1
|
Mohsen E, Haffez H, Ahmed S, Hamed S, El-Mahdy TS. Multiple Sclerosis: A Story of the Interaction Between Gut Microbiome and Components of the Immune System. Mol Neurobiol 2025; 62:7762-7775. [PMID: 39934561 PMCID: PMC12078361 DOI: 10.1007/s12035-025-04728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Multiple sclerosis (MS) is defined as an inflammatory disorder that chronically affects the central nervous system of young people mostly and is distributed globally. It is associated with degeneration and demyelination of the myelin sheath around the nerves, resulting in multiple neurological disability symptoms ranging from mild to severe cases that end with paralysis sometimes. MS is one of the rising diseases globally that is unfortunately associated with reduced quality of life and adding national economic burdens. The definite MS mechanism is not clearly defined; however, all the previous researches confirm the role of the immune system as the master contributor in the pathogenesis. Innate and adaptive immune cells are activated peripherally then attracted toward the central nervous system (CNS) due to the breakdown of the blood-brain barrier. Recently, the gut-brain axis was shown to depend on gut metabolites that are produced by different microorganisms in the colon. The difference in microbiota composition between individuals is responsible for diversity in secreted metabolites that affect immune responses locally in the gut or systemically when reach blood circulation to the brain. It may enhance or suppress immune responses in the central nervous system (CNS) (repeated short forms); consequently, it may exacerbate or ameliorate MS symptoms. Recent data showed that some metabolites can be used as adjuvant therapy in MS and other inflammatory diseases. This review sheds light on the nature of MS and the possible interaction between gut microbiota and immune system regulation through the gut-brain axis, hence contributing to MS pathogenesis.
Collapse
Affiliation(s)
- Esraa Mohsen
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
| | - Hesham Haffez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research (HSBR), Helwan University, Cairo, 11795, Egypt
| | - Sandra Ahmed
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Selwan Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt.
| | - Taghrid S El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| |
Collapse
|
2
|
Hendrikse J, Bont LJ, Schellekens PAWJF, de Groot-Mijnes JDF, de Boer JH, Kuiper JJW. Paediatric autoimmune uveitis is associated with intraocular antibodies against Epstein-Barr virus Nuclear Antigen 1 (EBNA-1). EBioMedicine 2025; 115:105681. [PMID: 40239467 PMCID: PMC12020872 DOI: 10.1016/j.ebiom.2025.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Non-infectious uveitis is an immune-mediated disease characterized by vision-threatening inflammation within the eye. Increasing evidence indicates that microbial agents promote non-infectious uveitis, but the natural history of immune responses to pathogens in patients remains unexplored. We determined intraocular antibodies against pathogens in paediatric uveitis. METHODS We used peptide microarrays containing 3760 linear B-cell epitopes from 196 human pathogens to profile IgG levels in eye fluid biopsies and paired serum samples from 18 Dutch paediatric patients and 6 age-matched controls. We compared intensities of single epitopes and clusters based on overlapping amino acid sequence of peptides. Next-generation sequencing data was obtained to determine the HLA-DRB1∗15:01 genotype. FINDINGS Intraocular antibody profiles largely matched serum profiles and were characterized by high IgG against the conserved PALTAVET-motif of enterovirus family members, as well as broad epitope reactivity against Epstein-Barr virus (EBV). The aqueous humour of patients showed elevated levels of antibodies against peptides containing the RRPFFHPV-motif of Epstein-Barr Virus Nuclear Antigen 1 [EBNA-1]. Antibody levels against the RRPFFHPV-motif of EBNA1 were significantly higher in individuals that carry the HLA-DRB1∗15:01 risk allele of paediatric uveitis. INTERPRETATION Intraocular antibodies against an immunogenic epitope of EBV showed an association with paediatric uveitis, particularly HLA-DRB1∗15:01 positive uveitis, indicating a potential link between EBV-specific immune responses and autoimmune uveitis. FUNDING Funding for this research was received from Fischer Stichting (UZ2022-3), ODAS (2021-02), LSBS and ANVVB.
Collapse
Affiliation(s)
- Jytte Hendrikse
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands.
| | - Louis J Bont
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands
| |
Collapse
|
3
|
Hecker M, Fitzner B, Ludwig-Portugall I, Bohne F, Heyland E, Klehmet J, Grothe M, Schwab M, Winkelmann A, Meister S, Dudesek A, Wurm H, Ayzenberg I, Kleiter I, Trebst C, Hümmert MW, Neumann B, Eulitz K, Koczan D, Zettl UK. Apheresis for the treatment of relapses in MS and NMOSD: reduced antibody reactivities, gene expression changes and potential clinical response indicators. Front Immunol 2025; 16:1531447. [PMID: 39949773 PMCID: PMC11821495 DOI: 10.3389/fimmu.2025.1531447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Background High-dose glucocorticoids are the standard treatment for acute relapses in patients with multiple sclerosis (MS) or neuromyelitis optica spectrum disorder (NMOSD). Therapeutic apheresis can be considered for the escalation of relapse therapy, but some patients still do not recover sufficiently. We aimed to explore the effects of apheresis on humoral and cellular immune parameters and to identify features that correlate with beneficial clinical outcomes. Methods We studied two cohorts comprising a total of 63 patients with MS or NMOSD who were undergoing relapse therapy with either methylprednisolone or apheresis. Blood samples were collected immediately before and after therapy to isolate plasma or serum as well as immune cells. We then measured (1) concentrations of the immunoglobulin isotypes IgG, IgM and IgA, (2) antibody reactivities against 12 peptides derived from potential autoantigens and Epstein-Barr virus proteins, (3) frequencies of CD19+ B cells, CD3+ T cells and CD14+ monocytes, (4) transcriptome profiles of CD19+ B cells and CD4+ T cells and (5) mRNA levels of 7 cytotoxicity-related genes in CD4+ T cells. The data were compared with regard to changes under therapy and with regard to differences between clinical responders and non-responders. Results The initial therapy with methylprednisolone had no significant effect on immunoglobulin levels and (auto)antibody reactivities (n max=27 MS patients). In contrast, MS patients who underwent apheresis (n max=27) showed strong immunoglobulin reduction rates, especially for IgG, and decreased antibody reactivities against all tested peptides. EBNA1 (amino acids 391-410) was the only peptide that also reached the significance level in NMOSD patients (n=9). Non-responders to apheresis (n=12) had on average higher anti-EBNA1 (391-410) reactivities than responders (n=24) at baseline. Apheresis also led to a decrease in the proportion of monocytes, an increase in the proportion of T cells (n=29 patients with MS or NMOSD) and moderate transcriptome changes (n max=4 MS patients). A gene expression signature that is characteristic of CD4+ cytotoxic T lymphocytes (CD4-CTLs) was found to be elevated at baseline in non-responders to apheresis, although this could not be validated with statistical significance (n=19 MS patients). Conclusion Our data reveal that therapeutic apheresis in MS rapidly leads to a significant decrease in IgG reactivities against EBNA1 (391-410) and cross-reactive targets such as GlialCAM (370-389) and also has an impact on the gene expression of B cells and T cells. Further studies are required to verify whether anti-EBNA1 (391-410) antibody reactivities and the expression of CD4-CTL-related genes may be indicative of the individual clinical response to this therapy.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | | | | | - Edmar Heyland
- R&D Apheresis, Miltenyi Biotec B.V. & Co. KG, Teterow, Germany
| | - Juliane Klehmet
- Center for Multiple Sclerosis, Department of Neurology, Jüdisches Krankenhaus Berlin, Berlin, Germany
| | - Matthias Grothe
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Alexander Winkelmann
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Stefanie Meister
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Ales Dudesek
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Hannah Wurm
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ingo Kleiter
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Bernhard Neumann
- Department of Neurology, University of Regensburg, Bezirksklinikum, Regensburg, Germany
- Department of Neurology, Donau-Isar-Klinikum Deggendorf, Deggendorf, Germany
| | - Klaus Eulitz
- R&D Apheresis, Miltenyi Biotec B.V. & Co. KG, Teterow, Germany
| | - Dirk Koczan
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Uwe K. Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Garton T, Gadani SP, Gill AJ, Calabresi PA. Neurodegeneration and demyelination in multiple sclerosis. Neuron 2024; 112:3231-3251. [PMID: 38889714 PMCID: PMC11466705 DOI: 10.1016/j.neuron.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Progressive multiple sclerosis (PMS) is an immune-initiated neurodegenerative condition that lacks effective therapies. Although peripheral immune infiltration is a hallmark of relapsing-remitting MS (RRMS), PMS is associated with chronic, tissue-restricted inflammation and disease-associated reactive glial states. The effector functions of disease-associated microglia, astrocytes, and oligodendrocyte lineage cells are beginning to be defined, and recent studies have made significant progress in uncovering their pathologic implications. In this review, we discuss the immune-glia interactions that underlie demyelination, failed remyelination, and neurodegeneration with a focus on PMS. We highlight the common and divergent immune mechanisms by which glial cells acquire disease-associated phenotypes. Finally, we discuss recent advances that have revealed promising novel therapeutic targets for the treatment of PMS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Garton
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander J Gill
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|