells with focus on T helper cell subsets (memory T helper cells, Th1, Th2, Th17 and T regulatory cells) in a large and well-matched cohort of 153 patients diagnosed with MDD and 153 age and sex matched controls. We explored the association of these cell populations with suicide risk while accounting for age, sex, BMI, depression severity and childhood trauma. RESULTS Patients with MDD had reduced percentages of NK cells, and higher percentages of B and T cells in line with current literature. Further exploration of T-cells revealed a robustly elevated number of memory T helper cells, regardless of age group. Patients at high risk for suicide had the highest memory T helper cells and additionally showed a robust increase of Th17 cells compared to other suicide risk groups. CONCLUSIONS The higher abundance of memory T helper cells points towards premature aging of the immune system in MDD patients, even during young adulthood. Patients at high risk for suicide show the clearest immune abnormalities and may represent a clinically relevant subtype of depression.
Collapse
Affiliation(s)
- Carmen Schiweck
- Department of Neurosciences, Psychiatry Research Group KU Leuven-University of Leuven, Leuven, Belgium.
| | - Mireia Valles-Colomer
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Volker Arolt
- Departments of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität WWU, Münster, Germany
| | - Norbert Müller
- Departments of Psychiatry and Psychotherapy, Ludwig Maximilians-Universität LMU, Munich, Germany
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium; VIB, Center for Microbiology, Leuven, Belgium
| | | | - Stephan Claes
- Department of Neurosciences, Psychiatry Research Group KU Leuven-University of Leuven, Leuven, Belgium
| | - Hemmo Drexhage
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Elske Vrieze
- Department of Neurosciences, Psychiatry Research Group KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Zhu BB, Zhou J, Zheng J, Zhang Y, Wan T, Huang XD, Lin L, Jin XM. Corneal graft melting: a systematic review. Int J Ophthalmol 2020; 13:493-502. [PMID: 32309189 DOI: 10.18240/ijo.2020.03.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Corneal graft melting is a severe complication of keratoplasty. This review is to summarize the incidence, the pathogenesis, the risk factors, the prognosis and the prevention of corneal graft melting after keratoplasty. We systematically searched PubMed, Web of Science and WanFang database to retrieve potentially eligible articles about relevant clinical reports and animal experiments. We read the full texts to identify eligible articles. The selection of studies and data extraction were performed independently by two reviewers. In conclusion, the pathogenesis of corneal graft melting is complicated, and many risk factors are closely related to corneal graft melting. Analysis of pathogenesis and risk factors of corneal graft melting can facilitate the development of targeted therapies to better guide clinical practice.
Collapse
Affiliation(s)
- Bin-Bin Zhu
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jie Zhou
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jiao Zheng
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Yue Zhang
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Ting Wan
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Xiao-Dan Huang
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Lin Lin
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Xiu-Ming Jin
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
36
|
Zhang G, Xu S, Yuan Z, Shen L. Weighted Gene Coexpression Network Analysis Identifies Specific Modules and Hub Genes Related to Major Depression. Neuropsychiatr Dis Treat 2020; 16:703-713. [PMID: 32214815 PMCID: PMC7079285 DOI: 10.2147/ndt.s244452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Despite advances in characterizing the neurobiology of emotional disorders, there is still a significant lack of scientific understanding of the pathophysiological mechanisms governing major depressive disorder (MDD). This study attempted to elucidate the molecular circuitry of MDD and to identify more potential genes associated with the pathogenesis of the disease. PATIENTS AND METHODS Microarray data from the GSE98793 dataset were downloaded from the NCBI Gene Expression Omnibus (GEO) database, including 128 patients with MDD and 64 healthy controls. Weighted gene coexpression network analysis (WGCNA) was performed to find modules of differentially expressed genes (DEGs) with high correlations followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to obtain further biological insight into the top three key modules. The protein-protein interaction (PPI) network, the modules from the PPI network, and the gene annotation enrichment of modules were analyzed, as well. RESULTS We filtered 3276 genes that were considered significant DEGs for further WGCNA analysis. By performing WGCNA, we found that the turquoise, blue and brown functional modules were all strongly correlated with MDD development, including immune response, neutrophil degranulation, ribosome biogenesis, T cell activation, glycosaminoglycan biosynthetic process, and protein serine/threonine kinase activator activity. Hub genes were identified in the key functional modules that might have a role in the progression of MDD. Functional annotation showed that these modules primarily enriched such KEGG pathways as the TNF signaling pathway, T cell receptor signaling pathway, primary immunodeficiency, Th1, Th2 and Th17 cell differentiation, autophagy and RNA degradation and oxidative phosphorylation. These results suggest that these genes are closely related to autophagy and cellular immune function. CONCLUSION The results of this study may help to elucidate the pathophysiology of MDD development at the molecular level and explore the potential molecular mechanisms for new interventional strategies.
Collapse
Affiliation(s)
- Guangyin Zhang
- Department of Psychosomatic Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shixin Xu
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome; Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhuo Yuan
- Department of Psychosomatic Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Li Shen
- Department of Psychosomatic Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
37
|
Askari M, Jahangard L, Zamani A, Haghighi M, Salehi I, Zareighane Z, Solgi G, Shahbazi R, Alahgholi-Hajibehzad M. Interleukin-6 signaling pathway involved in major depressive disorder: selective serotonin reuptake inhibitor regulates IL-6 pathway. TURKISH JOURNAL OF BIOCHEMISTRY 2019. [DOI: 10.1515/tjb-2019-0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Background
Evidence indicates that pro-inflammatory Th17 and Th1 cells are involved in major depressive disorder (MDD) pathogenesis. Development of Th17 and Th1 are regulated by IL-6 and IFN-γ, respectively. In this study, the levels of IL-6 and IFN-γ, and mRNA expression of related signaling components and, Th17/Th1 transcription factors were investigated in MDD patients with/without selective serotonin reuptake inhibitor (SSRI) medication.
Materials and methods
Forty-six patients and 38 healthy controls (HCs) were recruited. Twenty patients were received the SSRI (sertraline 50–200 mg/day) for at least 1 year, and 26 patients were not received medication. Expression of IL-6R, IFN-γR, JAK1, JAK2, TYK2, STAT1, STAT3, T-bet and RORγt were assessed with Real-Time-PCR. Serum and supernatant levels of IL-6 and IFN-γ were determined using ELISA.
Results and discussion
The serum and supernatant levels of IL-6 were increased in patients without (SSRI−) compared with HCs, while its levels was reduced in SSRI+. Elevated expressions of IL-6R, STAT3 and RORγt were observed in SSRI− compared with HCs. Expressions of IL-6R, STAT3, RORγt and IFN-γR, were decreased in SSRI+ compared to SSRI− patients.
Conclusion
Increased IL-6 involved in MDD, and SSRI regulates IL-6 pathway and IL-6 production. MDD patients may benefit from IL-6/IL-6R targeted therapeutic intervention.
Collapse
|
38
|
Furlan R, Melloni E, Finardi A, Vai B, Di Toro S, Aggio V, Battistini L, Borsellino G, Manfredi E, Falini A, Colombo C, Poletti S, Benedetti F. Natural killer cells protect white matter integrity in bipolar disorder. Brain Behav Immun 2019; 81:410-421. [PMID: 31254622 DOI: 10.1016/j.bbi.2019.06.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/08/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bipolar Disorder (BD) associates with disrupted white matter (WM) microstructure and functional connectivity, and with a perturbation of the immune system. Higher cytokines, and reduced T cells, correlated with WM disruption and fMRI responses. A core component of the innate immune system, natural killer (NK) cells were detected in brain parenchyma, but never studied in BD. METHODS We studied Diffusion Tensor Imaging (DTI) measures of water diffusion, fMRI corticolimbic functional response and connectivity, and multi-parameter cytofluorometry analysis of NK (CD56+) subpopulations, in 30 inpatients with active Bipolar Disorder type I. NK cells were also obtained in 36 healthy controls. RESULTS Patients had significantly higher circulating counts of CD56+GMCSF+, CD56+INFγ+, and CD56+IL17+. NK cell levels positively associated to fractional anisotropy (FA) measures. CD56+TNFα+, CD56+INFγ+, and CD56+GMCSF+ directly correlated with FA, and inversely with radial (RD) and mean (MD) diffusivity. Duration of lithium treatment associated with higher CD56+TNFα+, CD56+IL2+, and CD56+IL4+, and positively associated with FA in tracts were NKs had significant effects. A mediation model suggested a partial mediation of CD56+TNFα+ cells, higher in patients on lithium, on the effects of lithium on FA. Frequencies of the same cytokine-producing NK cells also influenced fMRI cortico-limbic functional connectivity during processing of both, emotional and non-emotional stimuli. DISCUSSION Higher circulating cytokine-producing NK cells associated with lithium treatment, and with DTI measures of WM integrity, partially mediating the effect of lithium on WM. The same cells associated with fMRI responses and connectivity, thus suggesting an effect on structural and functional connectomics in BD.
Collapse
Affiliation(s)
- Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Elisa Melloni
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Benedetta Vai
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Sara Di Toro
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Veronica Aggio
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | - Andrea Falini
- University Vita-Salute San Raffaele, Italy; Department of Neuroradiology, San Raffaele Scientific Institute, Milano, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Sara Poletti
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Francesco Benedetti
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
39
|
Rodríguez N, Morer A, González-Navarro EA, Serra-Pages C, Boloc D, Torres T, Martinez-Pinteño A, Mas S, Lafuente A, Gassó P, Lázaro L. Altered frequencies of Th17 and Treg cells in children and adolescents with obsessive-compulsive disorder. Brain Behav Immun 2019; 81:608-616. [PMID: 31344493 DOI: 10.1016/j.bbi.2019.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/01/2019] [Accepted: 07/20/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder with an etiopathophysiology that seems to include immune alterations. Previous studies have suggested that variations in the levels of circulating T cell subpopulations may be involved in psychiatric diseases. However, the role of these cells in OCD remains unexplored. Hence, the present study aimed to examine the levels of T helper 1 (Th1), Th2, Th17 and regulatory T (Treg) cells in patients with early-onset OCD and healthy controls. METHODS The assessment was performed in 99 children and adolescents with OCD and 46 control subjects. The percentages of circulating Th1, Th2, Th17 and Treg cells were evaluated using flow cytometry. RESULTS OCD patients had significantly higher levels of Th17 cells and lower percentages of Treg cells than healthy controls (p = 0.001 and p = 0.005, respectively). Furthermore, levels of Th17 cells progressively increased with the duration (p = 0.005) and severity of OCD (p = 0.008), whereas the percentages of Treg cells significantly declined with the duration of the disorder (p = 1.8 × 10-5). CONCLUSIONS These results provide more evidence of the involvement of immune dysregulation, specifically an imbalance in the levels of circulating T helper and regulatory T cells, in the pathophysiology of early-onset OCD.
Collapse
Affiliation(s)
| | - Astrid Morer
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - E Azucena González-Navarro
- Immunology Service, Hospital Clinic de Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Carles Serra-Pages
- Immunology Service, Hospital Clinic de Barcelona, Spain; Department of Biomedicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Daniel Boloc
- Department of Medicine, University of Barcelona, Spain.
| | - Teresa Torres
- Department of Basic Clinical Practice, University of Barcelona, Spain.
| | | | - Sergi Mas
- Department of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Amalia Lafuente
- Department of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Patricia Gassó
- Department of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Luisa Lázaro
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Spain; Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
40
|
Oras A, Peet A, Giese T, Tillmann V, Uibo R. A study of 51 subtypes of peripheral blood immune cells in newly diagnosed young type 1 diabetes patients. Clin Exp Immunol 2019; 198:57-70. [PMID: 31116879 DOI: 10.1111/cei.13332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing beta cells in pancreatic islets. Various immune cell populations are involved in disease development and natural course. However, to our knowledge, so far there are no comprehensive comparative investigations of all main immune cell populations and their most important subsets at the onset of disease. Therefore, in the current study, we analyzed 51 peripheral blood immune cell populations in 22 young T1D patients and in 25 age-matched controls using a comprehensive polychromatic flow cytometry panel developed for whole blood by the COST Action no. BM0907 ENTIRE (European Network for Translational Immunology Research and Education: From Immunomonitoring to Personalized Immunotherapy) consortium. We found that in T1D patients, frequencies and absolute counts of natural killer (NK) cells, dendritic cells (DC) and T cells, as well as their respective subsets, were significantly altered compared to controls. Further, we observed that changes in several cell populations (e.g. CD14+ CD16+ non-classical monocytes, plasmablasts) were dependent on the age of the patient. In addition to age-related changes, we also found that alterations in immune cell patterns were associated with parameters such as the presence of ketoacidosis and C-peptide serum levels. Our study provides a foundation for future studies investigating different cell lineages and their role in T1D and illustrates the value of polychromatic flow cytometry for evaluating all main peripheral immune cells and their subsets in whole blood samples.
Collapse
Affiliation(s)
- A Oras
- Instititute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - A Peet
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - T Giese
- Institut für Immunologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - V Tillmann
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - R Uibo
- Instititute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
41
|
Fries GR, Walss-Bass C, Bauer ME, Teixeira AL. Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav 2019; 177:12-19. [DOI: 10.1016/j.pbb.2018.12.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023]
|
42
|
Arteaga-Henríquez G, Simon MS, Burger B, Weidinger E, Wijkhuijs A, Arolt V, Birkenhager TK, Musil R, Müller N, Drexhage HA. Low-Grade Inflammation as a Predictor of Antidepressant and Anti-Inflammatory Therapy Response in MDD Patients: A Systematic Review of the Literature in Combination With an Analysis of Experimental Data Collected in the EU-MOODINFLAME Consortium. Front Psychiatry 2019; 10:458. [PMID: 31354538 PMCID: PMC6630191 DOI: 10.3389/fpsyt.2019.00458] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/11/2019] [Indexed: 01/17/2023] Open
Abstract
Low-grade inflammation plays a role not only in the pathogenesis of major depressive disorder (MDD) but probably also in the poor responsiveness to regular antidepressants. There are also indications that anti-inflammatory agents improve the outcomes of antidepressants. Aim: To study whether the presence of low-grade inflammation predicts the outcome of antidepressants, anti-inflammatory agents, or combinations thereof. Methods: We carried out a systematic review of the literature on the prediction capability of the serum levels of inflammatory compounds and/or the inflammatory state of circulating leukocytes for the outcome of antidepressant/anti-inflammatory treatment in MDD. We compared outcomes of the review with original data (collected in two limited trials carried out in the EU project MOODINFLAME) on the prediction capability of the inflammatory state of monocytes (as measured by inflammatory gene expression) for the outcome of venlafaxine, imipramine, or sertraline treatment, the latter with and without celecoxib added. Results: Collectively, the literature and original data showed that: 1) raised serum levels of pro-inflammatory compounds (in particular of CRP/IL-6) characterize an inflammatory form of MDD with poor responsiveness to predominately serotonergic agents, but a better responsiveness to antidepressant regimens with a) (add-on) noradrenergic, dopaminergic, or glutamatergic action or b) (add-on) anti-inflammatory agents such as infliximab, minocycline, or eicosapentaenoic acid, showing-next to anti-inflammatory-dopaminergic or lipid corrective action; 2) these successful anti-inflammatory (add-on) agents, when used in patients with low serum levels of CRP/IL-6, decreased response rates in comparison to placebo. Add-on aspirin, in contrast, improved responsiveness in such "non-inflammatory" patients; 3) patients with increased inflammatory gene expression in circulating leukocytes had a poor responsiveness to serotonergic/noradrenergic agents. Conclusions: The presence of inflammation in patients with MDD heralds a poor outcome of first-line antidepressant therapies. Immediate step-ups to dopaminergic or glutamatergic regimens or to (add-on) anti-inflammatory agents are most likely indicated. However, at present, insufficient data exist to design protocols with reliable inflammation parameter cutoff points to guide such therapies, the more since detrimental outcomes are possible of anti-inflammatory agents in "non-inflamed" patients.
Collapse
Affiliation(s)
- Gara Arteaga-Henríquez
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Munich, Germany.,Department of Immunology, Erasmus Medical Center, Rotterdam, Netherlands.,Psychiatry, Mental Health and Addictions Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Maria S Simon
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Munich, Germany
| | | | - Elif Weidinger
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Munich, Germany
| | | | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University Hospital of Muenster, Muenster, Germany
| | - Tom K Birkenhager
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, Netherlands
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Munich, Germany
| | - Norbert Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Munich, Germany.,Marion von Tessin Memory-Center, Munich, Germany
| | - Hemmo A Drexhage
- Department of Immunology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|