1
|
Filippi M, Ghirelli A, Spinelli EG, Agosta F. A comprehensive update on neuroimaging endpoints in amyotrophic lateral sclerosis. Expert Rev Neurother 2025; 25:397-413. [PMID: 39985812 DOI: 10.1080/14737175.2025.2470324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION There are currently few treatments approved for amyotrophic lateral sclerosis (ALS). Additionally, there remains a significant unmet need for reliable, standardized biomarkers to assess endpoints in clinical trials. Magnetic resonance imaging (MRI)- and positron emission tomography (PET)-derived metrics could help in patient selection and stratification, shortening trial duration and reducing costs. AREAS COVERED This review focuses on the potential use of neuroimaging endpoints in the context of ALS therapeutic trials, providing insights on structural and functional neuroimaging, plexus and muscle alterations, glial involvement and neuroinflammation, envisioning how these surrogates of disease progression could be implemented in clinical trials. A PubMed search covering the past 15 years was performed. EXPERT OPINION Neuroimaging is essential in understanding ALS pathophysiology, aiding in disease progression tracking and evaluating therapeutic interventions. High costs, limited accessibility, lack of standardization, and patient tolerability limit their use in routine ALS care. Addressing these obstacles is essential for fully harnessing neuroimaging potential in improving diagnostics and treatment in ALS.
Collapse
Affiliation(s)
- Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alma Ghirelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
De Marchi F, Spinelli EG, Bendotti C. Neuroglia in neurodegeneration: Amyotrophic lateral sclerosis and frontotemporal dementia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:45-67. [PMID: 40148057 DOI: 10.1016/b978-0-443-19102-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases sharing significant pathologic and genetic overlap, leading to consider these diseases as a continuum in the spectrum of their pathologic features. Although FTD compromises only specific brain districts, while ALS involves both the nervous system and the skeletal muscles, several neurocentric mechanisms are in common between ALS and FTD. Also, recent research has revealed the significant involvement of nonneuronal cells, particularly glial cells such as astrocytes, oligodendrocytes, microglia, and peripheral immune cells, in disease pathology. This chapter aims to provide an extensive overview of the current understanding of the role of glia in the onset and advancement of ALS and FTD, highlighting the recent implications in terms of prognosis and future treatment options.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, Department of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Caterina Bendotti
- Laboratory of Neurobiology and Preclinical Therapeutics, ALS Center, Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy.
| |
Collapse
|
3
|
Doorduin J. Imaging neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:277-291. [PMID: 40122630 DOI: 10.1016/b978-0-443-19104-6.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Imaging can help us understand the role neuroglia plays in health and during the course of neurologic disorders. In vivo microscopy has had a great impact on our understanding of how neuroglia behaves during health and disease. While initially the technique was hindered by the limited penetration depth in brain tissue, recent advancements lead to increasing possibilities for imaging of deeper brain structures, even at super-resolution. Unfortunately, in vivo microscopy cannot be applied in a clinical setting and thus cannot be used to study neuroglia in patient populations. However, noninvasive imaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI) can. PET has provided valuable information on the involvement of neuroglia in neurologic disorders. To more specifically image microglia and astrocytes, many new PET biomarkers have been defined for which PET tracers are continuously developed, evaluated, and improved. A cell-type specific PET tracer with favorable imaging characteristics can have a huge impact on neuroglia research. While being less sensitive than PET, MRI is a more accessible imaging technique. Initially, only general neuroinflammation processes could be imaged with MRI, but newly developed methods and sequences allow for increasing cell-type specificity. Overall, while each imaging method comes with limitations, improvements are continuously made, all with the aim to truly understand the role that neuroglia play in health and disease.
Collapse
Affiliation(s)
- Janine Doorduin
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
5
|
Wei R, Wei P, Yuan H, Yi X, Aschner M, Jiang YM, Li SJ. Inflammation in Metal-Induced Neurological Disorders and Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:4459-4481. [PMID: 38206494 DOI: 10.1007/s12011-023-04041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Essential metals play critical roles in maintaining human health as they participate in various physiological activities. Nonetheless, both excessive accumulation and deficiency of these metals may result in neurotoxicity secondary to neuroinflammation and the activation of microglia and astrocytes. Activation of these cells can promote the release of pro-inflammatory cytokines. It is well known that neuroinflammation plays a critical role in metal-induced neurotoxicity as well as the development of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Initially seen as a defense mechanism, persistent inflammatory responses are now considered harmful. Astrocytes and microglia are key regulators of neuroinflammation in the central nervous system, and their excessive activation may induce sustained neuroinflammation. Therefore, in this review, we aim to emphasize the important role and molecular mechanisms underlying metal-induced neurotoxicity. Our objective is to raise the awareness on metal-induced neuroinflammation in neurological disorders. However, it is not only just neuroinflammation that different metals could induce; they can also cause harm to the nervous system through oxidative stress, apoptosis, and autophagy, to name a few. The primary pathophysiological mechanism by which these metals induce neurological disorders remains to be determined. In addition, given the various pathways through which individuals are exposed to metals, it is necessary to also consider the effects of co-exposure to multiple metals on neurological disorders.
Collapse
Affiliation(s)
- Ruokun Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Peiqi Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Haiyan Yuan
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Xiang Yi
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
Suri K, Ramesh M, Bhandari M, Gupta V, Kumar V, Govindaraju T, Murugan NA. Role of Amyloidogenic and Non-Amyloidogenic Protein Spaces in Neurodegenerative Diseases and their Mitigation Using Theranostic Agents. Chembiochem 2024; 25:e202400224. [PMID: 38668376 DOI: 10.1002/cbic.202400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Indexed: 06/15/2024]
Abstract
Neurodegenerative diseases (NDDs) refer to a complex heterogeneous group of diseases which are associated with the accumulation of amyloid fibrils or plaques in the brain leading to progressive loss of neuronal functions. Alzheimer's disease is one of the major NDD responsible for 60-80 % of all dementia cases. Currently, there are no curative or disease-reversing/modifying molecules for many of the NDDs except a few such as donepezil, rivastigmine, galantamine, carbidopa and levodopa which treat the disease-associated symptoms. Similarly, there are very few FDA-approved tracers such as flortaucipir (Tauvid) for tau fibril imaging and florbetaben (Neuraceq), flutemetamol (Vizamyl), and florbetapir (Amyvid) for amyloid imaging available for diagnosis. Recent advances in the cryogenic electron microscopy reported distinctly different microstructures for tau fibrils associated with different tauopathies highlighting the possibility to develop tauopathy-specific imaging agents and therapeutics. In addition, it is important to identify the proteins that are associated with disease development and progression to know about their 3D structure to develop various diagnostics, therapeutics and theranostic agents. The current article discusses in detail the disease-associated amyloid and non-amyloid proteins along with their structural insights. We comprehensively discussed various novel proteins associated with NDDs and their implications in disease pathology. In addition, we document various emerging chemical compounds developed for diagnosis and therapy of different NDDs with special emphasis on theranostic agents for better management of NDDs.
Collapse
Affiliation(s)
- Kapali Suri
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Mansi Bhandari
- Department of computer science and engineering, Jamia Hamdard University, Hamdard Nagar, New Delhi, Delhi, 110062
| | - Vishakha Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Virendra Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - N Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| |
Collapse
|
7
|
Costa-Pinto S, Gonçalves-Ribeiro J, Tedim-Moreira J, Socodato R, Relvas JB, Sebastião AM, Vaz SH. Communication defects with astroglia contribute to early impairments in the motor cortex plasticity of SOD1 G93A mice. Neurobiol Dis 2024; 193:106435. [PMID: 38336279 DOI: 10.1016/j.nbd.2024.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, involving the selective degeneration of cortical upper synapses in the primary motor cortex (M1). Excitotoxicity in ALS occurs due to an imbalance between excitation and inhibition, closely linked to the loss/gain of astrocytic function. Using the ALS SOD1G93A mice, we investigated the astrocytic contribution for the electrophysiological alterations observed in the M1 of SOD1G93A mice, throughout disease progression. Results showed that astrocytes are involved in synaptic dysfunction observed in presymptomatic SOD1G93A mice, since astrocytic glutamate transport currents are diminished and pharmacological inhibition of astrocytes only impaired long-term potentiation and basal transmission in wild-type mice. Proteomic analysis revealed major differences in neuronal transmission, metabolism, and immune system in upper synapses, confirming early communication deficits between neurons and astroglia. These results provide valuable insights into the early impact of upper synapses in ALS and the lack of supportive functions of cortical astrocytes, highlighting the possibility of manipulating astrocytes to improve synaptic function.
Collapse
Affiliation(s)
- Sara Costa-Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Joana Tedim-Moreira
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal.
| |
Collapse
|
8
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
9
|
Fontana IC, Kumar A, Okamura N, Nordberg A. Multitracer Approach to Understanding the Complexity of Reactive Astrogliosis in Alzheimer's Brains. ACS Chem Neurosci 2024; 15:328-336. [PMID: 38133820 PMCID: PMC10797624 DOI: 10.1021/acschemneuro.3c00646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
A monoamine oxidase B (MAO-B) selective positron emission tomography (PET) tracer [11C]-deuterium-l-deprenyl holds promise for imaging reactive astrogliosis in neurodegenerative diseases, such as Alzheimer's disease (AD). Two novel PET tracers ([11C]-BU99008 and [18F]-SMBT-1) have recently been developed to assess the complexity of reactive astrogliosis in the AD continuum. We have investigated the binding properties of SMBT-1, l-deprenyl, and BU99008 in AD and cognitively normal control (CN) brains. Competition binding assays with [3H]-l-deprenyl and [3H]-BU99008 versus unlabeled SMBT-1 in postmortem AD and CN temporal and frontal cortex brains demonstrated that SMBT-1 interacted with [3H]-deprenyl at a single binding site (nM range) and with [3H]-BU99008 at multiple binding sites (from nM to μM). Autoradiography studies on large frozen postmortem AD and CN hemisphere brain sections demonstrated that 1 μM SMBT-1 almost completely displaced the [3H]-l-deprenyl binding (>90%), while SMBT-1 only partly displaced the [3H]-BU99008 binding (50-60% displacement) in cortical regions. In conclusion, SMBT-1, l-deprenyl, and BU99008 interact at the same MAO-B binding site, while BU99008 shows an additional independent binding site in AD and CN brains. The high translational power of our studies in human AD and CN brains suggests that the multitracer approach with SMBT-1, l-deprenyl, and BU99008 could be useful for imaging reactive astrogliosis.
Collapse
Affiliation(s)
- Igor C. Fontana
- Division
of Clinical Geriatrics, Center for Alzheimer Research, Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 83 Stockholm, Sweden
| | - Amit Kumar
- Division
of Clinical Geriatrics, Center for Alzheimer Research, Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 83 Stockholm, Sweden
| | - Nobuyuki Okamura
- Department
of Pharmacology, Tohoku Medical and Pharmaceutical
University, Sendai 983-8536, Japan
| | - Agneta Nordberg
- Division
of Clinical Geriatrics, Center for Alzheimer Research, Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 83 Stockholm, Sweden
- Theme
Inflammation and Aging, Karolinska University
Hospital, S-141 57 Stockholm, Sweden
| |
Collapse
|
10
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Rodriguez-Vieitez E, Kumar A, Malarte ML, Ioannou K, Rocha FM, Chiotis K. Imaging Neuroinflammation: Quantification of Astrocytosis in a Multitracer PET Approach. Methods Mol Biol 2024; 2785:195-218. [PMID: 38427196 DOI: 10.1007/978-1-0716-3774-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The recent progress in the development of in vivo biomarkers is rapidly changing how neurodegenerative diseases are conceptualized and diagnosed and how clinical trials are designed today. Alzheimer's disease (AD) - the most common neurodegenerative disorder - is characterized by a complex neuropathology involving the deposition of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) of hyperphosphorylated tau proteins, accompanied by the activation of glial cells, i.e., astrocytes and microglia, and neuroinflammatory response, leading to neurodegeneration and cognitive dysfunction. An increasing diversity of positron emission tomography (PET) imaging radiotracers is available to selectively target the different pathophysiological processes of AD. Along with the success of Aβ PET and the more recent tau PET imaging, there is a great interest to develop PET tracers to image glial reactivity and neuroinflammation. While most research to date has focused on imaging microgliosis, there is an upsurge of interest in imaging reactive astrocytes in the AD continuum. There is increasing evidence that reactive astrocytes are morphologically and functionally heterogeneous, with different subtypes that express different markers and display various homeostatic or detrimental roles across disease stages. Therefore, multiple biomarkers are desirable to unravel the complex phenomenon of reactive astrocytosis. In the field of in vivo PET imaging in AD, the research concerning reactive astrocytes has predominantly focused on targeting monoamine oxidase B (MAO-B), most often using either 11C-deuterium-L-deprenyl (11C-DED) or 18F-SMBT-1 PET tracers. Additionally, imidazoline2 binding (I2BS) sites have been imaged using 11C-BU99008 PET. Recent studies in our group using 11C-DED PET imaging suggest that astrocytosis may be present from the early stages of disease development in AD. This chapter provides a detailed description of the practical approach used for the analysis of 11C-DED PET imaging data in a multitracer PET paradigm including 11C-Pittsburgh compound B (11C-PiB) and 18F-fluorodeoxyglucose (18F-FDG). The multitracer PET approach allows investigating the comparative regional and temporal patterns of in vivo brain astrocytosis, fibrillar Aβ deposition, glucose metabolism, and brain structural changes. It may also contribute to understanding the potential role of novel plasma biomarkers of reactive astrocytes, in particular the glial fibrillary acidic protein (GFAP), at different stages of disease progression. This chapter attempts to stimulate further research in the field, including the development of novel PET tracers that may allow visualizing different aspects of the complex astrocytic and microglial response in neurodegenerative diseases. Progress in the field will contribute to the incorporation of PET imaging of glial reactivity and neuroinflammation as biomarkers with clinical application and motivate further investigation on glial cells as therapeutic targets in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Elena Rodriguez-Vieitez
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Mona-Lisa Malarte
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Ioannou
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Filipa M Rocha
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
You J, Youssef MMM, Santos JR, Lee J, Park J. Microglia and Astrocytes in Amyotrophic Lateral Sclerosis: Disease-Associated States, Pathological Roles, and Therapeutic Potential. BIOLOGY 2023; 12:1307. [PMID: 37887017 PMCID: PMC10603852 DOI: 10.3390/biology12101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Microglial and astrocytic reactivity is a prominent feature of amyotrophic lateral sclerosis (ALS). Microglia and astrocytes have been increasingly appreciated to play pivotal roles in disease pathogenesis. These cells can adopt distinct states characterized by a specific molecular profile or function depending on the different contexts of development, health, aging, and disease. Accumulating evidence from ALS rodent and cell models has demonstrated neuroprotective and neurotoxic functions from microglia and astrocytes. In this review, we focused on the recent advancements of knowledge in microglial and astrocytic states and nomenclature, the landmark discoveries demonstrating a clear contribution of microglia and astrocytes to ALS pathogenesis, and novel therapeutic candidates leveraging these cells that are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Mohieldin M. M. Youssef
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Jhune Rizsan Santos
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
13
|
Chiotis K, Johansson C, Rodriguez-Vieitez E, Ashton NJ, Blennow K, Zetterberg H, Graff C, Nordberg A. Tracking reactive astrogliosis in autosomal dominant and sporadic Alzheimer's disease with multi-modal PET and plasma GFAP. Mol Neurodegener 2023; 18:60. [PMID: 37697307 PMCID: PMC10496408 DOI: 10.1186/s13024-023-00647-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Plasma assays for the detection of Alzheimer's disease neuropathological changes are receiving ever increasing interest. The concentration of plasma glial fibrillary acidic protein (GFAP) has been suggested as a potential marker of astrocytes or recently, amyloid-β burden, although this hypothesis remains unproven. We compared plasma GFAP levels with the astrocyte tracer 11C-Deuterium-L-Deprenyl (11C-DED) in a multi-modal PET design in participants with sporadic and Autosomal Dominant Alzheimer's disease. METHODS Twenty-four individuals from families with known Autosomal Dominant Alzheimer's Disease mutations (mutation carriers = 10; non-carriers = 14) and fifteen patients with sporadic Alzheimer's disease were included. The individuals underwent PET imaging with 11C-DED, 11C-PIB and 18F-FDG, as markers of reactive astrogliosis, amyloid-β deposition, and glucose metabolism, respectively, and plasma sampling for measuring GFAP concentrations. Twenty-one participants from the Autosomal Dominant Alzheimer's Disease group underwent follow-up plasma sampling and ten of these participants underwent follow-up PET imaging. RESULTS In mutation carriers, plasma GFAP levels and 11C-PIB binding increased, while 11C-DED binding and 18F-FDG uptake significantly decreased across the estimated years to symptom onset. Cross-sectionally, plasma GFAP demonstrated a negative correlation with 11C-DED binding in both mutation carriers and patients with sporadic disease. Plasma GFAP indicated cross-sectionally a significant positive correlation with 11C-PIB binding and a significant negative correlation with 18F-FDG in the whole sample. The longitudinal levels of 11C-DED binding showed a significant negative correlation with longitudinal plasma GFAP concentrations over the follow-up interval. CONCLUSIONS Plasma GFAP concentration and astrocyte 11C-DED brain binding levels followed divergent trajectories and may reflect different underlying processes. The strong negative association between plasma GFAP and 11C-DED binding in Autosomal Dominant and sporadic Alzheimer's disease brains may indicate that if both are markers of reactive astrogliosis, they may detect different states or subtypes of astrogliosis. Increased 11C-DED brain binding seems to be an earlier phenomenon in Alzheimer's disease progression than increased plasma GFAP concentration.
Collapse
Affiliation(s)
- Konstantinos Chiotis
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementia, Karolinska University Hospital-Solna, Solna, Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
Jamali AM, Kethamreddy M, Burkett BJ, Port JD, Pandey MK. PET and SPECT Imaging of ALS: An Educational Review. Mol Imaging 2023; 2023:5864391. [PMID: 37636591 PMCID: PMC10460279 DOI: 10.1155/2023/5864391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease leading to progressive motor degeneration and ultimately death. It is a complex disease that can take a significantly long time to be diagnosed, as other similar pathological conditions must be ruled out for a definite diagnosis of ALS. Noninvasive imaging of ALS has shed light on disease pathology and altered biochemistry in the ALS brain. Other than magnetic resonance imaging (MRI), two types of functional imaging, positron emission tomography (PET) and single photon emission computed tomography (SPECT), have provided valuable data about what happens in the brain of ALS patients compared to healthy controls. PET imaging has revealed a specific pattern of brain metabolism through [18F]FDG, while other radiotracers have uncovered neuroinflammation, changes in neuronal density, and protein aggregation. SPECT imaging has shown a general decrease in regional cerebral blood flow (rCBF) in ALS patients. This educational review summarizes the current state of ALS imaging with various PET and SPECT radiopharmaceuticals to better understand the pathophysiology of ALS.
Collapse
Affiliation(s)
| | | | | | - John D. Port
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
15
|
Calafatti M, Cocozza G, Limatola C, Garofalo S. Microglial crosstalk with astrocytes and immune cells in amyotrophic lateral sclerosis. Front Immunol 2023; 14:1223096. [PMID: 37564648 PMCID: PMC10410456 DOI: 10.3389/fimmu.2023.1223096] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
In recent years, biomedical research efforts aimed to unravel the mechanisms involved in motor neuron death that occurs in amyotrophic lateral sclerosis (ALS). While the main causes of disease progression were first sought in the motor neurons, more recent studies highlight the gliocentric theory demonstrating the pivotal role of microglia and astrocyte, but also of infiltrating immune cells, in the pathological processes that take place in the central nervous system microenvironment. From this point of view, microglia-astrocytes-lymphocytes crosstalk is fundamental to shape the microenvironment toward a pro-inflammatory one, enhancing neuronal damage. In this review, we dissect the current state-of-the-art knowledge of the microglial dialogue with other cell populations as one of the principal hallmarks of ALS progression. Particularly, we deeply investigate the microglia crosstalk with astrocytes and immune cells reporting in vitro and in vivo studies related to ALS mouse models and human patients. At last, we highlight the current experimental therapeutic approaches that aim to modulate microglial phenotype to revert the microenvironment, thus counteracting ALS progression.
Collapse
Affiliation(s)
- Matteo Calafatti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Istituto Pasteur, Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Fontana IC, Scarpa M, Malarte ML, Rocha FM, Ausellé-Bosch S, Bluma M, Bucci M, Chiotis K, Kumar A, Nordberg A. Astrocyte Signature in Alzheimer's Disease Continuum through a Multi-PET Tracer Imaging Perspective. Cells 2023; 12:1469. [PMID: 37296589 PMCID: PMC10253101 DOI: 10.3390/cells12111469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Reactive astrogliosis is an early event in the continuum of Alzheimer's disease (AD). Current advances in positron emission tomography (PET) imaging provide ways of assessing reactive astrogliosis in the living brain. In this review, we revisit clinical PET imaging and in vitro findings using the multi-tracer approach, and point out that reactive astrogliosis precedes the deposition of Aβ plaques, tau pathology, and neurodegeneration in AD. Furthermore, considering the current view of reactive astrogliosis heterogeneity-more than one subtype of astrocyte involved-in AD, we discuss how astrocytic body fluid biomarkers might fit into trajectories different from that of astrocytic PET imaging. Future research focusing on the development of innovative astrocytic PET radiotracers and fluid biomarkers may provide further insights into the heterogeneity of reactive astrogliosis and improve the detection of AD in its early stages.
Collapse
Affiliation(s)
- Igor C. Fontana
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Mona-Lisa Malarte
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Filipa M. Rocha
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Instituto de Ciência Biomédicas Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Sira Ausellé-Bosch
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Faculty of Health and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Marina Bluma
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Marco Bucci
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 141 57 Stockholm, Sweden
| |
Collapse
|
17
|
Valori CF, Sulmona C, Brambilla L, Rossi D. Astrocytes: Dissecting Their Diverse Roles in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2023; 12:1450. [PMID: 37296571 PMCID: PMC10252425 DOI: 10.3390/cells12111450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders often co-occurring in the same patient, a feature that suggests a common origin of the two diseases. Consistently, pathological inclusions of the same proteins as well as mutations in the same genes can be identified in both ALS/FTD. Although many studies have described several disrupted pathways within neurons, glial cells are also regarded as crucial pathogenetic contributors in ALS/FTD. Here, we focus our attention on astrocytes, a heterogenous population of glial cells that perform several functions for optimal central nervous system homeostasis. Firstly, we discuss how post-mortem material from ALS/FTD patients supports astrocyte dysfunction around three pillars: neuroinflammation, abnormal protein aggregation, and atrophy/degeneration. Furthermore, we summarize current attempts at monitoring astrocyte functions in living patients using either novel imaging strategies or soluble biomarkers. We then address how astrocyte pathology is recapitulated in animal and cellular models of ALS/FTD and how we used these models both to understand the molecular mechanisms driving glial dysfunction and as platforms for pre-clinical testing of therapeutics. Finally, we present the current clinical trials for ALS/FTD, restricting our discussion to treatments that modulate astrocyte functions, directly or indirectly.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72072 Tübingen, Germany
- Department of Neuropathology, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
18
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
19
|
Torres J, Costa I, Peixoto AF, Silva R, Sousa Lobo JM, Silva AC. Intranasal Lipid Nanoparticles Containing Bioactive Compounds Obtained from Marine Sources to Manage Neurodegenerative Diseases. Pharmaceuticals (Basel) 2023; 16:311. [PMID: 37259454 PMCID: PMC9966140 DOI: 10.3390/ph16020311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 01/22/2025] Open
Abstract
Marine sources contain several bioactive compounds with high therapeutic potential, such as remarkable antioxidant activity that can reduce oxidative stress related to the pathogenesis of neurodegenerative diseases. Indeed, there has been a growing interest in these natural sources, especially those resulting from the processing of marine organisms (i.e., marine bio-waste), to obtain natural antioxidants as an alternative to synthetic antioxidants in a sustainable approach to promote circularity by recovering and creating value from these bio-wastes. However, despite their expected potential to prevent, delay, or treat neurodegenerative diseases, antioxidant compounds may have difficulty reaching the brain due to the need to cross the blood-brain barrier (BBB). In this regard, alternative delivery systems administered by different routes have been proposed, including intranasal administration of lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), which have shown promising results. Intranasal administration shows several advantages, including the fact that molecules do not need to cross the BBB to reach the central nervous system (CNS), as they can be transported directly from the nasal cavity to the brain (i.e., nose-to-brain transport). The benefits of using SLN and NLC for intranasal delivery of natural bioactive compounds for the treatment of neurodegenerative diseases have shown relevant outcomes through in vitro and in vivo studies. Noteworthy, for bioactive compounds obtained from marine bio-waste, few studies have been reported, showing the open potential of this research area. This review updates the state of the art of using SLN and NLC to transport bioactive compounds from different sources, in particular, those obtained from marine bio-waste, and their potential application in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Joana Torres
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Inês Costa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-3131 Porto, Portugal
| | - Andreia F. Peixoto
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-3131 Porto, Portugal
| | - José Manuel Sousa Lobo
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Catarina Silva
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| |
Collapse
|
20
|
Mohamed MA, Zeng Z, Gennaro M, Lao-Kaim NP, Myers JFM, Calsolaro V, Femminella GD, Tyacke RJ, Martin-Bastida A, Gunn RN, Nutt DJ, Edison P, Piccini P, Roussakis AA. Astrogliosis in aging and Parkinson’s disease dementia: a new clinical study with 11C-BU99008 PET. Brain Commun 2022; 4:fcac199. [PMID: 36072646 PMCID: PMC9445175 DOI: 10.1093/braincomms/fcac199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/20/2022] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
The role of astrogliosis in the pathology of brain aging and neurodegenerative diseases has recently drawn great attention. Imidazoline-2 binding sites represent a possible target to map the distribution of reactive astrocytes. In this study, we use 11C-BU99008, an imidazoline-2 binding sites-specific PET radioligand, to image reactive astrocytes in vivo in healthy controls and patients with established Parkinson’s disease dementia. Eighteen healthy controls (age: 45–78 years) and six patients with Parkinson’s disease dementia (age: 64–77 years) had one 11C-BU99008 PET-CT scan with arterial input function. All subjects underwent one 3 T MRI brain scan to facilitate the analysis of the PET data and to capture individual cerebral atrophy. Regional 11C-BU99008 volumes of distribution were calculated for each subject by the two-tissue compartmental modelling. Positive correlations between 11C-BU99008 volumes of distribution values and age were found for all tested regions across the brain within healthy controls (P < 0.05); furthermore, multiple regression indicated that aging affects 11C-BU99008 volumes of distribution values in a region-specific manner. Independent samples t-test indicated that there was no significant group difference in 11C-BU99008 volumes of distribution values between Parkinson’s disease dementia (n = 6; mean age = 71.97 ± 4.66 years) and older healthy controls (n = 9; mean age = 71.90 ± 5.51 years). Our data set shows that astrogliosis is common with aging in a region-specific manner. However, in this set-up, 11C-BU99008 PET cannot differentiate patients with Parkinson’s disease dementia from healthy controls of similar age.
Collapse
Affiliation(s)
- Mohamed A Mohamed
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
| | - Zhou Zeng
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
- Xiangya Hospital of Central South University , Changsha, Hunan , P.R. China
| | - Marta Gennaro
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
| | - Nicholas P Lao-Kaim
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
| | - Jim F M Myers
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
| | - Valeria Calsolaro
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
| | - Grazia Daniela Femminella
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
- Department of Translational Medical Sciences, University of Naples Federico II , Naples , Italy
| | - Robin J Tyacke
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
| | - Antonio Martin-Bastida
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
- Department of Neurology and Neurosciences, Clinica Universidad de Navarra , Pamplona-Madrid , Spain
| | - Roger N Gunn
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
| | - David J Nutt
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
| | - Paola Piccini
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital , London , UK
| | | |
Collapse
|
21
|
Synaptic Effects of Palmitoylethanolamide in Neurodegenerative Disorders. Biomolecules 2022; 12:biom12081161. [PMID: 36009055 PMCID: PMC9405819 DOI: 10.3390/biom12081161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence strongly supports the key role of neuroinflammation in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Neuroinflammation may alter synaptic transmission contributing to the progression of neurodegeneration, as largely documented in animal models and in patients’ studies. In the last few years, palmitoylethanolamide (PEA), an endogenous lipid mediator, and its new composite, which is a formulation constituted of PEA and the well-recognized antioxidant flavonoid luteolin (Lut) subjected to an ultra-micronization process (co-ultraPEALut), has been identified as a potential therapeutic agent in different disorders by exerting potential beneficial effects on neurodegeneration and neuroinflammation by modulating synaptic transmission. In this review, we will show the potential therapeutic effects of PEA in animal models and in patients affected by neurodegenerative disorders.
Collapse
|
22
|
Harada R, Furumoto S, Kudo Y, Yanai K, Villemagne VL, Okamura N. Imaging of Reactive Astrogliosis by Positron Emission Tomography. Front Neurosci 2022; 16:807435. [PMID: 35210989 PMCID: PMC8862631 DOI: 10.3389/fnins.2022.807435] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Many neurodegenerative diseases are neuropathologically characterized by neuronal loss, gliosis, and the deposition of misfolded proteins such as β-amyloid (Aβ) plaques and tau tangles in Alzheimer’s disease (AD). In postmortem AD brains, reactive astrocytes and activated microglia are observed surrounding Aβ plaques and tau tangles. These activated glial cells secrete pro-inflammatory cytokines and reactive oxygen species, which may contribute to neurodegeneration. Therefore, in vivo imaging of glial response by positron emission tomography (PET) combined with Aβ and tau PET would provide new insights to better understand the disease process, as well as aid in the differential diagnosis, and monitoring glial response disease-specific therapeutics. There are two promising targets proposed for imaging reactive astrogliosis: monoamine oxidase-B (MAO-B) and imidazoline2 binding site (I2BS), which are predominantly expressed in the mitochondrial membranes of astrocytes and are upregulated in various neurodegenerative conditions. PET tracers targeting these two MAO-B and I2BS have been evaluated in humans. [18F]THK-5351, which was originally designed to target tau aggregates in AD, showed high affinity for MAO-B and clearly visualized reactive astrocytes in progressive supranuclear palsy (PSP). However, the lack of selectivity of [18F]THK-5351 binding to both MAO-B and tau, severely limits its clinical utility as a biomarker. Recently, [18F]SMBT-1 was developed as a selective and reversible MAO-B PET tracer via compound optimization of [18F]THK-5351. In this review, we summarize the strategy underlying molecular imaging of reactive astrogliosis and clinical studies using MAO-B and I2BS PET tracers.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Ryuichi Harada,
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Department of New Therapeutics Innovation for Alzheimer’s and Dementia, Institute of Development and Aging, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Victor L. Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Nobuyuki Okamura,
| |
Collapse
|
23
|
Liu Y, Jiang H, Qin X, Tian M, Zhang H. PET imaging of reactive astrocytes in neurological disorders. Eur J Nucl Med Mol Imaging 2021; 49:1275-1287. [PMID: 34873637 PMCID: PMC8921128 DOI: 10.1007/s00259-021-05640-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
The reactive astrocytes manifest molecular, structural, and functional remodeling in injury, infection, or diseases of the CNS, which play a critical role in the pathological mechanism of neurological diseases. A growing need exists for dependable approach to better characterize the activation of astrocyte in vivo. As an advanced molecular imaging technology, positron emission tomography (PET) has the potential for visualizing biological activities at the cellular levels. In the review, we summarized the PET visualization strategies for reactive astrocytes and discussed the applications of astrocyte PET imaging in neurological diseases. Future studies are needed to pay more attention to the development of specific imaging agents for astrocytes and further improve our exploration of reactive astrocytes in various diseases.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiyi Qin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China. .,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
25
|
Amor S, Nutma E, Marzin M, Puentes F. Imaging immunological processes from blood to brain in amyotrophic lateral sclerosis. Clin Exp Immunol 2021; 206:301-313. [PMID: 34510431 PMCID: PMC8561688 DOI: 10.1111/cei.13660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathology studies of amyotrophic lateral sclerosis (ALS) and animal models of ALS reveal a strong association between aberrant protein accumulation and motor neurone damage, as well as activated microglia and astrocytes. While the role of neuroinflammation in the pathology of ALS is unclear, imaging studies of the central nervous system (CNS) support the idea that innate immune activation occurs early in disease in both humans and rodent models of ALS. In addition, emerging studies also reveal changes in monocytes, macrophages and lymphocytes in peripheral blood as well as at the neuromuscular junction. To more clearly understand the association of neuroinflammation (innate and adaptive) with disease progression, the use of biomarkers and imaging modalities allow monitoring of immune parameters in the disease process. Such approaches are important for patient stratification, selection and inclusion in clinical trials, as well as to provide readouts of response to therapy. Here, we discuss the different imaging modalities, e.g. magnetic resonance imaging, magnetic resonance spectroscopy and positron emission tomography as well as other approaches, including biomarkers of inflammation in ALS, that aid the understanding of the underlying immune mechanisms associated with motor neurone degeneration in ALS.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Manuel Marzin
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
26
|
McKenna MC, Corcia P, Couratier P, Siah WF, Pradat PF, Bede P. Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging. Front Neurol 2021; 12:723450. [PMID: 34484106 PMCID: PMC8415268 DOI: 10.3389/fneur.2021.723450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023] Open
Abstract
Frontotemporal involvement has been extensively investigated in amyotrophic lateral sclerosis (ALS) but remains relatively poorly characterized in other motor neuron disease (MND) phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), post poliomyelitis syndrome (PPS), and hereditary spastic paraplegia (HSP). This review focuses on insights from structural, metabolic, and functional neuroimaging studies that have advanced our understanding of extra-motor disease burden in these phenotypes. The imaging literature is limited in the majority of these conditions and frontotemporal involvement has been primarily evaluated by neuropsychology and post mortem studies. Existing imaging studies reveal that frontotemporal degeneration can be readily detected in ALS and PLS, varying degree of frontotemporal pathology may be captured in PMA, SBMA, and HSP, SMA exhibits cerebral involvement without regional predilection, and there is limited evidence for cerebral changes in PPS. Our review confirms the heterogeneity extra-motor pathology across the spectrum of MNDs and highlights the role of neuroimaging in characterizing anatomical patterns of disease burden in vivo. Despite the contribution of neuroimaging to MND research, sample size limitations, inclusion bias, attrition rates in longitudinal studies, and methodological constraints need to be carefully considered. Frontotemporal involvement is a quintessential clinical facet of MND which has important implications for screening practices, individualized management strategies, participation in clinical trials, caregiver burden, and resource allocation. The academic relevance of imaging frontotemporal pathology in MND spans from the identification of genetic variants, through the ascertainment of presymptomatic changes to the design of future epidemiology studies.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Philippe Corcia
- Department of Neurology-Neurophysiology, CRMR ALS, Tours, France.,UMR 1253 iBrain, University of Tours, Tours, France.,LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France
| | - Philippe Couratier
- LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France.,ALS Centre, Limoges University Hospital (CHU de Limoges), Limoges, France
| | - We Fong Siah
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
27
|
De Marchi F, Munitic I, Amedei A, Berry JD, Feldman EL, Aronica E, Nardo G, Van Weehaeghe D, Niccolai E, Prtenjaca N, Sakowski SA, Bendotti C, Mazzini L. Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact. Neurosci Biobehav Rev 2021; 127:958-978. [PMID: 34153344 PMCID: PMC8428677 DOI: 10.1016/j.neubiorev.2021.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease. Despite decades of research and many new insights into disease biology over the 150 years since the disease was first described, causative pathogenic mechanisms in ALS remain poorly understood, especially in sporadic cases. Our understanding of the role of the immune system in ALS pathophysiology, however, is rapidly expanding. The aim of this manuscript is to summarize the recent advances regarding the immune system involvement in ALS, with particular attention to clinical translation. We focus on the potential pathophysiologic mechanism of the immune system in ALS, discussing local and systemic factors (blood, cerebrospinal fluid, and microbiota) that influence ALS onset and progression in animal models and people. We also explore the potential of Positron Emission Tomography to detect neuroinflammation in vivo, and discuss ongoing clinical trials of therapies targeting the immune system. With validation in human patients, new evidence in this emerging field will serve to identify novel therapeutic targets and provide realistic hope for personalized treatment strategies.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - James D Berry
- Sean M. Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Nikolina Prtenjaca
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy.
| |
Collapse
|
28
|
Pikatza-Menoio O, Elicegui A, Bengoetxea X, Naldaiz-Gastesi N, López de Munain A, Gerenu G, Gil-Bea FJ, Alonso-Martín S. The Skeletal Muscle Emerges as a New Disease Target in Amyotrophic Lateral Sclerosis. J Pers Med 2021; 11:671. [PMID: 34357138 PMCID: PMC8307751 DOI: 10.3390/jpm11070671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Oihane Pikatza-Menoio
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Amaia Elicegui
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Xabier Bengoetxea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
| | - Neia Naldaiz-Gastesi
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014 Donostia/San Sebastián, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV-EHU, 20014 Donostia/San Sebastián, Spain
| | - Gorka Gerenu
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Physiology, University of the Basque Country UPV-EHU, 48940 Leioa, Spain
| | - Francisco Javier Gil-Bea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Sonia Alonso-Martín
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| |
Collapse
|
29
|
Non-neuronal cells in amyotrophic lateral sclerosis - from pathogenesis to biomarkers. Nat Rev Neurol 2021; 17:333-348. [PMID: 33927394 DOI: 10.1038/s41582-021-00487-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/04/2023]
Abstract
The prevailing motor neuron-centric view of amyotrophic lateral sclerosis (ALS) pathogenesis could be an important factor in the failure to identify disease-modifying therapy for this neurodegenerative disorder. Non-neuronal cells have crucial homeostatic functions within the CNS and evidence of involvement of these cells in the pathophysiology of several neurodegenerative disorders, including ALS, is accumulating. Microglia and astrocytes, in crosstalk with peripheral immune cells, can exert both neuroprotective and adverse effects, resulting in a highly nuanced range of neuronal and non-neuronal cell interactions. This Review provides an overview of the diverse roles of non-neuronal cells in relation to the pathogenesis of ALS and the emerging potential of non-neuronal cell biomarkers to advance therapeutic development.
Collapse
|
30
|
Klenner MA, Pascali G, Fraser BH, Darwish TA. Kinetic isotope effects and synthetic strategies for deuterated carbon-11 and fluorine-18 labelled PET radiopharmaceuticals. Nucl Med Biol 2021; 96-97:112-147. [PMID: 33892374 DOI: 10.1016/j.nucmedbio.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
The deuterium labelling of pharmaceuticals is a useful strategy for altering pharmacokinetic properties, particularly for improving metabolic resistance. The pharmacological effects of such metabolites are often assumed to be negligible during standard drug discovery and are factored in later at the clinical phases of development, where the risks and benefits of the treatment and side-effects can be wholly assessed. This paradigm does not translate to the discovery of radiopharmaceuticals, however, as the confounding effects of radiometabolites can inevitably show in preliminary positron emission tomography (PET) scans and thus complicate interpretation. Consequently, the formation of radiometabolites is crucial to take into consideration, compared to non-radioactive metabolites, and the application of deuterium labelling is a particularly attractive approach to minimise radiometabolite formation. Herein, we provide a comprehensive overview of the deuterated carbon-11 and fluorine-18 radiopharmaceuticals employed in PET imaging experiments. Specifically, we explore six categories of deuterated radiopharmaceuticals used to investigate the activities of monoamine oxygenase (MAO), choline, translocator protein (TSPO), vesicular monoamine transporter 2 (VMAT2), neurotransmission and the diagnosis of Alzheimer's disease; from which we derive four prominent deuteration strategies giving rise to a kinetic isotope effect (KIE) for reducing the rate of metabolism. Synthetic approaches for over thirty of these deuterated radiopharmaceuticals are discussed from the perspective of deuterium and radioisotope incorporation, alongside an evaluation of the deuterium labelling and radiolabelling efficacies across these independent studies. Clinical and manufacturing implications are also discussed to provide a more comprehensive overview of how deuterated radiopharmaceuticals may be introduced to routine practice.
Collapse
Affiliation(s)
- Mitchell A Klenner
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, NSW 2170, Australia.
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Prince of Wales Hospital, Randwick, NSW 2031, Australia; School of Chemistry, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Benjamin H Fraser
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Tamim A Darwish
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| |
Collapse
|
31
|
Narayanaswami V, Tong J, Schifani C, Bloomfield PM, Dahl K, Vasdev N. Preclinical Evaluation of TSPO and MAO-B PET Radiotracers in an LPS Model of Neuroinflammation. PET Clin 2021; 16:233-247. [PMID: 33648665 DOI: 10.1016/j.cpet.2020.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Discovery of novel PET radiotracers targeting neuroinflammation (microglia and astrocytes) is actively pursued. Employing a lipopolysaccharide (LPS) rat model, this longitudinal study evaluated the translocator protein 18-kDa radiotracer [18F]FEPPA (primarily microglia) and monoamine oxidase B radiotracers [11C]L-deprenyl and [11C]SL25.1188 (astrocytes preferred). Increased [18F]FEPPA binding peaked at 1 week in LPS-injected striatum whereas increased lazabemide-sensitive [11C]L-deprenyl binding developed later. No increase in radiotracer uptake was observed for [11C]SL25.1188. The unilateral intrastriatal LPS rat model may serve as a useful tool for benchmarking PET tracers targeted toward distinct phases of neuroinflammatory reactions involving both microglia and astrocytes.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 270, Toronto, Ontario M5T 1R8, Canada
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 339, Toronto, Ontario M5T 1R8, Canada
| | - Christin Schifani
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 270, Toronto, Ontario M5T 1R8, Canada
| | - Peter M Bloomfield
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room B26A, Toronto, Ontario M5T 1R8, Canada
| | - Kenneth Dahl
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room B02, Toronto, Ontario M5T 1R8, Canada
| | - Neil Vasdev
- Department of Psychiatry, Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Room PET G2, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
32
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
33
|
Sarkar S, Biswas SC. Astrocyte subtype-specific approach to Alzheimer's disease treatment. Neurochem Int 2021; 145:104956. [PMID: 33503465 DOI: 10.1016/j.neuint.2021.104956] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes respond to any pathological condition in the central nervous system (CNS) including Alzheimer's disease (AD), and this response is called astrocyte reactivity. Astrocyte reaction to a CNS insult is a highly heterogeneous phenomenon in which the astrocytes undergo a set of morphological, molecular and functional changes with a characteristic secretome profile. Such astrocytes are termed as 'reactive astrocytes'. Controversies regarding the reactive astrocytes abound. Recently, a continuum of reactive astrocyte profiles with distinct transcriptional states has been identified. Among them, disease-associated astrocytes (DAA) were uniquely present in AD mice and expressed a signature set of genes implicated in complement cascade, endocytosis and aging. Earlier, two stimulus-specific reactive astrocyte subtypes with their unique transcriptomic signatures were identified using mouse models of neuroinflammation and ischemia and termed as A1 astrocytes (detrimental) and A2 astrocytes (beneficial) respectively. Interestingly, although most of the A1 signature genes were also detected in DAA, as opposed to A2 astrocyte signatures, some of the A1 specific genes were expressed in other astrocyte subtypes, indicating that these nomenclature-based signatures are not very specific. In this review, we elaborate the disparate functions and cytokine profiles of reactive astrocyte subtypes in AD and tried to distinguish them by designating neurotoxic astrocytes as A1-like and neuroprotective ones as A2-like without directly referring to the A1/A2 original nomenclature. We have also focused on the dual nature from a functional perspective of some cytokines depending on AD-stage, highlighting a number of them as major candidates in AD therapy. Therefore, we suggest that promoting subtype-specific beneficial roles, inhibiting subtype-specific detrimental roles or targeting subtype-specific cytokines constitute a novel therapeutic approach to AD treatment.
Collapse
Affiliation(s)
- Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India.
| |
Collapse
|
34
|
Villemagne VL, Barkhof F, Garibotto V, Landau SM, Nordberg A, van Berckel BNM. Molecular Imaging Approaches in Dementia. Radiology 2021; 298:517-530. [PMID: 33464184 DOI: 10.1148/radiol.2020200028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increasing prevalence of dementia worldwide places a high demand on healthcare providers to perform a diagnostic work-up in relatively early stages of the disease, given that the pathologic process usually begins decades before symptoms are evident. Structural imaging is recommended to rule out other disorders and can only provide diagnosis in a late stage with limited specificity. Where PET imaging previously focused on the spatial pattern of hypometabolism, the past decade has seen the development of novel tracers to demonstrate characteristic protein abnormalities. Molecular imaging using PET/SPECT is able to show amyloid and tau deposition in Alzheimer disease and dopamine depletion in parkinsonian disorders starting decades before symptom onset. Novel tracers for neuroinflammation and synaptic density are being developed to further unravel the molecular pathologic characteristics of dementia disorders. In this article, the authors review the current status of established and emerging PET tracers in a diagnostic setting and also their value as prognostic markers in research studies and outcome measures for clinical trials in Alzheimer disease.
Collapse
Affiliation(s)
- Victor L Villemagne
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Frederik Barkhof
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Valentina Garibotto
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Susan M Landau
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Agneta Nordberg
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| | - Bart N M van Berckel
- From the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pa (V.L.V.); Department of Medicine, the University of Melbourne, Melbourne, Australia (V.L.V.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands (F.B., B.N.M.v.B.); UCL institutes of Neurology and Healthcare Engineering, London, England (F.B.); Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University, Geneva, Switzerland (V.G.); Helen Wills Neuroscience Institute, University of California, Berkeley, Calif (S.M.L.); Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, Calif (S.M.L.); Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden (A.N.); and Theme Aging, Karolinska University Hospital, Stockholm, Sweden (A.N.)
| |
Collapse
|
35
|
|
36
|
Astroglial tracer BU99008 detects multiple binding sites in Alzheimer's disease brain. Mol Psychiatry 2021; 26:5833-5847. [PMID: 33888872 PMCID: PMC8758481 DOI: 10.1038/s41380-021-01101-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022]
Abstract
With reactive astrogliosis being established as one of the hallmarks of Alzheimer's disease (AD), there is high interest in developing novel positron emission tomography (PET) tracers to detect early astrocyte reactivity. BU99008, a novel astrocytic PET ligand targeting imidazoline-2 binding sites (I2BS) on astrocytes, might be a suitable candidate. Here we demonstrate for the first time that BU99008 could visualise reactive astrogliosis in postmortem AD brains and propose a multiple binding site [Super-high-affinity (SH), High-affinity (HA) and Low-affinity (LA)] model for BU99008, I2BS specific ligands (2-BFI and BU224) and deprenyl in AD and control (CN) brains. The proportion (%) and affinities of these sites varied significantly between the BU99008, 2-BFI, BU224 and deprenyl in AD and CN brains. Regional binding studies demonstrated significantly higher 3H-BU99008 binding in AD brain regions compared to CN. Comparative autoradiography studies reinforced these findings, showing higher specific binding for 3H-BU99008 than 3H-Deprenyl in sporadic AD brain compared to CN, implying that they might have different targets. The data clearly shows that BU99008 could detect I2BS expressing reactive astrocytes with good selectivity and specificity and hence be a potential attractive clinical astrocytic PET tracer for gaining further insight into the role of reactive astrogliosis in AD.
Collapse
|
37
|
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 2020; 9:42. [PMID: 33239064 PMCID: PMC7689983 DOI: 10.1186/s40035-020-00221-2] [Citation(s) in RCA: 1358] [Impact Index Per Article: 271.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is associated with neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Microglia and astrocytes are key regulators of inflammatory responses in the central nervous system. The activation of microglia and astrocytes is heterogeneous and traditionally categorized as neurotoxic (M1-phenotype microglia and A1-phenotype astrocytes) or neuroprotective (M2-phenotype microglia and A2-phenotype astrocytes). However, this dichotomized classification may not reflect the various phenotypes of microglia and astrocytes. The relationship between these activated glial cells is also very complicated, and the phenotypic distribution can change, based on the progression of neurodegenerative diseases. A better understanding of the roles of microglia and astrocytes in neurodegenerative diseases is essential for developing effective therapies. In this review, we discuss the roles of inflammatory response in neurodegenerative diseases, focusing on the contributions of microglia and astrocytes and their relationship. In addition, we discuss biomarkers to measure neuroinflammation and studies on therapeutic drugs that can modulate neuroinflammation.
Collapse
Affiliation(s)
- Hyuk Sung Kwon
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea.
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Newly Synthesized Fluorinated Cinnamylpiperazines Possessing Low In Vitro MAO-B Binding. Molecules 2020; 25:molecules25214941. [PMID: 33114548 PMCID: PMC7663645 DOI: 10.3390/molecules25214941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Herein, we report on the synthesis and pharmacological evaluation of ten novel fluorinated cinnamylpiperazines as potential monoamine oxidase B (MAO-B) ligands. The designed derivatives consist of either cinnamyl or 2-fluorocinnamyl moieties connected to 2-fluoropyridylpiperazines. The three-step synthesis starting from commercially available piperazine afforded the final products in overall yields between 9% and 29%. An in vitro competitive binding assay using l-[3H]Deprenyl as radioligand was developed and the MAO-B binding affinities of the synthesized derivatives were assessed. Docking studies revealed that the compounds 8–17 were stabilized in both MAO-B entrance and substrate cavities, thus resembling the binding pose of l-Deprenyl. Although our results revealed that the novel fluorinated cinnamylpiperazines 8–17 do not possess sufficient MAO-B binding affinity to be eligible as positron emission tomography (PET) agents, the herein developed binding assay and the insights gained within our docking studies will certainly pave the way for further development of MAO-B ligands.
Collapse
|
39
|
Vilaplana E, Rodriguez-Vieitez E, Ferreira D, Montal V, Almkvist O, Wall A, Lleó A, Westman E, Graff C, Fortea J, Nordberg A. Cortical microstructural correlates of astrocytosis in autosomal-dominant Alzheimer disease. Neurology 2020; 94:e2026-e2036. [PMID: 32291295 PMCID: PMC7282881 DOI: 10.1212/wnl.0000000000009405] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/18/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To study the macrostructural and microstructural MRI correlates of brain astrocytosis, measured with 11C-deuterium-L-deprenyl (11C-DED)-PET, in familial autosomal-dominant Alzheimer disease (ADAD). METHODS The total sample (n = 31) comprised ADAD mutation carriers (n = 10 presymptomatic, 39.2 ± 10.6 years old; n = 3 symptomatic, 55.5 ± 2.0 years old) and noncarriers (n = 18, 44.0 ± 13.7 years old) belonging to families with mutations in either the presenilin-1 or amyloid precursor protein genes. All participants underwent structural and diffusion MRI and neuropsychological assessment, and 20 participants (6 presymptomatic and 3 symptomatic mutation carriers and 11 noncarriers) also underwent 11C-DED-PET. RESULTS Vertex-wise interaction analyses revealed a differential relationship between carriers and noncarriers in the association between 11C-DED binding and estimated years to onset (EYO) and between cortical mean diffusivity (MD) and EYO. These differences were due to higher 11C-DED binding in presymptomatic carriers, with lower binding in symptomatic carriers compared to noncarriers, and to lower cortical MD in presymptomatic carriers, with higher MD in symptomatic carriers compared to noncarriers. Using a vertex-wise local correlation approach, 11C-DED binding was negatively correlated with cortical MD and positively correlated with cortical thickness. CONCLUSIONS Our proof-of-concept study is the first to show that microstructural and macrostructural changes can reflect underlying neuroinflammatory mechanisms in early stages of Alzheimer disease (AD). The findings support a role for neuroinflammation in AD pathogenesis, with potential implications for the correct interpretation of neuroimaging biomarkers as surrogate endpoints in clinical trials.
Collapse
Affiliation(s)
- Eduard Vilaplana
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Elena Rodriguez-Vieitez
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Daniel Ferreira
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Victor Montal
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Ove Almkvist
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Anders Wall
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Alberto Lleó
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Eric Westman
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Caroline Graff
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Juan Fortea
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Agneta Nordberg
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
40
|
de Majo M, Koontz M, Rowitch D, Ullian EM. An update on human astrocytes and their role in development and disease. Glia 2020; 68:685-704. [PMID: 31926040 DOI: 10.1002/glia.23771] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Human astrocytes provide trophic as well as structural support to the surrounding brain cells. Furthermore, they have been implicated in many physiological processes important for central nervous system function. Traditionally astrocytes have been considered to be a homogeneous class of cells, however, it has increasingly become more evident that astrocytes can have very different characteristics in different regions of the brain, or even within the same region. In this review we will discuss the features of human astrocytes, their heterogeneity, and their generation during neurodevelopment and the extraordinary progress that has been made to model these fascinating cells in vitro, mainly from induced pluripotent stem cells. Astrocytes' role in disease will also be discussed with a particular focus on their role in neurodegenerative disorders. As outlined here, astrocytes are important for the homeostasis of the central nervous system and understanding their regional specificity is a priority to elucidate the complexity of the human brain.
Collapse
Affiliation(s)
- Martina de Majo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Mark Koontz
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - David Rowitch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California.,Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
41
|
Bede P, Chipika RH, Finegan E, Li Hi Shing S, Doherty MA, Hengeveld JC, Vajda A, Hutchinson S, Donaghy C, McLaughlin RL, Hardiman O. Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. NEUROIMAGE-CLINICAL 2019; 24:102054. [PMID: 31711033 PMCID: PMC6849418 DOI: 10.1016/j.nicl.2019.102054] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023]
Abstract
Computational neuroimaging captures focal brainstem pathology in motor neuron diseases in contrast to both healthy- and disease controls. ALS patients exhibit progressive medulla oblongata, pontine and mesencephalic volume loss over time. Brainstem atrophy in ALS and PLS is dominated by medulla oblongata volume reductions. Vertex analyses of ALS patients reveal flattening of the medullary pyramids bilaterally. Morphometric analyses in ALS detect density reductions in the mesencephalic crura consistent with corticospinal tract degeneration.
Background Brainstem pathology is a hallmark feature of ALS, yet most imaging studies focus on cortical grey matter alterations and internal capsule white matter pathology. Brainstem imaging in ALS provides a unique opportunity to appraise descending motor tract degeneration and bulbar lower motor neuron involvement. Methods A prospective longitudinal imaging study has been undertaken with 100 patients with ALS, 33 patients with PLS, 30 patients with FTD and 100 healthy controls. Volumetric, vertex and morphometric analyses were conducted correcting for demographic factors to characterise disease-specific patterns of brainstem pathology. Using a Bayesian segmentation algorithm, the brainstem was segmented into the medulla, pons and mesencephalon to measure regional volume reductions, shape analyses were performed to ascertain the atrophy profile of each study group and region-of-interest morphometry was used to evaluate focal density alterations. Results ALS and PLS patients exhibit considerable brainstem atrophy compared to both disease- and healthy controls. Volume reductions in ALS and PLS are dominated by medulla oblongata pathology, but pontine atrophy can also be detected. In ALS, vertex analyses confirm the flattening of the medullary pyramids bilaterally in comparison to healthy controls and widespread pontine shape deformations in contrast to PLS. The ALS cohort exhibit bilateral density reductions in the mesencephalic crura in contrast to healthy controls, central pontine atrophy compared to disease controls, peri-aqueduct mesencephalic and posterior pontine changes in comparison to PLS patients. Conclus ions: Computational brainstem imaging captures the degeneration of both white and grey matter components in ALS. Our longitudinal data indicate progressive brainstem atrophy over time, underlining the biomarker potential of quantitative brainstem measures in ALS. At a time when a multitude of clinical trials are underway worldwide, there is an unprecedented need for accurate biomarkers to monitor disease progression and detect response to therapy. Brainstem imaging is a promising addition to candidate biomarkers of ALS and PLS.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Siobhan Hutchinson
- Department of Neurology, St James's Hospital, James's St, Ushers, Dublin 8 D08 NHY1, Ireland
| | - Colette Donaghy
- Department of Neurology, Western Health & Social Care Trust, Belfast, UK
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
42
|
Abstract
Motor neuron disorders are highly debilitating and mostly fatal conditions for which only limited therapeutic options are available. To overcome this limitation and develop more effective therapeutic strategies, it is critical to discover the pathogenic mechanisms that trigger and sustain motor neuron degeneration with the greatest accuracy and detail. In the case of Amyotrophic Lateral Sclerosis (ALS), several genes have been associated with familial forms of the disease, whilst the vast majority of cases develop sporadically and no defined cause can be held responsible. On the contrary, the huge majority of Spinal Muscular Atrophy (SMA) occurrences are caused by loss-of-function mutations in a single gene, SMN1. Although the typical hallmark of both diseases is the loss of motor neurons, there is increasing awareness that pathological lesions are also present in the neighbouring glia, whose dysfunction clearly contributes to generating a toxic environment in the central nervous system. Here, ALS and SMA are sequentially presented, each disease section having a brief introduction, followed by a focussed discussion on the role of the astrocytes in the disease pathogenesis. Such a dissertation is substantiated by the findings that built awareness on the glial involvement and how the glial-neuronal interplay is perturbed, along with the appraisal of this new cellular site for possible therapeutic intervention.
Collapse
|
43
|
Prospects and challenges of imaging neuroinflammation beyond TSPO in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2019; 46:2831-2847. [PMID: 31396666 PMCID: PMC6879435 DOI: 10.1007/s00259-019-04462-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation, as defined by the activation of microglia and astrocytes, has emerged in the last years as a key element of the pathogenesis of neurodegenerative diseases based on genetic findings and preclinical and human studies. This has raised the need for new methodologies to assess and follow glial activation in patients, prompting the development of PET ligands for molecular imaging of glial cells and novel structural MRI and DTI tools leading to a multimodal approach. The present review describes the recent advancements in microglia and astrocyte biology in the context of health, ageing, and Alzheimer's disease, the most common dementia worldwide. The review further delves in molecular imaging discussing the challenges associated with past and present targets, including conflicting findings, and finally, presenting novel methodologies currently explored to improve our in vivo knowledge of the neuroinflammatory patterns in Alzheimer's disease. With glial cell activation as a potential therapeutic target in neurodegenerative diseases, the translational research between cell biologists, chemists, physicists, radiologists, and neurologists should be strengthened.
Collapse
|
44
|
Kreimerman I, Reyes AL, Paolino A, Pardo T, Porcal W, Ibarra M, Oliver P, Savio E, Engler H. Biological Assessment of a 18F-Labeled Sulforhodamine 101 in a Mouse Model of Alzheimer's Disease as a Potential Astrocytosis Marker. Front Neurosci 2019; 13:734. [PMID: 31379487 PMCID: PMC6646682 DOI: 10.3389/fnins.2019.00734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases have mainly been associated with neuronal death. Recent investigations have shown that astroglia may modulate neuroinflammation in the early and late stages of the disease. [11C]Deuterodeprenyl ([11C]DED) is a tracer that has been used for reactive astrocyte detection in Alzheimer’s disease, Creutzfeldt–Jakob disease and amyotrophic lateral sclerosis, among others, with some limitations. To develop a new radiotracer for detecting astrocytosis and overcoming associated difficulties, we recently reported the synthesis of a sulfonamide derivative of Sulforhodamine 101 (SR101), labeled with 18F, namely SR101 N-(3-[18F]Fluoropropyl) sulfonamide ([18F]2B-SRF101). The red fluorescent dye SR101 has been used as a specific marker of astroglia in the neocortex of rodents using in vivo models. In the present work we performed a biological characterisation of the new tracer including biodistribution and micro-PET/computed tomography (CT) images. PET/CT studies with [11C]DED were also done to compare with [18F]2B-SRF101 in order to assess its potential as an astrocyte marker. Biodistribution studies with [18F]2B-SRF101 were carried out in C57BL6J black and transgenic (3xTg) mice. A hepatointestinal metabolization as well as the pharmacokinetic profile were determined, showing appropriate characteristics to become a PET diagnostic agent. Dynamic PET/CT studies were carried out with [18F]2B-SRF101 and [11C]DED to evaluate the distribution of both tracers in the brain. A significant difference in [18F]2B-SRF101 uptake was especially observed in the cortex and hippocampus, and it was higher in 3xTg mice than it was in the control group. These results suggested that [18F]2B-SRF101 is a promising candidate for more extensive evaluation as an astrocyte tracer. The difference observed for [18F]2B-SRF101 was not found in the case of [11C]DED. The comparative studies between [18F]2B-SRF101 and [11C]DED suggest that both tracers have different roles as astrocytosis markers in this animal model, and could provide different and complementary information at the same time. In this way, by means of a multitracer approach, useful information could be obtained for the staging of the disease.
Collapse
Affiliation(s)
- Ingrid Kreimerman
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Ana Laura Reyes
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Andrea Paolino
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Tania Pardo
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Williams Porcal
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay.,Department of Organic Chemistry, Faculty of Chemistry, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Manuel Ibarra
- Pharmaceutical Sciences Department, Faculty of Chemistry, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Patricia Oliver
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Henry Engler
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| |
Collapse
|
45
|
Oksanen M, Lehtonen S, Jaronen M, Goldsteins G, Hämäläinen RH, Koistinaho J. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci 2019; 76:2739-2760. [PMID: 31016348 PMCID: PMC6588647 DOI: 10.1007/s00018-019-03111-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Astrocytes are the most abundant cell type in the brain. They were long considered only as passive support for neuronal cells. However, recent data have revealed many active roles for these cells both in maintenance of the normal physiological homeostasis in the brain as well as in neurodegeneration and disease. Moreover, human astrocytes have been found to be much more complex than their rodent counterparts, and to date, astrocytes are known to actively participate in a multitude of processes such as neurotransmitter uptake and recycling, gliotransmitter release, neuroenergetics, inflammation, modulation of synaptic activity, ionic balance, maintenance of the blood-brain barrier, and many other crucial functions of the brain. This review focuses on the role of astrocytes in human neurodegenerative disease and the potential of the novel stem cell-based platforms in modeling astrocytic functions in health and in disease.
Collapse
Affiliation(s)
- Minna Oksanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sarka Lehtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, PO. Box 63, 00290, Helsinki, Finland
| | - Merja Jaronen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Gundars Goldsteins
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, PO. Box 63, 00290, Helsinki, Finland.
| |
Collapse
|
46
|
Perani D, Iaccarino L, Lammertsma AA, Windhorst AD, Edison P, Boellaard R, Hansson O, Nordberg A, Jacobs AH. A new perspective for advanced positron emission tomography-based molecular imaging in neurodegenerative proteinopathies. Alzheimers Dement 2019; 15:1081-1103. [PMID: 31230910 DOI: 10.1016/j.jalz.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Recent studies in neurodegenerative conditions have increasingly highlighted that the same neuropathology can trigger different clinical phenotypes or, vice-versa, that similar phenotypes can be triggered by different neuropathologies. This evidence has called for the adoption of a pathology spectrum-based approach to study neurodegenerative proteinopathies. These conditions share brain deposition of abnormal protein aggregates, leading to aberrant biochemical, metabolic, functional, and structural changes. Positron emission tomography (PET) is a well-recognized and unique tool for the in vivo assessment of brain neuropathology, and novel PET techniques are emerging for the study of specific protein species. Today, key applications of PET range from early research and clinical diagnostic tools to their use in clinical trials for both participants screening and outcome evaluation. This position article critically reviews the role of distinct PET molecular tracers for different neurodegenerative proteinopathies, highlighting their strengths, weaknesses, and opportunities, with special emphasis on methodological challenges and future applications.
Collapse
Affiliation(s)
- Daniela Perani
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Iaccarino
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Edison
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK; Neurology Imaging Unit, Imperial College London, London, UK
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany.
| | | |
Collapse
|
47
|
Rajagopalan V, Pioro EP. Longitudinal 18F-FDG PET and MRI Reveal Evolving Imaging Pathology That Corresponds to Disease Progression in a Patient With ALS-FTD. Front Neurol 2019; 10:234. [PMID: 30941090 PMCID: PMC6433744 DOI: 10.3389/fneur.2019.00234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Single time point positron emission tomography (PET) studies of patients with amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD), have demonstrated hypometabolism or hypermetabolism in certain brain regions. To determine whether longitudinal (at baseline and 20.4 months later) PET and magnetic resonance imaging (MRI) reveal evolving brain imaging pathology corresponding to clinical progression in a patient with ALS-FTD, cerebral glucose metabolic rate, cortical thickness (CT) and cortical area (CA) were obtained and symmetric percent change (SPC) for each calculated. The patient had worsening symptoms and signs of bulbar-onset upper motor neuron-predominant ALS as well as language and behavioral dysfunction. At baseline, minimally decreased ALSFRS-R (42/48) reflecting bulbar dysfunction was observed, along with language and executive function difficulties. At follow-up, bulbar and limb function rapidly declined as revealed by lower ALSFRS-R (27/48) and worsening language and cognitive function. PET revealed either hyper- and hypo-metabolic changes in several brain regions, especially in the left hemisphere. Marked clinical decline was accompanied by worsening cerebral and subcortical hyper and hypo-metabolism along with CT changes in regions known to degenerate in the primary progressive aphasia (PPA) form of ALS-FTD. Our case report demonstrates the progressive functional and structural neuroimaging abnormalities underlying clinical motor and neurocognitive deficits evolving in a patient with bulbar-onset ALS-FTD. Correlating neurological and neurocognitive decline with PET and MRI neuroimaging measures can provide better insights into pathophysiological mechanisms of ALS and ALS-FTD.
Collapse
Affiliation(s)
- Venkateswaran Rajagopalan
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad, India.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Erik P Pioro
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
48
|
Chew S, Atassi N. Positron Emission Tomography Molecular Imaging Biomarkers for Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:135. [PMID: 30881332 PMCID: PMC6405430 DOI: 10.3389/fneur.2019.00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with limited treatment options. Despite decades of therapeutic development, only two modestly efficacious disease-modifying drugs-riluzole and edaravone-are available to ALS patients. Biomarkers that can facilitate ALS diagnosis, aid in prognosis, and measure drug pharmacodynamics are needed to accelerate therapeutic development for patients with ALS. Positron emission tomography (PET) imaging has promise as a biomarker for ALS because it permits visualization of central nervous system (CNS) pathology in individuals living with ALS. The availability of PET radioligands that target a variety of potential pathophysiological mechanisms-including cerebral metabolism, neuroinflammation, neuronal dysfunction, and oxidative stress-has enabled dynamic interrogation of molecular changes in ALS, in both natural history studies and human clinical trials. PET imaging has potential as a diagnostic biomarker that can establish upper motor neuron (UMN) pathology in ALS patients without overt UMN symptoms, as a prognostic biomarker that might help stratify patients for clinical trials, and as a pharmacodynamic biomarker that measures the biological effect of investigational drugs in the brain and spinal cord. In this Review, we discuss progress made with 30 years of PET imaging studies in ALS and consider future research needed to establish PET imaging biomarkers for ALS therapeutic development.
Collapse
Affiliation(s)
- Sheena Chew
- Department of Neurology, Harvard Medical School, Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, United States
| | - Nazem Atassi
- Department of Neurology, Harvard Medical School, Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
49
|
Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte Biomarkers in Alzheimer's Disease. Trends Mol Med 2019; 25:77-95. [PMID: 30611668 DOI: 10.1016/j.molmed.2018.11.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
Abstract
Astrocytic contributions to Alzheimer's disease (AD) progression were, until recently, largely overlooked. Astrocytes are integral to normal brain function and astrocyte reactivity is an early feature of AD, potentially providing a promising target for preclinical diagnosis and treatment. Several in vivo AD biomarkers already exist, but presently there is a paucity of specific and sensitive in vivo astrocyte biomarkers that can accurately measure preclinical AD. Measuring monoamine oxidase-B with neuroimaging and glial fibrillary acidic protein from bodily fluids are biomarkers that are currently available. Developing novel, more specific, and sensitive astrocyte biomarkers will make it possible to pharmaceutically target chemical pathways that preserve beneficial astrocytic functions in response to AD pathology. This review discusses astrocyte biomarkers in the context of AD.
Collapse
Affiliation(s)
- Stephen F Carter
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Douglas Hospital Research Centre, Montreal, Canada; Montreal Neurological Institute, Montreal, Canada
| | - Luc Pellerin
- Département de Physiologie, Université de Lausanne, Lausanne, Switzerland; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Eduardo R Zimmer
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil; Website: www.zimmer-lab.org.
| |
Collapse
|
50
|
Albrecht DS, Forsberg A, Sandstrom A, Bergan C, Kadetoff D, Protsenko E, Lampa J, Lee YC, Olgart Höglund C, Catana C, Cervenka S, Akeju O, Lekander M, Cohen G, Halldin C, Taylor N, Kim M, Hooker JM, Edwards RR, Napadow V, Kosek E, Loggia ML. Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation. Brain Behav Immun 2019; 75:72-83. [PMID: 30223011 PMCID: PMC6541932 DOI: 10.1016/j.bbi.2018.09.018] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022] Open
Abstract
Fibromyalgia (FM) is a poorly understood chronic condition characterized by widespread musculoskeletal pain, fatigue, and cognitive difficulties. While mounting evidence suggests a role for neuroinflammation, no study has directly provided evidence of brain glial activation in FM. In this study, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the translocator protein (TSPO), a protein upregulated in activated microglia and astrocytes. To enhance statistical power and generalizability, we combined datasets collected independently at two separate institutions (Massachusetts General Hospital [MGH] and Karolinska Institutet [KI]). In an attempt to disentangle the contributions of different glial cell types to FM, a smaller sample was scanned at KI with [11C]-L-deprenyl-D2 PET, thought to primarily reflect astrocytic (but not microglial) signal. Thirty-one FM patients and 27 healthy controls (HC) were examined using [11C]PBR28 PET. 11 FM patients and 11 HC were scanned using [11C]-L-deprenyl-D2 PET. Standardized uptake values normalized by occipital cortex signal (SUVR) and distribution volume (VT) were computed from the [11C]PBR28 data. [11C]-L-deprenyl-D2 was quantified using λ k3. PET imaging metrics were compared across groups, and when differing across groups, against clinical variables. Compared to HC, FM patients demonstrated widespread cortical elevations, and no decreases, in [11C]PBR28 VT and SUVR, most pronounced in the medial and lateral walls of the frontal and parietal lobes. No regions showed significant group differences in [11C]-L-deprenyl-D2 signal, including those demonstrating elevated [11C]PBR28 signal in patients (p's ≥ 0.53, uncorrected). The elevations in [11C]PBR28 VT and SUVR were correlated both spatially (i.e., were observed in overlapping regions) and, in several areas, also in terms of magnitude. In exploratory, uncorrected analyses, higher subjective ratings of fatigue in FM patients were associated with higher [11C]PBR28 SUVR in the anterior and posterior middle cingulate cortices (p's < 0.03). SUVR was not significantly associated with any other clinical variable. Our work provides the first in vivo evidence supporting a role for glial activation in FM pathophysiology. Given that the elevations in [11C]PBR28 signal were not also accompanied by increased [11C]-L-deprenyl-D2 signal, our data suggests that microglia, but not astrocytes, may be driving the TSPO elevation in these regions. Although [11C]-L-deprenyl-D2 signal was not found to be increased in FM patients, larger studies are needed to further assess the role of possible astrocytic contributions in FM. Overall, our data support glial modulation as a potential therapeutic strategy for FM.
Collapse
Affiliation(s)
- Daniel S. Albrecht
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anton Forsberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Angelica Sandstrom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Courtney Bergan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Ekaterina Protsenko
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Yvonne C. Lee
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States,Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Ciprian Catana
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden.
| | - George Cohen
- Department of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Norman Taylor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | | | | | | | - Vitaly Napadow
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Marco L. Loggia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|