1
|
Yang Q, Zhang X, Zhang L, Cheng C, Zhao J. Exploring the influence of the DRD2 gene on mathematical ability: perspectives of gene association and gene-environment interaction. BMC Psychol 2024; 12:572. [PMID: 39425204 PMCID: PMC11488083 DOI: 10.1186/s40359-024-01997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024] Open
Abstract
Mathematical ability is influenced by genes and environment. This study focused on the effect of DRD2, a candidate gene for working memory, on mathematical ability. The results in child participants revealed associations between the DRD2 gene and mathematical ability. It was found that individual's mathematical ability was influenced by Single Nucleotide Polymorphisms (SNPs) in DRD2, both in the form of haplotypes and in the way of interaction with parental education. These findings suggest that dopaminergic genes are linked to mathematical ability. This study provides evidence for the genetic basis of mathematical ability and offers guidance for personalized intervention in mathematical education.
Collapse
Affiliation(s)
- Qing Yang
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Ximiao Zhang
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Liming Zhang
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Chen Cheng
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Jingjing Zhao
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
2
|
Yang Q, Cheng C, Wang Z, Zhang X, Zhao J. Interaction between Risk Single-Nucleotide Polymorphisms of Developmental Dyslexia and Parental Education on Reading Ability: Evidence for Differential Susceptibility Theory. Behav Sci (Basel) 2024; 14:507. [PMID: 38920839 PMCID: PMC11201191 DOI: 10.3390/bs14060507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
While genetic and environmental factors have been shown as predictors of children's reading ability, the interaction effects of identified genetic risk susceptibility and the specified environment for reading ability have rarely been investigated. The current study assessed potential gene-environment (G×E) interactions on reading ability in 1477 school-aged children. The gene-environment interactions on character recognition were investigated by an exploratory analysis between the risk single-nucleotide polymorphisms (SNPs), which were discovered by previous genome-wide association studies of developmental dyslexia (DD), and parental education (PE). The re-parameterized regression analysis suggested that this G×E interaction conformed to the strong differential susceptibility model. The results showed that rs281238 exhibits a significant interaction with PE on character recognition. Children with the "T" genotype profited from high PE, whereas they performed worse in low PE environments, but "CC" genotype children were not malleable in different PE environments. This study provided initial evidence for how the significant SNPs in developmental dyslexia GWA studies affect children's reading performance by interacting with the environmental factor of parental education.
Collapse
Affiliation(s)
| | | | | | | | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University, 199 South Chang’an Road, Xi’an 710062, China; (Q.Y.); (C.C.); (Z.W.); (X.Z.)
| |
Collapse
|
3
|
Zhao J, Yang Q, Cheng C, Wang Z. Cumulative genetic score of KIAA0319 affects reading ability in Chinese children: moderation by parental education and mediation by rapid automatized naming. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:10. [PMID: 37259151 DOI: 10.1186/s12993-023-00212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
KIAA0319, a well-studied candidate gene, has been shown to be associated with reading ability and developmental dyslexia. In the present study, we investigated whether KIAA0319 affects reading ability by interacting with the parental education level and whether rapid automatized naming (RAN), phonological awareness and morphological awareness mediate the relationship between KIAA0319 and reading ability. A total of 2284 Chinese children from primary school grades 3 and 6 participated in this study. Chinese character reading accuracy and word reading fluency were used as measures of reading abilities. The cumulative genetic risk score (CGS) of 13 SNPs in KIAA0319 was calculated. Results revealed interaction effect between CGS of KIAA0319 and parental education level on reading fluency. The interaction effect suggested that individuals with a low CGS of KIAA0319 were better at reading fluency in a positive environment (higher parental educational level) than individuals with a high CGS. Moreover, the interaction effect coincided with the differential susceptibility model. The results of the multiple mediator model revealed that RAN mediates the impact of the genetic cumulative effect of KIAA0319 on reading abilities. These findings provide evidence that KIAA0319 is a risk vulnerability gene that interacts with environmental factor to impact reading abilities and demonstrate the reliability of RAN as an endophenotype between genes and reading associations.
Collapse
Affiliation(s)
- Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China.
| | - Qing Yang
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China
| | - Chen Cheng
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China
| | - Zhengjun Wang
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China.
| |
Collapse
|
4
|
Amora KK, Tretow A, Verwimp C, Tijms J, Leppänen PHT, Csépe V. Typical and Atypical Development of Visual Expertise for Print as Indexed by the Visual Word N1 (N170w): A Systematic Review. Front Neurosci 2022; 16:898800. [PMID: 35844207 PMCID: PMC9279737 DOI: 10.3389/fnins.2022.898800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
The visual word N1 (N170w) is an early brain ERP component that has been found to be a neurophysiological marker for print expertise, which is a prelexical requirement associated with reading development. To date, no other review has assimilated existing research on reading difficulties and atypical development of processes reflected in the N170w response. Hence, this systematic review synthesized results and evaluated neurophysiological and experimental procedures across different studies about visual print expertise in reading development. Literature databases were examined for relevant studies from 1995 to 2020 investigating the N170w response in individuals with or without reading disorders. To capture the development of the N170w related to reading, results were compared between three different age groups: pre-literate children, school-aged children, and young adults. The majority of available N170w studies (N = 69) investigated adults (n = 31) followed by children (school-aged: n = 21; pre-literate: n = 4) and adolescents (n = 1) while some studies investigated a combination of these age groups (n = 12). Most studies were conducted with German-speaking populations (n = 17), followed by English (n = 15) and Chinese (n = 14) speaking participants. The N170w was primarily investigated using a combination of words, pseudowords, and symbols (n = 20) and mostly used repetition-detection (n = 16) or lexical-decision tasks (n = 16). Different studies posed huge variability in selecting electrode sites for analysis; however, most focused on P7, P8, and O1 sites of the international 10–20 system. Most of the studies in adults have found a more negative N170w in controls than poor readers, whereas in children, the results have been mixed. In typical readers, N170w ranged from having a bilateral distribution to a left-hemispheric dominance throughout development, whereas in young, poor readers, the response was mainly right-lateralized and then remained in a bilateral distribution. Moreover, the N170w latency has varied according to age group, with adults having an earlier onset yet with shorter latency than school-aged and pre-literate children. This systematic review provides a comprehensive picture of the development of print expertise as indexed by the N170w across age groups and reading abilities and discusses theoretical and methodological differences and challenges in the field, aiming to guide future research.
Collapse
Affiliation(s)
- Kathleen Kay Amora
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Modern Philology and Social Sciences, Multilingualism Doctoral School, University of Pannonia, Veszprém, Hungary
- *Correspondence: Kathleen Kay Amora ;
| | - Ariane Tretow
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Cara Verwimp
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
- Rudolf Berlin Center, Amsterdam, Netherlands
| | - Jurgen Tijms
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
- Rudolf Berlin Center, Amsterdam, Netherlands
| | | | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
- Institute for Hungarian and Applied Linguistics, University of Pannonia, Veszprém, Hungary
| |
Collapse
|
5
|
Thomas T, Khalaf S, Grigorenko EL. A systematic review and meta-analysis of imaging genetics studies of specific reading disorder. Cogn Neuropsychol 2021; 38:179-204. [PMID: 34529546 DOI: 10.1080/02643294.2021.1969900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The imaging genetics of specific reading disabilities (SRD) is an emerging field that aims to characterize the disabilities' neurobiological causes, including atypical brain structure and function and distinct genetic architecture. The present review aimed to summarize current imaging genetics studies of SRD, characterize the effect sizes of reported results by calculating Cohen's d, complete a Fisher's Combined Probability Test for genes featured in multiple studies, and determine areas for future research. Results demonstrate associations between SRD risk genes and reading network brain phenotypes. The Fisher's test revealed promising results for the genes DCDC2, KIAA0319, FOXP2, SLC2A3, and ROBO1. Future research should focus on exploratory approaches to identify previously undiscovered genes. Using comprehensive neuroimaging (e.g., functional and effective connectivity) and genetic (e.g., sequencing and epigenetic) techniques, and using larger samples, diverse stages of development, and longitudinal investigations, would help researchers understand the neurobiological correlates of SRD to improve early identification.
Collapse
Affiliation(s)
- Tina Thomas
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
| | - Shiva Khalaf
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
| | - Elena L Grigorenko
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA.,Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Lui KFH, Lo JCM, Maurer U, Ho CSH, McBride C. Electroencephalography decoding of Chinese characters in primary school children and its prediction for word reading performance and development. Dev Sci 2020; 24:e13060. [PMID: 33159696 DOI: 10.1111/desc.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
Research on what neural mechanisms facilitate word reading development in non-alphabetic scripts is relatively rare. The present study was among the first to adopt a multivariate pattern classification analysis to decode electroencephalographic signals recorded for primary school children (N = 236) while performing a Chinese character decision task. Chinese is an ideal script for studying the relationship between neural discriminability (i.e., decodability) of the orthography and behavioral word reading skills since the mapping from orthography to phonology is relatively arbitrary in Chinese. This was also among the first empirical attempts to examine the extent to which decoding performance can predict current and subsequent word reading skills using a longitudinal design. Results showed that neural activation patterns of real characters can be distinguished from activation patterns for pseudo-characters, non-characters, and random stroke combinations in both younger and older children. Topography of the transformed classifier weights revealed two distinct cognitive sub-processes underlying single character recognition, but temporal generalization analysis suggested common neural mechanisms between the distinct cognitive sub-processes. Suggestive evidence from correlational and hierarchical regression analyses showed that decoding performance, assessed on average 2 months before the year 2 behavioral testing, predicted both year 1 word reading performance and the development of word reading fluency over the year. Results demonstrate that decoding performance, one indicator of how the neural system is functionally organized in processing characters and character-like stimuli, can serve as a useful neural marker in predicting current word reading skills and the capacity to learn to read.
Collapse
Affiliation(s)
- Kelvin F H Lui
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Jason C M Lo
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong
| | - Connie S-H Ho
- Department of Psychology, The University of Hong Kong, Hong Kong
| | - Catherine McBride
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Nishiyama KV, Satta Y, Gojobori J. Do Genes Associated with Dyslexia of Chinese Characters Evolve Neutrally? Genes (Basel) 2020; 11:genes11060658. [PMID: 32560373 PMCID: PMC7349701 DOI: 10.3390/genes11060658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/29/2022] Open
Abstract
Dyslexia, or reading disability, is found to have a genetic basis, and several related genes have been reported. We investigated whether natural selection has acted on single nucleotide polymorphisms (SNPs) that were reported to be associated with risk/non-risk for the reading disability of Chinese characters. We applied recently developed 2D SFS-based statistics to SNP data of East Asian populations to examine whether there is any sign of selective sweep. While neutrality was not rejected for most SNPs, significant signs of selection were detected for two linkage disequilibrium (LD) regions containing the reported SNPs of GNPTAB and DCDC2. Furthermore, we searched for a selection target site among the SNPs in these LD regions, because a causal site is not necessarily a reported SNP but could instead be a tightly linked site. In both LD regions, we found candidate target sites, which may have an effect on expression regulation and have been selected, although which genes these SNPs affect remains unknown. Because most people were not engaged in reading until recently, it is unlikely that there has been selective pressure on reading ability itself. Consistent with this, our results suggest a possibility of genetic hitchhiking, whereby alleles of the reported SNPs may have increased in frequency together with the selected target, which could have functions for other genes and traits apart from reading ability.
Collapse
|
8
|
Su M, Thiebaut de Schotten M, Zhao J, Song S, Zhou W, Gong G, McBride C, Tardif T, Ramus F, Shu H. Influences of the early family environment and long-term vocabulary development on the structure of white matter pathways: A longitudinal investigation. Dev Cogn Neurosci 2020; 42:100767. [PMID: 32072939 PMCID: PMC7031118 DOI: 10.1016/j.dcn.2020.100767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 11/18/2022] Open
Abstract
In the present longitudinal study, we investigated the joint effect of early family factors and long-term vocabulary development on the structure of reading-related white matter pathways in adolescents. Seventy-nine children participated in this study. Family environment was measured via parental questionnaire between age 1 and age 3. From age 4 to age 10, children's vocabulary skills were tested annually. At age 14, diffusion tensor imaging data of the children were collected. Using individual-based tractography, 10 reading-related tracts of the two hemispheres were delineated. Different family factors were found to be correlated with different pathways: Age of literacy exposure was correlated with fractional anisotropy of the direct segment of the left arcuate fasciculus, while an association trend was found between early family socioeconomic status and fractional anisotropy of the left inferior frontal occipital fasciculus. Further regression analyses showed that the age of literacy exposure modulated the relationships between vocabulary development and the structure of the left arcuate fasciculus. Specifically, in the earlier literacy exposure group, no association was found between vocabulary development and the strength of the arcuate fasciculus, whereas in the later literacy exposure group, significant associations were found between vocabulary development and the strength of the arcuate fasciculus.
Collapse
Affiliation(s)
- Mengmeng Su
- College of Elementary Education, Capital Normal University, Beijing, China
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Brain and Spine Institute (ICM), CNRS UMR 7225, INSERM-UPMC UMRS 1127, Paris, France
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Shuang Song
- College of Teacher Education, Capital Normal University, Beijing, China
| | - Wei Zhou
- Beijing Key Lab of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Catherine McBride
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Twila Tardif
- Department of Psychology and Center for Human Growth and Development, University of Michigan-Ann Arbor, USA
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France.
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
9
|
Zhao J, Maurer U, He S, Weng X. Development of neural specialization for print: Evidence for predictive coding in visual word recognition. PLoS Biol 2019; 17:e3000474. [PMID: 31600192 PMCID: PMC6805000 DOI: 10.1371/journal.pbio.3000474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/22/2019] [Accepted: 09/09/2019] [Indexed: 12/04/2022] Open
Abstract
How a child's brain develops specialization for print is poorly understood. One longstanding account is selective neuronal tuning to regularity of visual-orthographic features, which predicts a monotonically increased neural activation for inputs with higher regularity during development. However, we observed a robust interaction between a stimulus' orthographic regularity (bottom-up input) and children's lexical classification ability (top-down prediction): N1 response, which is the first negative component of the event-related potential (ERP) occurring at posterior electrodes, was stronger to lower-regularity stimuli, but only in children who were less efficient in lexically classifying these stimuli (high prediction error). In contrast, N1 responses were reduced to lower-regularity stimuli in children who showed high efficiency of lexical classification (low prediction error). The modulation of children's lexical classification efficiency on their neural responses to orthographic stimuli supports the predictive coding account of neural processes of reading.
Collapse
Affiliation(s)
- Jing Zhao
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Urs Maurer
- Department of Psychology, Chinese University of Hong Kong, Hong Kong, China
- Brain and Mind Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
10
|
Association between KIAA0319 SNPs and risk of dyslexia: a meta-analysis. J Genet 2019. [DOI: 10.1007/s12041-019-1103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Deng KG, Zhao H, Zuo PX. Association between KIAA0319 SNPs and risk of dyslexia: a meta-analysis. J Genet 2019; 98:62. [PMID: 31204720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aetiology of developmental dyslexia (DD) is complex; although candidate genes have been suggested, the molecular mechanism and risk factors remain unknown. The KIAA0319 gene is functionally related to neuronal migration and axon growth, and several studies have examined associations between KIAA0319 polymorphisms with DD, but the results remain inconsistent. The sample size affects the results of meta-analysis. The aim of this meta-analysis was to clarify the effect of KIAA0319 polymorphisms on dyslexia susceptibility according to the available evidence. All eligible case-control and transmission/disequilibrium test (TDT) studies published until March 2018 were identified by searchingMedline, PubMed, Embase, Web of Science and Chinese Biomedical Database, limited to Chinese and English language papers. Pooled odds ratios and 95% confidence intervals were calculated using STATS package v12.0. A total of 11 related studies, including 3130 cases of dyslexia and 3460 healthy control subjects, as well as four TDT studies with 842 families were included in our meta-analysis. The results indicated that the polymorphisms rs4504469, rs2038137, rs2179515, rs3212236, rs6935076, rs9461045, rs2143340 and rs761100 have no association between the polymorphisms and dyslexia risk. Three subgroup meta-analyseswere performed according to the study design, country and population. The stratified analysis revealed that the KIAA0319 rs4504469 minor allele was a risk allele t in the TDT subgroup, rs3212236 minor allele was a risk allele t in the UK subgroup and rs6935076 minor allele was a risk allele t in the Canada subgroup. Further studies with larger sample sizes that assess gene-gene and gene-environment interactions are required. The sample size of our study is larger than that of the previous studies, and the results are different from those of the previous studies.We have synthesized all the current studies on KIAA0319 and obtained reliable results.
Collapse
Affiliation(s)
- Ke-Gao Deng
- Medical School, University of Shihezi, Xinjiang 83 2000, People's Republic of China.
| | | | | |
Collapse
|
12
|
Su M, Zhao J, Thiebaut de Schotten M, Zhou W, Gong G, Ramus F, Shu H. Alterations in white matter pathways underlying phonological and morphological processing in Chinese developmental dyslexia. Dev Cogn Neurosci 2018; 31:11-19. [PMID: 29727819 PMCID: PMC6969203 DOI: 10.1016/j.dcn.2018.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 01/18/2023] Open
Abstract
Chinese is a logographic language that is different from alphabetic languages in visual and semantic complexity. Thus far, it is still unclear whether Chinese children with dyslexia show similar disruption of white matter pathways as in alphabetic languages. The present study focused on the alteration of white matter pathways in Chinese children with dyslexia. Using diffusion tensor imaging tractography, the bilateral arcuate fasciculus (AF-anterior, AF-posterior and AF-direct segments), inferior fronto-occipital fasciculus (IFOF) and inferior longitudinal fasciculus (ILF) were delineated in each individual’s native space. Compared with age-matched controls, Chinese children with dyslexia showed reduced fractional anisotropy in the left AF-direct and the left ILF. Further regression analyses revealed a functional dissociation between the left AF-direct and the left ILF. The AF-direct tract integrity was associated with phonological processing skill, an ability important for reading in all writing systems, while the ILF integrity was associated with morphological processing skill, an ability more strongly recruited for Chinese reading. In conclusion, the double disruption locus in Chinese children with dyslexia, and the functional dissociation between dorsal and ventral pathways reflect both universal and specific properties of reading in Chinese.
Collapse
Affiliation(s)
- Mengmeng Su
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France; College of Elementary Education, Capital Normal University, Beijing, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Brain and Spine Institute (ICM), CNRS UMR 7225, INSERM-UPMC UMRS 1127, Paris, France
| | - Wei Zhou
- Beijing Key Lab of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France.
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
13
|
Abstract
To what extent are young children sensitive to individual stroke, the smallest unit of writing in Chinese that carries no phonological or semantic information? The present study examined Chinese kindergartners’ sensitivity to stroke and the contribution of reading ability and age to stroke sensitivity. Fifty five children from Beijing, including 28 4-year-olds (Mage = 4.55 years, SD = 0.28, 16 males) and 29 5-year-olds (Mage = 5.58 years, SD = 0.30, 14 males), were administered an orthographic matching task and assessed on non-verbal IQ and Chinese word reading. In the orthographic matching task, children were asked to decide whether two items were exactly the same or different in three conditions, with stimuli being correctly written characters (e.g., “”), stroke-missing or redundant characters (e.g., “”), and Tibetan alphabets (e.g., “”), respectively. The stimuli were presented with E-prime 2.0 software and were displayed on a Surface Pro. Children responded by touching the screen and reaction time was used as a measure of processing efficiency. The 5-year-olds but not the 4-year-olds processed correctly written characters more efficiently than stroke-missing/redundant characters, suggesting emergence of stroke sensitivity from age 5. The 4- and 5-year-olds both processed correctly written characters more efficiently than Tibetan alphabets, ruling out the possibility that the 5 year olds’ sensitivity to stroke was due to the unusual look of the stimuli. Hierarchical regression analyses showed that Chinese word reading explained 10% additional variance in stroke sensitivity after having statistically controlled for age. Age did not account for additional variance in stroke sensitivity after having considered Chinese word reading. Taken together, findings of this study revealed that despite the visually highly complex nature of Chinese and the fact that individual stroke carries no phonological or semantic information, children develop sensitivity to stroke from age 5 and such sensitivity is significantly associated with reading experience.
Collapse
Affiliation(s)
- Su Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Li Yin
- Center for the Study of Language and Psychology, Department of Foreign Languages and Literatures, Tsinghua UniversityBeijing, China
- *Correspondence: Li Yin,
| |
Collapse
|
14
|
Tong X, Lo JCM, McBride C, Ho CSH, Waye MMY, Chung KKH, Wong SWL, Chow BWY. Coarse and fine N1 tuning for print in younger and older Chinese children: Orthography, phonology, or semantics driven? Neuropsychologia 2016; 91:109-119. [DOI: 10.1016/j.neuropsychologia.2016.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022]
|
15
|
Zhou W, Wang X, Xia Z, Bi Y, Li P, Shu H. Neural Mechanisms of Dorsal and Ventral Visual Regions during Text Reading. Front Psychol 2016; 7:1399. [PMID: 27695434 PMCID: PMC5023685 DOI: 10.3389/fpsyg.2016.01399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/01/2016] [Indexed: 11/21/2022] Open
Abstract
When reading a narrative text, both the dorsal and ventral visual systems are activated. To illustrate the patterns of interactions between the dorsal and ventral visual systems in text reading, we conducted analyses of functional connectivity (FC) and effective connectivity (EC) in a left-hemispheric network for reading-driven functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) data. In reading-driven fMRI (Experiment 1), we found significant FCs among the left middle frontal gyrus (MFG), the left intraparietal sulcus (IPS), and the visual word form area (VWFA), and there were top–down effects from the left MFG to the left IPS, from the left MFG to the VWFA, and from the left IPS to the VWFA. In rs-fMRI (Experiment 2), we identified FCs and ECs for MFG-IPS and IPS-VWFA connections. In addition, the brain–behavior relationship in resting states showed that the dorsal connection was more associated with reading fluency relative to lexical decision. The combination of two experiments revealed that the MFG-IPS and the VWFA-IPS connections were shared connections both in reading-driven fMRI and rs-fMRI, and that the MFG-VWFA was specific connectivity in reading-driven fMRI. These results suggest that top–down effects from the dorsal visual system to ventral visual system play an important role in text reading.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Key Lab of Learning and Cognition, Department of Psychology, Capital Normal UniversityBeijing, China; Beijing Advanced Innovation Center for Imaging Technology, Capital Normal UniversityBeijing, China; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Xiaojuan Wang
- School of Psychology, Shaanxi Normal University Xi'an, China
| | - Zhichao Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Ping Li
- Department of Psychology and Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park PA, USA
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| |
Collapse
|
16
|
Environmental Risk Factors in Han and Uyghur Children with Dyslexia: A Comparative Study. PLoS One 2016; 11:e0159042. [PMID: 27416106 PMCID: PMC4944905 DOI: 10.1371/journal.pone.0159042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
Abstract
Background Several studies have been conducted to explore risk factors for dyslexia. However, most studies examining dyslexia have been skewed toward Western countries, and few have considered two nationalities simultaneously. This study focused on differences in dyslexia prevalence and potential environmental risk factors between Han and Uyghur children. Methods A cross-sectional study was conducted in Kashgar and Aksu, cities in Xinjiang province, China. A two-stage sampling strategy was used to recruit 2,854 students in grades 3–6 from 5 primary schools in 5 districts; 2,348 valid student questionnaires were included in the analysis. Dyslexia checklists for Chinese and Uyghur children and pupil rating scales were used to identify children with dyslexia. Questions related to the home literacy environment and reading ability were used to evaluate potential environmental risk factors. Single factor analysis and multivariate logistic regression were used to examine prevalence and risk factors for dyslexia. Results Dyslexia prevalence differed significantly between Han (3.9%) and Uyghur (7.0%) children (P < 0.05), and the boy-to-girl diagnosis ratio was almost 2:1. Multiple logistic regression analysis showed that ethnic differences in dyslexia prevalence between Han and Uyghur children could have occurred because of factors such as mother’s occupation (P = 0.02, OR = 0.04, 95% CI = 0.01–0.68) and the frequency with which parents told stories (P = 0.00, OR = 4.50, 95% CI = 1.67–12.11). Conclusions The prevalence of dyslexia was high in all children, particularly those in the Uyghur group. Environmental factors could have been responsible for some of the differences observed. The results contribute to the early identification and management of dyslexia in children from these two groups and research examining developmental dyslexia and differences in racial genetics.
Collapse
|
17
|
Zhou W, Xia Z, Bi Y, Shu H. Altered connectivity of the dorsal and ventral visual regions in dyslexic children: a resting-state fMRI study. Front Hum Neurosci 2015; 9:495. [PMID: 26441595 PMCID: PMC4564758 DOI: 10.3389/fnhum.2015.00495] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023] Open
Abstract
While there is emerging evidence from behavioral studies that visual attention skills are impaired in dyslexia, the corresponding neural mechanism (i.e., deficits in the dorsal visual region) needs further investigation. We used resting-state fMRI to explore the functional connectivity (FC) patterns of the left intraparietal sulcus (IPS) and the visual word form area (VWFA) in dyslexic children (N = 21, age mean = 12) and age-matched controls (N = 26, age mean = 12). The results showed that the left IPS and the VWFA were functionally connected to each other in both groups and that both were functionally connected to left middle frontal gyrus (MFG). Importantly, we observed significant group differences in FC between the left IPS and the left MFG and between the VWFA and the left MFG. In addition, the strengths of the identified FCs were significantly correlated with the score of fluent reading, which required obvious eye movement and visual attention processing, but not with the lexical decision score. We conclude that dyslexics have deficits in the network composed of the prefrontal, dorsal visual and ventral visual regions and may have a lack of modulation from the left MFG to the dorsal and ventral visual regions.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China ; Beijing Key Lab of Learning and Cognition, Department of Psychology, Capital Normal University Beijing, China
| | - Zhichao Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
| |
Collapse
|