1
|
Desu H, Balthazard R, Daigneault A, Da Cal S, Klément W, Yu J, Clénet ML, Margarido C, Levert A, Fantodji C, Tastet O, Girard JM, Duquette P, Prat A, Macaron G, Rousseau MC, Arbour N, Larochelle C. Peripheral blood age-sensitive immune markers in multiple sclerosis: relation to sex, cytomegalovirus status, and treatment. EBioMedicine 2025; 112:105559. [PMID: 39837012 PMCID: PMC11788784 DOI: 10.1016/j.ebiom.2025.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Immunosenescence is accelerated by chronic infectious and autoimmune diseases and could contribute to the pathobiology of multiple sclerosis (MS). How MS and disease-modifying therapies (DMTs) impact age-sensitive immune biomarkers is only partially understood. METHODS We analyzed 771 serum samples from 147 healthy controls and 289 people with MS (PwMS) by multiplex immunoassays. We determined cytomegalovirus (CMV) serostatus and collected retrospective clinical information. We performed unsupervised and multivariable analyses. FINDINGS Unsupervised analyses revealed that MS immune profile was characterized by low relative levels of anti-inflammatory/neuroprotective factors IL-4, IL-10, TNF, and β-NGF but high levels of growth factors EGF and bFGF. Serum levels of IL-4, β-NGF, IL-27, BDNF, and leptin were significantly influenced by sex and/or CMV status. IL-4 and β-NGF levels were lower in untreated PwMS compared to controls, while EGF and bFGF levels were influenced by age and markedly elevated in PwMS in multivariable analysis. Samples from treated PwMS, but not untreated PwMS, showed lower levels of BDNF and TNF than controls. Initiation of high efficacy DMTs, but not low efficacy DMTs, was associated with reduced levels of bFGF and EGF. Samples associated with distinct DMTs exhibited specific profiles for age-sensitive immune markers. Finally, lower levels of IL-6, TNF, IL-10, and β-NGF were observed at baseline in PwMS who subsequently experienced clinical failure after DMTs initiation. INTERPRETATION Age, sex, CMV status, and specific DMTs significantly influence levels of age-sensitive immune biomarkers associated with MS and must be considered when investigating inflammation-related biomarkers. FUNDING This work was supported by a Grant for Multiple Sclerosis Innovation by Merck KGaA (ID: 10.12039/100009945).
Collapse
Affiliation(s)
- Haritha Desu
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Renaud Balthazard
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Audrey Daigneault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Wendy Klément
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Jennifer Yu
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique (INRS), Laval, H7V 1B7, Canada
| | - Marie-Laure Clénet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Clara Margarido
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Annie Levert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Canisius Fantodji
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique (INRS), Laval, H7V 1B7, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Jean-Marc Girard
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Pierre Duquette
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Gabrielle Macaron
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada
| | - Marie-Claude Rousseau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique (INRS), Laval, H7V 1B7, Canada; School of Public Health, Université de Montréal, Montreal, H3N 1X9, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada.
| | - Catherine Larochelle
- Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada.
| |
Collapse
|
2
|
Gurski F, Shirvanchi K, Rajendran V, Rajendran R, Megalofonou FF, Böttiger G, Stadelmann C, Bhushan S, Ergün S, Karnati S, Berghoff M. Anti-inflammatory and remyelinating effects of fexagratinib in experimental multiple sclerosis. Br J Pharmacol 2024. [PMID: 39367768 DOI: 10.1111/bph.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND AND PURPOSE FGF, VEGFR-2 and CSF1R signalling pathways play a key role in the pathogenesis of multiple sclerosis (MS). Selective inhibition of FGFR by infigratinib in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) prevented severe first clinical episodes by 40%; inflammation and neurodegeneration were reduced, and remyelination was enhanced. Multi-kinase inhibition of FGFR1-3, CSFR and VEGFR-2 by fexagratinib (formerly known as AZD4547) may be more efficient in reducing inflammation, neurodegeneration and regeneration in the disease model. EXPERIMENTAL APPROACH Female C57BL/6J mice were treated with fexagratinib (6.25 or 12.5 mg·kg-1) orally or placebo over 10 days either from time of EAE induction (prevention experiment) or onset of symptoms (suppression experiment). Effects on inflammation, neurodegeneration and remyelination were assessed at the peak of the disease (Day 18/20 post immunization) and the chronic phase of EAE (Day 41/42). KEY RESULTS In the prevention experiment, treatment with 6.25 or 12.5 mg·kg-1 fexagratinib prevented severe first clinical episodes by 66.7% or 84.6% respectively. Mice treated with 12.5 mg·kg-1 fexagratinib hardly showed any symptoms in the chronic phase of EAE. In the suppression experiment, fexagratinib resulted in a long-lasting reduction of severe symptoms by 91 or 100%. Inflammation and demyelination were reduced, and axonal density, numbers of oligodendrocytes and their precursor cells, and remyelinated axons were increased by both experimental approaches. CONCLUSION AND IMPLICATIONS Multi-kinase inhibition by fexagratinib in a well-tolerated dose of 1 mg·kg-1 in humans may be a promising approach to reduce inflammation and neurodegeneration, to slow down disease progression and support remyelination in patients.
Collapse
Affiliation(s)
- Fynn Gurski
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Kian Shirvanchi
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Vinothkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | | | - Gregor Böttiger
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Sudhanshu Bhushan
- Institute for Anatomy and Cell Biology, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Martin Berghoff
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| |
Collapse
|
3
|
Shahriar S, Biswas S, Zhao K, Akcan U, Tuohy MC, Glendinning MD, Kurt A, Wayne CR, Prochilo G, Price MZ, Stuhlmann H, Brekken RA, Menon V, Agalliu D. VEGF-A-mediated venous endothelial cell proliferation results in neoangiogenesis during neuroinflammation. Nat Neurosci 2024; 27:1904-1917. [PMID: 39256571 DOI: 10.1038/s41593-024-01746-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Newly formed leaky vessels and blood-brain barrier (BBB) damage are present in demyelinating acute and chronic lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, the endothelial cell subtypes and signaling pathways contributing to these leaky neovessels are unclear. Here, using single-cell transcriptional profiling and in vivo validation studies, we show that venous endothelial cells express neoangiogenesis gene signatures and show increased proliferation resulting in enlarged veins and higher venous coverage in acute and chronic EAE lesions in female adult mice. These changes correlate with the upregulation of vascular endothelial growth factor A (VEGF-A) signaling. We also confirmed increased expression of neoangiogenic markers in acute and chronic human MS lesions. Treatment with a VEGF-A blocking antibody diminishes the neoangiogenic transcriptomic signatures and vascular proliferation in female adult mice with EAE, but it does not restore BBB function or ameliorate EAE pathology. Our data demonstrate that venous endothelial cells contribute to neoangiogenesis in demyelinating neuroinflammatory conditions.
Collapse
Affiliation(s)
- Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kaitao Zhao
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Uğur Akcan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mary Claire Tuohy
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael D Glendinning
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ali Kurt
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charlotte R Wayne
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Grace Prochilo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Maxwell Z Price
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Heidi Stuhlmann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dritan Agalliu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Gębka-Kępińska B, Adamczyk B, Gębka D, Czuba Z, Szczygieł J, Adamczyk-Sowa M. Cytokine Profiling in Cerebrospinal Fluid of Patients with Newly Diagnosed Relapsing-Remitting Multiple Sclerosis (RRMS): Associations between Inflammatory Biomarkers and Disease Activity. Int J Mol Sci 2024; 25:7399. [PMID: 39000506 PMCID: PMC11242697 DOI: 10.3390/ijms25137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Cytokines regulate immune responses and are crucial to MS pathogenesis. This study evaluated pro-inflammatory and anti-inflammatory cytokine concentrations in the CSF of de novo diagnosed RRMS patients compared to healthy controls. We assessed cytokine levels in the CSF of 118 de novo diagnosed RRMS patients and 112 controls, analyzing relationships with time from symptom onset to diagnosis, MRI lesions, and serum vitamin D levels. Elevated levels of IL-2, IL-4, IL-6, IL-13, FGF-basic, and GM-CSF, and lower levels of IL-1β, IL-1RA, IL-5, IL-7, IL-9, IL-10, IL-12p70, IL-15, G-CSF, PDGF-bb, and VEGF were observed in RRMS patients compared to controls. IL-2, IL-4, IL-12p70, PDGF, G-CSF, GM-CSF, and FGF-basic levels increased over time, while IL-10 decreased. IL-1β, IL-1RA, IL-6, TNF-α, and PDGF-bb levels negatively correlated with serum vitamin D. TNF-α levels positively correlated with post-contrast-enhancing brain lesions. IL-15 levels negatively correlated with T2 and Gd(+) lesions in C-spine MRI, while TNF-α, PDGF-bb, and FGF-basic correlated positively with T2 lesions in C-spine MRI. IL-6 levels positively correlated with post-contrast-enhancing lesions in Th-spine MRI. Distinct cytokine profiles in the CSF of de novo diagnosed MS patients provide insights into MS pathogenesis and guide immunomodulatory therapy strategies.
Collapse
Affiliation(s)
- Barbara Gębka-Kępińska
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Bożena Adamczyk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Dorota Gębka
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Jarosław Szczygieł
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| |
Collapse
|
5
|
Mansour HM, El-Khatib AS. Repositioning of receptor tyrosine kinase inhibitors. RECEPTOR TYROSINE KINASES IN NEURODEGENERATIVE AND PSYCHIATRIC DISORDERS 2023:353-401. [DOI: 10.1016/b978-0-443-18677-6.00010-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Amini Harandi A, Siavoshi F, Shirzadeh Barough S, Amini Harandi A, Pakdaman H, Sahraian MA, Fathtabar Z, Mohammadi F, Karamiani F, Ardehali SH. Vascular Endothelial Growth Factor as a Predictive and Prognostic Biomarker for Multiple Sclerosis. Neuroimmunomodulation 2022; 29:476-485. [PMID: 35981507 DOI: 10.1159/000525600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Growing bodies of evidence suggest that angiogenesis plays a crucial role in the development and progression of multiple sclerosis (MS). Vascular endothelial growth factor (VEGF) is one of the key factors involved in angiogenesis. Because of this importance, we investigated the serum levels of VEGF in MS patients according to their clinical phase and subtype of MS in this study. MATERIAL AND METHODS This case-control study was done on 47 definite MS patients with the first clinical attack and 47 randomly selected individuals without any underlying inflammatory and autoimmune disease as the control group. The total serum VEGF level was measured from the subject's peripheral blood sample by ELISA during the first and second attacks of MS and 6 months after the first attack in the remission phase as well as the control group. In addition, the correlation between these variables and the influence of gender, age, and duration of the remission phase on such associations was evaluated by using the independent t test and Pearson's correlation coefficient. RESULTS There was an increase in the serum level of VEGF in all phases of MS compared with non-MS individuals (p value <0.0001) and a significant correlation between the serum level of VEGF and the interval between first and second attacks (r = -720, p < 0.0001). A higher serum level of VEGF in the first attack leads to higher VEGF levels in the second and sixth mount of remission phases. CONCLUSION Rise in the serum VEGF level may be involved in MS's relapsing phases and a shorter remission phase. Therefore, it could be used as a prognostic and predictive biomarker for MS disease.
Collapse
Affiliation(s)
- Ali Amini Harandi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Siavoshi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asghar Amini Harandi
- Biochemistry Department, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hossein Pakdaman
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fathtabar
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Mohammadi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Karamiani
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ardehali
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lu H, Wu PF, Ma DL, Zhang W, Sun M. Growth Factors and Their Roles in Multiple Sclerosis Risk. Front Immunol 2021; 12:768682. [PMID: 34745143 PMCID: PMC8566812 DOI: 10.3389/fimmu.2021.768682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background Previous studies have suggested essential roles of growth factors on the risk of Multiple Sclerosis (MS), but it remains undefined whether the effects are causal. Objective We applied Mendelian randomization (MR) approaches to disentangle the causal relationship between genetically predicted circulating levels of growth factors and the risk of MS. Methods Genetic instrumental variables for fibroblast growth factor (FGF) 23, growth differentiation factor 15 (GDF15), insulin growth factor 1 (IGF1), insulin-like growth factor binding proteins 3 (IGFBP3) and vascular endothelial growth factor (VEGF) were obtained from up-to-date genome-wide association studies (GWAS). Summary-level statistics of MS were obtained from the International Multiple Sclerosis Genetics Consortium, incorporating 14,802 subjects with MS and 26,703 healthy controls of European ancestry. Inverse-variance weighted (IVW) MR was used as the primary method and multiple sensitivity analyses were employed in this study. Results Genetically predicted circulating levels of FGF23 were associated with risk of MS. The odds ratio (OR) of IVW was 0.63 (95% confidence interval [CI], 0.49-0.82; p < 0.001) per one standard deviation increase in circulating FGF23 levels. Weighted median estimators also suggested FGF23 associated with lower MS risk (OR = 0.67; 95% CI, 0.51-0.87; p = 0.003). While MR-Egger approach provided no evidence of horizontal pleiotropy (intercept = -0.003, p = 0.95). Results of IVW methods provided no evidence for causal roles of GDF1, IGF1, IGFBP3 and VEGF on MS risks, and additional sensitivity analyses confirmed the robustness of these null findings. Conclusion Our results implied a causal relationship between FGF23 and the risk of MS. Further studies are warranted to confirm FGF23 as a genetically valid target for MS.
Collapse
Affiliation(s)
- Hui Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng-Fei Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Deng-Lei Ma
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wan Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Biology, Boston University, Boston, MA, United States
| | - Meichen Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
9
|
Mariani CL, Niman ZE, Boozer LB, Ruterbories LK, Early PJ, Muñana KR, Olby NJ. Vascular endothelial growth factor concentrations in the cerebrospinal fluid of dogs with neoplastic or inflammatory central nervous system disorders. J Vet Intern Med 2021; 35:1873-1883. [PMID: 34105831 PMCID: PMC8295675 DOI: 10.1111/jvim.16181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is a key molecular driver of angiogenesis and vascular permeability and is expressed by a wide variety of neoplasms. Although blood VEGF concentrations have been quantified in intracranial tumors of dogs, cerebrospinal fluid (CSF) VEGF concentration might be a more sensitive biomarker of disease. Objective Concentrations of VEGF in CSF are higher in dogs with central nervous system (CNS) neoplasia compared to those with meningoencephalomyelitis and other neurologic disorders. Animals One hundred and twenty‐six client‐owned dogs presented to a veterinary teaching hospital. Methods Case‐control study. Cerebrospinal fluid was archived from dogs diagnosed with CNS neoplasia and meningoencephalomyelitis. Control dogs had other neurological disorders or diseases outside of the CNS. A commercially available kit was used to determine VEGF concentrations. Results Detectable CSF VEGF concentrations were present in 49/63 (77.8%) neoplastic samples, 22/24 (91.7%) inflammatory samples, and 8/39 (20.5%) control samples. The VEGF concentrations were significantly different between groups (P < .0001), and multiple comparison testing showed that both neoplastic and inflammatory groups had significantly higher concentrations than did controls (P < .05), but did not differ from each other. Gliomas and choroid plexus tumors had significantly higher VEGF concentrations than did the control group (P < .05). Conclusions and Clinical Importance Cerebrospinal fluid VEGF concentrations may serve as a marker of neoplastic and inflammatory CNS disorders relative to other conditions.
Collapse
Affiliation(s)
- Christopher L Mariani
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Zachary E Niman
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Lindsay B Boozer
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA
| | - Laura K Ruterbories
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Peter J Early
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Karen R Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Ulusoy C, Şekerdağ E, Yilmaz V, Yilmaz AB, Atak D, Vural A, Küçükali Cİ, Karaaslan Z, Kürtüncü M, Türkoğlu R, Özdemir YG, Tüzün E. Impact of Autoimmune Demyelinating Brain Disease Sera on Pericyte Survival. ACTA ACUST UNITED AC 2021; 58:83-86. [PMID: 34188587 DOI: 10.29399/npa.27350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/07/2020] [Indexed: 01/13/2023]
Abstract
Introduction Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by demyelination and brain pericyte dysfunction might be involved in MS pathogenesis Our aim was to evaluate whether the factors in serum affect pericyte survival. Method C57BL/6 female mice were immunized with myelin oligodendrocyte glycoprotein (MOG) to induce experimental autoimmune encephalomyelitis (EAE). To confirm the animal model, the sera level of anti-MOG antibody in mice and platelet-derived growth factor-BB (PDGF-BB) in patients was measured by ELISA. Human brain vascular pericytes (HBVP) cell lines were incubated with sera of EAE mice and primer progressive MS (PPMS), seconder progressive MS (SPMS) and relapsing-remitting MS (RRMS) patients. The viability of HBVP is measured with Annexin V-FITC/propidium iodide staining with flow cytometry. Results Annexin V-FITC/propidium iodide staining with flow cytometry showed increased ratios of early apoptosis and decreased survival following incubation with sera of EAE and progressive MS. Levels of platelet-derived growth factor-BB were identical in serum and cerebrospinal fluids of patients with different forms of MS. Conclusion Our results suggest that serum factors might contribute to progressive MS pathogenesis via pericyte dysfunction.
Collapse
Affiliation(s)
- Canan Ulusoy
- Neuroscience Department, Aziz Sancar Institute for Experimental Medicine, İstanbul University, İstanbul, Turkey
| | - Emine Şekerdağ
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Neuroscience Department, Aziz Sancar Institute for Experimental Medicine, İstanbul University, İstanbul, Turkey
| | - Aysu Bilge Yilmaz
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Dila Atak
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Atay Vural
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Cem İsmail Küçükali
- Neuroscience Department, Aziz Sancar Institute for Experimental Medicine, İstanbul University, İstanbul, Turkey
| | - Zerrin Karaaslan
- Neuroscience Department, Aziz Sancar Institute for Experimental Medicine, İstanbul University, İstanbul, Turkey
| | - Murat Kürtüncü
- Neurology Department, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Recai Türkoğlu
- Department of Neurology, İstanbul Haydarpaşa Numune Training and Research Hospital, İstanbul, Turkey
| | | | - Erdem Tüzün
- Neuroscience Department, Aziz Sancar Institute for Experimental Medicine, İstanbul University, İstanbul, Turkey
| |
Collapse
|
11
|
Vieira JR, Shah B, Ruiz de Almodovar C. Cellular and Molecular Mechanisms of Spinal Cord Vascularization. Front Physiol 2020; 11:599897. [PMID: 33424624 PMCID: PMC7793711 DOI: 10.3389/fphys.2020.599897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
During embryonic central nervous system (CNS) development, the neural and the vascular systems communicate with each other in order to give rise to a fully functional and mature CNS. The initial avascular CNS becomes vascularized by blood vessel sprouting from different vascular plexus in a highly stereotypical and controlled manner. This process is similar across different regions of the CNS. In particular for the developing spinal cord (SC), blood vessel ingression occurs from a perineural vascular plexus during embryonic development. In this review, we provide an updated and comprehensive description of the cellular and molecular mechanisms behind this stereotypical and controlled patterning of blood vessels in the developing embryonic SC, identified using different animal models. We discuss how signals derived from neural progenitors and differentiated neurons guide the SC growing vasculature. Lastly, we provide a perspective of how the molecular mechanisms identified during development could be used to better understand pathological situations.
Collapse
Affiliation(s)
- Jose Ricardo Vieira
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Punyte V, Vilkeviciute A, Gedvilaite G, Kriauciuniene L, Liutkeviciene R. Association of VEGFA, TIMP-3, and IL-6 gene polymorphisms with predisposition to optic neuritis and optic neuritis with multiple sclerosis. Ophthalmic Genet 2020; 42:35-44. [PMID: 33121296 DOI: 10.1080/13816810.2020.1839916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The etiology of the inflammatory ON is multifactorial. Much attention is paid to the inflammatory and immune processes that are likely to contribute to the demyelination and MS development. IL-6, VEGFA, and TIMP-3 genes are thought to be involved in the inflammatory processes and manifestation of CNS demyelination, so we aimed to determine the relationship between VEGFA rs1413711, TIMP-3 rs9621532, IL-6 rs1800796 gene polymorphisms and ON, and ON with MS. MATERIALS AND METHODS Patients with ON, ON with MS, and a random sample of healthy population were enrolled. The genotyping of VEGFA rs1413711, TIMP-3 rs9621532, and IL-6 rs1800796 polymorphisms was carried out using the real-time polymerase chain reaction method. RESULTS T/C and C/C genotypes of VEGFA rs1413711 were associated with about threefold increased odds of developing ON in the dominant and codominant models. Each allele C at VEGFA rs1413711 was associated with 1.7-fold increased odds of ON development. IL-6 rs1800796 allele C was more frequent in the ON with MS group compared to the control: 17.6% vs. 7.5%, respectively (p = .040). No statistically significant associations were found between TIMP-3 rs9621532 and the ON development. CONCLUSION: VEGFA rs1413711 is associated with the ON development.
Collapse
Affiliation(s)
- Vaida Punyte
- Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania
| | - Greta Gedvilaite
- Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania
| |
Collapse
|
13
|
Meabon JS, Cook DG, Yagi M, Terry GE, Cross DJ, Muzi M, Pagulayan KF, Logsdon AF, Schindler AG, Ghai V, Wang K, Fallen S, Zhou Y, Kim TK, Lee I, Banks WA, Carlson ES, Mayer C, Hendrickson RC, Raskind MA, Marshall DA, Perl DP, Keene CD, Peskind ER. Chronic elevation of plasma vascular endothelial growth factor-A (VEGF-A) is associated with a history of blast exposure. J Neurol Sci 2020; 417:117049. [PMID: 32758764 PMCID: PMC7492467 DOI: 10.1016/j.jns.2020.117049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/23/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023]
Abstract
Mounting evidence points to the significance of neurovascular-related dysfunction in veterans with blast-related mTBI, which is also associated with reduced [18F]-fluorodeoxyglucose (FDG) uptake. The goal of this study was to determine whether plasma VEGF-A is altered in veterans with blast-related mTBI and address whether VEGF-A levels correlate with FDG uptake in the cerebellum, a brain region that is vulnerable to blast-related injury 72 veterans with blast-related mTBI (mTBI) and 24 deployed control (DC) veterans with no lifetime history of TBI were studied. Plasma VEGF-A was significantly elevated in mTBIs compared to DCs. Plasma VEGF-A levels in mTBIs were significantly negatively correlated with FDG uptake in cerebellum. In addition, performance on a Stroop color/word interference task was inversely correlated with plasma VEGF-A levels in blast mTBI veterans. Finally, we observed aberrant perivascular VEGF-A immunoreactivity in postmortem cerebellar tissue and not cortical or hippocampal tissues from blast mTBI veterans. These findings add to the limited number of plasma proteins that are chronically elevated in veterans with a history of blast exposure associated with mTBI. It is likely the elevated VEGF-A levels are from peripheral sources. Nonetheless, increasing plasma VEGF-A concentrations correlated with chronically decreased cerebellar glucose metabolism and poorer performance on tasks involving cognitive inhibition and set shifting. These results strengthen an emerging view that cognitive complaints and functional brain deficits caused by blast exposure are associated with chronic blood-brain barrier injury and prolonged recovery in affected regions.
Collapse
Affiliation(s)
- James S Meabon
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - David G Cook
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Mayumi Yagi
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Garth E Terry
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; Department of Radiology, University of Washington, Seattle, WA, USA
| | - Donna J Cross
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Kathleen F Pagulayan
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Aric F Logsdon
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Abigail G Schindler
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Vikas Ghai
- Institute for Systems Biology, Seattle, WA, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Yong Zhou
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA, USA
| | - William A Banks
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Erik S Carlson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Cynthia Mayer
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA
| | - Rebecca C Hendrickson
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Murray A Raskind
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Daniel P Perl
- Department of Pathology, Center for Neuroscience and Regenerative Medicine, School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Elaine R Peskind
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Azimi G, Ranjbaran F, Arsang-Jang S, Ghafouri-Fard S, Mazdeh M, Sayad A, Taheri M. Upregulation of VEGF-A and correlation between VEGF-A and FLT-1 expressions in Iranian multiple sclerosis patients. Neurol Sci 2020; 41:1459-1465. [PMID: 31925615 DOI: 10.1007/s10072-019-04234-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is among the most common diseases affecting brain and spinal cord. MS progression is characterized by breakdown of blood brain barrier which leads to increased vascular permeability and angiogenesis. Consequently, vascular endothelial growth factor A (VEGF) and its receptors are considered to be important components of MS progression. VEGFA and fms-related tyrosine kinase 1 (FLT1) play important roles in various aspects of MS. In this study, we investigated the relationship between these genes and MS. For this purpose, the expression levels of VEGFA and FLT1 were measured in the blood of 50 relapsing-remitting MS (RR-MS) patients and 50 healthy individuals using TaqMan quantitative real-time PCR. A significant upregulation of VEGFA expression was observed among MS patients compared with controls (p = 0.04). However, the difference in FLT1 gene expression between study groups was insignificant (p = 0.947). In addition, there was a significant positive correlation between VEGFA and FLT1 genes expressions (r = 0.769, p < 0.0001). In spite of the highly complex molecular mechanisms behind this, the findings imply participation of VEGFA in the pathogenesis of MS.
Collapse
Affiliation(s)
- Ghazaleh Azimi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | | | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| |
Collapse
|
15
|
Thümmler K, Rom E, Zeis T, Lindner M, Brunner S, Cole JJ, Arseni D, Mücklisch S, Edgar JM, Schaeren-Wiemers N, Yayon A, Linington C. Polarizing receptor activation dissociates fibroblast growth factor 2 mediated inhibition of myelination from its neuroprotective potential. Acta Neuropathol Commun 2019; 7:212. [PMID: 31856924 PMCID: PMC6923900 DOI: 10.1186/s40478-019-0864-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling contributes to failure of remyelination in multiple sclerosis, but targeting this therapeutically is complicated by its functional pleiotropy. We now identify FGF2 as a factor up-regulated by astrocytes in active inflammatory lesions that disrupts myelination via FGF receptor 2 (FGFR2) mediated activation of Wingless (Wnt) signaling; pharmacological inhibition of Wnt being sufficient to abrogate inhibition of myelination by FGF2 in tissue culture. Using a novel FGFR1-selective agonist (F2 V2) generated by deleting the N-terminal 26 amino acids of FGF2 we demonstrate polarizing signal transduction to favor FGFR1 abrogates FGF mediated inhibition of myelination but retains its ability to induce expression of pro-myelinating and immunomodulatory factors that include Cd93, Lif, Il11, Hbegf, Cxcl1 and Timp1. Our data provide new insights into the mechanistic basis of remyelination failure in MS and identify selective activation of FGFR1 as a novel strategy to induce a neuroprotective signaling environment in multiple sclerosis and other neurological diseases.
Collapse
|
16
|
Saravani M, Rokni M, Mehrbani M, Amirkhosravi A, Faramarz S, Fatemi I, Esmaeili Tarzi M, Nematollahi MH. The evaluation of VEGF and HIF-1α gene polymorphisms and multiple sclerosis susceptibility. J Gene Med 2019; 21:e3132. [PMID: 31652374 DOI: 10.1002/jgm.3132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease that leads to myelin sheath destruction. Hypoxia-inducible factor 1 (HIF-1) has several roles in cells, such as inducing inflammation and angiogenesis. Recently, several lines of evidence have indicated the role of the hypoxia response and the HIF-1 signaling pathway in an autoimmune disease such as MS. The present study aimed to evaluate the effects of HIF-1α gene polymorphisms and vascular endothelial growth factor (VEGF) (as a major target gene of HIF-1α) gene polymorphism on MS susceptibility. METHODS In total, 150 MS patients and 150 healthy age- and gender-matched people as a control group participated in the present study. The polymerase chain reaction-restriction fragment length polymorphism method was used for genotyping. RESULTS The results obtained showed that the CC genotype of the VEGF rs699947 polymorphism was significantly higher in the case group than in the control group (p = 0.004). Also, we showed a significant relationship between the VEGF rs699947 polymorphism and MS in a dominant inheritance model (p = 0.005). Regarding the VEGF rs699947 polymorphism allelic distribution, the C allele frequency was significantly higher in the control group than in the case group (71.3% versus 61%, respectively, p = 0.009) and decreased the MS susceptibility by 1.6-fold (odds ratio = 1.6, 95% confidence interval = 1.2-2.2). There was no significant difference between the two groups with respect to HIF-1α rs11549465 genotypic distribution. The HIF-1α C111A polymorphism was non-polymorphic in our study population, except in the case group where nine subjects carried the CA genotype. CONCLUSIONS We show a significant association between VEGF rs60047 polymorphism and MS susceptibility. However, our results do not show a significant association between MS and HIF-1α polymorphisms.
Collapse
Affiliation(s)
- Mohsen Saravani
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrzad Mehrbani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Traditional Medicine, School of Persian Medicine, Kerman University of Medical Sciences, Tehran, Iran
| | - Arian Amirkhosravi
- Food, Drug and Cosmetic Safety Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Faramarz
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojdeh Esmaeili Tarzi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
17
|
Combinatory Multifactor Treatment Effects on Primary Nanofiber Oligodendrocyte Cultures. Cells 2019; 8:cells8111422. [PMID: 31726669 PMCID: PMC6912369 DOI: 10.3390/cells8111422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system. Neurological deficits are attributed to inflammatory demyelination, which compromises axonal function and survival. These are mitigated in experimental models by rapid and often complete remyelination of affected axons, but in MS this endogenous repair mechanism frequently fails, leaving axons increasingly vulnerable to the detrimental effects of inflammatory and metabolic stress. Understanding the molecular basis of remyelination and remyelination failure is essential to develop improved therapies for this devastating disease. However, recent studies suggest that this is not due to a single dominant mechanism, but rather represents the biological outcome of multiple changes in the lesion microenvironment that combine to disrupt oligodendrocyte differentiation. This identifies a pressing need to develop technical platforms to investigate combinatory and/or synergistic effects of factors differentially expressed in MS lesions on oligodendrocyte proliferation and differentiation. Here we describe protocols using primary oligodendrocyte cultures from Bl6 mice on 384-well nanofiber plates to model changes affecting oligodendrogenesis and differentiation in the complex signaling environment associated with multiple sclerosis lesions. Using platelet-derived growth factor (PDGF–AA), fibroblast growth factor 2 (FGF2), bone morphogenetic protein 2 (BMP2) and bone morphogenetic protein 4 (BMP4) as representative targets, we demonstrate that we can assess their combinatory effects across a wide range of concentrations in a single experiment. This in vitro model is ideal for assessing the combinatory effects of changes in availability of multiple factors, thus more closely modelling the situation in vivo and furthering high-throughput screening possibilities.
Collapse
|
18
|
Hillebrand S, Schanda K, Nigritinou M, Tsymala I, Böhm D, Peschl P, Takai Y, Fujihara K, Nakashima I, Misu T, Reindl M, Lassmann H, Bradl M. Circulating AQP4-specific auto-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat. Acta Neuropathol 2019; 137:467-485. [PMID: 30564980 PMCID: PMC6514074 DOI: 10.1007/s00401-018-1950-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022]
Abstract
It is well established that the binding of pathogenic aquaporin-4 (AQP4)-specific autoantibodies to astrocytes may initiate a cascade of events culminating in the destruction of these cells and in the formation of large tissue-destructive lesions typical for patients with neuromyelitis optica spectrum disorders (NMOSD). To date, not a single experimental study has shown that the systemic presence of the antibody alone can induce any damage to the central nervous system (CNS), while pathological studies on brains of NMOSD patients suggested that there might be ways for antibody entry and subsequent tissue damage. Here, we systemically applied a highly pathogenic, monoclonal antibody with high affinity to AQP4 over prolonged period of time to rats, and show that AQP4-abs can enter the CNS on their own, via circumventricular organs and meningeal or parenchymal blood vessels, that these antibodies initiate the formation of radically different lesions with AQP4 loss, depending on their mode and site of entry, and that lesion formation is much more efficient in the presence of encephalitogenic T-cell responses. We further demonstrate that the established tissue-destructive lesions trigger the formation of additional lesions by short and far reaching effects on blood vessels and their branches, and that AQP4-abs have profound effects on the AQP4 expression in peripheral tissues which counter-act possible titer loss by antibody absorption outside the CNS. Cumulatively, these data indicate that directly induced pathological changes caused by AQP4-abs inside and outside the CNS are efficient drivers of disease evolution in seropositive organisms.
Collapse
Affiliation(s)
- Sophie Hillebrand
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Magdalini Nigritinou
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Irina Tsymala
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Denise Böhm
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Patrick Peschl
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Fujihara
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
19
|
Costa APE, Saad T, Ignez LS, Gamarano G, Lazzari AP, Vasconcelos Z. Pediatric Multiple Sclerosis: The role of magnetic resonance imaging and chemokine profile in the diagnosis and follow-up. Rev Assoc Med Bras (1992) 2018; 64:672-675. [DOI: 10.1590/1806-9282.64.08.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/07/2018] [Indexed: 11/21/2022] Open
|
20
|
Lanzillo R, Moccia M, Criscuolo C, Cennamo G. Optical coherence tomography angiography detects retinal vascular alterations in different phases of multiple sclerosis. Mult Scler 2018; 25:300-301. [DOI: 10.1177/1352458518768060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Roberta Lanzillo
- Department of Neuroscience and Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Marcello Moccia
- Department of Neuroscience and Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | | | - Gilda Cennamo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Amezcua L. MS in self-identified Hispanic/Latino individuals living in the US. Mult Scler J Exp Transl Clin 2017; 3:2055217317725103. [PMID: 28979795 PMCID: PMC5617095 DOI: 10.1177/2055217317725103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022] Open
Abstract
Self-identified Hispanic/Latino individuals living with multiple sclerosis (MS) in the continental United States (US) are a diverse group that represents different cultural and ancestral backgrounds. A marked variability in the way MS affects various subgroups of Hispanics in the US has been observed. We reviewed and synthesized available data about MS in Hispanics in the US. There are likely a host of multifactorial elements contributing to these observations that could be explained by genetic, environmental, and social underpinnings. Barriers to adequate MS care in Hispanics are likely to include delivery of culturally competent care and social and economic disadvantages. Considerable efforts, including the formation of a national consortium known as the Alliance for Research in Hispanic Multiple Sclerosis (ARHMS), are underway to help further explore these various factors.
Collapse
Affiliation(s)
- Lilyana Amezcua
- Department of Neurology, University of Southern California, Keck School of Medicine, USA
| |
Collapse
|
22
|
Angiogenic factors are associated with multiple sclerosis. J Neuroimmunol 2016; 301:88-93. [DOI: 10.1016/j.jneuroim.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022]
|
23
|
Huang Y, Dreyfus CF. The role of growth factors as a therapeutic approach to demyelinating disease. Exp Neurol 2016; 283:531-40. [PMID: 27016070 PMCID: PMC5010931 DOI: 10.1016/j.expneurol.2016.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/19/2023]
Abstract
A variety of growth factors are being explored as therapeutic agents relevant to the axonal and oligodendroglial deficits that occur as a result of demyelinating lesions such as are evident in Multiple Sclerosis (MS). This review focuses on five such proteins that are present in the lesion site and impact oligodendrocyte regeneration. It then presents approaches that are being exploited to manipulate the lesion environment affiliated with multiple neurodegenerative diseases and suggests that the utility of these approaches can extend to demyelination. Challenges are to further understand the roles of specific growth factors on a cellular and tissue level. Emerging technologies can then be employed to optimize the use of growth factors to ameliorate the deficits associated with demyelinating degenerative diseases.
Collapse
Affiliation(s)
- Yangyang Huang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| | - Cheryl F Dreyfus
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
24
|
Lange C, Storkebaum E, de Almodóvar CR, Dewerchin M, Carmeliet P. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol 2016; 12:439-54. [PMID: 27364743 DOI: 10.1038/nrneurol.2016.88] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Brain function critically relies on blood vessels to supply oxygen and nutrients, to establish a barrier for neurotoxic substances, and to clear waste products. The archetypal vascular endothelial growth factor, VEGF, arose in evolution as a signal affecting neural cells, but was later co-opted by blood vessels to regulate vascular function. Consequently, VEGF represents an attractive target to modulate brain function at the neurovascular interface. On the one hand, VEGF is neuroprotective, through direct effects on neural cells and their progenitors and indirect effects on brain perfusion. In accordance, preclinical studies show beneficial effects of VEGF administration in neurodegenerative diseases, peripheral neuropathies and epilepsy. On the other hand, pathologically elevated VEGF levels enhance vessel permeability and leakage, and disrupt blood-brain barrier integrity, as in demyelinating diseases, for which blockade of VEGF may be beneficial. Here, we summarize current knowledge on the role and therapeutic potential of VEGF in neurological diseases.
Collapse
Affiliation(s)
- Christian Lange
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology (KU Leuven) and Vesalius Research Center (VIB), Campus Gasthuisberg O&N4, Herestraat 49 - 912, B-3000, Leuven, Belgium
| | - Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149 Muenster, Germany.,Faculty of Medicine, University of Muenster, Roentgenstrasse 20, D-48149 Muenster, Germany
| | | | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology (KU Leuven) and Vesalius Research Center (VIB), Campus Gasthuisberg O&N4, Herestraat 49 - 912, B-3000, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Department of Oncology (KU Leuven) and Vesalius Research Center (VIB), Campus Gasthuisberg O&N4, Herestraat 49 - 912, B-3000, Leuven, Belgium
| |
Collapse
|
25
|
Tejera-Alhambra M, Casrouge A, de Andrés C, Seyfferth A, Ramos-Medina R, Alonso B, Vega J, Fernández-Paredes L, Albert ML, Sánchez-Ramón S. Plasma biomarkers discriminate clinical forms of multiple sclerosis. PLoS One 2015; 10:e0128952. [PMID: 26039252 PMCID: PMC4454618 DOI: 10.1371/journal.pone.0128952] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/30/2015] [Indexed: 01/23/2023] Open
Abstract
Multiple sclerosis, the most common cause of neurological disability in young population after trauma, represents a significant public health burden. Current challenges associated with management of multiple sclerosis (MS) patients stem from the lack of biomarkers that might enable stratification of the different clinical forms of MS and thus prompt treatment for those patients with progressive MS, for whom there is currently no therapy available. In the present work we analyzed a set of thirty different plasma cytokines, chemokines and growth factors present in circulation of 129 MS patients with different clinical forms (relapsing remitting, secondary progressive and primary progressive MS) and 53 healthy controls, across two independent cohorts. The set of plasma analytes was quantified with Luminex xMAP technology and their predictive power regarding clinical outcome was evaluated both individually using ROC curves and in combination using logistic regression analysis. Our results from two independent cohorts of MS patients demonstrate that the divergent clinical and histology-based MS forms are associated with distinct profiles of circulating plasma protein biomarkers, with distinct signatures being composed of chemokines and growth/angiogenic factors. With this work, we propose that an evaluation of a set of 4 circulating biomarkers (HGF, Eotaxin/CCL11, EGF and MIP-1β/CCL4) in MS patients might serve as an effective tool in the diagnosis and more personalized therapeutic targeting of MS patients.
Collapse
Affiliation(s)
- Marta Tejera-Alhambra
- Department of Immunology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Armanda Casrouge
- Department of Immunology, Center for Human Immunology, Institut Pasteur, Paris, France
- Department of Immunology, INSERM U818, Institut Pasteur, Paris, France
| | - Clara de Andrés
- Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Rocío Ramos-Medina
- Department of Immunology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Bárbara Alonso
- Department of Immunology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Janet Vega
- Center Alicia Koplowitz for Multiple Sclerosis of the Community of Madrid, Madrid, Spain
| | | | - Matthew L. Albert
- Department of Immunology, Center for Human Immunology, Institut Pasteur, Paris, France
- Department of Immunology, INSERM U818, Institut Pasteur, Paris, France
| | - Silvia Sánchez-Ramón
- Department of Immunology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- * E-mail:
| |
Collapse
|
26
|
Soluble VCAM-1 impairs human brain endothelial barrier integrity via integrin α-4-transduced outside-in signalling. Acta Neuropathol 2015; 129:639-52. [PMID: 25814153 PMCID: PMC4405352 DOI: 10.1007/s00401-015-1417-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/10/2015] [Accepted: 03/21/2015] [Indexed: 01/17/2023]
Abstract
Human brain microvascular endothelial cells forming the blood–brain barrier (BBB) release soluble vascular cell adhesion molecule-1 (sVCAM-1) under inflammatory conditions. Furthermore, sVCAM-1 serum levels in untreated patients with multiple sclerosis (MS) correlate with a breakdown of the BBB as measured by gadolinium-enhanced MRI. To date, it is unknown whether sVCAM-1 itself modulates BBB permeability. Here, we provide evidence that human brain endothelium expresses integrin α-4/β-1, the molecular binding partner of sVCAM-1, and that sVCAM-1 directly impairs BBB function by inducing intracellular signalling events through integrin α-4. Primary human brain microvascular endothelial cells showed low to moderate integrin α-4 and strong β-1 but no definite β-7 expression in vitro and in situ. Increased brain endothelial integrin α-4 expression was observed in active MS lesions in situ and after angiogenic stimulation in vitro. Exposure of cultured primary brain endothelial cells to recombinant sVCAM-1 significantly increased their permeability to the soluble tracer dextran, which was paralleled by formation of actin stress fibres and reduced staining of tight junction-associated molecules. Soluble VCAM-1 was also found to activate Rho GTPase and p38 MAP kinase. Chemical inhibition of these signalling pathways partially prevented sVCAM-1-induced changes of tight junction arrangement. Importantly, natalizumab, a neutralising recombinant monoclonal antibody against integrin α-4 approved for the treatment of patients with relapsing–remitting MS, partially antagonised the barrier-disturbing effect of sVCAM-1. In summary, we newly characterised sVCAM-1 as a compromising factor of brain endothelial barrier function that may be partially blocked by the MS therapeutic natalizumab.
Collapse
|
27
|
Rasol HAA, Helmy H, El-Mously S, Aziz MA, El bahaie H. Vascular endothelial growth factor-A mRNA gene expression in clinical phases of multiple sclerosis. Ann Clin Biochem 2015; 53:252-8. [DOI: 10.1177/0004563215584957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 12/12/2022]
Abstract
Background Vascular endothelial growth factor A stimulates angiogenesis, but is also pro-inflammatory and plays an important role in the development of neurological disease. This study aimed to investigate whether vascular endothelial growth factor A mRNA expression could be used as a marker for the prediction of susceptibility to multiple sclerosis and relate vascular endothelial growth factor to the clinical phases of multiple sclerosis. Methods This was a cross-sectional study, consisting of a total of 60 subjects with multiple sclerosis and 20 healthy controls. Subjects were subjected to history taking, neurological examination and peripheral blood sampling for vascular endothelial growth factor A mRNA gene expression. Vascular endothelial growth factor A gene expression was measured by real-time polymerase chain reaction using the SYBR Green technique. Results Vascular endothelial growth factor A mRNA gene expression level was significantly lower in the multiple sclerosis group than in the healthy control group ( P < 0.001). Vascular endothelial growth factor A mRNA gene expression level was higher in relapsing remitting multiple sclerosis (RRMS) patients than in those in remission ( P < 0.001) and in relapsing remitting multiple sclerosis compared with secondary progressive multiple sclerosis ( P < 0.001). There was no correlation between vascular endothelial growth factor A gene expression levels and duration of disease, multiple sclerosis progression index or expanded disability status scale. Conclusions A lower vascular endothelial growth factor A mRNA gene expression level was independently associated with a higher risk of multiple sclerosis.
Collapse
Affiliation(s)
- Hoiyda A Abdel Rasol
- Faculty of Applied Medical Sciences, Taibah University, Al Madinah Al Monawara, Kingdom of Saudi Arabia
- Clinical and Chemical Pathology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hanan Helmy
- Neurology Department, Faculty of Medicine, Cairo University, Egypt
| | | | - Margeret A Aziz
- Department of Biochemistry, Research Institute of Ophthalmology, Egypt
| | - Hossam El bahaie
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
28
|
Moore CS, Cui QL, Warsi NM, Durafourt BA, Zorko N, Owen DR, Antel JP, Bar-Or A. Direct and Indirect Effects of Immune and Central Nervous System–Resident Cells on Human Oligodendrocyte Progenitor Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2014; 194:761-72. [DOI: 10.4049/jimmunol.1401156] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Palmiotti CA, Prasad S, Naik P, Abul KMD, Sajja RK, Achyuta AH, Cucullo L. In vitro cerebrovascular modeling in the 21st century: current and prospective technologies. Pharm Res 2014; 31:3229-50. [PMID: 25098812 PMCID: PMC4225221 DOI: 10.1007/s11095-014-1464-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/24/2014] [Indexed: 12/26/2022]
Abstract
The blood-brain barrier (BBB) maintains the brain homeostasis and dynamically responds to events associated with systemic and/or rheological impairments (e.g., inflammation, ischemia) including the exposure to harmful xenobiotics. Thus, understanding the BBB physiology is crucial for the resolution of major central nervous system CNS) disorders challenging both health care providers and the pharmaceutical industry. These challenges include drug delivery to the brain, neurological disorders, toxicological studies, and biodefense. Studies aimed at advancing our understanding of CNS diseases and promoting the development of more effective therapeutics are primarily performed in laboratory animals. However, there are major hindering factors inherent to in vivo studies such as cost, limited throughput and translational significance to humans. These factors promoted the development of alternative in vitro strategies for studying the physiology and pathophysiology of the BBB in relation to brain disorders as well as screening tools to aid in the development of novel CNS drugs. Herein, we provide a detailed review including pros and cons of current and prospective technologies for modelling the BBB in vitro including ex situ, cell based and computational (in silico) models. A special section is dedicated to microfluidic systems including micro-BBB, BBB-on-a-chip, Neurovascular Unit-on-a-Chip and Synthetic Microvasculature Blood-brain Barrier.
Collapse
Affiliation(s)
| | - Shikha Prasad
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Pooja Naik
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kaisar MD Abul
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ravi K. Sajja
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
30
|
Lengfeld J, Cutforth T, Agalliu D. The role of angiogenesis in the pathology of multiple sclerosis. Vasc Cell 2014; 6:23. [PMID: 25473485 PMCID: PMC4253611 DOI: 10.1186/s13221-014-0023-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis, or the growth of new blood vessels from existing vasculature, is critical for the proper development of many organs. This process is inhibited and tightly regulated in adults, once endothelial cells have acquired organ-specific properties. Within the central nervous system (CNS), angiogenesis and acquisition of blood-brain barrier (BBB) properties by endothelial cells is essential for CNS function. However, the role of angiogenesis in CNS pathologies associated with impaired barrier function remains unclear. Although vessel abnormalities characterized by abnormal barrier function are well documented in multiple sclerosis (MS), a demyelinating disease of the CNS resulting from an immune cell attack on oligodendrocytes, histological analysis of human MS samples has shown that angiogenesis is prevalent in and around the demyelinating plaques. Experiments using an animal model that mimics several features of human MS, Experimental Autoimmune Encephalomyelitis (EAE), have confirmed these human pathological findings and shed new light on the contribution of pre-symptomatic angiogenesis to disease progression. The CNS-infiltrating inflammatory cells that are a hallmark of both MS and EAE secrete several factors that not only contribute to exacerbating the inflammatory process but also promote and stimulate angiogenesis. Moreover, chemical or biological inhibitors that directly or indirectly block angiogenesis provide clinical benefits for disease progression. While the precise mechanism of action for these inhibitors is unknown, preventing pathological angiogenesis during EAE progression holds great promise for developing effective treatment strategies for human MS.
Collapse
Affiliation(s)
- Justin Lengfeld
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| | - Tyler Cutforth
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| | - Dritan Agalliu
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| |
Collapse
|
31
|
Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2014; 2:84. [PMID: 25047180 PMCID: PMC4149233 DOI: 10.1186/s40478-014-0084-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental model of MS, experimental allergic encephalomyelitis (EAE), where blood–brain barrier disruption and vascular remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect of vasoconstrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.
Collapse
|
32
|
Gadolinium enhancement patterns of tumefactive demyelinating lesions: correlations with brain biopsy findings and pathophysiology. J Neurol 2014; 261:1902-10. [DOI: 10.1007/s00415-014-7437-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
|
33
|
Shimizu F, Tasaki A, Sano Y, Ju M, Nishihara H, Oishi M, Koga M, Kawai M, Kanda T. Sera from remitting and secondary progressive multiple sclerosis patients disrupt the blood-brain barrier. PLoS One 2014; 9:e92872. [PMID: 24686948 PMCID: PMC3970956 DOI: 10.1371/journal.pone.0092872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/26/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pathological destruction of blood-brain barrier (BBB) has been thought to be the initial key event in the process of developing multiple sclerosis (MS). The purpose of the present study was to clarify the possible molecular mechanisms responsible for the malfunction of BBB by sera from relapse-remitting MS (RRMS) and secondary progressive MS (SPMS) patients. METHODS We evaluated the effects of sera from the patients in the relapse phase of RRMS (RRMS-R), stable phase of RRMS (RRMS-S) and SPMS on the expression of tight junction proteins and vascular cell adhesion protein-1 (VCAM-1), and on the transendothelial electrical resistance (TEER) in human brain microvascular endothelial cells (BMECs). RESULTS Sera from the RRMS-R or SPMS patients decreased the claudin-5 protein expression and the TEER in BMECs. In RRMS-R, this effect was restored after adding an MMP inhibitor, and the MMP-2/9 secretion by BMECs was significantly increased after the application of patients' sera. In SPMS, the immunoglobulin G (IgG) purified from patients' sera also decreased the claudin-5 protein expression and the TEER in BMECs. The sera and purified IgG from all MS patients increased the VCAM-1 protein expression in BMECs. CONCLUSIONS The up-regulation of autocrine MMP-2/9 by BMECs after exposure to sera from RRMS-R patients or the autoantibodies against BMECs from SPMS patients can compromise the BBB. Both RRMS-S and SPMS sera increased the VCAM-1 expression in the BBB, thus indicating that targeting the VCAM-1 in the BBB could represent a possible therapeutic strategy for even the stable phase of MS and SPMS.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Ayako Tasaki
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Mihua Ju
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hideaki Nishihara
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Mariko Oishi
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Michiaki Koga
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Motoharu Kawai
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
- * E-mail:
| |
Collapse
|
34
|
Lechner J, von Baehr V. RANTES and fibroblast growth factor 2 in jawbone cavitations: triggers for systemic disease? Int J Gen Med 2013; 6:277-90. [PMID: 23637551 PMCID: PMC3636973 DOI: 10.2147/ijgm.s43852] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Jawbone cavitations (JC) are hollow dead spaces in jawbones with dying or dead bone marrow. These areas are defined as fatty degenerative osteonecrosis of the jawbone or neuralgia-inducing cavitational osteonecrosis and may produce facial pain. These afflictions have been linked to the immune system and chronic illnesses. Surgical debridement of JC is reported to lead to an improvement in immunological complaints, such as rheumatic, allergic, and other inflammatory diseases (ID). Little is known about the underlying cause/effect relationship. Objectives JC bone samples were analyzed to assess the expression and quantification of immune modulators that can play a role in the pathogenesis of IDs. The study supports a potential mechanism where JC is a mediating link in IDs. Materials and methods Samples of fatty softened bone taken from JCs were extracted from 31 patients. The specimens were analyzed by bead-based multiplex technology and tested for seven immune messengers. Results Regulated upon activation, normal T-cell expressed, and secreted (RANTES) and fibroblast growth factor (FGF)-2 were found at high levels in the JCs tested. Other cytokines could not be detected at excessive levels. Discussion The study confirms that JC is able to produce inflammatory messengers, primarily RANTES, and, secondarily, FGF-2. Both are implicated in many serious illnesses. The excessive levels of RANTES/FGF-2 in JC patients with amyotrophic lateral sclerosis, multiple sclerosis, rheumatoid arthritis, and breast cancer are compared to levels published in medical journals. Levels detected in JCs are higher than in the serum and cerebrospinal fluid of amyotrophic lateral sclerosis and multiple sclerosis patients and four-fold higher than in breast cancer tissue. Conclusion This study suggests that JC might serve as a fundamental cause of IDs, through RANTES/FGF-2 production. Thus, JC and implicated immune messengers represent an integrative aspect of IDs and serve as a possible cause. Removing JCs may be a key to reversing IDs. There is a need to raise awareness about JC throughout medicine and dentistry.
Collapse
|
35
|
Murta V, Ferrari CC. Influence of Peripheral inflammation on the progression of multiple sclerosis: Evidence from the clinic and experimental animal models. Mol Cell Neurosci 2013; 53:6-13. [DOI: 10.1016/j.mcn.2012.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/14/2012] [Accepted: 06/26/2012] [Indexed: 12/21/2022] Open
|
36
|
Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72:648-72. [DOI: 10.1002/ana.23648] [Citation(s) in RCA: 482] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
|
37
|
Thompson G, Mills SJ, Coope DJ, O'Connor JPB, Jackson A. Imaging biomarkers of angiogenesis and the microvascular environment in cerebral tumours. Br J Radiol 2012; 84 Spec No 2:S127-44. [PMID: 22433824 DOI: 10.1259/bjr/66316279] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Conventional contrast-enhanced CT and MRI are now in routine clinical use for the diagnosis, treatment and monitoring of diseases in the brain. The presence of contrast enhancement is a proxy for the pathological changes that occur in the normally highly regulated brain vasculature and blood-brain barrier. With recognition of the limitations of these techniques, and a greater appreciation for the nuanced mechanisms of microvascular change in a variety of pathological processes, novel techniques are under investigation for their utility in further interrogating the microvasculature of the brain. This is particularly important in tumours, where the reliance on angiogenesis (new vessel formation) is crucial for tumour growth, and the resulting microvascular configuration and derangement has profound implications for diagnosis, treatment and monitoring. In addition, novel therapeutic approaches that seek to directly modify the microvasculature require more sensitive and specific biological markers of baseline tumour behaviour and response. The currently used imaging biomarkers of angiogenesis and brain tumour microvascular environment are reviewed.
Collapse
Affiliation(s)
- G Thompson
- Wolfson Molecular Imaging Centre, University of Manchester, Withington, Manchester, UK
| | | | | | | | | |
Collapse
|
38
|
Park JM, Shin YJ, Cho JM, Choi JY, Jeun SS, Cha JH, Lee MY. Upregulation of vascular endothelial growth factor receptor-3 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. J Histochem Cytochem 2012; 61:31-44. [PMID: 22983493 DOI: 10.1369/0022155412462975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the spatiotemporal expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. VEGFR-3 mRNA and protein were constitutively expressed in gray matter neurons and in a few white matter astrocytes. Induction of VEGFR-3 occurred predominantly in perivascular infiltrated macrophages in the spinal cord white matter during the inductive phase of EAE. VEGFR-3 expression was also induced in activated microglial cells in the gray and white matter, mainly in the peak phase. In addition, reactive astrocytes in the white matter, but not in the gray matter, expressed VEGFR-3 as disease severity increased. These data suggest that VEGFR-3 is involved in the recruitment of monocytic macrophages and in glial reactions during EAE.
Collapse
Affiliation(s)
- Jang-Mi Park
- Department of Anatomy, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
FGF-2 and Anosmin-1 are selectively expressed in different types of multiple sclerosis lesions. J Neurosci 2011; 31:14899-909. [PMID: 22016523 DOI: 10.1523/jneurosci.1158-11.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multiple sclerosis is a demyelinating disease that affects ≈ 2,000,000 people worldwide. In the advanced stages of the disease, endogenous oligodendrocyte precursors cannot colonize the lesions or differentiate into myelinating oligodendrocytes. During development, both FGF-2 and Anosmin-1 participate in oligodendrocyte precursor cell migration, acting via the FGF receptor 1 (FGFR1). Hence, we performed a histopathological and molecular analysis of these developmental modulators in postmortem tissue blocks from multiple sclerosis patients. Accordingly, we demonstrate that the distribution of FGF-2 and Anosmin-1 varies between the different types of multiple sclerosis lesions: FGF-2 is expressed only within active lesions and in the periplaque of chronic lesions, whereas Anosmin-1 is upregulated within chronic lesions and is totally absent in active lesions. We show that the endogenous oligodendrocyte precursor cells recruited toward chronic-active lesions express FGFR1, possibly in response to the FGF-2 produced by microglial cells in the periplaque. Also in human tissue, FGF-2 is upregulated in perivascular astrocytes in regions of the normal-appearing gray matter, where the integrity of the blood-brain barrier is compromised. In culture, FGF-2 and Anosmin-1 influence adult mouse oligodendrocyte precursor cell migration in the same manner as at embryonic stages, providing an explanation for the histopathological observations: FGF-2 attracts/enhances its migration, which is hindered by Anosmin-1. We propose that FGF-2 and Anosmin-1 are markers for the histopathological type and the level of inflammation of multiple sclerosis lesions, and that they may serve as novel pharmacogenetic targets to design future therapies that favor effective remyelination and protect the blood-brain barrier.
Collapse
|
40
|
Kira JI. Autoimmunity in neuromyelitis optica and opticospinal multiple sclerosis: Astrocytopathy as a common denominator in demyelinating disorders. J Neurol Sci 2011; 311:69-77. [DOI: 10.1016/j.jns.2011.08.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
|
41
|
Harirchian MH, Tekieh AH, Modabbernia A, Aghamollaii V, Tafakhori A, Ghaffarpour M, Sahraian MA, Naji M, Yazdanbakhsh M. Serum and CSF PDGF-AA and FGF-2 in relapsing-remitting multiple sclerosis: a case-control study. Eur J Neurol 2011; 19:241-7. [DOI: 10.1111/j.1468-1331.2011.03476.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Waschbisch A, Manzel A, Linker RA, Lee DH. Vascular pathology in multiple sclerosis: mind boosting or myth busting? EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2011; 3:7. [PMID: 21756314 PMCID: PMC3156723 DOI: 10.1186/2040-7378-3-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/14/2011] [Indexed: 01/15/2023]
Abstract
The investigation of central nervous system vascular changes in the pathophysiology of multiple sclerosis (MS) is a time-honored concept. Yet, recent reports on changes in venous cerebrospinal outflow, the advent of new magnetic resonance imaging techniques and the investigation of immunomodulatory properties of several vascular mediators on the molecular level have added new excitement to hypotheses centering around vascular pathology as determining factor in the pathophysiology of MS. Here we critically review the concept of chronic cerebrospinal venous insufficiency in MS patients and describe new imaging techniques including perfusion weighted imaging, susceptibility weighted imaging and diffusion weighted imaging which reveal central nervous system hypoperfusion, perivascular iron deposition and diffuse structural changes in the MS brain. On a molecular basis, vascular mediators represent interesting targets connecting vascular pathology with immunomodulation. In summary, the relation of venous changes to the pathophysiology of MS may not be as simple as initially described and it certainly seems awkward to think of the complex disease MS solely as result of a simple venous outflow obstruction. Yet, the investigation of new vascular concepts as one variable in the pathophysiology of the autoimmune attack seems very worthwhile and may add to a better understanding of this devastating disorder.
Collapse
Affiliation(s)
- Anne Waschbisch
- Department of Neurology, Schwabachanlage 6, 91054 Erlangen, Germany.
| | | | | | | |
Collapse
|
43
|
Iacobaeus E, Amoudruz P, Ström M, Khademi M, Brundin L, Hillert J, Kockum I, Malmström V, Olsson T, Tham E, Piehl F. The expression of VEGF-A is down regulated in peripheral blood mononuclear cells of patients with secondary progressive multiple sclerosis. PLoS One 2011; 6:e19138. [PMID: 21573104 PMCID: PMC3089609 DOI: 10.1371/journal.pone.0019138] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/18/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Most patients with relapsing-remitting multiple sclerosis (RRMS) eventually enter a secondary progressive (SPMS) phase, characterized by increasing neurological disability. The mechanisms underlying transition to SPMS are unknown and effective treatments and biomarkers are lacking. Vascular endothelial growth factor-A (VEGF-A) is an angiogenic factor with neuroprotective effects that has been associated with neurodegenerative diseases. SPMS has a prominent neurodegenerative facet and we investigated a possible role for VEGF-A during transition from RRMS to SPMS. METHODOLOGY/PRINCIPAL FINDINGS VEGF-A mRNA expression in peripheral blood mononuclear (PBMC) and cerebrospinal fluid (CSF) cells from RRMS (n = 128), SPMS (n = 55) and controls (n = 116) were analyzed using real time PCR. We demonstrate reduced expression of VEGF-A mRNA in MS CSF cells compared to controls (p<0.001) irrespective of disease course and expression levels are restored by natalizumab treatment(p<0.001). VEGF-A was primarily expressed in monocytes and our CSF findings in part may be explained by effects on relative monocyte proportions. However, VEGF-A mRNA expression was also down regulated in the peripheral compartment of SPMS (p<0.001), despite unchanged monocyte counts, demonstrating a particular phenotype differentiating SPMS from RRMS and controls. A possible association of allelic variability in the VEGF-A gene to risk of MS was also studied by genotyping for six single nucleotide polymorphisms (SNPs) in MS (n = 1114) and controls (n = 1234), which, however, did not demonstrate any significant association between VEGF-A alleles and risk of MS. CONCLUSIONS/SIGNIFICANCE Expression of VEGF-A in CSF cells is reduced in MS patients compared to controls irrespective of disease course. In addition, SPMS patients display reduced VEGF-A mRNA expression in PBMC, which distinguish them from RRMS and controls. This indicates a possible role for VEGF-A in the mechanisms regulating transition to SPMS. Decreased levels of PBMC VEGF-A mRNA expression should be further evaluated as a biomarker for SPMS.
Collapse
Affiliation(s)
- Ellen Iacobaeus
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institute Solna, Center for Molecular Medicine, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 2011; 585:3770-80. [PMID: 21550344 DOI: 10.1016/j.febslet.2011.04.066] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 11/17/2022]
Abstract
The presence of the blood-brain barrier (BBB) restricts the movement of soluble mediators and leukocytes from the periphery to the central nervous system (CNS). Leukocyte entry into the CNS is nonetheless an early event in multiple sclerosis (MS), an inflammatory disorder of the CNS. Whether BBB dysfunction precedes immune cell infiltration or is the consequence of perivascular leukocyte accumulation remains enigmatic, but leukocyte migration modifies BBB permeability. Immune cells of MS subjects express inflammatory cytokines, reactive oxygen species (ROS) and enzymes that can facilitate their migration to the CNS by influencing BBB function, either directly or indirectly. In this review, we describe how immune cells from the peripheral blood overcome the BBB and promote CNS inflammation in MS through BBB disruption.
Collapse
Affiliation(s)
- Catherine Larochelle
- Neuroimmunology Research Laboratory, Center of Excellence in Neuromics, CRCHUM, Notre-Dame Hospital, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
45
|
Soluble vascular endothelial growth factor (VEGF) receptor-1 inhibits migration of human monocytic THP-1 cells in response to VEGF. Inflamm Res 2011; 60:769-74. [PMID: 21487788 DOI: 10.1007/s00011-011-0332-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 03/28/2011] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE We aimed to investigate the regulation and contribution of vascular endothelial growth factor (VEGF) and sFlt-1(1-3) to human monocytic THP-1 migration. MATERIALS AND METHODS Ad-sFlt-1/FLAG, a recombinant adenovirus carrying the human sFlt-1(1-3) (the first three extracellular domains of FLT-1, the hVEGF receptor-1) gene, was constructed. L929 cells were infected with Ad-sFlt-1/FLAG and the expression of sFlt-1 was detected by immunofluorescent assay and ELISA. Corning(®) Transwell(®) Filter Inserts containing polyethylene terephthalate (PET) membranes with pore sizes of 3 μm were used as an experimental model to simulate THP-1 migration. Five VEGF concentrations (0, 0.1, 1, 10 and 100 ng/ml), four concentrations of sFlt-1(1-3)/FLAG expression supernatants (0.1, 1, 10 and 100 ng/ml), and monocyte chemoattractant protein-1 (MCP-1, 10 ng/ml) were used to test the ability of THP-1 cells to migrate through PET membranes. RESULTS The sFlt-1(1-3) gene was successfully recombined into Ad-sFlt-1/FLAG. sFlt-1(1-3) was expressed in L929 cells transfected with Ad-sFlt-1/FLAG. THP-1 cell migration increased with increasing concentrations of VEGF, while cell migration decreased with increasing concentrations of sFlt1(1-3)/FLAG. sFlt1(1-3)/FLAG had no effect on MCP-1-induced cell migration. CONCLUSIONS This study demonstrated that VEGF is able to elicit a migratory response in THP-1 cells, and that sFlt-1(1-3) is an effective inhibitor of THP-1 migration towards VEGF.
Collapse
|
46
|
Mogi M, Horiuchi M. Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ J 2011; 75:1042-8. [PMID: 21441696 DOI: 10.1253/circj.cj-11-0121] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although it is feared that diabetes-induced cognitive decline will become a major clinical problem worldwide in the future, the detailed pathological mechanism is not well known. Because patients with diabetes have various complications of vascular disease, with not only macrovascular but also microvascular disorders, vascular disorders in the brain are considered to be one of the mechanisms in diabetes-induced cognitive impairment. Indeed, disruption of the blood-brain barrier (BBB) has been observed in some diabetic patients and experimental diabetes models. Moreover, white matter lesions, part of the evidence of BBB dysfunction, are reported to be observed more frequently in patients with diabetes. Animal studies demonstrate that diabetes enhances BBB permeability through a decrease in the level of tight junction proteins and an increase in matrix metalloproteinase activity. However, there are several reports indicating that BBB disruption does not occur with diabetes. Therefore, the association of BBB breakdown with diabetes-induced cognitive impairment is not conclusive. Recently, neuronal diseases involving dementia have been induced experimentally through dysfunction of neurovascular coupling, which involves blood vessels, astrocytes and neutrons. Diabetes-induced cognitive decline may be induced via disruption of neurovascular coupling, with not only vascular disorder but also impairment of astrocytic trafficking. Here, the relation between vascular disorder and cognitive impairment in diabetes is discussed.
Collapse
Affiliation(s)
- Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Japan.
| | | |
Collapse
|
47
|
Matsuoka T, Suzuki SO, Suenaga T, Iwaki T, Kira JI. Reappraisal of aquaporin-4 astrocytopathy in Asian neuromyelitis optica and multiple sclerosis patients. Brain Pathol 2011; 21:516-32. [PMID: 21241398 DOI: 10.1111/j.1750-3639.2011.00475.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selective aquaporin-4 (AQP4) loss and vasculocentric complement and immunoglobulin deposition are characteristic of neuromyelitis optica (NMO). We recently reported extensive AQP4 loss in demyelinated and myelinated layers of Baló's lesions without perivascular immunoglobulin and complement deposition. We aimed to reappraise AQP4 expression patterns in NMO and multiple sclerosis (MS). We evaluated AQP4 expression relative to glial fibrillary acidic protein, extent of demyelination, lesion staging (CD68 staining for macrophages), and perivascular deposition of complement and immunoglobulin in 11 cases with NMO and NMO spectrum disorders (NMOSD), five with MS and 30 with other neurological diseases. The lesions were classified as actively demyelinating (n = 66), chronic active (n = 86), chronic inactive (n = 48) and unclassified (n = 12). Six NMO/NMOSD and two MS cases showed preferential AQP4 loss beyond the demyelinated areas, irrespective of lesion staging. Five NMO and three MS cases showed AQP4 preservation even in actively demyelinating lesions, despite grave tissue destruction. Vasculocentric deposition of complement and immunoglobulin was detected only in NMO/NMOSD patients, with less than 30% of actively demyelinating lesions showing AQP4 loss. Our present and previous findings suggest that antibody-independent AQP4 loss can occur in heterogeneous demyelinating conditions, including NMO, Baló's disease and MS.
Collapse
Affiliation(s)
- Takeshi Matsuoka
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
48
|
Kira JI. Neuromyelitis optica and opticospinal multiple sclerosis: Mechanisms and pathogenesis. PATHOPHYSIOLOGY 2011; 18:69-79. [DOI: 10.1016/j.pathophys.2010.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 03/24/2010] [Accepted: 04/08/2010] [Indexed: 12/28/2022] Open
|
49
|
Zhu W, Zhang J, Zhang Z. Effects of fluoride on synaptic membrane fluidity and PSD-95 expression level in rat hippocampus. Biol Trace Elem Res 2011; 139:197-203. [PMID: 20217272 DOI: 10.1007/s12011-010-8654-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 02/12/2010] [Indexed: 11/30/2022]
Abstract
The objective of this study is to investigate the neurotoxicity of drinking water fluorosis on rat hippocampus. Just weaning male Sprague-Dawley rats were randomly divided into four groups and given 15, 30, and 60 mg/L NaF solution and distilled water, respectively, for 9 months. The fluidity of brain synaptic membrane and expression level of postsynaptic density 95 (PSD-95) were tested. Results showed that the fluidity of brain synaptic membrane decreased gradually with increasing of fluoride concentration, and it was significantly decreased (P < 0.05) in moderate-fluoride group compared with control group, and expression level of PSD-95 was significantly decreased (P < 0.01) in moderate-fluoride group when compared with that of control group. These results indicate that decrease of synaptic membrane fluidity and PSD-95 expression level may be the molecular basis of central nervous system damage caused by fluoride intoxication; PSD-95 in CA3 region of hippocampus is probably a target molecule for fluoride.
Collapse
Affiliation(s)
- Wenjing Zhu
- Institute of Ecology, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | | | | |
Collapse
|
50
|
Ponnambalam S, Alberghina M. Evolution of the VEGF-regulated vascular network from a neural guidance system. Mol Neurobiol 2011; 43:192-206. [PMID: 21271303 DOI: 10.1007/s12035-011-8167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/12/2011] [Indexed: 12/27/2022]
Abstract
The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF-VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson's disease, Alzheimer's disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.
Collapse
Affiliation(s)
- Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Leeds, UK.
| | | |
Collapse
|