1
|
Li C, Luo Y, Li S. The roles of neural stem cells in myelin regeneration and repair therapy after spinal cord injury. Stem Cell Res Ther 2024; 15:204. [PMID: 38978125 PMCID: PMC11232222 DOI: 10.1186/s13287-024-03825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Spinal cord injury (SCI) is a complex tissue injury that results in a wide range of physical deficits, including permanent or progressive disabilities of sensory, motor and autonomic functions. To date, limitations in current clinical treatment options can leave SCI patients with lifelong disabilities. There is an urgent need to develop new therapies for reconstructing the damaged spinal cord neuron-glia network and restoring connectivity with the supraspinal pathways. Neural stem cells (NSCs) possess the ability to self-renew and differentiate into neurons and neuroglia, including oligodendrocytes, which are cells responsible for the formation and maintenance of the myelin sheath and the regeneration of demyelinated axons. For these properties, NSCs are considered to be a promising cell source for rebuilding damaged neural circuits and promoting myelin regeneration. Over the past decade, transplantation of NSCs has been extensively tested in a variety of preclinical models of SCI. This review aims to highlight the pathophysiology of SCI and promote the understanding of the role of NSCs in SCI repair therapy and the current advances in pathological mechanism, pre-clinical studies, as well as clinical trials of SCI via NSC transplantation therapeutic strategy. Understanding and mastering these frontier updates will pave the way for establishing novel therapeutic strategies to improve the quality of recovery from SCI.
Collapse
Affiliation(s)
- Chun Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yuping Luo
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
2
|
Oliveira AG, Gonçalves M, Ferreira H, M Neves N. Growing evidence supporting the use of mesenchymal stem cell therapies in multiple sclerosis: A systematic review. Mult Scler Relat Disord 2019; 38:101860. [PMID: 31765999 DOI: 10.1016/j.msard.2019.101860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) typically arises in early/middle adulthood and is characterized by a progressive disability of the central nervous system (CNS). Currently approved therapies do not promote tissue repair or stop disease progression. Emerging data demonstrate that stem cells present a great potential in regenerative medicine and, consequently, have also been widely investigated as a potential treatment for MS. Therefore, the aim of this study was to conduct a systematic review to inquire into the safety, tolerability, and efficacy of mesenchymal stem cells (MSCs) therapies in MS. METHODS Three electronic databases (Web of Science, PubMed, and Cochrane) were searched from April until June 2019. Clinical trials or case reports with information related to the effects of MSC therapies in MS patients were considered for this review. RESULTS 10 manuscripts were selected, namely 7 uncontrolled clinical trials, 2 randomized controlled clinical trials, and 1 case report. The overall quality of the studies was considered good. Besides minor adverse events (AEs), it was reported one case of encephalopathy with seizures and two cases of iatrogenic meningitis, which were not related to the treatment, but with the administration route. The analyses of the expanded disability status scale (EDSS) in the uncontrolled clinical trials demonstrated that 48 patients improved, 39 maintained and 16 worsened their clinical condition. Regarding the randomized studies, one did not show statistically significant variations in the mean EDSS score and in the other the mean EDSS score was statistically significantly lower for the experimental group. The case report also showed an improvement in the EDSS score. CONCLUSIONS MSCs transplantation proved to be a safe and tolerable therapy. Their potential therapeutic benefits were also validated. However, larger placebo controlled blinded clinical trials will be required to establish the long term safety and efficacy profile of these therapies for MS. Their translation into the clinical practice can provide a new hope for the patients of this highly debilitating disease.
Collapse
Affiliation(s)
| | - Margarida Gonçalves
- Medicine School, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Nuno M Neves
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães 4805-017, Portugal.
| |
Collapse
|
3
|
Li S, Zheng J, Chai L, Lin M, Zeng R, Lu J, Bian J. Rapid and Efficient Differentiation of Rodent Neural Stem Cells into Oligodendrocyte Progenitor Cells. Dev Neurosci 2019; 41:79-93. [DOI: 10.1159/000499364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) may have beneficial effects in cell replacement therapy of neurodegenerative disease owing to their unique capability to differentiate into myelinogenic oligodendrocytes (OLs) in response to extrinsic signals. Therefore, it is of significance to establish an effective differentiation methodology to generate highly pure OPCs and OLs from some easily accessible stem cell sources. To achieve this goal, in this study, we present a rapid and efficient protocol for oligodendroglial lineage differentiation from mouse neural stem cells (NSCs), rat NSCs, or mouse embryonic stem cell-derived neuroepithelial stem cells. In a defined culture medium containing Smoothened Agonist, basic fibroblast growth factor, and platelet-derived growth factor-AA, OPCs could be generated from the above stem cells over a time course of 4–6 days, achieving a cell purity as high as ∼90%. In particular, these derived OPCs showed high expandability and could further differentiate into myelin basic protein-positive OLs within 3 days or alternatively into glial fibrillary acidic protein-positive astrocytes within 7 days. Furthermore, transplantation of rodent NSC-derived OPCs into injured spinal cord indicated that it is a feasible strategy to treat spinal cord injury. Our results suggest a differentiation strategy for robust production of OPCs and OLs from rodent stem cells, which could provide an abundant OPC source for spinal cord injury.
Collapse
|
4
|
|
5
|
Jenkins SI, Yiu HHP, Rosseinsky MJ, Chari DM. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges. MOLECULAR AND CELLULAR THERAPIES 2014; 2:23. [PMID: 26056590 PMCID: PMC4452053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/20/2014] [Indexed: 11/21/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin - the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a 'multifunctional nanoplatform' that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive 'magnetic cell targeting' to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications.
Collapse
Affiliation(s)
- Stuart I Jenkins
- />Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| | - Humphrey H P Yiu
- />School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | | | - Divya M Chari
- />Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| |
Collapse
|
6
|
Jenkins SI, Yiu HHP, Rosseinsky MJ, Chari DM. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges. MOLECULAR AND CELLULAR THERAPIES 2014; 2:23. [PMID: 26056590 PMCID: PMC4452053 DOI: 10.1186/2052-8426-2-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/20/2014] [Indexed: 01/12/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin – the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a ‘multifunctional nanoplatform’ that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive ‘magnetic cell targeting’ to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications.
Collapse
Affiliation(s)
- Stuart I Jenkins
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| | - Humphrey H P Yiu
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | | | - Divya M Chari
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| |
Collapse
|
7
|
Abstract
Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G protein-coupled receptors in the regulation of stem cells and their potential in future clinical applications.
Collapse
Affiliation(s)
- VAN A. DOZE
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| | - DIANNE M. PEREZ
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| |
Collapse
|
8
|
Liu H, Zhang SC. Specification of neuronal and glial subtypes from human pluripotent stem cells. Cell Mol Life Sci 2011; 68:3995-4008. [PMID: 21786144 DOI: 10.1007/s00018-011-0770-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide a dynamic tool for revealing early embryonic development, modeling pathological processes, and developing therapeutics through drug discovery and potential cell replacement. The first step toward the utilities of human PSCs is directed differentiation to functionally specialized cell/tissue types. Following developmental principles, human ESCs, and lately iPSCs, have been effectively differentiated to region- and/or transmitter-specific neuronal and glial types, including cerebral glutamatergic, striatal γ-aminobutyric acid (GABA)-ergic, forebrain cholinergic, midbrain dopaminergic, and spinal motor neurons, as well as astrocytes and oligodendrocytes. These studies also reveal unique aspects of human cell biology, including intrinsically programmed developmental course, differential uses of transcription factors for neuroectoderm specification, and distinct responses to extracellular signals in regulating cell fate. Such information will be instrumental in translating biological findings to therapeutic development.
Collapse
Affiliation(s)
- Huisheng Liu
- Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI 53705, USA
| | | |
Collapse
|
9
|
Soundarapandian MM, Selvaraj V, Lo UG, Golub MS, Feldman DH, Pleasure DE, Deng W. Zfp488 promotes oligodendrocyte differentiation of neural progenitor cells in adult mice after demyelination. Sci Rep 2011; 1:2. [PMID: 22355521 PMCID: PMC3210692 DOI: 10.1038/srep00002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 01/24/2023] Open
Abstract
Basic helix-loop-helix transcription factors Olig1 and Olig2 critically regulate oligodendrocyte development. Initially identified as a downstream effector of Olig1, an oligodendrocyte-specific zinc finger transcription repressor, Zfp488, cooperates with Olig2 function. Although Zfp488 is required for oligodendrocyte precursor formation and differentiation during embryonic development, its role in oligodendrogenesis of adult neural progenitor cells is not known. In this study, we tested whether Zfp488 could promote an oligodendrogenic fate in adult subventricular zone (SVZ) neural stem/progenitor cells (NSPCs). Using a cuprizone-induced demyelination model in mice, we examined the effect of retrovirus-mediated Zfp488 overexpression in SVZ NSPCs. Our results showed that Zfp488 efficiently promoted the differentiation of the SVZ NSPCs into mature oligodendrocytes in vivo. After cuprizone-induced demyelination injury, Zfp488-transduced mice also showed significant restoration of motor function to levels comparable to control mice. Together, these findings identify a previously unreported role for Zfp488 in adult oligodendrogenesis and functional remyelination after injury.
Collapse
Affiliation(s)
- Mangala M. Soundarapandian
- Departments of Cell Biology and Human Anatomy, University of California, Davis, Sacramento, California 95817, USA
| | - Vimal Selvaraj
- Department of Animal Science, Cornell University, Ithaca NY 14853, USA
| | - U-Ging Lo
- Departments of Cell Biology and Human Anatomy, University of California, Davis, Sacramento, California 95817, USA
| | - Mari S. Golub
- Murine Behavioral Assessment Laboratory, University of California, Davis, Sacramento, California 95817, USA
| | - Daniel H. Feldman
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California 95817, USA
| | - David E. Pleasure
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, California 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California 95817, USA
| | - Wenbin Deng
- Departments of Cell Biology and Human Anatomy, University of California, Davis, Sacramento, California 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California 95817, USA
| |
Collapse
|
10
|
Olstorn H, Varghese M, Murrell W, Moe MC, Langmoen IA. Predifferentiated brain-derived adult human progenitor cells migrate toward ischemia after transplantation to the adult rat brain. Neurosurgery 2011; 68:213-22; discussion 222. [PMID: 21099718 DOI: 10.1227/neu.0b013e3181fd2c11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The adult human brain contains neural stem/progenitor cells (AHNPCs) that can survive transplantation into the adult rat brain, migrate toward a lesion, and display limited neuronal differentiation in vivo. OBJECTIVE To investigate the effect of manipulating AHNPCs before grafting by predifferentiation, ie, initiating neuronal differentiation before transplantation, and to determine whether this cell priming would affect their ability to migrate in vivo. METHODS AHNPCs were prepared from temporal lobe resections for epilepsy. Seven days after global brain ischemia, predifferentiated AHNPCs (exposed to basic fibroblast growth factor, heparin, and laminin) were transplanted to the left hippocampus. Four and 10 weeks after transplantation, brain sections were analyzed by immunohistochemistry. RESULTS Transplanted primed cells expressed committed neuronal markers at a much earlier stage compared with nonprimed AHNPCs and were found colabeled with human markers within the damaged CA1 region 4 weeks after grafting. Furthermore, predifferentiated AHNPCs migrated preferentially into an ischemic lesion, similar to their undifferentiated counterparts. The chemoattractant effect from the expression of stromal cell-derived factor-1α (SDF-1α) in ischemic CA1 on AHNPCs expressing CXC chemokine receptor 4 (CXCR4) may explain this preference in migration in vivo. CONCLUSION The plasticity of neural progenitors derived from the adult human brain may be greater than previously assumed in that manipulation before grafting may influence the phenotypes seen in vivo. The SDF-1α-CXCR4 axis is involved in the targeted migration toward an ischemic lesion in the adult rat brain, similar to previous reports on endogenous progenitors in rats and grafted fetal human neural progenitors.
Collapse
Affiliation(s)
- Havard Olstorn
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
11
|
Panchision DM. The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 2009; 220:562-8. [PMID: 19441077 DOI: 10.1002/jcp.21812] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxygen (O2) is a substrate for energy production in the cell and is a rapid regulator of cellular metabolism. Recent studies have also implicated O2 and its signal transduction pathways in controlling cell proliferation, fate, and morphogenesis during the development of many tissues, including the nervous system. O2 tensions in the intact brain are much lower than in room air, and there is evidence that dynamic control of O2 availability may be a component of the in vivo neural stem cell (NSC) niche. At lower O2 tensions, hypoxia-inducible factor 1alpha (HIF1alpha) facilitates signal transduction pathways that promote self-renewal (e.g., Notch) and inhibits pathways that promote NSC differentiation or apoptosis (e.g., bone morphogenetic proteins). Increasing O2 tension degrades HIF1alpha, thus promoting differentiation or apoptosis of NSCs and progenitors. These dynamic changes in O2 tension can be mimicked to optimize ex vivo production methods for cell replacement therapies. Conversely, disrupted O2 availability may play a critical role in disease states such as stroke or brain tumor progression. Hypoxia during stroke activates precursor proliferation in vivo, while glioblastoma stem cells proliferate maximally in a more hypoxic environment than normal stem cells, which may make them resistant to certain anti-neoplastic therapies. These findings suggest that O2 response is central to the normal architecture and dynamics of NSC regulation and in the etiology and treatment of brain diseases.
Collapse
Affiliation(s)
- David M Panchision
- Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, National Institutes of Health, 6001 Executive Blvd, MSC 9641, Bethesda, MD 20892-9641, USA.
| |
Collapse
|
12
|
Pedraza CE, Monk R, Lei J, Hao Q, Macklin WB. Production, characterization, and efficient transfection of highly pure oligodendrocyte precursor cultures from mouse embryonic neural progenitors. Glia 2008; 56:1339-52. [PMID: 18512250 DOI: 10.1002/glia.20702] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Much current knowledge of oligodendrocyte biology, the myelin-forming cells in the central nervous system, comes from cell culture studies mainly from postnatal rat tissue but mouse cells have been much more difficult to produce in large quantities. We have developed a high yield protocol for production of oligodendrocyte precursor cells from mouse embryonic neural progenitors grown as neurospheres. Neurospheres can be maintained and expanded for long periods in culture in the presence of epidermal growth factor (EGF). When floating neurospheres were plated on substrate-coated dishes in media supplemented with platelet derived growth factor (PDGF) and basic fibroblast growth factor (bFGF), the spheres attached and generated migrating cells that were predominantly oligodendrocyte-lineage cells. Furthermore, cells in spheres could be shifted to the oligodendrocyte phenotype prior to plating on substrate, by incubation in suspension with PDGF/bFGF. Single cell suspensions plated after dissociation of either EGF-treated neurospheres or PDGF/bFGF-treated oligospheres had the bipolar, elongated morphology characteristic of oligodendrocyte precursor cells. mRNA and protein expression analysis of the cells generated by this method confirmed their oligodendrocyte lineage. Oligodendrocyte precursors generated by this method matured in response to ciliary neurotrophic factor treatment, producing cells with multiple processes and myelin-like membranes. The most important aspect of this protocol is the ability to generate very high numbers of relatively pure mouse oligodendrocyte progenitor cells, which can be easily transfected. These studies open up many kinds of investigations on transgenic and mutant mouse oligodendrocytes, thereby providing a valuable tool to study oligodendrocyte biology and development.
Collapse
Affiliation(s)
- Carlos E Pedraza
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
13
|
de Chevigny A, Cooper O, Vinuela A, Reske-Nielsen C, Lagace DC, Eisch AJ, Isacson O. Fate mapping and lineage analyses demonstrate the production of a large number of striatal neuroblasts after transforming growth factor alpha and noggin striatal infusions into the dopamine-depleted striatum. Stem Cells 2008; 26:2349-60. [PMID: 18556510 PMCID: PMC2649803 DOI: 10.1634/stemcells.2008-0080] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infusion of transforming growth factor alpha (TGFalpha) into the adult dopamine (DA)-depleted striatum generates a local population of nestin(+)/proliferating cell nuclear antigen (PCNA)(+) newborn cells. The precise origin and fate of these new striatal cells are unknown, making it difficult to direct them for neural repair in Parkinson's disease. Experiments in rats using 5-bromo-2'-deoxyuridine (BrdU) to label neural progenitor cells showed that during TGFalpha infusion in the DA-depleted striatum, newborn striatal cells formed a homogeneous population of precursors, with the majority coexpressing nestin, Mash1, Olig2, and epidermal growth factor receptor, consistent with the phenotype of multipotent C cells. Upon TGFalpha pump withdrawal, the subventricular zone (SVZ) was repopulated by neuroblasts. Strikingly, during this period, numerous clusters of doublecortin(+)/polysialylated neuronal cell adhesion molecule(+) neuroblasts were also produced in the ipsilateral medial striatum. In parallel, striatal BrdU(+)/glial fibrillary acidic protein(+) astrocytes were generated, but no BrdU(+)/O4(+)/CNPase(+) oligodendrocytes were generated. Infusion of the neuralizing bone morphogenetic protein antagonist noggin after TGFalpha pump withdrawal increased the neuroblast-to-astrocyte ratio among new striatal cells by blocking glial differentiation but did not alter striatal neurogenesis. At no time or treatment condition were differentiated neurons generated, including DA neurons. Using 6-hydroxydopamine-lesioned nestin-CreER(T2)/R26R-YFP mice that allow genetic fate-mapping of SVZ nestin(+) cells, we show that TGFalpha-generated striatal cells originate from SVZ nestin(+) precursors that confirmed data from the rats on the phenotype and fate of striatal nestin(+)/PCNA(+) cells upon TGFalpha withdrawal. This work demonstrates that a large population of multipotent striatal C-like cells can be generated in the DA-depleted striatum that do not spontaneously differentiate into DA neurons.
Collapse
Affiliation(s)
- Antoine de Chevigny
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research. McLean Hospital/Harvard Medical School, Belmont, MA02478
| | - Oliver Cooper
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research. McLean Hospital/Harvard Medical School, Belmont, MA02478
| | - Angel Vinuela
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research. McLean Hospital/Harvard Medical School, Belmont, MA02478
| | - Casper Reske-Nielsen
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research. McLean Hospital/Harvard Medical School, Belmont, MA02478
| | - Diane C. Lagace
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Amelia J. Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ole Isacson
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research. McLean Hospital/Harvard Medical School, Belmont, MA02478
| |
Collapse
|
14
|
In vitro characterization of a murine oligodendrocyte precursor cell line (BO-1) following spontaneous immortalization. Int J Dev Neurosci 2008; 26:283-91. [PMID: 18358665 DOI: 10.1016/j.ijdevneu.2008.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/31/2008] [Accepted: 01/31/2008] [Indexed: 11/22/2022] Open
Abstract
The understanding of oligodendrocyte differentiation is crucial for designing therapies of demyelinating diseases. Oligodendrocyte precursor cells are of particular interest in this context, because of their remyelinating potential. Permanent cell lines, which are a versatile tool for studying oligodendrocyte physiology, have been so far mainly established from the rat CNS. In the present study, we describe a novel murine oligodendrocyte precursor cell line (BO-1) established by spontaneous immortalization using light microscopy, immunocytochemical phenotyping and genetic analysis. BO-1 cells displayed a bi- to multipolar morphology and expressed early oligodendrocytic lineage markers, such as A2B5 and NG-2. Expression of pre-oligodendrocyte (O4, CNPase) and mature oligodendrocyte markers (e.g. myelin basic protein) was found in about 30% and 1.5% of the cells, respectively. Addition of serum, known to promote type-2 astrocyte differentiation, significantly increased the number of GFAP-positive cells, while thyroid hormones, (T3/T4) known to foster oligodendrocyte differentiation, did not substantially alter the antigenic and gene expression of myelin markers. This deficiency might be related to the high intrinsic proliferation rate of BO-1 cells that was unaltered upon removal of mitogenic factors. Expression of O4 and CNPase in BO-1 cells could be significantly increased by co-culture with primary astrocytes suggesting that the differentiating potential of BO-1 cells was influenced by environmental factors and may have to be fully explored in future studies. In summary, the novel murine BO-1 cell line shares several characteristics with oligodendrocyte precursor cells but displays a restricted differentiation into mature oligodendrocytes.
Collapse
|
15
|
Abstract
The anticipated therapeutic uses of neural stem cells depend on their ability to retain a certain level of developmental plasticity. In particular, cells must respond to developmental manipulations designed to specify precise neural fates. Studies in vivo and in vitro have shown that the developmental potential of neural progenitor cells changes and becomes progressively restricted with time. For in vitro cultured neural progenitors, it is those derived from embryonic stem cells that exhibit the greatest developmental potential. It is clear that both extrinsic and intrinsic mechanisms determine the developmental potential of neural progenitors and that epigenetic, or chromatin structural, changes regulate and coordinate hierarchical changes in fate-determining gene expression. Here, we review the temporal changes in developmental plasticity of neural progenitor cells and discuss the epigenetic mechanisms that underpin these changes. We propose that understanding the processes of epigenetic programming within the neural lineage is likely to lead to the development of more rationale strategies for cell reprogramming that may be used to expand the developmental potential of otherwise restricted progenitor populations.
Collapse
Affiliation(s)
- Nicholas D Allen
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| |
Collapse
|
16
|
Abstract
Myelination is critical for the normal functioning of the vertebrate nervous system. In the CNS, myelin is produced by oligodendrocytes, and the loss of oligodendrocytes and myelin results in severe functional impairment. Although spontaneous remyelination occurs in chronic demyelinating diseases such as multiple sclerosis, the repair process eventually fails, often resulting in long-term disability. Two distinct general approaches can be considered to promote myelin repair. In one the target is stimulation of the endogenous myelin repair process through delivery of growth factors, and in the second the target is augmentation of the repair process through the delivery of exogenous cells with myelination potential. In both cases, effective treatment of diseases such as multiple sclerosis requires modulation of the immune system, since demyelination is associated with specific immunological activation. Recent studies have shown that some populations of stem cells, including mesenchymal stem cells, have the capacity of promoting endogenous myelin repair and modulating the immune response, prompting an assessment of their use as therapy in demyelinating diseases such as MS. Other types of demyelinating disorders, such as the leukodystrophies, may require multiple repair strategies including both replacement of dysfunctional cells and delivery or supplementation of growth factors, immune modulators or metabolic enzymes. Here we discuss the use of stem cells for the treatment of demyelinating diseases. While the current number of stem cell-based clinical trials for demyelinating diseases is limited, this is likely to increase significantly in the next few years, and a clear understanding of the applicability, limitations and underlying mechanisms mediating stem cell repair is critical.
Collapse
Affiliation(s)
- Robert H Miller
- Center for Translational Neuroscience, Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | |
Collapse
|
17
|
McDonald TJ, Nijland MJ, Nathanielsz PW. The insulin-like growth factor system and the fetal brain: effects of poor maternal nutrition. Rev Endocr Metab Disord 2007; 8:71-84. [PMID: 17653868 DOI: 10.1007/s11154-007-9044-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factor (IGF) signaling system plays indispensable roles in pre- and post-natal brain growth and development. A large body of studies using both in vivo null mutant and transgenic mice and in vitro neuronal culture techniques indicate that IGF-I acts directly on the brain while IGF-II effects are mediated to a large extent by IGF-II control of placental growth. It appears that all of the mechanisms, except migration, that are involved in normal brain development, e.g., proliferation, apoptosis, maturation and differentiation, are influenced by IGF-I. While IGF system members are produced in the brain, recent reports in post-natal animals indicate that normal brain health and function are dependent upon transfer of circulating IGF-I from the liver and its transfer across the blood brain barrier. Data showing that this phenomenon applies to pre-natal brain growth and development would make an important contribution to fetal physiology. A number of kinase pathways are able to participate in IGF signaling in brain with respect to nutrient restriction; among the most important are the PI3K/AKT, Ras-Raf-MEK-ERK and mTOR-nutrient sensing pathways. Both maternal and fetal IGF-I peripheral plasma concentrations are greatly reduced in nutrient restriction while IGF-II does not appear to be affected. Nutrient restriction also affects IGF binding protein concentrations while effects on the IGF-I receptor appear to vary with the paradigm. Studies on the effects of nutrient restriction on the fetal primate brain in relation to activity of the IGF system are needed to determine the applicability of rodent studies to humans.
Collapse
Affiliation(s)
- Thomas J McDonald
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78253, USA
| | | | | |
Collapse
|
18
|
Joannides AJ, Fiore-Hériché C, Battersby AA, Athauda-Arachchi P, Bouhon IA, Williams L, Westmore K, Kemp PJ, Compston A, Allen ND, Chandran S. A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells 2007; 25:731-7. [PMID: 17095704 DOI: 10.1634/stemcells.2006-0562] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability to differentiate human ESCs (hESCs) to defined lineages in a totally controlled manner is fundamental to developing cell-based therapies and studying human developmental mechanisms. We report a novel, scaleable, and widely applicable system for deriving and propagating neural stem cells from hESCs without the use of animal products, proprietary formulations, or genetic manipulation. This system provides a definitive platform for studying human neural development and has potential therapeutic implications.
Collapse
Affiliation(s)
- Alexis J Joannides
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge, CB2 2PY United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Izrael M, Zhang P, Kaufman R, Shinder V, Ella R, Amit M, Itskovitz-Eldor J, Chebath J, Revel M. Human oligodendrocytes derived from embryonic stem cells: Effect of noggin on phenotypic differentiation in vitro and on myelination in vivo. Mol Cell Neurosci 2006; 34:310-23. [PMID: 17196394 DOI: 10.1016/j.mcn.2006.11.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/07/2006] [Accepted: 11/13/2006] [Indexed: 01/17/2023] Open
Abstract
In attempts to produce mature oligodendrocytes from human embryonic stem (huES) cells, we searched conditions inducing transcription factors Olig1/2, as well as Nkx2.2 and Sox10, which are needed for maturation. This was obtained by retinoic acid treatment followed by noggin, an antagonist of bone morphogenetic proteins (BMPs). We found that retinoic acid induces BMPs in huES cells. Addition of noggin at a specific step was essential to form numerous mature oligodendrocytes with ramified branches and producing myelin basic protein (MBP). We describe a procedure converting huES cells into enriched populations of oligodendrocyte precursors that can be expanded and passaged repeatedly and subsequently differentiated into mature cells. Transplantation of such precursors showed that pretreatment by noggin markedly stimulates their capacity to myelinate in the brain of MBP-deficient shiverer mice in organotypic cultures and in living animals. Arrays of numerous long MBP+ fibers were generated over extended areas in the brain, with evidence of cell migration after transplantation and with formation of compact myelin sheaths.
Collapse
Affiliation(s)
- Michal Izrael
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yip S, Sabetrasekh R, Sidman RL, Snyder EY. Neural stem cells as novel cancer therapeutic vehicles. Eur J Cancer 2006; 42:1298-308. [PMID: 16697638 DOI: 10.1016/j.ejca.2006.01.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 01/23/2006] [Indexed: 01/14/2023]
Abstract
The startling resemblance of many of the behaviours of brain tumours to the intrinsic properties of the neural stem/progenitor cell has triggered a recent dual interest in arming stem cells to track and help eradicate tumours and in viewing stem cell biology as somehow integral to the emergence and/or propagation of the neoplasm itself. These aspects are reviewed and discussed here.
Collapse
Affiliation(s)
- Stephen Yip
- Department of Pathology & Laboratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|