1
|
Caria I, Nunes MJ, Ciraci V, Carvalho AN, Ranito C, Santos SG, Gama MJ, Castro-Caldas M, Rodrigues CMP, Ruas JL, Rodrigues E. NPC1-like phenotype, with intracellular cholesterol accumulation and altered mTORC1 signaling in models of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166980. [PMID: 38061599 DOI: 10.1016/j.bbadis.2023.166980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Disruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP+), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features. Simultaneously, we utilized other mitochondrial toxins, including antimycin A, oligomycin, and carbonyl cyanide chlorophenylhydrazone. MPP+ treatment resulted in elevated levels of total cholesterol and in a Niemann Pick type C1 (NPC1)-like phenotype characterized by accumulation of cholesterol in lysosomes. Interestingly, NPC1 mRNA levels were specifically reduced by MPP+. The decrease in NPC1 levels was also seen in midbrain and striatum from MPTP-treated mice and in primary cultures of neurons treated with MPP+. Together with the MPP+-dependent increase in intracellular cholesterol levels in N2a cells, we observed an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and a concomitant increase in the phosphorylated levels of mammalian target of rapamycin (mTOR). NPC1 knockout delayed cell death induced by acute mitochondrial damage, suggesting that transient cholesterol accumulation in lysosomes could be a protective mechanism against MPTP/MPP+ insult. Interestingly, we observed a negative correlation between NPC1 protein levels and disease stage, in human PD brain samples. In summary, MPP+ decreases NPC1 levels, elevates lysosomal cholesterol accumulation and alters mTOR signaling, adding to the existing notion that PD may rise from alterations in mitochondrial-lysosomal communication.
Collapse
Affiliation(s)
- Inês Caria
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Viviana Ciraci
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Catarina Ranito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Susana G Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Jorge L Ruas
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
2
|
Encarnação M, Ribeiro I, David H, Coutinho MF, Quelhas D, Alves S. Challenges in the Definitive Diagnosis of Niemann-Pick Type C-Leaky Variants and Alternative Transcripts. Genes (Basel) 2023; 14:1990. [PMID: 38002933 PMCID: PMC10671040 DOI: 10.3390/genes14111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Niemann-Pick type C (NPC, ORPHA: 646) is a neuro-visceral, psychiatric disease caused predominantly by pathogenic variants in the NPC1 gene or seldom in NPC2. The rarity of the disease, and its wide range of clinical phenotypes and ages of onset, turn the diagnosis into a significant challenge. Other than the detailed clinical history, the typical diagnostic work-up for NPC includes the quantification of pathognomonic metabolites. However, the molecular basis diagnosis is still of utmost importance to fully characterize the disorder. Here, the authors provide an overview of splicing variants in the NPC1 and NPC2 genes and propose a new workflow for NPC diagnosis. Splicing variants cover a significant part of the disease-causing variants in NPC. The authors used cDNA analysis to study the impact of such variants, including the collection of data to classify them as leaky or non-leaky pathogenic variants. However, the presence of naturally occurring spliced transcripts can misdiagnose or mask a pathogenic variant and make the analysis even more difficult. Analysis of the NPC1 cDNA in NPC patients in parallel with controls is vital to assess and detect alternatively spliced forms. Moreover, nonsense-mediated mRNA decay (NMD) analysis plays an essential role in evaluating the naturally occurring transcripts during cDNA analysis and distinguishing them from other pathogenic variants' associated transcripts.
Collapse
Affiliation(s)
- Marisa Encarnação
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.E.); (H.D.); (M.F.C.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Isaura Ribeiro
- Laboratório de Bioquímica Genética, Serviço de Genética Laboratorial, Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar e Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal; (I.R.); (D.Q.)
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS, University of Porto, 4099-002 Porto, Portugal
- ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Hugo David
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.E.); (H.D.); (M.F.C.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.E.); (H.D.); (M.F.C.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Dulce Quelhas
- Laboratório de Bioquímica Genética, Serviço de Genética Laboratorial, Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar e Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal; (I.R.); (D.Q.)
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS, University of Porto, 4099-002 Porto, Portugal
- ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.E.); (H.D.); (M.F.C.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
3
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|
4
|
Yu M, Ye H, De-Paula RB, Mangleburg CG, Wu T, Lee TV, Li Y, Duong D, Phillips B, Cruchaga C, Allen GI, Seyfried NT, Al-Ramahi I, Botas J, Shulman JM. Functional screening of lysosomal storage disorder genes identifies modifiers of alpha-synuclein neurotoxicity. PLoS Genet 2023; 19:e1010760. [PMID: 37200393 DOI: 10.1371/journal.pgen.1010760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/31/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Heterozygous variants in the glucocerebrosidase (GBA) gene are common and potent risk factors for Parkinson's disease (PD). GBA also causes the autosomal recessive lysosomal storage disorder (LSD), Gaucher disease, and emerging evidence from human genetics implicates many other LSD genes in PD susceptibility. We have systemically tested 86 conserved fly homologs of 37 human LSD genes for requirements in the aging adult Drosophila brain and for potential genetic interactions with neurodegeneration caused by α-synuclein (αSyn), which forms Lewy body pathology in PD. Our screen identifies 15 genetic enhancers of αSyn-induced progressive locomotor dysfunction, including knockdown of fly homologs of GBA and other LSD genes with independent support as PD susceptibility factors from human genetics (SCARB2, SMPD1, CTSD, GNPTAB, SLC17A5). For several genes, results from multiple alleles suggest dose-sensitivity and context-dependent pleiotropy in the presence or absence of αSyn. Homologs of two genes causing cholesterol storage disorders, Npc1a / NPC1 and Lip4 / LIPA, were independently confirmed as loss-of-function enhancers of αSyn-induced retinal degeneration. The enzymes encoded by several modifier genes are upregulated in αSyn transgenic flies, based on unbiased proteomics, revealing a possible, albeit ineffective, compensatory response. Overall, our results reinforce the important role of lysosomal genes in brain health and PD pathogenesis, and implicate several metabolic pathways, including cholesterol homeostasis, in αSyn-mediated neurotoxicity.
Collapse
Affiliation(s)
- Meigen Yu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui Ye
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruth B De-Paula
- Quantitative and Computational Biology Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Carl Grant Mangleburg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Timothy Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yarong Li
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Duc Duong
- Departments of Biochemistry and Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Bridget Phillips
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics, Washington University, St. Louis, Missouri, United States of America
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics, Washington University, St. Louis, Missouri, United States of America
| | - Genevera I Allen
- Departments of Electrical and Computer Engineering, Computer Science, and Statistics, Rice University, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
| | - Nicholas T Seyfried
- Departments of Biochemistry and Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas, United States of America
| | - Juan Botas
- Quantitative and Computational Biology Program, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joshua M Shulman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
5
|
Muraleedharan A, Vanderperre B. The endo-lysosomal system in Parkinson's disease: expanding the horizon. J Mol Biol 2023:168140. [PMID: 37148997 DOI: 10.1016/j.jmb.2023.168140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.
Collapse
Affiliation(s)
- Amitha Muraleedharan
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| | - Benoît Vanderperre
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| |
Collapse
|
6
|
Wu S, Xue Q, Qin X, Wu X, Kim P, Chyr J, Zhou X, Huang L. The Potential Regulation of A-to-I RNA Editing on Genes in Parkinson's Disease. Genes (Basel) 2023; 14:919. [PMID: 37107677 PMCID: PMC10137963 DOI: 10.3390/genes14040919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration and an abnormal accumulation of α-synuclein aggregates. A number of genetic factors have been shown to increase the risk of PD. Exploring the underlying molecular mechanisms that mediate PD's transcriptomic diversity can help us understand neurodegenerative pathogenesis. In this study, we identified 9897 A-to-I RNA editing events associated with 6286 genes across 372 PD patients. Of them, 72 RNA editing events altered miRNA binding sites and this may directly affect miRNA regulations of their host genes. However, RNA editing effects on the miRNA regulation of genes are more complex. They can (1) abolish existing miRNA binding sites, which allows miRNAs to regulate other genes; (2) create new miRNA binding sites that may sequester miRNAs from regulating other genes; or (3) occur in the miRNA seed regions and change their targets. The first two processes are also referred to as miRNA competitive binding. In our study, we found 8 RNA editing events that may alter the expression of 1146 other genes via miRNA competition. We also found one RNA editing event that modified a miRNA seed region, which was predicted to disturb the regulation of four genes. Considering the PD-related functions of the affected genes, 25 A-to-I RNA editing biomarkers for PD are proposed, including the 3 editing events in the EIF2AK2, APOL6, and miR-4477b seed regions. These biomarkers may alter the miRNA regulation of 133 PD-related genes. All these analyses reveal the potential mechanisms and regulations of RNA editing in PD pathogenesis.
Collapse
Affiliation(s)
- Sijia Wu
- School of Life Science and Technology, Xidian University, Xi’an 710071, China; (S.W.)
| | - Qiuping Xue
- School of Life Science and Technology, Xidian University, Xi’an 710071, China; (S.W.)
| | - Xinyu Qin
- School of Life Science and Technology, Xidian University, Xi’an 710071, China; (S.W.)
| | - Xiaoming Wu
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jacqueline Chyr
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an 710071, China; (S.W.)
| |
Collapse
|
7
|
Somerville EN, Krohn L, Yu E, Rudakou U, Senkevich K, Ruskey JA, Asayesh F, Ahmad J, Spiegelman D, Dauvilliers Y, Arnulf I, Hu MT, Montplaisir JY, Gagnon JF, Desautels A, Ibrahim A, Stefani A, Hogl B, Gigli GL, Valente M, Janes F, Bernardini A, Dusek P, Sonka K, Kemlink D, Plazzi G, Antelmi E, Biscarini F, Mollenhauer B, Trenkwalder C, Sixel-Doring F, Figorilli M, Puligheddu M, De Cock VC, Ferini-Strambi L, Heibreder A, Monaca CC, Abril B, Dijkstra F, Viaene M, Boeve BF, Postuma RB, Rouleau GA, Gan-Or Z. NPC1 variants are not associated with Parkinson’s disease, REM-sleep behaviour disorder or Dementia with Lewy bodies in European cohorts. Neurobiol Aging 2023; 127:94-98. [PMID: 37032242 DOI: 10.1016/j.neurobiolaging.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
NPC1 encodes a lysosomal protein involved in cholesterol transport. Biallelic mutations in this gene may lead to Niemann-Pick disease type C (NPC), a lysosomal storage disorder. The role of NPC1 in alpha synucleinopathies is still unclear, as different genetic, clinical, and pathological studies have reported contradictory results. This study aimed to evaluate the association of NPC1 variants with the synucleinopathies Parkinson's disease (PD), dementia with Lewy bodies (DLB), and rapid eye movement-sleep behavior disorder (RBD). We analyzed common and rare variants from 3 cohorts of European descent: 1084 RBD cases and 2945 controls, 2852 PD cases and 1686 controls, and 2610 DLB cases and 1920 controls. Logistic regression models were used to assess common variants while optimal sequence Kernel association tests were used to assess rare variants, both adjusted for sex, age, and principal components. No variants were associated with any of the synucleinopathies, supporting that common and rare NPC1 variants do not play an important role in alpha synucleinopathies.
Collapse
|
8
|
Mächtel R, Boros FA, Dobert JP, Arnold P, Zunke F. From Lysosomal Storage Disorders to Parkinson's Disease - Challenges and Opportunities. J Mol Biol 2022:167932. [PMID: 36572237 DOI: 10.1016/j.jmb.2022.167932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lysosomes are specialized organelles with an acidic pH that act as recycling hubs for intracellular and extracellular components. They harbour numerous different hydrolytic enzymes to degrade substrates like proteins, peptides, and glycolipids. Reduced catalytic activity of lysosomal enzymes can cause the accumulation of these substrates and loss of lysosomal integrity, resulting in lysosomal dysfunction and lysosomal storage disorders (LSDs). Post-mitotic cells, such as neurons, seem to be highly sensitive to damages induced by lysosomal dysfunction, thus LSDs often manifest with neurological symptoms. Interestingly, some LSDs and Parkinson's disease (PD) share common cellular pathomechanisms, suggesting convergence of aetiology of the two disease types. This is further underlined by genetic associations of several lysosomal genes involved in LSDs with PD. The increasing number of lysosome-associated genetic risk factors for PD makes it necessary to understand functions and interactions of lysosomal proteins/enzymes both in health and disease, thereby holding the potential to identify new therapeutic targets. In this review, we highlight genetic and mechanistic interactions between the complex lysosomal network, LSDs and PD, and elaborate on methodical challenges in lysosomal research.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friederike Zunke
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany.
| |
Collapse
|
9
|
Oizumi H, Sugimura Y, Totsune T, Kawasaki I, Ohshiro S, Baba T, Kimpara T, Sakuma H, Hasegawa T, Kawahata I, Fukunaga K, Takeda A. Plasma sphingolipid abnormalities in neurodegenerative diseases. PLoS One 2022; 17:e0279315. [PMID: 36525454 PMCID: PMC9757566 DOI: 10.1371/journal.pone.0279315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In recent years, there has been increasing evidence that several lipid metabolism abnormalities play an important role in the pathogenesis of neurodegenerative diseases. However, it is still unclear which lipid metabolism abnormalities play the most important role in neurodegenerative diseases. Plasma lipid metabolomics (lipidomics) has been shown to be an unbiased method that can be used to explore lipid metabolism abnormalities in neurodegenerative diseases. Plasma lipidomics in neurodegenerative diseases has been performed only in idiopathic Parkinson's disease (IPD) and Alzheimer's disease (AD), and comprehensive studies are needed to clarify the pathogenesis. METHODS In this study, we investigated plasma lipids using lipidomics in individuals with neurodegenerative diseases and healthy controls (CNs). Plasma lipidomics was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in those with IPD, dementia with Lewy bodies (DLB), multiple system atrophy (MSA), AD, and progressive supranuclear palsy (PSP) and CNs. RESULTS The results showed that (1) plasma sphingosine-1-phosphate (S1P) was significantly lower in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (2) Plasma monohexylceramide (MonCer) and lactosylceramide (LacCer) were significantly higher in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (3) Plasma MonCer levels were significantly positively correlated with plasma LacCer levels in all enrolled groups. CONCLUSION S1P, Glucosylceramide (GlcCer), the main component of MonCer, and LacCer are sphingolipids that are biosynthesized from ceramide. Recent studies have suggested that elevated GlcCer and decreased S1P levels in neurons are related to neuronal cell death and that elevated LacCer levels induce neurodegeneration by neuroinflammation. In the present study, we found decreased plasma S1P levels and elevated plasma MonCer and LacCer levels in those with neurodegenerative diseases, which is a new finding indicating the importance of abnormal sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Hideki Oizumi
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Yoko Sugimura
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Tomoko Totsune
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Iori Kawasaki
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Saki Ohshiro
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Teiko Kimpara
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Hiroaki Sakuma
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
- Department of Cognitive and Motor Aging, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
10
|
Vijiaratnam N, Foltynie T. Disease modifying therapies III: Novel targets. Neuropharmacology 2021; 201:108839. [PMID: 34656651 DOI: 10.1016/j.neuropharm.2021.108839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Despite significant research advances, treatment of Parkinson's disease (PD) remains confined to symptomatic therapies. Approaches aiming to halt or reverse disease progression remain an important but unmet goal. A growing understanding of disease pathogenesis and the identification of novel pathways contributing to initiation of neurodegeneration and subsequent progression has highlighted a range of potential novel targets for intervention that may influence the rate of progression of the disease process. Exploiting techniques to stratify patients according to these targets alongside using them as biomarkers to measure target engagement will likely improve patient selection and preliminary outcome measurements in clinical trials. In this review, we summarize a number of PD-related mechanisms that have recently gained interest such as neuroinflammation, lysosomal dysfunction and insulin resistance, while also exploring the potential for targeting peripheral interfaces such as the gastrointestinal tract and its ecosystem to achieve disease modification. We explore the rationale for these approaches based on preclinical studies, while also highlighting the status of relevant clinical trials as well as the promising role biomarkers may play in current and future studies.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
11
|
Glycosphingolipid metabolism and its role in ageing and Parkinson's disease. Glycoconj J 2021; 39:39-53. [PMID: 34757540 PMCID: PMC8979855 DOI: 10.1007/s10719-021-10023-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
It is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.
Collapse
|
12
|
Sorrentino F, Arighi A, Serpente M, Arosio B, Arcaro M, Visconte C, Rotondo E, Vimercati R, Ferri E, Fumagalli GG, Pietroboni AM, Carandini T, Scarpini E, Fenoglio C, Galimberti D. Niemann-Pick Type C 1 (NPC1) and NPC2 Gene Variability in Demented Patients with Evidence of Brain Amyloid Deposition. J Alzheimers Dis 2021; 83:1313-1323. [PMID: 34420959 DOI: 10.3233/jad-210453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Variants in Niemann-Pick Type C genes (NPC1 and NPC2) have been suggested to play a role as risk or disease modifying factors for Alzheimer's disease (AD). OBJECTIVE The aim of this study was to analyze NPC1 and NPC2 variability in demented patients with evidence of brain amyloid-β 1-42 (Aβ) deposition and to correlate genetic data with clinical phenotypes. METHODS A targeted Next Generation Sequencing panel was customized to screen NPC1, NPC2, and main genes related to neurodegenerative dementias in a cohort of 136 demented patients with cerebrospinal fluid (CSF) low Aβ levels or positive PET with Aβ tracer and 200 non-demented geriatric subjects. RESULTS Seven patients were carriers of NPC variants in heterozygosis. Four of them displayed pathogenic variants previously found in NPC patients and one AD patient had a novel variant. The latter was absent in 200 non-demented elderly subjects. Five of seven patients (70%) exhibited psychiatric symptoms at onset or later as compared with 43%in non-carriers (p > 0.05). CONCLUSION The frequency of NPC1 and NPC2 heterozygous variants in patients with CSF evidence of Aβ deposition is higher than in the general population.
Collapse
Affiliation(s)
- Federica Sorrentino
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,University of Milan, Milan, Italy
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | - Maria Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,University of Milan, Milan, Italy
| | - Beatrice Arosio
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,University of Milan, Milan, Italy
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | | | | | | | - Evelyn Ferri
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | | | | | | | - Elio Scarpini
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,University of Milan, Milan, Italy
| | | | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,University of Milan, Milan, Italy
| |
Collapse
|
13
|
Vieira SRL, Morris HR. Neurodegenerative Disease Risk in Carriers of Autosomal Recessive Disease. Front Neurol 2021; 12:679927. [PMID: 34149605 PMCID: PMC8211888 DOI: 10.3389/fneur.2021.679927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 01/19/2023] Open
Abstract
Genetics has driven significant discoveries in the field of neurodegenerative diseases (NDDs). An emerging theme in neurodegeneration warrants an urgent and comprehensive update: that carrier status of early-onset autosomal recessive (AR) disease, typically considered benign, is associated with an increased risk of a spectrum of late-onset NDDs. Glucosylceramidase beta (GBA1) gene mutations, responsible for the AR lysosomal storage disorder Gaucher disease, are a prominent example of this principle, having been identified as an important genetic risk factor for Parkinson disease. Genetic analyses have revealed further examples, notably GRN, TREM2, EIF2AK3, and several other LSD and mitochondria function genes. In this Review, we discuss the evidence supporting the strikingly distinct allele-dependent clinical phenotypes observed in carriers of such gene mutations and its impact on the wider field of neurodegeneration.
Collapse
Affiliation(s)
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
14
|
Douglass ML, Beard H, Shoubridge A, Nazri N, King B, Trim PJ, Duplock SK, Snel MF, Hopwood JJ, Hemsley KM. Is SGSH heterozygosity a risk factor for early-onset neurodegenerative disease? J Inherit Metab Dis 2021; 44:763-776. [PMID: 33423317 DOI: 10.1002/jimd.12359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023]
Abstract
Lysosomal dysfunction may be an important factor in the pathogenesis of neurodegenerative disorders such as Parkinson's disease (PD). Heterozygous mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GBA1) have been found in PD patients, and some but not all mutations in other lysosomal enzyme genes, for example, NPC1 and MCOLN1 have been associated with PD. We have examined the behaviour and brain structure of mice carrying a D31N mutation in the sulphamidase (Sgsh) gene which encodes a lysosomal sulphatase. Female heterozygotes and wildtype mice aged 12-, 15-, 18- and 21-months of age underwent motor phenotyping and the brain was comprehensively evaluated for disease-associated lesions. Heterozygous mice exhibited impaired performance in the negative geotaxis test when compared with wildtype mice. Whilst the brain of Sgsh heterozygotes aged up to 21-months did not exhibit any of the gross features of PD, Alzheimer's disease or the neurodegenerative lysosomal storage disorders, for example, loss of striatal dopamine, reduced GBA activity, α-synuclein-positive inclusions, perturbation of lipid synthesis, or cerebellar Purkinje cell drop-out, we noted discrete structural aberrations in the dendritic tree of cortical pyramidal neurons in 21-month old animals. The overt disease lesions and resultant phenotypic changes previously described in individuals with heterozygous mutations in lysosomal enzyme genes such as glucocerebrosidase may be enzyme dependent. By better understanding why deficiency in, or mutant forms of some but not all lysosomal proteins leads to heightened risk or earlier onset of classical neurodegenerative disorders, novel disease-causing mechanisms may be identified.
Collapse
Affiliation(s)
- Meghan L Douglass
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Helen Beard
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Andrew Shoubridge
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Nazzmer Nazri
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Barbara King
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Paul J Trim
- Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Mass Spectrometry Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, South Australia, Australia
| | - Stephen K Duplock
- Mass Spectrometry Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, South Australia, Australia
| | - Marten F Snel
- Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Mass Spectrometry Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, South Australia, Australia
| | - John J Hopwood
- Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, South Australia, Australia
| | - Kim M Hemsley
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Kim YJ, Lee J, Kim NY, Hong S, Cho YS, Yoon J. The burden of rare damaging variants in hereditary atypical parkinsonism genes is increased in patients with Parkinson's disease. Neurobiol Aging 2020; 100:118.e5-118.e13. [PMID: 33423827 DOI: 10.1016/j.neurobiolaging.2020.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 01/25/2023]
Abstract
Increased burdens of rare coding variants in genes related to lysosomal storage disease or mitochondrial pathways were reported to be associated with idiopathic Parkinson's disease. Under a hypothesis that the burden of damaging rare coding variants is increased in causative genes for hereditary parkinsonism, we analyzed the burdens of rare coding variants with a case-control design. Two cohorts of whole-exome sequencing data and a cohort of genome-wide genotyping data of clinically validated idiopathic Parkinson's disease cases and controls, which were open to the public, were used. The sequence kernel association test-optimal was used to analyze the burden of rare variants in the hereditary parkinsonism gene set, which was constructed from the Online Mendelian Inheritance in Man database through manual curation. The hereditary parkinsonism gene set consisted of 17 genes with a locus symbol prefix for familial Parkinson's disease and 75 hereditary atypical parkinsonism genes. We detected a significant association of enriched burdens of predicted damaging rare coding variants in hereditary parkinsonism genes in all three datasets. Meta-analyses of the rare variant burden test in a subgroup of gene sets revealed an association between burdens of rare damaging variants with PD in a hereditary atypical parkinsonism gene set, but not in a subgroup gene set with a locus symbol prefix for familial Parkinson's disease. Our results highlight the roles of rare damaging variants in causative genes for hereditary atypical parkinsonian disorders. We propose that Mendelian genes associated with hereditary disorders accompanying parkinsonism are involved in Parkinson's disease-related genetic networks.
Collapse
Affiliation(s)
- Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea.
| | - Jinwoo Lee
- Department of Computer Engineering, Hallym University, Chuncheon, South Korea
| | - Nan Young Kim
- Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Medical Center, Anyang, South Korea
| | - SangKyoon Hong
- Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Medical Center, Anyang, South Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Jeehee Yoon
- Department of Computer Engineering, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
16
|
Angelopoulou E, Paudel YN, Villa C, Piperi C. Arylsulfatase A (ASA) in Parkinson's Disease: From Pathogenesis to Biomarker Potential. Brain Sci 2020; 10:E713. [PMID: 33036336 PMCID: PMC7601048 DOI: 10.3390/brainsci10100713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder after Alzheimer's disease, is a clinically heterogeneous disorder, with obscure etiology and no disease-modifying therapy to date. Currently, there is no available biomarker for PD endophenotypes or disease progression. Accumulating evidence suggests that mutations in genes related to lysosomal function or lysosomal storage disorders may affect the risk of PD development, such as GBA1 gene mutations. In this context, recent studies have revealed the emerging role of arylsulfatase A (ASA), a lysosomal hydrolase encoded by the ARSA gene causing metachromatic leukodystrophy (MLD) in PD pathogenesis. In particular, altered ASA levels have been detected during disease progression, and reduced enzymatic activity of ASA has been associated with an atypical PD clinical phenotype, including early cognitive impairment and essential-like tremor. Clinical evidence further reveals that specific ARSA gene variants may act as genetic modifiers in PD. Recent in vitro and in vivo studies indicate that ASA may function as a molecular chaperone interacting with α-synuclein (SNCA) in the cytoplasm, preventing its aggregation, secretion and cell-to-cell propagation. In this review, we summarize the results of recent preclinical and clinical studies on the role of ASA in PD, aiming to shed more light on the potential implication of ASA in PD pathogenesis and highlight its biomarker potential.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
17
|
Ouled Amar Bencheikh B, Senkevich K, Rudakou U, Yu E, Mufti K, Ruskey JA, Asayesh F, Laurent SB, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Espay AJ, Dupré N, Greenbaum L, Hassin-Baer S, Rouleau GA, Alcalay RN, Fon EA, Gan-Or Z. Variants in the Niemann-Pick type C gene NPC1 are not associated with Parkinson's disease. Neurobiol Aging 2020; 93:143.e1-143.e4. [PMID: 32371106 PMCID: PMC7302975 DOI: 10.1016/j.neurobiolaging.2020.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/27/2022]
Abstract
Biallelic variants in NPC1, a gene coding for a lysosomal transmembrane protein involved in cholesterol trafficking, may cause Niemann-Pick disease type C (NPC). A few cases of NPC1 variant carriers with Parkinson's disease (PD) have been reported. In addition, pathologic studies have demonstrated phosphorylated alpha-synuclein and Lewy pathology in brains of NPC patients. Therefore, we aimed to examine whether NPC1 genetic variants may be associated with PD. Full sequencing of NPC1 was performed in 2657 PD patients and 3647 controls from 3 cohorts, using targeted sequencing with molecular inversion probes. A total of 9 common variants and 126 rare variants were identified across the 3 cohorts. To examine their association with PD, regression models adjusted for age, sex, and origin were performed for common variants, and optimal sequence Kernel association test (SKAT-O) was performed for rare variants. After correction for multiple comparisons, common and rare NPC1 variants were not associated with PD. Our results do not support a link between heterozygous variants in NPC1 and PD.
Collapse
Affiliation(s)
- Bouchra Ouled Amar Bencheikh
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Centre de Recherche, Centre Hospitalier de l'Universite de Montreal, Montreal, Quebec, Canada
| | - Konstantin Senkevich
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Uladzislau Rudakou
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Kheireddin Mufti
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Farnaz Asayesh
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Sandra B Laurent
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Yves Dauvilliers
- Department of Neurology, National Reference Center for Narcolepsy, Sleep Unit, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Alberto J Espay
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Lior Greenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Department of Neurology, The Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
18
|
Effects of Different Continuous Aerobic Training Protocols in a Heterozygous Mouse Model of Niemann-Pick Type C Disease. J Funct Morphol Kinesiol 2020; 5:jfmk5030053. [PMID: 33467268 PMCID: PMC7739240 DOI: 10.3390/jfmk5030053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023] Open
Abstract
The positive effects of physical activity on cognitive functions are widely known. Aerobic training is known to promote the expression of neurotrophins, thus inducing an increase in the development and survival of neurons, as well as enhancing synaptic plasticity. Based on this evidence, in the present study, we analyze the effects of two different types of aerobic training, progressive continuous (PC) and varying continuous (VC), on synaptic and muscular plasticity in heterozygous mice carrying the genetic mutation for Niemann-Pick type C disease. We also analyze the effects on synaptic plasticity by extracellular recordings in vitro in mouse hippocampal slices, while the morphological structure of muscle tissue was studied by transmission electron microscopy. Our results show a modulation of synaptic plasticity that varies according to the type of training protocol used, and only the VC protocol administered twice a week, has a significantly positive effect on long-term potentiation. On the contrary, ultrastructural analysis of muscle tissue shows an improvement in cellular conditions in all trained mice. These results confirm the beneficial effects of exercise on quality of life, supporting the hypothesis that physical activity could represent an alternative therapeutic strategy for patients with Niemann-Pick type C disease.
Collapse
|
19
|
Blumenreich S, Barav OB, Jenkins BJ, Futerman AH. Lysosomal Storage Disorders Shed Light on Lysosomal Dysfunction in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21144966. [PMID: 32674335 PMCID: PMC7404170 DOI: 10.3390/ijms21144966] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
The lysosome is a central player in the cell, acting as a clearing house for macromolecular degradation, but also plays a critical role in a variety of additional metabolic and regulatory processes. The lysosome has recently attracted the attention of neurobiologists and neurologists since a number of neurological diseases involve a lysosomal component. Among these is Parkinson’s disease (PD). While heterozygous and homozygous mutations in GBA1 are the highest genetic risk factor for PD, studies performed over the past decade have suggested that lysosomal loss of function is likely involved in PD pathology, since a significant percent of PD patients have a mutation in one or more genes that cause a lysosomal storage disease (LSD). Although the mechanistic connection between the lysosome and PD remains somewhat enigmatic, significant evidence is accumulating that lysosomal dysfunction plays a central role in PD pathophysiology. Thus, lysosomal dysfunction, resulting from mutations in lysosomal genes, may enhance the accumulation of α-synuclein in the brain, which may result in the earlier development of PD.
Collapse
Affiliation(s)
- Shani Blumenreich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
| | - Or B. Barav
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
| | - Bethan J. Jenkins
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
- Department of Neurobiology, Max Planck Institute of Neurobiology, 82152 Planegg, Germany
| | - Anthony H. Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
- Correspondence: ; Tel.: +972-8-9342704; Fax: +972-8-9344112
| |
Collapse
|
20
|
Rangel DM, Melo MCA, Pedroso JL, Barsottini OGP, Sobreira-Neto MA, Braga-Neto P. Beyond the Typical Syndrome: Understanding Non-motor Features in Niemann-Pick Type C Disease. THE CEREBELLUM 2020; 19:722-738. [DOI: 10.1007/s12311-020-01156-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Lee JS, Kanai K, Suzuki M, Kim WS, Yoo HS, Fu Y, Kim DK, Jung BC, Choi M, Oh KW, Li Y, Nakatani M, Nakazato T, Sekimoto S, Funayama M, Yoshino H, Kubo SI, Nishioka K, Sakai R, Ueyama M, Mochizuki H, Lee HJ, Sardi SP, Halliday GM, Nagai Y, Lee PH, Hattori N, Lee SJ. Arylsulfatase A, a genetic modifier of Parkinson's disease, is an α-synuclein chaperone. Brain 2020; 142:2845-2859. [PMID: 31312839 DOI: 10.1093/brain/awz205] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
Mutations in lysosomal genes increase the risk of neurodegenerative diseases, as is the case for Parkinson's disease. Here, we found that pathogenic and protective mutations in arylsulfatase A (ARSA), a gene responsible for metachromatic leukodystrophy, a lysosomal storage disorder, are linked to Parkinson's disease. Plasma ARSA protein levels were changed in Parkinson's disease patients. ARSA deficiency caused increases in α-synuclein aggregation and secretion, and increases in α-synuclein propagation in cells and nematodes. Despite being a lysosomal protein, ARSA directly interacts with α-synuclein in the cytosol. The interaction was more extensive with protective ARSA variant and less with pathogenic ARSA variant than wild-type. ARSA inhibited the in vitro fibrillation of α-synuclein in a dose-dependent manner. Ectopic expression of ARSA reversed the α-synuclein phenotypes in both cell and fly models of synucleinopathy, the effects correlating with the extent of the physical interaction between these molecules. Collectively, these results suggest that ARSA is a genetic modifier of Parkinson's disease pathogenesis, acting as a molecular chaperone for α-synuclein.
Collapse
Affiliation(s)
- Jun Sung Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kazuaki Kanai
- Department of Neurology, Juntendo University, School of Medicine, Tokyo 113-8421, Japan
| | - Mari Suzuki
- Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Woojin S Kim
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - YuHong Fu
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Dong-Kyu Kim
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Chul Jung
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Minsun Choi
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu Won Oh
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yuanzhe Li
- Department of Neurology, Juntendo University, School of Medicine, Tokyo 113-8421, Japan
| | - Mitsuyoshi Nakatani
- Department of Neurology, Juntendo University, School of Medicine, Tokyo 113-8421, Japan
| | - Tomoko Nakazato
- Department of Neurology, Juntendo University, School of Medicine, Tokyo 113-8421, Japan
| | - Satoko Sekimoto
- Department of Neurology, Juntendo University, School of Medicine, Tokyo 113-8421, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University, School of Medicine, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Department of Neurology, Juntendo University, School of Medicine, Tokyo 113-8421, Japan
| | - Shin-Ichiro Kubo
- Department of Neurology, Juntendo University, School of Medicine, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University, School of Medicine, Tokyo 113-8421, Japan
| | - Ryusuke Sakai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - He-Jin Lee
- Departmen of Anatomy, School of Medicine, Konkuk University, Seoul, Korea
| | | | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, School of Medicine, Tokyo 113-8421, Japan
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Smolders S, Van Broeckhoven C. Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson's disease pathogenesis. Acta Neuropathol Commun 2020; 8:63. [PMID: 32375870 PMCID: PMC7201634 DOI: 10.1186/s40478-020-00935-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) are symptomatically characterized by parkinsonism, with the latter presenting additionally a distinctive range of atypical features. Although the majority of patients with PD and APS appear to be sporadic, genetic causes of several rare monogenic disease variants were identified. The knowledge acquired from these genetic factors indicated that defects in vesicular transport pathways, endo-lysosomal dysfunction, impaired autophagy-lysosomal protein and organelle degradation pathways, α-synuclein aggregation and mitochondrial dysfunction play key roles in PD pathogenesis. Moreover, membrane dynamics are increasingly recognized as a key player in the disease pathogenesis due lipid homeostasis alterations, associated with lysosomal dysfunction, caused by mutations in several PD and APS genes. The importance of lysosomal dysfunction and lipid homeostasis is strengthened by both genetic discoveries and clinical epidemiology of the association between parkinsonism and lysosomal storage disorders (LSDs), caused by the disruption of lysosomal biogenesis or function. A synergistic coordination between vesicular trafficking, lysosomal and mitochondria defects exist whereby mutations in PD and APS genes encoding proteins primarily involved one PD pathway are frequently associated with defects in other PD pathways as a secondary effect. Moreover, accumulating clinical and genetic observations suggest more complex inheritance patters of familial PD exist, including oligogenic and polygenic inheritance of genes in the same or interconnected PD pathways, further strengthening their synergistic connection.Here, we provide a comprehensive overview of PD and APS genes with functions in vesicular transport, lysosomal and mitochondrial pathways, and highlight functional and genetic evidence of the synergistic connection between these PD associated pathways.
Collapse
Affiliation(s)
- Stefanie Smolders
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium.
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.
| |
Collapse
|
23
|
Paron F, Dardis A, Buratti E. Pre-mRNA splicing defects and RNA binding protein involvement in Niemann Pick type C disease. J Biotechnol 2020; 318:20-30. [PMID: 32387451 DOI: 10.1016/j.jbiotec.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C (NPC) is an autosomal recessive lysosomal storage disorder due to mutations in NPC1 (95 % cases) or NPC2 genes, encoding NPC1 and NPC2 proteins, respectively. Both NPC1 and NPC2 proteins are involved in transport of intracellular cholesterol and their alteration leads to the accumulation of unesterified cholesterol and other lipids within the lysosomes. The disease is characterized by visceral, neurological and psychiatric symptoms. However, the pathogenic mechanisms that lead to the fatal neurodegeneration are still unclear. To date, several mutations leading to the generation of aberrant splicing variants or mRNA degradation in NPC1 and NPC2 genes have been reported. In addition, different lines of experimental evidence have highlighted the possible role of RNA-binding proteins and RNA-metabolism, in the onset and progression of many neurodegenerative disorders, that could explain NPC neurological features and in general, the disease pathogenesis. In this review, we will provide an overview of the impact of mRNA processing and metabolism on NPC disease pathology.
Collapse
Affiliation(s)
- Francesca Paron
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy.
| | - Emanuele Buratti
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| |
Collapse
|
24
|
Severe Extrapyramidal Symptoms in a Patient with Niemann-Pick Type C Disease After a Long-Acting Injection of Risperidone. J Clin Psychopharmacol 2020; 39:677-678. [PMID: 31688387 DOI: 10.1097/jcp.0000000000001119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Autophagy lysosomal pathway dysfunction in Parkinson's disease; evidence from human genetics. Parkinsonism Relat Disord 2020; 73:60-71. [DOI: 10.1016/j.parkreldis.2019.11.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
|
26
|
Bremova-Ertl T, Sztatecsny C, Brendel M, Moser M, Möller B, Clevert DA, Beck-Wödl S, Kun-Rodrigues C, Bras J, Rominger A, Ninov D, Strupp M, Schneider SA. Clinical, ocular motor, and imaging profile of Niemann-Pick type C heterozygosity. Neurology 2020; 94:e1702-e1715. [DOI: 10.1212/wnl.0000000000009290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 11/01/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo characterize subclinical abnormalities in asymptomatic heterozygote NPC1 mutation carriers as markers of neurodegeneration.MethodsMotor function, cognition, mood, sleep, and smell function were assessed in 20 first-degree heterozygous relatives of patients with Niemann-Pick disease type C (NPC) (13 male, age 52.7 ± 9.9 years). Video-oculography and abdominal ultrasound with volumetry were performed to assess oculomotor function and size of liver and spleen. NPC biomarkers in blood were analyzed. 18F-fluorodesoxyglucose PET was performed (n = 16) to detect patterns of brain hypometabolism.ResultsNPC heterozygotes recapitulated characteristic features of symptomatic NPC disease and demonstrated the oculomotor abnormalities typical of NPC. Hepatosplenomegaly (71%) and increased cholestantriol (33%) and plasma chitotriosidase (17%) levels were present. The patients also showed signs seen in other neurodegenerative diseases, including hyposmia (20%) or pathologic screening for REM sleep behavior disorder (24%). Cognitive function was frequently impaired, especially affecting visuoconstructive function, verbal fluency, and executive function. PET imaging revealed significantly decreased glucose metabolic rates in 50% of participants, affecting cerebellar, anterior cingulate, parieto-occipital, and temporal regions, including 1 with bilateral abnormalities.ConclusionNPC heterozygosity, which has a carrier frequency of 1:200 in the general population, is associated with abnormal brain metabolism and functional consequences. Clinically silent heterozygous gene variations in NPC1 may be a risk factor for late-onset neurodegeneration, similar to the concept of heterozygous GBA mutations underlying Parkinson disease.
Collapse
|
27
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
28
|
Huebecker M, Moloney EB, van der Spoel AC, Priestman DA, Isacson O, Hallett PJ, Platt FM. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. Mol Neurodegener 2019; 14:40. [PMID: 31703585 PMCID: PMC6842240 DOI: 10.1186/s13024-019-0339-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Haploinsufficiency in the Gaucher disease GBA gene, which encodes the lysosomal glucocerebrosidase GBA, and ageing represent major risk factors for developing Parkinson’s disease (PD). Recently, more than fifty other lysosomal storage disorder gene variants have been identified in PD, implicating lysosomal dysfunction more broadly as a key risk factor for PD. Despite the evidence of multiple lysosomal genetic risks, it remains unclear how sphingolipid hydrolase activities, other than GBA, are altered with ageing or in PD. Moreover, it is not fully known if levels of glycosphingolipid substrates for these enzymes change in vulnerable brain regions of PD. Finally, little is known about the levels of complex gangliosides in substantia nigra which may play a significant role in ageing and PD. Methods To study sphingolipid hydrolase activities and glycosphingolipid expression in ageing and in PD, two independent cohorts of human substantia nigra tissues were obtained. Fluorescent 4-methylumbelliferone assays were used to determine multiple enzyme activities. The lysosomal GBA and non-lysosomal GBA2 activities were distinguished using the inhibitor NB-DGJ. Sensitive and quantitative normal-phase HPLC was performed to study glycosphingolipid levels. In addition, glycosphingolipid levels in cerebrospinal fluid and serum were analysed as possible biomarkers for PD. Results The present study demonstrates, in two independent cohorts of human post-mortem substantia nigra, that sporadic PD is associated with deficiencies in multiple lysosomal hydrolases (e.g. α-galactosidase and β-hexosaminidase), in addition to reduced GBA and GBA2 activities and concomitant glycosphingolipid substrate accumulation. Furthermore, the data show significant reductions in levels of complex gangliosides (e.g. GM1a) in substantia nigra, CSF and serum in ageing, PD, and REM sleep behaviour disorder, which is a strong predictor of PD. Conclusions These findings conclusively demonstrate reductions in GBA activity in the parkinsonian midbrain, and for the first time, reductions in the activity of several other sphingolipid hydrolases. Furthermore, significant reductions were seen in complex gangliosides in PD and ageing. The diminished activities of these lysosomal hydrolases, the glycosphingolipid substrate accumulation, and the reduced levels of complex gangliosides are likely major contributors to the primary development of the pathology seen in PD and related disorders with age.
Collapse
Affiliation(s)
- Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Elizabeth B Moloney
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA
| | - Aarnoud C van der Spoel
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - David A Priestman
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
29
|
Schneider SA, Tahirovic S, Hardy J, Strupp M, Bremova-Ertl T. Do heterozygous mutations of Niemann-Pick type C predispose to late-onset neurodegeneration: a review of the literature. J Neurol 2019; 268:2055-2064. [PMID: 31701332 DOI: 10.1007/s00415-019-09621-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND/METHODS Monogenic diseases are important models for the study of neurodegenerative diseases, such as Parkinson's disease (PD) and dementia. Notably, for some disorders, homozygosity is associated with a complex metabolic disease, while heterozygosity predisposes to late-onset neurodegeneration. For instance, biallelic glucocerebrosidase gene mutations cause Gaucher's disease, while heterozygous mutations are a common genetic risk factor for late-onset PD. Little is known about similar risks of related diseases, such as Niemann-Pick type C (NPC). Given that both conditions map into related, i.e., lysosomal, pathways, we hypothesize a similar risk of single-NPC gene mutations. Indeed, there is increasing evidence based on clinical observations in humans and animal studies. Here we review the current knowledge of NPC heterozygosity. RESULTS Family history studies suggest a high proportion of late-onset neurodegenerative diseases in NPC families. We identified 19 cases with heterozygous NPC mutations in the literature who presented with a neurodegenerative disease, including levodopa-responsive PD, atypical parkinsonism (PSP, CBD), dystonia or dementia with a mean age at onset of about 57 years (range 8-87). Consistent splenomegaly and mildly abnormal filipin staining results have also been reported in heterozygous gene mutation carriers. Imaging and pathological data support this notion. DISCUSSION/CONCLUSION This finding has wider implications in so far as NPC-related forms of Parkinsonian syndromes, dementia, motor neuron disease and other neurodegenerative disorders may benefit from NPC-mechanistic therapies, in particular related to lysosomal dysfunction. Further research is warranted to generate systematic data of heterozygous mutation carriers, including longitudinal data.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology, Ludwig-Maximilians-University, Marchioninistr 15, 81377, Munich, Germany.
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Within the Helmholtz Association, Feodor-Lynen-Strasse 17, Munich, Germany
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Michael Strupp
- Department of Neurology, Ludwig-Maximilians-University, Marchioninistr 15, 81377, Munich, Germany
| | - Tatiana Bremova-Ertl
- Department of Neurology, Ludwig-Maximilians-University, Marchioninistr 15, 81377, Munich, Germany.,Department of Neurology, Inselspital, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
30
|
Abstract
In mammalian systems "sterolomics" can be regarded as the quantitative or semi-quantitative profiling of all metabolites derived from cholesterol and its cyclic precursors. The system can be further complicated by metabolites derived from ingested phytosterols or pharmaceuticals, but this is beyond the scope of this article. "Sterolomics" can be performed on either an unbiased global format, or more usually, exploiting a targeted format. Here we discuss the different mass spectrometry-based analytical techniques used in "sterolomics" giving specific examples in the context of neurodegenerative disease and for the diagnosis of inborn errors of metabolism. We pay particular attention to the profiling of cholesterol metabolites in the bile acid biosynthesis pathways, although the analytical techniques discussed are also appropriate for analysis of hormonal steroids.
Collapse
Affiliation(s)
- William J. Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| |
Collapse
|
31
|
Benussi A, Cotelli MS, Cantoni V, Bertasi V, Turla M, Dardis A, Biasizzo J, Manenti R, Cotelli M, Padovani A, Borroni B. Clinical and neurophysiological characteristics of heterozygous NPC1 carriers. JIMD Rep 2019; 49:80-88. [PMID: 31497485 PMCID: PMC6718120 DOI: 10.1002/jmd2.12059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/02/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an uncommon lysosomal storage disorder, which is characterized neuropathologically by cholinergic dysfunction and presents clinically with a broad series of neurological signs and symptoms. NPC is inherited as an autosomal recessive trait, caused by mutations in the NPC1 or NPC2 genes. However, recent reports have raised concerns on heterozygous NPC1 gene mutation carriers, which historically have been considered as clinically unaffected, occasionally presenting with clinical parkinsonian syndromes or dementia. In the present study, we aimed at comprehensively assessing clinical, biochemical, and neurophysiological features in heterozygous NPC1 gene mutation carriers. We assessed cholinergic intracortical circuits with transcranial magnetic stimulation, executive functions and plasma oxysterol levels in two families comprising two monozygotic twins with a homozygous NPC1 p.P888S mutation, four patients with a compound heterozygous p.E451K and p.G992W mutation, 10 heterozygous NPC1 p.P888S carriers, 1 heterozygous NPC1 p.E451K carrier, and 11 noncarrier family members. We observed a significant impairment in cholinergic circuits, evaluated with short-latency afferent inhibition (SAI), and executive abilities in homozygous/compound heterozygous patients and heterozygous asymptomatic NPC1 carriers, compared to noncarriers. Moreover, we reported a significant correlation between executive functions performances and both plasma oxysterol levels and neurophysiological parameters. These data suggest that heterozygous NPC1 carriers show subclinical deficits in cognition, possibly mediated by an impairment of cholinergic circuits, which in turn may mediate the onset of neurological disorders in a subset of patients.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | | | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Department of Neuroscience, Psychology, Drug Research and Child HealthUniversity of FlorenceFlorenceItaly
| | | | | | - Andrea Dardis
- University Hospital “Santa Maria della Misericordia”UdineItaly
| | | | - Rosa Manenti
- IRCCS Istituto Centro San Giovanni di DioBresciaItaly
| | - Maria Cotelli
- IRCCS Istituto Centro San Giovanni di DioBresciaItaly
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|
32
|
Olsen AL, Feany MB. Glial α-synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo. Glia 2019; 67:1933-1957. [PMID: 31267577 DOI: 10.1002/glia.23671] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
α-Synucleinopathies are neurodegenerative diseases that are characterized pathologically by α-synuclein inclusions in neurons and glia. The pathologic contribution of glial α-synuclein in these diseases is not well understood. Glial α-synuclein may be of particular importance in multiple system atrophy (MSA), which is defined pathologically by glial cytoplasmic α-synuclein inclusions. We have previously described Drosophila models of neuronal α-synucleinopathy, which recapitulate key features of the human disorders. We have now expanded our model to express human α-synuclein in glia. We demonstrate that expression of α-synuclein in glia alone results in α-synuclein aggregation, death of dopaminergic neurons, impaired locomotor function, and autonomic dysfunction. Furthermore, co-expression of α-synuclein in both neurons and glia worsens these phenotypes as compared to expression of α-synuclein in neurons alone. We identify unique transcriptomic signatures induced by glial as opposed to neuronal α-synuclein. These results suggest that glial α-synuclein may contribute to the burden of pathology in the α-synucleinopathies through a cell type-specific transcriptional program. This new Drosophila model system enables further mechanistic studies dissecting the contribution of glial and neuronal α-synuclein in vivo, potentially shedding light on mechanisms of disease that are especially relevant in MSA but also the α-synucleinopathies more broadly.
Collapse
Affiliation(s)
- Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Screening for Niemann-Pick type C disease in neurodegenerative diseases. J Clin Neurosci 2019; 68:266-267. [PMID: 31221578 DOI: 10.1016/j.jocn.2019.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Niemann Pick type C (NP-C) is an autosomal recessive neurovisceral lysosomal storage disorder caused by NPC1 and NPC2 gene mutations. We screened for NP-C 24 patients with Progressive Supranuclear Palsy and 10 with Multiple System Atrophy cerebellar type (MSA-C). Among PSP patients, no NPC1 or NPC2 gene variants were detected. One patient with MSA-C (10%) resulted to carry a pathogenic missense NPC1 gene mutation (p.C184Y) in heterozygous state. NPC1 genes variants might represent a risk or susceptibility factor in the development of α-synucleinopathies such as MSA. The common pattern of lysosomal dysfunction might explain the pathophysiological link between these disorders.
Collapse
|
34
|
Ysselstein D, Shulman JM, Krainc D. Emerging links between pediatric lysosomal storage diseases and adult parkinsonism. Mov Disord 2019; 34:614-624. [PMID: 30726573 PMCID: PMC6520126 DOI: 10.1002/mds.27631] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Lysosomal storage disorders comprise a clinically heterogeneous group of autosomal-recessive or X-linked genetic syndromes caused by disruption of lysosomal biogenesis or function resulting in accumulation of nondegraded substrates. Although lysosomal storage disorders are diagnosed predominantly in children, many show variable expressivity with clinical presentations possible later in life. Given the important role of lysosomes in neuronal homeostasis, neurological manifestations, including movement disorders, can accompany many lysosomal storage disorders. Over the last decade, evidence from genetics, clinical epidemiology, cell biology, and biochemistry have converged to implicate links between lysosomal storage disorders and adult-onset movement disorders. The strongest evidence comes from mutations in Glucocerebrosidase, which cause Gaucher's disease and are among the most common and potent risk factors for PD. However, recently, many additional lysosomal storage disorder genes have been similarly implicated, including SMPD1, ATP13A2, GALC, and others. Examination of these links can offer insight into pathogenesis of PD and guide development of new therapeutic strategies. We systematically review the emerging genetic links between lysosomal storage disorders and PD. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniel Ysselstein
- Department of Neurology, Ken and Ruth Davee Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Joshua M. Shulman
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Jan and Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX
| | - Dimitri Krainc
- Department of Neurology, Ken and Ruth Davee Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
35
|
Paciotti S, Gatticchi L, Beccari T, Parnetti L. Lysosomal enzyme activities as possible CSF biomarkers of synucleinopathies. Clin Chim Acta 2019; 495:13-24. [PMID: 30922855 DOI: 10.1016/j.cca.2019.03.1627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 01/28/2023]
Abstract
Mutations on the GBA gene, encoding for the lysosomal enzyme β-glucocerebrosidase (GCase), have been identified as the most common genetic risk factor involved in the development of Parkinson's disease (PD) and dementia with Lewy bodies (DLB), indicating a direct contribution of this enzyme to the pathogenesis of synucleinopathies. Decreased GCase activity has been observed repeatedly in brain tissues and biological fluids of both GBA mutation carrier and non-carrier PD and DLB patients, suggesting that lower GCase activity constitutes a typical feature of these disorders. Additional genetic, pathological and biochemical data on other lysosomal enzymes (e.g., Acid sphingomyelinase, Cathepsin D, α-galactosidase A and β-hexosaminidase) have further strengthened the evidence of a link between lysosomal dysfunction and synucleinopathies. A few studies have been performed for assessing the potential value of lysosomal enzyme activities in cerebrospinal fluid (CSF) as biomarkers for synucleinopathies. The reduction of GCase activity in the CSF of PD and DLB patients was validated in several of them, whereas the behaviour of other lysosomal enzyme activities was not consistently reliable among the studies. More in-depth investigations on larger cohorts, following stringent standard operating procedures should be committed to really understand the diagnostic utility of lysosomal enzymes as biomarkers for synucleinopathies. In this review, we reported the evidences of the association between the defective function of lysosomal proteins and the pathogenesis of synucleinopathies, and examined the role of lysosomal enzyme activities in CSF as reliable biomarkers for the diagnosis of PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Silvia Paciotti
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy; Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy.
| | - Leonardo Gatticchi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy.
| |
Collapse
|
36
|
Boudewyn LC, Walkley SU. Current concepts in the neuropathogenesis of mucolipidosis type IV. J Neurochem 2019; 148:669-689. [PMID: 29770442 PMCID: PMC6239999 DOI: 10.1111/jnc.14462] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive, lysosomal storage disorder causing progressively severe intellectual disability, motor and speech deficits, retinal degeneration often culminating in blindness, and systemic disease causing a shortened lifespan. MLIV results from mutations in the gene MCOLN1 encoding the transient receptor potential channel mucolipin-1. It is an ultra-rare disease and is currently known to affect just over 100 diagnosed individuals. The last decade has provided a wealth of research focused on understanding the role of the enigmatic mucolipin-1 protein in cell and brain function and how its absence causes disease. This review explores our current understanding of the mucolipin-1 protein in relation to neuropathogenesis in MLIV and describes recent findings implicating mucolipin-1's important role in mechanistic target of rapamycin and TFEB (transcription factor EB) signaling feedback loops as well as in the function of the greater endosomal/lysosomal system. In addition to addressing the vital role of mucolipin-1 in the brain, we also report new data on the question of whether haploinsufficiency as would be anticipated in MCOLN1 heterozygotes is associated with any evidence of neuron dysfunction or disease. Greater insights into the role of mucolipin-1 in the nervous system can be expected to shed light not only on MLIV disease but also on numerous processes governing normal brain function. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Lauren C. Boudewyn
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Steven U. Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
37
|
Guo JF, Zhang L, Li K, Mei JP, Xue J, Chen J, Tang X, Shen L, Jiang H, Chen C, Guo H, Wu XL, Sun SL, Xu Q, Sun QY, Chan P, Shang HF, Wang T, Zhao GH, Liu JY, Xie XF, Jiang YQ, Liu ZH, Zhao YW, Zhu ZB, Li JD, Hu ZM, Yan XX, Fang XD, Wang GH, Zhang FY, Xia K, Liu CY, Zhu XW, Yue ZY, Li SC, Cai HB, Zhang ZH, Duan RH, Tang BS. Coding mutations in NUS1 contribute to Parkinson's disease. Proc Natl Acad Sci U S A 2018; 115:11567-11572. [PMID: 30348779 PMCID: PMC6233099 DOI: 10.1073/pnas.1809969115] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Whole-exome sequencing has been successful in identifying genetic factors contributing to familial or sporadic Parkinson's disease (PD). However, this approach has not been applied to explore the impact of de novo mutations on PD pathogenesis. Here, we sequenced the exomes of 39 early onset patients, their parents, and 20 unaffected siblings to investigate the effects of de novo mutations on PD. We identified 12 genes with de novo mutations (MAD1L1, NUP98, PPP2CB, PKMYT1, TRIM24, CEP131, CTTNBP2, NUS1, SMPD3, MGRN1, IFI35, and RUSC2), which could be functionally relevant to PD pathogenesis. Further analyses of two independent case-control cohorts (1,852 patients and 1,565 controls in one cohort and 3,237 patients and 2,858 controls in the other) revealed that NUS1 harbors significantly more rare nonsynonymous variants (P = 1.01E-5, odds ratio = 11.3) in PD patients than in controls. Functional studies in Drosophila demonstrated that the loss of NUS1 could reduce the climbing ability, dopamine level, and number of dopaminergic neurons in 30-day-old flies and could induce apoptosis in fly brain. Together, our data suggest that de novo mutations could contribute to early onset PD pathogenesis and identify NUS1 as a candidate gene for PD.
Collapse
Affiliation(s)
- Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008 Changsha, Hunan, China
| | - Lu Zhang
- Department of Computer Science, Stanford University, Stanford, CA 94305
- Department of Pathology, Stanford University, Stanford, CA 94305
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Kai Li
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Jun-Pu Mei
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Jin Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Jia Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Xia Tang
- Network Information Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008 Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008 Changsha, Hunan, China
| | - Chao Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Hui Guo
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Xue-Li Wu
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Si-Long Sun
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Qi-Ying Sun
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Piu Chan
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 100053 Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, 100101 Beijing, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, 61004 Chengdu, Sichuan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Guo-Hua Zhao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Zhejiang, China
| | - Jing-Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China
- Center for Human Genome Research, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China
| | - Xue-Feng Xie
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Yi-Qi Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Zhen-Hua Liu
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Yu-Wen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Zuo-Bin Zhu
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Jia-da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Zheng-Mao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008 Changsha, Hunan, China
| | - Xiao-Dong Fang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Guang-Hui Wang
- Department of Pharmacology, Soochow University, College of Pharmaceutical Sciences, 215021 Suzhou, China
| | - Feng-Yu Zhang
- Division of Clinical Sciences, Lieber Institute for Brain Development, John Hopkins University Medical Campus, Baltimore, MD 21205
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- Collaborative Innovation Center for Genetics and Development, 200433 Shanghai, China
| | - Chun-Yu Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60607
| | - Xiong-Wei Zhu
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Zhen-Yu Yue
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Huai-Bin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Zhuo-Hua Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- Collaborative Innovation Center for Brain Science, 200433 Shanghai, China
| | - Ran-Hui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China;
- Center for Medical Genetics, School of Life Sciences, Central South University, 410078 Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008 Changsha, Hunan, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, 100101 Beijing, China
- Collaborative Innovation Center for Genetics and Development, 200433 Shanghai, China
- Collaborative Innovation Center for Brain Science, 200433 Shanghai, China
| |
Collapse
|
38
|
Limphaibool N, Iwanowski P, Holstad MJV, Perkowska K. Parkinsonism in Inherited Metabolic Disorders: Key Considerations and Major Features. Front Neurol 2018; 9:857. [PMID: 30369906 PMCID: PMC6194353 DOI: 10.3389/fneur.2018.00857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disorder manifesting as reduced facilitation of voluntary movements. Extensive research over recent decades has expanded our insights into the pathogenesis of the disease, where PD is indicated to result from multifactorial etiological factors involving environmental contributions in genetically predisposed individuals. There has been considerable interest in the association between neurological manifestations in PD and in inherited metabolic disorders (IMDs), which are genetic disorders characterized by a deficient activity in the pathways of intermediary metabolism leading to multiple-system manifestations. In addition to the parallel in various clinical features, there is increasing evidence for the notion that genetic mutations underlying IMDs may increase the risk of PD development. This review highlights the recent advances in parkinsonism in patients with IMDs, with the primary objective to improve the understanding of the overlapping pathogenic pathways and clinical presentations in both disorders. We discuss the genetic convergence and disruptions in biochemical mechanisms which may point to clues surrounding pathogenesis-targeted treatment and other promising therapeutic strategies in the future.
Collapse
Affiliation(s)
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Katarzyna Perkowska
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
39
|
Klein AD, Mazzulli JR. Is Parkinson's disease a lysosomal disorder? Brain 2018; 141:2255-2262. [PMID: 29860491 PMCID: PMC6061679 DOI: 10.1093/brain/awy147] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/05/2018] [Accepted: 03/30/2018] [Indexed: 12/19/2022] Open
Abstract
Common forms of Parkinson's disease have long been described as idiopathic, with no single penetrant genetic factor capable of influencing disease aetiology. Recent genetic studies indicate a clear association of variants within several lysosomal genes as risk factors for idiopathic Parkinson's disease. The emergence of novel variants suggest that the aetiology of idiopathic Parkinson's disease may be explained by the interaction of several partially penetrant mutations that, while seemingly complex, all appear to converge on cellular clearance pathways. These newly evolving data are consistent with mechanistic studies linking α-synuclein toxicity to lysosomal abnormalities, and indicate that idiopathic Parkinson's disease resembles features of Mendelian lysosomal storage disorders at a genetic and biochemical level. These findings offer novel pathways to exploit for the development of disease-altering therapies for idiopathic Parkinson's disease that target specific components of the lysosomal system.
Collapse
Affiliation(s)
- Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avenida Las Condes 12461, Santiago 7590943, Chile
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Ward 12-369, Chicago, IL, 60611, USA
| |
Collapse
|
40
|
Shulskaya MV, Alieva AK, Vlasov IN, Zyrin VV, Fedotova EY, Abramycheva NY, Usenko TS, Yakimovsky AF, Emelyanov AK, Pchelina SN, Illarioshkin SN, Slominsky PA, Shadrina MI. Whole-Exome Sequencing in Searching for New Variants Associated With the Development of Parkinson's Disease. Front Aging Neurosci 2018; 10:136. [PMID: 29867446 PMCID: PMC5963122 DOI: 10.3389/fnagi.2018.00136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Parkinson’s disease (PD) is a complex disease with its monogenic forms accounting for less than 10% of all cases. Whole-exome sequencing (WES) technology has been used successfully to find mutations in large families. However, because of the late onset of the disease, only small families and unrelated patients are usually available. WES conducted in such cases yields in a large number of candidate variants. There are currently a number of imperfect software tools that allow the pathogenicity of variants to be evaluated. Objectives: We analyzed 48 unrelated patients with an alleged autosomal dominant familial form of PD using WES and developed a strategy for selecting potential pathogenetically significant variants using almost all available bioinformatics resources for the analysis of exonic areas. Methods: DNA sequencing of 48 patients with excluded frequent mutations was performed using an Illumina HiSeq 2500 platform. The possible pathogenetic significance of identified variants and their involvement in the pathogenesis of PD was assessed using SNP and Variation Suite (SVS), Combined Annotation Dependent Depletion (CADD) and Rare Exome Variant Ensemble Learner (REVEL) software. Functional evaluation was performed using the Pathway Studio database. Results: A significant reduction in the search range from 7082 to 25 variants in 23 genes associated with PD or neuronal function was achieved. Eight (FXN, MFN2, MYOC, NPC1, PSEN1, RET, SCN3A and SPG7) were the most significant. Conclusions: The multistep approach developed made it possible to conduct an effective search for potential pathogenetically significant variants, presumably involved in the pathogenesis of PD. The data obtained need to be further verified experimentally.
Collapse
Affiliation(s)
- Marina V Shulskaya
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Anelya Kh Alieva
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ivan N Vlasov
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Vladimir V Zyrin
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ekaterina Yu Fedotova
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Natalia Yu Abramycheva
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Tatiana S Usenko
- The Petersburg Nuclear Physics Institute of the National Research Center, Kurchatov Institute, Russian Academy of Sciences (RAS), Gatchina, Russia.,Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Andrei F Yakimovsky
- Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Anton K Emelyanov
- The Petersburg Nuclear Physics Institute of the National Research Center, Kurchatov Institute, Russian Academy of Sciences (RAS), Gatchina, Russia.,Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Sofya N Pchelina
- The Petersburg Nuclear Physics Institute of the National Research Center, Kurchatov Institute, Russian Academy of Sciences (RAS), Gatchina, Russia.,Federal State Budgetary Educational Institution of Higher Education, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Sergei N Illarioshkin
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Petr A Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Maria I Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
41
|
Lamri A, Pigeyre M, Garver WS, Meyre D. The Extending Spectrum of NPC1-Related Human Disorders: From Niemann-Pick C1 Disease to Obesity. Endocr Rev 2018; 39:192-220. [PMID: 29325023 PMCID: PMC5888214 DOI: 10.1210/er.2017-00176] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022]
Abstract
The Niemann-Pick type C1 (NPC1) protein regulates the transport of cholesterol and fatty acids from late endosomes/lysosomes and has a central role in maintaining lipid homeostasis. NPC1 loss-of-function mutations in humans cause NPC1 disease, a rare autosomal-recessive lipid-storage disorder characterized by progressive and lethal neurodegeneration, as well as liver and lung failure, due to cholesterol infiltration. In humans, genome-wide association studies and post-genome-wide association studies highlight the implication of common variants in NPC1 in adult-onset obesity, body fat mass, and type 2 diabetes. Heterozygous human carriers of rare loss-of-function coding variants in NPC1 display an increased risk of morbid adult obesity. These associations have been confirmed in mice models, showing an important interaction with high-fat diet. In this review, we describe the current state of knowledge for NPC1 variants in relationship to pleiotropic effects on metabolism. We provide evidence that NPC1 gene variations may predispose to common metabolic diseases by modulating steroid hormone synthesis and/or lipid homeostasis. We also propose several important directions of research to further define the complex roles of NPC1 in metabolism. This review emphasizes the contribution of NPC1 to obesity and its metabolic complications.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Marie Pigeyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,INSERM 1190, European Genomics Institute for Diabetes, University of Lille, CHRU Lille, Lille, France
| | - William S Garver
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
42
|
Cupidi C, Frangipane F, Gallo M, Clodomiro A, Colao R, Bernardi L, Anfossi M, Conidi ME, Vasso F, Curcio SAM, Mirabelli M, Smirne N, Torchia G, Muraca MG, Puccio G, Di Lorenzo R, Zampieri S, Romanello M, Dardis A, Maletta RG, Bruni AC. Role of Niemann-Pick Type C Disease Mutations in Dementia. J Alzheimers Dis 2018; 55:1249-1259. [PMID: 27792009 DOI: 10.3233/jad-160214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Several neurological and systemic diseases can cause dementia, beyond Alzheimer's disease. Rare genetic causes are often responsible for dementia with atypical features. Recently, mutations causative for Niemann-Pick type C disease (NPC) have also been implicated in neurodegenerative diseases. NPC is an autosomal recessive lipid storage disorder caused by mutations in NPC1 and NPC2 genes. In adults, clinical presentation mimicking other neurodegenerative diseases makes diagnosis difficult. Recent evidence suggests that heterozygous mutations in NPC genes may take on etiological significance. OBJECTIVE To investigate the presence of NPC1 and NPC2 mutations in adults affected by neurodegenerative dementia plus. METHODS We performed a genetic screening on 50 patients using a wide clinical and biochemical approach to characterize the phenotype of mutated patients. RESULTS Sequencing analysis revealed four different and known heterozygous mutations in NPC1 and NPC2 genes. Patient 1 carried the p. F284LfsX26 in NPC1 and was affected by progressive supranuclear palsy-like syndrome. The remaining three patients showed a corticobasal syndrome and harbored the c.441+1G>A variant of NPC2 (patient 2), the missense p.N222 S mutation associated with the c.1947+8G>C variant in the splice region of intron 12 in NPC1 (patient 3), and the p.V30M mutation in NPC2 (patient 4), respectively. Filipin staining was abnormal in patients 1 and 2. mRNA analysis revealed an altered splicing of the NPC2 gene in patient 2. CONCLUSIONS Heterozygous mutations of NPC1 and NPC2 genes could contribute to dementia plus, at least in a subset of patients. We highlight the occurrence of NPC1 and NPC2 heterozygous variants in dementia-plus as pathological event.
Collapse
Affiliation(s)
- Chiara Cupidi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Maura Gallo
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Livia Bernardi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Maria Anfossi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Franca Vasso
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Maria Mirabelli
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Nicoletta Smirne
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Giusi Torchia
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Gianfranco Puccio
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Stefania Zampieri
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Milena Romanello
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | | | | |
Collapse
|
43
|
Robak LA, Jansen IE, van Rooij J, Uitterlinden AG, Kraaij R, Jankovic J, Heutink P, Shulman JM. Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain 2017; 140:3191-3203. [PMID: 29140481 PMCID: PMC5841393 DOI: 10.1093/brain/awx285] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/15/2017] [Accepted: 09/10/2017] [Indexed: 12/19/2022] Open
Abstract
Mutations in the glucocerebrosidase gene (GBA), which cause Gaucher disease, are also potent risk factors for Parkinson's disease. We examined whether a genetic burden of variants in other lysosomal storage disorder genes is more broadly associated with Parkinson's disease susceptibility. The sequence kernel association test was used to interrogate variant burden among 54 lysosomal storage disorder genes, leveraging whole exome sequencing data from 1156 Parkinson's disease cases and 1679 control subjects. We discovered a significant burden of rare, likely damaging lysosomal storage disorder gene variants in association with Parkinson's disease risk. The association signal was robust to the exclusion of GBA, and consistent results were obtained in two independent replication cohorts, including 436 cases and 169 controls with whole exome sequencing and an additional 6713 cases and 5964 controls with exome-wide genotyping. In secondary analyses designed to highlight the specific genes driving the aggregate signal, we confirmed associations at the GBA and SMPD1 loci and newly implicate CTSD, SLC17A5, and ASAH1 as candidate Parkinson's disease susceptibility genes. In our discovery cohort, the majority of Parkinson's disease cases (56%) have at least one putative damaging variant in a lysosomal storage disorder gene, and 21% carry multiple alleles. Our results highlight several promising new susceptibility loci and reinforce the importance of lysosomal mechanisms in Parkinson's disease pathogenesis. We suggest that multiple genetic hits may act in combination to degrade lysosomal function, enhancing Parkinson's disease susceptibility.
Collapse
Affiliation(s)
- Laurie A Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston TX USA
| | - Iris E Jansen
- German Center for Neurodegenerative Diseases (DZNE) and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Clinical Genetics, VU University Medical Center, Amsterdam 1081HZ, The Netherlands
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing (NCHA), Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing (NCHA), Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing (NCHA), Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE) and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston TX USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience and Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
44
|
Hendriksz CJ, Anheim M, Bauer P, Bonnot O, Chakrapani A, Corvol JC, de Koning TJ, Degtyareva A, Dionisi-Vici C, Doss S, Duning T, Giunti P, Iodice R, Johnston T, Kelly D, Klünemann HH, Lorenzl S, Padovani A, Pocovi M, Synofzik M, Terblanche A, Then Bergh F, Topçu M, Tranchant C, Walterfang M, Velten C, Kolb SA. The hidden Niemann-Pick type C patient: clinical niches for a rare inherited metabolic disease. Curr Med Res Opin 2017; 33:877-890. [PMID: 28276873 DOI: 10.1080/03007995.2017.1294054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Niemann-Pick disease type C (NP-C) is a rare, inherited neurodegenerative disease of impaired intracellular lipid trafficking. Clinical symptoms are highly heterogeneous, including neurological, visceral, or psychiatric manifestations. The incidence of NP-C is under-estimated due to under-recognition or misdiagnosis across a wide range of medical fields. New screening and diagnostic methods provide an opportunity to improve detection of unrecognized cases in clinical sub-populations associated with a higher risk of NP-C. Patients in these at-risk groups ("clinical niches") have symptoms that are potentially related to NP-C, but go unrecognized due to other, more prevalent clinical features, and lack of awareness regarding underlying metabolic causes. METHODS Twelve potential clinical niches identified by clinical experts were evaluated based on a comprehensive, non-systematic review of literature published to date. Relevant publications were identified by targeted literature searches of EMBASE and PubMed using key search terms specific to each niche. Articles published in English or other European languages up to 2016 were included. FINDINGS Several niches were found to be relevant based on available data: movement disorders (early-onset ataxia and dystonia), organic psychosis, early-onset cholestasis/(hepato)splenomegaly, cases with relevant antenatal findings or fetal abnormalities, and patients affected by family history, consanguinity, and endogamy. Potentially relevant niches requiring further supportive data included: early-onset cognitive decline, frontotemporal dementia, parkinsonism, and chronic inflammatory CNS disease. There was relatively weak evidence to suggest amyotrophic lateral sclerosis or progressive supranuclear gaze palsy as potential niches. CONCLUSIONS Several clinical niches have been identified that harbor patients at increased risk of NP-C.
Collapse
Affiliation(s)
- Christian J Hendriksz
- a Salford Royal NHS Foundation Trust , Manchester , UK
- b University of Pretoria , Pretoria , South Africa
| | - Mathieu Anheim
- c University of Strasbourg , Hautepierre Hospital , Strasbourg , France
| | - Peter Bauer
- d Institute of Medical Genetics and Applied Genomics, Tübingen University , Tübingen, Germany
- e CENTOGENE AG , Rostock , Germany
| | | | | | - Jean-Christophe Corvol
- h Sorbonne University , UPMC and Hôpital Pitié-Salpêtrière, Department of Nervous System Diseases , Paris , France
| | | | - Anna Degtyareva
- j Federal State Budget Institution, Research Center for Obstetrics , Gynecology and Perinatology , Moscow , Russia
| | | | - Sarah Doss
- l Charite University Medicine Berlin , Department of Neurology , Berlin , Germany
| | | | - Paola Giunti
- n University College London, Institute of Neurology , London , UK
| | - Rosa Iodice
- o University Federico II Naples , Naples , Italy
| | | | | | - Hans-Hermann Klünemann
- r University Clinic for Psychiatry and Psychotherapy, Regensburg University , Regensburg , Germany
| | - Stefan Lorenzl
- s Ludwig Maximillian University , Munich , Germany
- t Paracelus Medical University , Salzburg , Austria
| | - Alessandro Padovani
- u Neurology Unit, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | | | - Matthis Synofzik
- w Department of Neurodegenerative Diseases , Hertie Institute for Clinical Brain Research , Tübingen, Germany
- x German Center for Neurodegenerative Diseases (DZNE) , Tübingen, Germany
| | | | | | - Meral Topçu
- z Hacettepe University Children's Hospital , Ankara , Turkey
| | | | | | | | - Stefan A Kolb
- ac Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| |
Collapse
|
45
|
Benussi A, Cotelli MS, Cosseddu M, Bertasi V, Turla M, Salsano E, Dardis A, Padovani A, Borroni B. Preliminary Results on Long-Term Potentiation-Like Cortical Plasticity and Cholinergic Dysfunction After Miglustat Treatment in Niemann-Pick Disease Type C. JIMD Rep 2017; 36:19-27. [PMID: 28092091 DOI: 10.1007/8904_2016_33] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a rare autosomal recessive lysosomal storage disorder, which manifests clinically with a wide range of neurological signs and symptoms. We assessed multiple neurological, neuropsychological and neurophysiological biomarkers using a transcranial magnetic stimulation (TMS) multi-paradigm approach in two patients with NPC carrying a homozygous mutation in the NPC1 gene, and in two heterozygous family members.We assessed short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), long-interval intracortical inhibition (LICI), short-latency afferent inhibition (SAI) and long-term potentiation (LTP)-like cortical plasticity with a paired associative stimulation (PAS) protocol.Baseline SAI and LTP-like plasticity were impaired in both patients with NPC and in the symptomatic heterozygous NPC1 gene mutation carrier. Only a limited decrease in SICI and ICF was observed, while LICI was within normal range in all subjects at baseline. After 12 months of treatment with miglustat, a considerable improvement in SAI and LTP-like plasticity was observed in both patients with NPC. In conclusion, these biomarkers could help to confirm the diagnosis of NPC, and may give an indication of prognostic outcomes in pharmacological trials.
Collapse
Affiliation(s)
- Alberto Benussi
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, University of Brescia, Piazzale Spedali Civili 1, Brescia, Italy
| | | | - Maura Cosseddu
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, University of Brescia, Piazzale Spedali Civili 1, Brescia, Italy
| | | | | | - Ettore Salsano
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Andrea Dardis
- University Hospital "Santa Maria della Misericordia", Udine, Italy
| | - Alessandro Padovani
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, University of Brescia, Piazzale Spedali Civili 1, Brescia, Italy
| | - Barbara Borroni
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, University of Brescia, Piazzale Spedali Civili 1, Brescia, Italy.
| |
Collapse
|
46
|
Liu JP, Li J, Lu Y, Wang L, Chen G. Impulse control disorder, lysosomal malfunction and ATP13A2 insufficiency in Parkinsonism. Clin Exp Pharmacol Physiol 2016; 44:172-179. [PMID: 27997702 DOI: 10.1111/1440-1681.12714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022]
Abstract
Lysosomal transport of cargos in neurons is essential for neuronal proteostasis, transmission and functional motors and behaviours. Lysosomal malfunction including storage disorders is involved in the pathogenesis of Parkinson's disease (PD). Given the unclear molecular mechanisms of diverse defects in PD phenotypes, especially behavioural deficits, this mini review explores the cellular contexts of PD impulse control disorders and the molecular aspects of lysosomal cross-membrane transports. Focuses are paid to trace metal involvements in α-synuclein assembly in Lewy bodies, the functions and molecular interactions of ATP13A2 as ATPase transporters in lysosomal membranes for cross-membrane trafficking and lysosomal homeostasis, and our current understandings of the neural circuits in ICD. Erroneously polarized distributions of cargos such as metals and lipids on each side of lysosomal membranes triggered by gene mutations and deregulated expression of ATP13A2 may thus instigate sensing protein structural changes such as aggregations, organelle degeneration, and specific neuronal ageing and death in Parkinsonism.
Collapse
Affiliation(s)
- Jun-Ping Liu
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China.,Department of Molecular and Translational Science, Faculty of Medicine, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.,Department of Immunology, Faculty of Medicine, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Jianfeng Li
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yanhua Lu
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Lihui Wang
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Gang Chen
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
47
|
Kalinderi K, Bostantjopoulou S, Fidani L. The genetic background of Parkinson's disease: current progress and future prospects. Acta Neurol Scand 2016; 134:314-326. [PMID: 26869347 DOI: 10.1111/ane.12563] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 12/17/2022]
Abstract
Almost two decades of genetic research in Parkinson's disease (PD) have remarkably increased our knowledge regarding the genetic basis of PD with numerous genes and genetic loci having been found to cause familial PD or affect the risk for PD. Approximately 5-10% of PD patients have monogenic forms of the disease, exhibiting a classical Mendelian type of inheritance, however, the majority PD cases are sporadic, probably caused by a combination of genetic and environmental risk factors. Nowadays, six genes, alpha synuclein, LRRK2, VPS35, Parkin, PINK1 and DJ-1, have definitely been associated with an autosomal dominant or recessive PD mode of inheritance. The advent of genome-wide association studies (GWAS) and the implementation of new technologies, like next generation sequencing (NGS) and exome sequencing has undoubtedly greatly aided the identification on novel risk variants for sporadic PD. In this review, we will summarize the current progress and future prospects in the field of PD genetics.
Collapse
Affiliation(s)
- K. Kalinderi
- Department of General Biology; Medical School; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - S. Bostantjopoulou
- 3rd University Department of Neurology; G. Papanikolaou Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - L. Fidani
- Department of General Biology; Medical School; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
48
|
Hung YH, Walterfang M, Churilov L, Bray L, Jacobson LH, Barnham KJ, Jones NC, O'Brien TJ, Velakoulis D, Bush AI. Neurological Dysfunction in Early Maturity of a Model for Niemann-Pick C1 Carrier Status. Neurotherapeutics 2016; 13:614-22. [PMID: 26942423 PMCID: PMC4965399 DOI: 10.1007/s13311-016-0427-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Autosomal recessive inheritance of NPC1 with loss-of-function mutations underlies Niemann-Pick disease, type C1 (NP-C1), a lysosomal storage disorder with progressive neurodegeneration. It is uncertain from limited biochemical studies and patient case reports whether NPC1 haploinsufficiency can cause a partial NP-C1 phenotype in carriers. In the present study, we examined this possibility in heterozygotes of a natural loss-of-function mutant Npc1 mouse model. We found partial motor dysfunction and increased anxiety-like behavior in Npc1 (+/-) mice by 9 weeks of age. Relative to Npc1 (+/+) mice, Npc1 (+/-) mice failed to show neurodevelopmental improvements in motor coordination and balance on an accelerating Rotarod. In the open-field test, Npc1 (+/-) mice showed an intermediate phenotype in spontaneous locomotor activity compared with Npc1 (+/+) and Npc1 (-/-) mice, as well as decreased center tendency. Together with increased stride length under anxiogenic conditions on the DigiGait treadmill, these findings are consistent with heightened anxiety. Our findings indicate that pathogenic NPC1 allele carriers, who represent about 0.66 % of humans, could be vulnerable to motor and anxiety disorders.
Collapse
Affiliation(s)
- Ya Hui Hung
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mark Walterfang
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Neuropsychiatry Unit, Royal Melbourne Hospital and Melbourne Neuropsychiatry Centre, Melbourne, Victoria, 3050, Australia
| | - Leonid Churilov
- Statistics and Informatics Platform, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Mathematics and Geospatial Sciences, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Lisa Bray
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Laura H Jacobson
- Neurotherapeutics Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kevin J Barnham
- Neurotherapeutics Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital and Melbourne Neuropsychiatry Centre, Melbourne, Victoria, 3050, Australia
| | - Ashley I Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
49
|
Moors T, Paciotti S, Chiasserini D, Calabresi P, Parnetti L, Beccari T, van de Berg WDJ. Lysosomal Dysfunction and α-Synuclein Aggregation in Parkinson's Disease: Diagnostic Links. Mov Disord 2016; 31:791-801. [DOI: 10.1002/mds.26562] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/31/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Tim Moors
- Department of Anatomy and Neurosciences; Section Quantitative Morphology, Neuroscience Campus Amsterdam, VU University Medical Center; Amsterdam the Netherlands
| | - Silvia Paciotti
- Department of Pharmaceutical Sciences; Section of Nutrition and Food Science, University of Perugia; Perugia Italy
| | - Davide Chiasserini
- Department of Medicine; Section of Neurology, University of Perugia; Perugia Italy
| | - Paolo Calabresi
- Department of Medicine; Section of Neurology, University of Perugia; Perugia Italy
- Fondazione Santa Lucia-Istituto di Ricovero e Cura a Carattere Scientifico; Roma Italy
| | - Lucilla Parnetti
- Department of Medicine; Section of Neurology, University of Perugia; Perugia Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences; Section of Nutrition and Food Science, University of Perugia; Perugia Italy
| | - Wilma D. J. van de Berg
- Department of Anatomy and Neurosciences; Section Quantitative Morphology, Neuroscience Campus Amsterdam, VU University Medical Center; Amsterdam the Netherlands
| |
Collapse
|
50
|
Gan-Or Z, Dion PA, Rouleau GA. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy 2015; 11:1443-57. [PMID: 26207393 PMCID: PMC4590678 DOI: 10.1080/15548627.2015.1067364] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 02/09/2023] Open
Abstract
Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways.
Collapse
Affiliation(s)
- Ziv Gan-Or
- The Department of Human Genetics; McGill University; Montreal, QC Canada
- Montreal Neurological Institute; McGill University; Montreal, QC Canada
| | - Patrick A Dion
- The Department of Human Genetics; McGill University; Montreal, QC Canada
- Montreal Neurological Institute; McGill University; Montreal, QC Canada
- The Department of Neurology & Neurosurgery; McGill University; Montreal, QC Canada
| | - Guy A Rouleau
- The Department of Human Genetics; McGill University; Montreal, QC Canada
- Montreal Neurological Institute; McGill University; Montreal, QC Canada
- The Department of Neurology & Neurosurgery; McGill University; Montreal, QC Canada
| |
Collapse
|