1
|
Delaby C, Alcolea D, Busto G, Gabelle A, Ayrignac X, Bennys K, Muiño E, Villatoro P, Fernández-Cadenas I, Pradeilles N, Bounasri SE, Torres S, Hirtz C, Zetterberg H, Lleó A, Fortea J, Lehmann S. Plasma Hepcidin as a potential informative biomarker of Alzheimer disease and vascular dementia. Alzheimers Res Ther 2025; 17:42. [PMID: 39948603 PMCID: PMC11823057 DOI: 10.1186/s13195-025-01696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/07/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND Blood-based assays are expected to be integrated into clinical routines across various contexts, including Alzheimer's disease (AD). Vascular dementia (VaD), which is the second most common cause leading to dementia after AD, could also significantly benefit from this advancement. However, no informative fluid biomarker has been identified for VaD. Given the disruption of iron homeostasis in both AD and VaD, this study aims to characterize the potential of the iron-related hormone Hepcidin as a biomarker for these two conditions. We will compare its added value to established AT(N) blood biomarkers. METHODS Blood biomarkers (amyloid-composite, p-Tau181, Neurofilament Light Chain [NfL] and Hepcidin) levels in blood were analyzed in two independent cohorts and compared between AD patients and non-AD individuals. Additionally, blood Hepcidin and NfL were evaluated in the contexts of VaD and CADASIL, with their relative diagnostic value assessed. RESULTS Blood Hepcidin and NfL do not significantly increase the AUC obtained with both p-Tau181 and amyloid composite in the context of AD. In contrast, AUC for VaD diagnosis is significantly higher when combining these two blood biomarkers compared to NfL alone. Hepcidin was not significantly modified in CADASIL patients compared to control subjects. CONCLUSION Blood Hepcidin and NfL have limited interest in the clinical context of AD but determination of these biomarkers shows to be highly informative for the diagnosis of VaD. This result could have important implications for diagnosis and implementation of clinical trials.
Collapse
Affiliation(s)
- Constance Delaby
- Université de Montpellier, INM INSERM LBPC-PPC, IRMB CHU de Montpellier, Montpellier, France.
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain.
| | - Daniel Alcolea
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Germain Busto
- Department of Neurology, Université de Montpellier, Inserm INM NeuroPEPs Team, 34000, Montpellier, France
| | - Audrey Gabelle
- Department of Neurology, Université de Montpellier, Inserm INM NeuroPEPs Team, 34000, Montpellier, France
| | - Xavier Ayrignac
- Department of Neurology, Université de Montpellier, Inserm INM NeuroPEPs Team, 34000, Montpellier, France
| | - Karim Bennys
- Department of Neurology, Université de Montpellier, Inserm INM NeuroPEPs Team, 34000, Montpellier, France
| | - Elena Muiño
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Farmacogenómica y Genética Neurovascular, Sant Quintí 77-79, Barcelona, 08041, Spain
- Unidad de Epilepsia, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, Spain, 08025, Barcelona
| | - Paula Villatoro
- Farmacogenómica y Genética Neurovascular. Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
| | - Israel Fernández-Cadenas
- Farmacogenómica y Genética Neurovascular. Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
| | - Nicolas Pradeilles
- Université de Montpellier, INM INSERM LBPC-PPC, IRMB CHU de Montpellier, Montpellier, France
| | - Shaima El Bounasri
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain
| | - Soraya Torres
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain
| | - Christophe Hirtz
- Université de Montpellier, INM INSERM LBPC-PPC, IRMB CHU de Montpellier, Montpellier, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the , Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Dementia Research Institute at UCL, London, UK
- Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Alberto Lleó
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Juan Fortea
- Department of Neurology, Sant Pau Memory Unit, Hospital de La Santa Creu I Sant Pau - IIB Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Sylvain Lehmann
- Université de Montpellier, INM INSERM LBPC-PPC, IRMB CHU de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Fakouri E, Faramarzinia A, Zare H. Reflection on the prognostic role of Iron deficiency in acute ischemic stroke. J Neurol Sci 2025; 471:123419. [PMID: 40023077 DOI: 10.1016/j.jns.2025.123419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Affiliation(s)
- Erfan Fakouri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hossein Zare
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Cui L, Zhou H, Hao Y, Yang X, Li Z, Gao Y, Zhang Z, Ren L, Ji L, Sun R, Wang Y, Wang X. Effect of ferric citrate on hippocampal iron accumulation and widespread molecular alterations associated with cognitive disorder in an ovariectomized mice model. CNS Neurosci Ther 2024; 30:e70018. [PMID: 39252474 PMCID: PMC11386256 DOI: 10.1111/cns.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE Nowadays, the prevalence of cognitive impairment in women has gradually increased, especially in postmenopausal women. There were few studies on the mechanistic effects of iron exposure on neurotoxicity in postmenopausal women. The aim of this study is to investigate the effect of iron accumulation on cognitive ability in ovariectomized mice and its possible mechanism and to provide a scientific basis for the prevention of cognitive dysfunction in postmenopausal women. METHODS Female C57BL/6N ovariectomized model mice were induced with ferric citrate (FAC). The mice were randomly divided into 5 groups: control, sham, ovariectomized (Ovx), Ovx + 50 mg/kg FAC (Ovx + l), and Ovx + 100 mg/kg FAC (Ovx + h). The impact of motor and cognitive function was verified by a series of behavioral tests. The levels of serum iron parameters, malondialdehyde, and superoxide dismutase were measured. The ultrastructure of mice hippocampal microglia was imaged by transmission electron microscopy. The differential expression of hippocampal proteins was analyzed by Tandem Mass Tag labeling. RESULTS Movement and cognitive function in Ovx + l/Ovx + h mice were significantly decreased compared to control and Sham mice. Then, iron exposure caused histopathological changes in the hippocampus of mice. In addition, proteomic analysis revealed that 29/27/41 proteins were differentially expressed in the hippocampus when compared by Ovx vs. Sham, Ovx + l vs. Ovx, as well as Ovx + h vs. Ovx + l groups, respectively. Moreover, transferrin receptor protein (TFR1) and divalent metal transporter 1 (DMT1) protein expression were significantly increased in the iron accumulation mice model with ovariectomy. CONCLUSION Iron exposure could cause histopathological damage in the hippocampus of ovariectomised mice and, by altering hippocampal proteomics, particularly the expression of hippocampal iron metabolism-related proteins, could further influence cognitive impairment in ovariectomized mice.
Collapse
Affiliation(s)
- Lingling Cui
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Huijun Zhou
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yudan Hao
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Xiaoli Yang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Zhiqian Li
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yuting Gao
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Zhengya Zhang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Lina Ren
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Linpu Ji
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Ruijie Sun
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yibo Wang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Xian Wang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
4
|
Wang X, Wang B, Yang F, Shang K, Chen S, Zhang Y. Associations between plasma metal elements and risk of cognitive impairment among Chinese older adults. Front Aging Neurosci 2024; 16:1353286. [PMID: 38384934 PMCID: PMC10879289 DOI: 10.3389/fnagi.2024.1353286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background The relationship between plasma metal elements and cognitive function is unclear, especially in extremely older individuals. This present study aimed to explore the association between plasma metal concentrations and the risk of cognitive impairment (CI) in Chinese extremely older adults. Methods Individuals aged ≥90 years with plasm metal concentration data from the fifth wave of the 2008 Chinese Longitudinal Healthy Longevity Survey were included. Plasma selenium (Se), manganese (Mn), magnesium (Mg), calcium (Ca), iron (Fe), copper (Cu), and zinc (Zn) concentrations were measured using inductively coupled plasma optical emission spectroscopy. Cognitive function was assessed by the Chinese version of the mini-mental state examination. Results The study enrolled 408 participants. Participants with CI had significantly lower plasma Se, Mn, and Fe levels and higher Ca levels than those with normal cognitive function (p < 0.05). Plasma Se, Mn, Ca, and Fe concentrations were significantly associated with CI risk in both single- and multiple-element logistic regression models. Additionally, the multiple-element model results showed that the adjusted odds ratios for CI were 0.042 (95% confidence interval 0.016-0.109), 0.106 (0.044-0.255), 7.629 (3.211-18.124) and 0.092 (0.036-0.233) for the highest quartiles compared to the lowest quartiles of Se, Mn, Ca, and Fe, respectively. Moreover, subgroup analyses by age, sex, and body mass index suggested a consistent significant correlation (p < 0.05). Conclusion Therefore, decreased plasma Se, Mn, and Fe and increased plasma Ca levels were associated with CI risk in Chinese older adults. These findings are of great significance for the development of programs to delay cognitive decline in the elderly.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Binbin Wang
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Fuwen Yang
- Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaijian Shang
- Department of Emergency Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shaowei Chen
- Department of Hematology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Zhang
- School of Public Health, Department of Epidemiology, Shanxi Medical University, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry Education, Taiyuan, China
| |
Collapse
|
5
|
Lu K, Liu T, Wu X, Zhong J, Ou Z, Wu W. Association between serum iron, blood lead, cadmium, mercury, selenium, manganese and low cognitive performance in old adults from National Health and Nutrition Examination Survey (NHANES): a cross-sectional study. Br J Nutr 2023; 130:1743-1753. [PMID: 36941743 DOI: 10.1017/s0007114523000740] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Cognitive decline is a public health problem for the world's ageing population. This study was to evaluate the relationships between serum Fe, blood Pb, Cd, Hg, Se and Mn and cognitive decline in elderly Americans. Data of this cross-sectional study were extracted from the National Health and Nutritional Examination Survey (NHANES 2011-2014). Cognitive performance was measured by the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), Animal Fluency and Digit Symbol Substitution Test (DSST) tests. Weighted univariable and multivariate logistic regression analyses were used to assess the associations between six trace elements and low cognitive performance. Subgroup analyses based on diabetes and hypertension history were further assessed the associations. A total of 2002 adults over 60 years old were included. After adjusting covariates, elevated serum Fe levels were associated with the decreased risk of low cognitive performance, especially in the elderly without diabetes history and with hypertension history. High blood Cd levels were associated with the high odds of low cognitive performance in old adults with diabetes and hypertension history. Elevated blood Mn levels were connected with low cognitive performance in old hypertensive people. High blood Pb levels were related to the high odds of low cognitive performance, especially in the elderly without diabetes and hypertension history. High blood Se levels were linked to the decreased risk of low cognitive performance in all the elderly. Appropriate Fe, Se supplementation and Fe-, Se-rich foods intake, while reducing exposure to Pb, Cd and Mn may be beneficial for cognitive function in the elderly.
Collapse
Affiliation(s)
- Kui Lu
- Department of Neurology, Zhongshan City People's Hospital, Zhongshan528403, Guangdong, People's Republic of China
| | - Tian Liu
- President's Office, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, People's Republic of China
| | - Xiaoyan Wu
- Department of Neurology, the Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou511300, Guangdong, People's Republic of China
| | - Jianqiang Zhong
- Department of Neurology, the Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou511300, Guangdong, People's Republic of China
| | - Zhenri Ou
- Department of Neurology, Zhongshan City People's Hospital, Zhongshan528403, Guangdong, People's Republic of China
| | - Wenjun Wu
- Department of Neurology, Zhongshan City People's Hospital, Zhongshan528403, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Chu J, Li J, Sun L, Wei J. The Role of Cellular Defense Systems of Ferroptosis in Parkinson's Disease and Alzheimer's Disease. Int J Mol Sci 2023; 24:14108. [PMID: 37762411 PMCID: PMC10531775 DOI: 10.3390/ijms241814108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common rapidly developing neurodegenerative diseases that lead to serious health and socio-economic consequences. Ferroptosis is a non-apoptotic form of cell death; there is growing evidence to support the notion that ferroptosis is involved in a variety of pathophysiological contexts, and there is increasing interest in the role of ferroptosis in PD and AD. Simultaneously, cells may have evolved four defense systems to counteract the toxic effects of ferroptosis occasioned by lipid peroxidation. This review, which focuses on the analysis of ferroptosis in the PD and AD context, outlines four cellular defense systems against ferroptosis and how each of them is involved in PD and AD.
Collapse
Affiliation(s)
- Jie Chu
- School of Physical Education, Henan University, Kaifeng 475004, China; (J.C.); (J.L.)
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingwen Li
- School of Physical Education, Henan University, Kaifeng 475004, China; (J.C.); (J.L.)
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lin Sun
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- School of Physical Education, Henan University, Kaifeng 475004, China; (J.C.); (J.L.)
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300325. [PMID: 37341302 PMCID: PMC10460905 DOI: 10.1002/advs.202300325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Emerging evidence suggests that ferroptosis, a unique regulated cell death modality that is morphologically and mechanistically different from other forms of cell death, plays a vital role in the pathophysiological process of neurodegenerative diseases, and strokes. Accumulating evidence supports ferroptosis as a critical factor of neurodegenerative diseases and strokes, and pharmacological inhibition of ferroptosis as a therapeutic target for these diseases. In this review article, the core mechanisms of ferroptosis are overviewed and the roles of ferroptosis in neurodegenerative diseases and strokes are described. Finally, the emerging findings in treating neurodegenerative diseases and strokes through pharmacological inhibition of ferroptosis are described. This review demonstrates that pharmacological inhibition of ferroptosis by bioactive small-molecule compounds (ferroptosis inhibitors) could be effective for treatments of these diseases, and highlights a potential promising therapeutic avenue that could be used to prevent neurodegenerative diseases and strokes. This review article will shed light on developing novel therapeutic regimens by pharmacological inhibition of ferroptosis to slow down the progression of these diseases in the future.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care MedicineAerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijing100049P. R. China
| | - Shuang Wu
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhan430000P. R. China
| | - Qiang Li
- Department of NeurologyThe Affiliated Hospital of Chifeng UniversityChifeng024005P. R. China
| | - Huiyan Sun
- Chifeng University Health Science CenterChifeng024000P. R. China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| |
Collapse
|
8
|
Mandal PK, Dwivedi D, Joon S, Goel A, Ahasan Z, Maroon JC, Singh P, Saxena R, Roy RG. Quantitation of Brain and Blood Glutathione and Iron in Healthy Age Groups Using Biophysical and In Vivo MR Spectroscopy: Potential Clinical Application. ACS Chem Neurosci 2023. [PMID: 37257017 DOI: 10.1021/acschemneuro.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
The antioxidant glutathione (GSH) and pro-oxidant iron levels play a balancing role in the modulation of oxidative stress (OS). There is a significant depletion of GSH in the left hippocampus (LH) in patients with Alzheimer's disease (AD) with concomitant elevation of iron level. However, the correlation of GSH and iron distribution patterns between the brain and the peripheral system (blood) is not yet known. We measured GSH and magnetic susceptibility (e.g., iron) in the LH region along with GSH in plasma and iron in serum across four age groups consisting of healthy volunteers (age range 18-72 y, n = 70). We report non-variability of the mean GSH in the plasma and LH region across mentioned age groups. The mean iron level in the LH region does not change, but the iron level in the serum in the 51-72 y age group increases non-significantly. Regression analysis of our data indicated that GSH and iron levels (both in blood and in brain) are not related to age. This research pave the way for the identification of a risk/susceptibility biomarker for AD and Parkinson's disease from the evaluation of GSH (in plasma) and iron (in serum) levels concomitantly.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3052, VIC, Australia
| | - Divya Dwivedi
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
| | - Shallu Joon
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
| | - Anshika Goel
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
| | - Zoheb Ahasan
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15260, United States
| | - Padam Singh
- Department of Biostatistics, Medanta Medicity, Gurgaon 122001, Haryana, India
| | - Renu Saxena
- Department of Laboratory Medicine, Medanta Medicity, Gurgaon 122001, Haryana, India
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, 122052 Haryana, India
| |
Collapse
|
9
|
Wu L, Xian X, Tan Z, Dong F, Xu G, Zhang M, Zhang F. The Role of Iron Metabolism, Lipid Metabolism, and Redox Homeostasis in Alzheimer's Disease: from the Perspective of Ferroptosis. Mol Neurobiol 2023; 60:2832-2850. [PMID: 36735178 DOI: 10.1007/s12035-023-03245-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
In the development of Alzheimer's disease (AD), cell death is common. Novel cell death form-ferroptosis is discovered in recent years. Ferroptosis is an iron-regulated programmed cell death mechanism and has been identified in AD clinical samples. Typical characteristics of ferroptosis involve the specific changes in cell morphology, iron-dependent aggregation of reactive oxygen species (ROS) and lipid peroxides, loss of glutathione (GSH), inactivation of glutathione peroxidase 4 (GPX4), and a unique group of regulatory genes. Increasing evidence demonstrates that ferroptosis may be associated with neurological dysfunction in AD. However, the underlying mechanisms have not been fully elucidated. This article reviews the potential role of ferroptosis in AD, the involvement of ferroptosis in the pathological progression of AD through the mechanisms of iron metabolism, lipid metabolism, and redox homeostasis, as well as a range of potential therapies targeting ferroptosis for AD. Intervention strategies based on ferroptosis are promising for Alzheimer's disease treatment at present, but further researches are still needed.
Collapse
Affiliation(s)
- Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Xiaohui Xian
- Department of Pathophysiology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang, 050051, People's Republic of China
| | - Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang, 050051, People's Republic of China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
10
|
Delaby C, Hirtz C, Lehmann S. Overview of the blood biomarkers in Alzheimer's disease: Promises and challenges. Rev Neurol (Paris) 2023; 179:161-172. [PMID: 36371265 DOI: 10.1016/j.neurol.2022.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
The increasing number of people with advanced Alzheimer's disease (AD) represents a significant psychological and financial cost to the world population. Accurate detection of the earliest phase of preclinical AD is of major importance for the success of preventive and therapeutic strategies (Cullen et al., 2021). Advances in analytical techniques have been essential for the development of sensitive, specific and reliable diagnostic tests for AD biomarkers in biological fluids (cerebrospinal fluid and blood). Blood biomarkers hold promising potential for early and minimally invasive detection of AD, but also for differential diagnosis of dementia and for monitoring the course of the disease. The aim of this review is to provide an overview of current blood biomarkers of AD, from tau proteins and amyloid peptides to biomarkers of neuronal degeneration and inflammation, reactive and metabolic factors. We thus discuss the informative value of currently candidate blood biomarkers and their potential to be integrated into clinical practice for the management of AD in the near future.
Collapse
Affiliation(s)
- C Delaby
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France; Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Hirtz
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France
| | - S Lehmann
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France.
| |
Collapse
|
11
|
Yang L, Nao J. Ferroptosis: a potential therapeutic target for Alzheimer's disease. Rev Neurosci 2022:revneuro-2022-0121. [PMID: 36514247 DOI: 10.1515/revneuro-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
The most prevalent dementia-causing neurodegenerative condition is Alzheimer's disease (AD). The aberrant buildup of amyloid β and tau hyperphosphorylation are the two most well-known theories about the mechanisms underlying AD development. However, a significant number of pharmacological clinical studies conducted around the world based on the two aforementioned theories have not shown promising outcomes, and AD is still not effectively treated. Ferroptosis, a non-apoptotic programmed cell death defined by the buildup of deadly amounts of iron-dependent lipid peroxides, has received more attention in recent years. A wealth of data is emerging to support the role of iron in the pathophysiology of AD. Cell line and animal studies applying ferroptosis modulators to the treatment of AD have shown encouraging results. Based on these studies, we describe in this review the underlying mechanisms of ferroptosis; the role that ferroptosis plays in AD pathology; and summarise some of the research advances in the treatment of AD with ferroptosis modulators. We hope to contribute to the clinical management of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
12
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
13
|
Du B, Zhang Y, Liang M, Du Z, Li H, Fan C, Zhang H, Jiang Y, Bi X. N6-methyladenosine (m6A) modification and its clinical relevance in cognitive dysfunctions. Aging (Albany NY) 2021; 13:20716-20737. [PMID: 34461609 PMCID: PMC8436914 DOI: 10.18632/aging.203457] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND N6 adenosine methylation (m6A) is the most abundant internal RNA modification in eukaryotic cells. Dysregulation of m6A has been associated with the perturbations of cell proliferation and cell death in different diseases. However, the roles of m6A in the neurodegenerative process and cognitive dysfunction are unclear. METHODS We systematically investigated the molecular alterations of m6A regulators and their clinical relevance with cognitive dysfunctions using published datasets of Alzheimer's Disease (AD), vascular dementia, and mild cognitive impairment (MCI). FINDINGS The expressions of m6A regulators vary in different tissues and closely correlate with neurodegenerative pathways. We identified co-expressive m6A regulators SNRPG and SNRPD2 as potential biomarkers to predict transformation from MCI to AD. Moreover, we explored correlations between Apolipoprotein E4 and m6A methylations. INTERPRETATION Collectively, these findings suggest that m6A methylations as potential biomarkers and therapeutic targets for cognitive dysfunction. FUNDING This work was supported by the National Natural Science Foundation of China (81871040) and the Shanghai Health System Talent Training Program (2018BR29).
Collapse
Affiliation(s)
- Bingying Du
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, PR China
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Meng Liang
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, PR China
| | - Zengkan Du
- Faculty of Basic Medical Sciences, The Second Military Medical University, Shanghai, PR China
| | - Haibo Li
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Cunxiu Fan
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, PR China
| | - Hailing Zhang
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, PR China
| | - Yan Jiang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, PR China
| |
Collapse
|
14
|
Belaya I, Kucháriková N, Górová V, Kysenius K, Hare DJ, Crouch PJ, Malm T, Atalay M, White AR, Liddell JR, Kanninen KM. Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22168715. [PMID: 34445419 PMCID: PMC8395833 DOI: 10.3390/ijms22168715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer's disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice.
Collapse
Affiliation(s)
- Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Nina Kucháriková
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Veronika Górová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Dominic J. Hare
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peter J. Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Mustafa Atalay
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Anthony R. White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Jeffrey R. Liddell
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
- Correspondence:
| |
Collapse
|
15
|
Gleason A, Bush AI. Iron and Ferroptosis as Therapeutic Targets in Alzheimer's Disease. Neurotherapeutics 2021; 18:252-264. [PMID: 33111259 PMCID: PMC8116360 DOI: 10.1007/s13311-020-00954-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD), one of the most common neurodegenerative diseases worldwide, has a devastating personal, familial, and societal impact. In spite of profound investment and effort, numerous clinical trials targeting amyloid-β, which is thought to have a causative role in the disease, have not yielded any clinically meaningful success to date. Iron is an essential cofactor in many physiological processes in the brain. An extensive body of work links iron dyshomeostasis with multiple aspects of the pathophysiology of AD. In particular, regional iron load appears to be a risk factor for more rapid cognitive decline. Existing iron-chelating agents have been in use for decades for other indications, and there are preliminary data that some of these could be effective in AD. Many novel iron-chelating compounds are under development, some with in vivo data showing potential Alzheimer's disease-modifying properties. This heretofore underexplored therapeutic class has considerable promise and could yield much-needed agents that slow neurodegeneration in AD.
Collapse
Affiliation(s)
- Andrew Gleason
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
16
|
Adenosine and Metabotropic Glutamate Receptors Are Present in Blood Serum and Exosomes from SAMP8 Mice: Modulation by Aging and Resveratrol. Cells 2020; 9:cells9071628. [PMID: 32645849 PMCID: PMC7407497 DOI: 10.3390/cells9071628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Adenosine (ARs) and metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors (GPCRs) that are modulated in the brain of SAMP8 mice, an animal model of Alzheimer's disease (AD). In the present work, it is shown the presence of ARs and mGluRs in blood serum and derived exosomes from SAMP8 mice as well as its possible modulation by aging and resveratrol (RSV) consumption. In blood serum, adenosine A1 and A2A receptors remained unaltered from 5 to 7 months of age. However, an age-related decrease in adenosine level was observed, while 5'-Nucleotidase activity was not modulated. Regarding the glutamatergic system, it was observed a decrease in mGluR5 density and glutamate levels in older mice. In addition, dietary RSV supplementation caused an age-dependent modulation in both adenosinergic and glutamatergic systems. These GPCRs were also found in blood serum-derived exosomes, which might suggest that these receptors could be released into circulation via exosomes. Interestingly, changes elicited by age and RSV supplementation on mGluR5 density, and adenosine and glutamate levels were similar to that detected in whole-brain. Therefore, we might suggest that the quantification of these receptors, and their corresponding endogenous ligands, in blood serum could have predictive value for early diagnosis in combination with other distinctive hallmarks of AD.
Collapse
|
17
|
Song Q, Niu X, Zhang D, Song X, Li Y, Ma J, Lai S, Yang Z, Zhou S. The behaviors of Microcystis aeruginosa and microcystins during the Fe 2+/persulfate (PS) preoxidation-coagulation and flocs storage period. ENVIRONMENTAL RESEARCH 2020; 186:109549. [PMID: 32325291 DOI: 10.1016/j.envres.2020.109549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
The frequent occurrence of toxin-producing cyanobacteria blooms driven by anthropogenic eutrophication has become a major threat to aquaculture ecosystems worldwide. In this study, the behavior of M. aeruginosa cells during flocs storage period of 6 days was first investigated after pre-oxidation and coagulation of Fe2+/PS. Fe2+/PS achieved a superior removal efficiency of 90.7% for OD680 and 90.4% for chl-a. The contents of extracellular MCs in the pre-oxidation and coagulation system were significantly (P < 0.05) lower than those in the control. A significant (P < 0.05) difference in intracellular protein between the control and the coagulated systems was observed. Three-dimensional fluorescence excitation emission matrix (EEM) was employed to investigate the variations in extracellular organic matter (EOM) during flocs storage. The results indicated the presence of four peaks, representing protein-like substances, intermediate dissolved microbial metabolites, fulvic and humic-like compounds in the Fe2+/PS process. And the intensities of four peaks were all decreased in the Fe2+/PS system compared to those in the control. A low level of accumulated residual Fe of 0.28 mg/L was observed without posing potential environmental risk. The results showed that the M. aeruginosa cells were under stressful conditions after 3-d storage due to the decomposition of extracellular polymeric substances (EPSs) and the insufficient supply of nutrients. However, SEM results indicated that no significant alteration in cell morphology was observed. Therefore, with high removal of M. aeruginosa, low MCs concentrations, and trivial cell damage, the Fe2+/PS preoxidation-coagulation was proved to be an environmental-friendly method for cyanobacteria removal without yielding serious secondary pollution. This work will contribute to better understanding and managing the cyanobacteria-laden aquaculture water after pre-oxidation and coagulation.
Collapse
Affiliation(s)
- Qi Song
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, 210093, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou, 510640, China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Xiaofei Song
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yankun Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinling Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Senchao Lai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhiquan Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
18
|
Chatterjee P, Mohammadi M, Goozee K, Shah TM, Sohrabi HR, Dias CB, Shen K, Asih PR, Dave P, Pedrini S, Ashton NJ, Hye A, Taddei K, Lovejoy DB, Zetterberg H, Blennow K, Martins RN. Serum Hepcidin Levels in Cognitively Normal Older Adults with High Neocortical Amyloid-β Load. J Alzheimers Dis 2020; 76:291-301. [PMID: 32538848 PMCID: PMC7369053 DOI: 10.3233/jad-200162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND/OBJECTIVE Hepcidin, an iron-regulating hormone, suppresses the release of iron by binding to the iron exporter protein, ferroportin, resulting in intracellular iron accumulation. Given that iron dyshomeostasis has been observed in Alzheimer's disease (AD) together with elevated serum hepcidin levels, the current study examined whether elevated serum hepcidin levels are an early event in AD pathogenesis by measuring the hormone in cognitively normal older adults at risk of AD, based on high neocortical amyloid-β load (NAL). METHODS Serum hepcidin levels in cognitively normal participants (n = 100) aged between 65-90 years were measured using ELISA. To evaluate NAL, all participants underwent 18F-florbetaben positron emission tomography. A standard uptake value ratio (SUVR)<1.35 was classified as low NAL (n = 65) and ≥1.35 (n = 35) was classified as high NAL. RESULTS Serum hepcidin was significantly higher in participants with high NAL compared to those with low NAL before and after adjusting for covariates: age, gender, and APOEɛ4 carriage (p < 0.05). A receiver operating characteristic curve based on a logistic regression of the same covariates, the base model, distinguished high from low NAL (area under the curve, AUC = 0.766), but was outperformed when serum hepcidin was added to the base model (AUC = 0.794) and further improved with plasma Aβ42/40 ratio (AUC = 0.829). CONCLUSION The present findings indicate that serum hepcidin is increased in individuals at risk for AD and contribute to the body of evidence supporting iron dyshomeostasis as an early event of AD. Further, hepcidin may add value to a panel of markers that contribute toward identifying individuals at risk of AD; however, further validation studies are required.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Maryam Mohammadi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,Anglicare, Sydney, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Tejal M Shah
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia.,Centre for Healthy Ageing, School of Psychology and Exercise Science, Murdoch University, South Street, Murdoch, WA, Australia
| | - Cintia B Dias
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Kaikai Shen
- Australian eHealth Research Centre, CSIRO, Floreat, WA, Australia
| | - Prita R Asih
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Preeti Dave
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Steve Pedrini
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Kevin Taddei
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - David B Lovejoy
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,The Cooperative Research Centre for Mental Health, Carlton South, VA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| |
Collapse
|
19
|
Berry T, Abohamza E, Moustafa AA. A disease-modifying treatment for Alzheimer's disease: focus on the trans-sulfuration pathway. Rev Neurosci 2020; 31:319-334. [PMID: 31751299 DOI: 10.1515/revneuro-2019-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
High homocysteine levels in Alzheimer's disease (AD) result from low activity of the trans-sulfuration pathway. Glutathione levels are also low in AD. L-cysteine is required for the synthesis of glutathione. The synthesis of coenzyme A (CoA) requires L-cysteine, which is synthesized via the trans-sulfuration pathway. CoA is required for the synthesis of acetylcholine and appropriate cholinergic neurotransmission. L-cysteine is required for the synthesis of molybdenum-containing proteins. Sulfite oxidase (SUOX), which is a molybdenum-containing protein, could be dysregulated in AD. SUOX detoxifies the sulfites. Glutaminergic neurotransmission could be dysregulated in AD due to low levels of SUOX and high levels of sulfites. L-cysteine provides sulfur for iron-sulfur clusters. Oxidative phosphorylation (OXPHOS) is heavily dependent on iron-sulfur proteins. The decrease in OXPHOS seen in AD could be due to dysregulations of the trans-sulfuration pathway. There is a decrease in aconitase 1 (ACO1) in AD. ACO1 is an iron-sulfur enzyme in the citric acid cycle that upon loss of an iron-sulfur cluster converts to iron regulatory protein 1 (IRP1). With the dysregulation of iron-sulfur cluster formation ACO1 will convert to IRP1 which will decrease the 2-oxglutarate synthesis dysregulating the citric acid cycle and also dysregulating iron metabolism. Selenomethionine is also metabolized by the trans-sulfuration pathway. With the low activity of the trans-sulfuration pathway in AD selenoproteins will be dysregulated in AD. Dysregulation of selenoproteins could lead to oxidant stress in AD. In this article, we propose a novel treatment for AD that addresses dysregulations resulting from low activity of the trans-sulfuration pathway and low L-cysteine.
Collapse
Affiliation(s)
- Thomas Berry
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| | - Eid Abohamza
- Department of Social Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Fleszar MG, Wiśniewski J, Berdowska I, Zieliński B, Zboch M, Diakowska D, Gamian A, Krzystek-Korpacka M. Systemic hepcidin quantified with LC-MS/MS in dementia in association with disease pathology and severity and with structural changes in the brain. Peptides 2019; 122:170169. [PMID: 31563540 DOI: 10.1016/j.peptides.2019.170169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/03/2019] [Accepted: 09/25/2019] [Indexed: 02/03/2023]
Abstract
Hepcidin is a peptide hormone regulating iron metabolism, the dyshomeostasis of which has been implicated in dementia. Yet, data on hepcidin status in dementia are scanty, limited to Alzheimer's disease (AD) and inconsistent due to methodological problems with its determination using immunoassays and/or lack of homogeneity of evaluated groups. Hepcidin association with vascular dementia (VaD) remains unknown. We proposed a mass spectrometry method of hepcidin quantification in sera and aimed at determining hepcidin systemic status in patients with dementia of AD, VaD, or mixed (MD) pathology, with reference to the degree of cognitive loss and structural changes in the brain as well as at evaluating the diagnostic potential of hepcidin as a biomarker. We found that hepcidin concentrations were significantly elevated in VaD and insignificantly so in AD or MD and that they positively correlated with the Clinical Dementia Rating and inversely with the Mini Mental State Examination. Hepcidin tended to be more pronouncedly elevated in patients with advanced cortical atrophy and white matter lesions. It displayed a biphasic relationship with the Hachinski Ischemic Scale and a good accuracy as dementia but not differential marker. Taken together, our results demonstrated that dementia of vascular and not neurodegenerative pathology is associated with significant elevation of systemic hepcidin. Hepcidin elevation reflects the degree of cognitive loss as well as the severity of structural changes in the brain. If confirmed in a prospective study, hepcidin quantification may hold promise as a diagnostic marker; its accuracy as a differential marker of VaD is insufficient.
Collapse
Affiliation(s)
- Mariusz G Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland; Łukasiewicz Research Network - PORT Polish Center For Technology Development, ul. Stablowicka 147, 54-066 Wrocław, Poland.
| | - Jerzy Wiśniewski
- Department of Medical Biochemistry, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Bogdan Zieliński
- Department of Medical Biochemistry, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Marzena Zboch
- Alzheimer Center, Wroclaw Medical University, ul. Jana Pawla II 12, 59-330 Scinawa, Poland
| | - Dorota Diakowska
- Division of Nervous System Diseases, Wroclaw Medical University, ul. K. Bartla 5, 51-61 Wroclaw, Poland
| | - Andrzej Gamian
- Department of Medical Biochemistry, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland
| | | |
Collapse
|