1
|
Pauciullo A, Versace C, Miretti S, Giambra IJ, Gaspa G, Letaief N, Cosenza G. Genetic variability among and within domestic Old and New World camels at the α-lactalbumin gene (LALBA) reveals new alleles and polymorphisms responsible for differential expression. J Dairy Sci 2024; 107:1068-1084. [PMID: 38122895 DOI: 10.3168/jds.2023-23813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/13/2023] [Indexed: 12/23/2023]
Abstract
α-Lactalbumin (α-LA), which is encoded by the LALBA gene, is a major whey protein that binds to Ca2+ and facilitates lactose synthesis as a regulatory subunit of the synthase enzyme complex. In addition, it has been shown to play central roles in immune modulation, cell-growth regulation, and antimicrobial activity. In this study, a multitechnical approach was used to fully characterize the LALBA gene and its variants in both coding and regulatory regions for domestic camelids (dromedary, Bactrian camel, alpaca, and llama). The gene analysis revealed a conserved structure among the camelids, but a slight difference in size (2,012 bp on average) due to intronic variations. Promoters were characterized for the transcription factor binding sites (11 found in total). Intraspecies sequence comparison showed 36 SNPs in total (2 in the dromedary, none in the Bactrian camel, 22 in the alpaca, and 12 in the llama), whereas interspecies comparison showed 86 additional polymorphic sites. Eight SNPs were identified as trans-specific polymorphisms, and 2 of them (g.112A>G and g.1229A>G) were particularly interesting in the New World camels. The first creates a new binding site for transcription factor SP1. An enhancing effect of the g.112G variant on the expression was demonstrated by 3 independent pGL3 gene reporter assays. The latter is responsible for the p.78Ile>Val AA replacement and represents novel allelic variants (named LALBA A and B). A link to protein variants has been established by isoelectric focusing (IEF), and bioinformatics analysis revealed that carriers of valine (g.1229G) have a higher glycosylation rate. Genotyping methods based on restriction fragment length polymorphism (PCR-RFLP) were set up for both SNPs. Overall, adenine was more frequent (0.54 and 0.76) at both loci. Four haplotypes were found, and the AA and GA were the most common with a frequency of 0.403 and 0.365, respectively. Conversely, a putative biological gain characterizes the haplotype GG. Therefore, opportunities for rapid directional selection can be realized if this haplotype is associated with favorable milk protein properties. This study adds knowledge at the gene and protein level for α-LA (LALBA) in camelids and importantly contributes to a relatively unexplored research area in these species.
Collapse
Affiliation(s)
- A Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy.
| | - C Versace
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
| | - S Miretti
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco (TO), Italy
| | - I J Giambra
- Institute for Animal Breeding and Genetics, Justus Liebig University, 35390 Gießen, Germany
| | - G Gaspa
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
| | - N Letaief
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy; Laboratory of Animal and Forage Production, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 1004, Tunisia
| | - G Cosenza
- Department of Agriculture, University of Napoli Federico II, 80055 Portici (NA), Italy
| |
Collapse
|
2
|
Zielinska-Pukos MA, Bryś J, Kucharz N, Chrobak A, Wesolowska A, Grabowicz-Chądrzyńska I, Hamulka J. Factors Influencing Cortisol Concentrations in Breastmilk and Its Associations with Breastmilk Composition and Infant Development in the First Six Months of Lactation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214809. [PMID: 36429527 PMCID: PMC9690377 DOI: 10.3390/ijerph192214809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/14/2023]
Abstract
Previous studies provided contradictory results regarding the influence of maternal, seasonal, and infant factors on breastmilk cortisol, and its associations with breastmilk composition and infant development. This study aimed to assess breastmilk cortisol levels at the first, third, and sixth months of lactation and evaluate the associations with maternal psychosocial, seasonal, and infant factors, breastmilk composition, and infant anthropometric and psychomotor development and temperament. Cortisol concentrations were assessed by ELISA in 24 h breastmilk samples obtained from 38 healthy mothers. Maternal psychological status was assessed by EPDS and PSS-10 and infant psychomotor development was assessed using the Children's Development Scale (DSR). Breastmilk cortisol was 11.2 ± 6.2, 11.2 ± 4.3, and 12.7 ± 6.2 ng/mL at the first, third, and sixth months of lactation (p > 0.05), respectively. In the spring-summer season, we observed lower and higher levels of cortisol in the first and sixth months of lactation (p ≤ 0.05), respectively, but no other associations were detected regarding maternal or infant characteristics. In the third month of lactation, cortisol was related to breastmilk crude protein (β = 0.318, 0.007-0.630) and infant BMI z-score before adjustment for infant birthweight and sex (Model 2: β = 0.359, 0.021-0.697), but no other associations with breastmilk composition, infant development, or temperament were confirmed. Our results indicated that breastmilk cortisol is unrelated to maternal and infant factors and has limited influence on breastmilk crude protein, but not on infant anthropometric and psychomotor development.
Collapse
Affiliation(s)
- Monika A. Zielinska-Pukos
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland
| | - Natalia Kucharz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Agnieszka Chrobak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Aleksandra Wesolowska
- Laboratory of Human Milk and Lactation Research at Regional Human Milk Bank in Holy Family Hospital, Department of Neonatology, Faculty of Life Sciences, Medical University of Warsaw, Litewska 14/16 Str., 00-575 Warsaw, Poland
| | | | - Jadwiga Hamulka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland
| |
Collapse
|
3
|
Hart MD, Girma M, Strong MD, Tadesse BT, Taddesse BM, Alemayehu FR, Stoecker BJ, Chowanadisai W. Vitamin D binding protein gene polymorphisms are associated with lower plasma 25-hydroxy-cholecalciferol concentrations in Ethiopian lactating women. Nutr Res 2022; 107:86-95. [PMID: 36206636 DOI: 10.1016/j.nutres.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022]
Abstract
Ethiopian women have been reported to have low plasma 25-hydroxy-cholecalciferol (25(OH)D) concentrations despite an abundance of sunshine. Low dietary vitamin D intake, limited skin exposure to sun, and genetics are among factors suggested to affect vitamin D status in this population. In this study (Clinical Trial NCT02210884), we hypothesized that polymorphisms in the vitamin D binding protein (VDBP) gene (rs7041, rs4588) are associated with reduced plasma 25(OH)D concentrations in Ethiopian women. Lactating Ethiopian women (n = 110) were randomly assigned to weekly administration of vitamin D3 (15,000 IU) or a placebo. Plasma 25(OH)D was measured at baseline (within 2 weeks of delivery, before supplementation) and at 3, 6, and 12 months after delivery. Associations between VDBP polymorphism status for rs7041 and rs4588 and plasma 25(OH)D were determined by analysis of variance and multiple linear and logistic regressions. Multiple linear regression with maternal age as a covariate revealed that rs7041 is associated with reduced plasma 25(OH)D (P = .021) and more risk alleles at rs7041 and rs4588 are associated with reduced plasma 25(OH)D (P = .017). Logistic regression models for vitamin D insufficiency showed that additional risk alleles for rs7041 and rs4588 are associated with increased odds ratios (OR = 1.66; 95% CI, 1.10-2.62; P = .019) for plasma 25(OH)D below 40 nmol/L. Supplementation increased plasma 25(OH)D at 3 months in women with fewer risk alleles and across all genotypes at 6 and 12 months. VDBP polymorphisms may contribute to vitamin D insufficiency in Ethiopian lactating women. Furthermore, VDBP polymorphisms may blunt short-term responses to vitamin D supplementation and require longer periods of intervention.
Collapse
Affiliation(s)
- Matthew D Hart
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Meron Girma
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA; School of Nutrition, Food Science, and Technology, Hawassa University, Hawassa, Ethiopia
| | - Morgan D Strong
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | | | - Fikadu Reta Alemayehu
- School of Nutrition, Food Science, and Technology, Hawassa University, Hawassa, Ethiopia
| | - Barbara J Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
4
|
Sadovnikova A, Garcia SC, Hovey RC. A Comparative Review of the Extrinsic and Intrinsic Factors Regulating Lactose Synthesis. J Mammary Gland Biol Neoplasia 2021; 26:197-215. [PMID: 34125363 PMCID: PMC8236052 DOI: 10.1007/s10911-021-09491-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Milk is critical for the survival of all mammalian offspring, where its production by a mammary gland is also positively associated with its lactose concentration. A clearer understanding of the factors that regulate lactose synthesis stands to direct strategies for improving neonatal health while also highlighting opportunities to manipulate and improve milk production and composition. In this review we draw a cross-species comparison of the extra- and intramammary factors that regulate lactose synthesis, with a special focus on humans, dairy animals, and rodents. We outline the various factors known to influence lactose synthesis including diet, hormones, and substrate supply, as well as the intracellular molecular and genetic mechanisms. We also discuss the strengths and limitations of various in vivo and in vitro systems for the study of lactose synthesis, which remains an important research gap.
Collapse
Affiliation(s)
- Anna Sadovnikova
- Graduate Group in Nutritional Biology, Physician Scientist Training Program, University of California, Davis, CA, United States.
- Department of Animal Science, University of California, Davis, CA, United States.
| | - Sergio C Garcia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, CA, United States
| |
Collapse
|
5
|
Pace RM, Williams JE, Robertson B, Lackey KA, Meehan CL, Price WJ, Foster JA, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Kita DG, Kvist LJ, Otoo GE, Ruiz L, Rodríguez JM, Pareja RG, McGuire MA, Bode L, McGuire MK. Variation in Human Milk Composition Is Related to Differences in Milk and Infant Fecal Microbial Communities. Microorganisms 2021; 9:1153. [PMID: 34072117 PMCID: PMC8230061 DOI: 10.3390/microorganisms9061153] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Previously published data from our group and others demonstrate that human milk oligosaccharide (HMOs), as well as milk and infant fecal microbial profiles, vary by geography. However, little is known about the geographical variation of other milk-borne factors, such as lactose and protein, as well as the associations among these factors and microbial community structures in milk and infant feces. Here, we characterized and contrasted concentrations of milk-borne lactose, protein, and HMOs, and examined their associations with milk and infant fecal microbiomes in samples collected in 11 geographically diverse sites. Although geographical site was strongly associated with milk and infant fecal microbiomes, both sample types assorted into a smaller number of community state types based on shared microbial profiles. Similar to HMOs, concentrations of lactose and protein also varied by geography. Concentrations of HMOs, lactose, and protein were associated with differences in the microbial community structures of milk and infant feces and in the abundance of specific taxa. Taken together, these data suggest that the composition of human milk, even when produced by relatively healthy women, differs based on geographical boundaries and that concentrations of HMOs, lactose, and protein in milk are related to variation in milk and infant fecal microbial communities.
Collapse
Affiliation(s)
- Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA; (J.E.W.); (M.A.M.)
| | - Bianca Robertson
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, Univeristy of California San Diego, La Jolla, CA 92093, USA; (B.R.); (L.B.)
- Department of Pediatrics, Univeristy of California San Diego, La Jolla, CA 92093, USA
| | - Kimberly A. Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, WA 99164, USA;
| | - William J. Price
- Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - James A. Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Daniel W. Sellen
- Department of Anthropology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | | | - Egidioh W. Kamundia
- Department of Human Nutrition, Egerton University, Nakuru 20115, Kenya; (E.W.K.-M.); (E.W.K.); (S.M.)
| | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru 20115, Kenya; (E.W.K.-M.); (E.W.K.); (S.M.)
| | - Sophie E. Moore
- Department of Women and Children’s Health, King’s College London, London WC2R 2LS, UK;
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara P.O. Box 273, Gambia;
| | - Andrew M. Prentice
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara P.O. Box 273, Gambia;
| | - Debela G. Kita
- Department of Anthropology, Hawassa University, Hawassa P.O. Box 27601, Ethiopia;
| | - Linda J. Kvist
- Faculty of Medicine, Lund University, 221 00 Lund, Sweden;
| | - Gloria E. Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra 00233, Ghana;
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Mark A. McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA; (J.E.W.); (M.A.M.)
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, Univeristy of California San Diego, La Jolla, CA 92093, USA; (B.R.); (L.B.)
- Department of Pediatrics, Univeristy of California San Diego, La Jolla, CA 92093, USA
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
6
|
Dawod B, Haidl ID, Azad MB, Marshall JS. Toll-like receptor 2 impacts the development of oral tolerance in mouse pups via a milk-dependent mechanism. J Allergy Clin Immunol 2020; 146:631-641.e8. [DOI: 10.1016/j.jaci.2020.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/05/2020] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
|
7
|
Golan Y, Assaraf YG. Genetic and Physiological Factors Affecting Human Milk Production and Composition. Nutrients 2020; 12:E1500. [PMID: 32455695 PMCID: PMC7284811 DOI: 10.3390/nu12051500] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk is considered the optimal nutrition for infants as it provides additional attributes other than nutritional support for the infant and contributes to the mother's health as well. Although breastfeeding is the most natural modality to feed infants, nowadays, many mothers complain about breastfeeding difficulties. In addition to environmental factors that may influence lactation outcomes including maternal nutrition status, partner's support, stress, and latching ability of the infant, intrinsic factors such as maternal genetics may also affect the quantitative production and qualitative content of human milk. These genetic factors, which may largely affect the infant's growth and development, as well as the mother's breastfeeding experience, are the subject of the present review. We specifically describe genetic variations that were shown to affect quantitative human milk supply and/or its qualitative content. We further discuss possible implications and methods for diagnosis as well as treatment modalities. Although cases of nutrient-deficient human milk are considered rare, in some ethnic groups, genetic variations that affect human milk content are more abundant, and they should receive greater attention for diagnosis and treatment when necessary. From a future perspective, early genetic diagnosis should be directed to target and treat breastfeeding difficulties in real time.
Collapse
Affiliation(s)
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
| |
Collapse
|
8
|
A genetic variant in SLC30A2 causes breast dysfunction during lactation by inducing ER stress, oxidative stress and epithelial barrier defects. Sci Rep 2018; 8:3542. [PMID: 29476070 PMCID: PMC5824919 DOI: 10.1038/s41598-018-21505-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022] Open
Abstract
SLC30A2 encodes a zinc (Zn) transporter (ZnT2) that imports Zn into vesicles in highly-specialized secretory cells. Numerous mutations and non-synonymous variants in ZnT2 have been reported in humans and in breastfeeding women; ZnT2 variants are associated with abnormally low milk Zn levels and can lead to severe infantile Zn deficiency. However, ZnT2-null mice have profound defects in mammary epithelial cell (MEC) polarity and vesicle secretion, indicating that normal ZnT2 function is critical for MEC function. Here we report that women who harbor a common ZnT2 variant (T288S) present with elevated levels of several oxidative and endoplasmic reticulum (ER) stress markers in their breast milk. Functional studies in vitro suggest that substitution of threonine for serine at amino acid 288 leads to hyperphosphorylation retaining ZnT2 in the ER and lysosomes, increasing ER and lysosomal Zn accumulation, ER stress, the generation of reactive oxygen species, and STAT3 activation. These changes were associated with decreased abundance of zona occludens-1 and increased tight junction permeability. This study confirms that ZnT2 is important for normal breast function in women during lactation, and suggests that women who harbor defective variants in ZnT2 may be at-risk for poor lactation performance.
Collapse
|
9
|
Mati A, Senoussi-Ghezali C, Si Ahmed Zennia S, Almi-Sebbane D, El-Hatmi H, Girardet JM. Dromedary camel milk proteins, a source of peptides having biological activities – A review. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Lee S, Kelleher SL. Molecular regulation of lactation: The complex and requisite roles for zinc. Arch Biochem Biophys 2016; 611:86-92. [DOI: 10.1016/j.abb.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/10/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022]
|
11
|
El-Hanafy AAEM, Qureshi MI, Sabir JSM, Mutwakil M, Ramadan HAMI, El-Ashmaoui H, Abou-Alsoud M, Ahmed MMM. Allele mining in the caprine alpha-lactalbumin ( LALBA) gene of native Saudi origin. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1224683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Amr Abd-El Mooti El-Hanafy
- Department of Biological Sciences, Faculty of Science, King AbdulAziz University , Jeddah, KSA
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute [GEBRI] , City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Muhammad Iqbal Qureshi
- Department of Biological Sciences, Faculty of Science, King AbdulAziz University , Jeddah, KSA
| | | | - Mohammed Mutwakil
- Department of Biological Sciences, Faculty of Science, King AbdulAziz University , Jeddah, KSA
| | - Hassan Abdel-Meguid Ibrahim Ramadan
- Department of Biological Sciences, Faculty of Science, King AbdulAziz University , Jeddah, KSA
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre , Dokki-Cairo, Egypt
| | - Hassan El-Ashmaoui
- Department of Biological Sciences, Faculty of Science, King AbdulAziz University , Jeddah, KSA
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre , Dokki-Cairo, Egypt
| | - Mohamed Abou-Alsoud
- Department of Biological Sciences, Faculty of Science, King AbdulAziz University , Jeddah, KSA
| | - Mohamed Morsi Mohamed Ahmed
- Department of Biological Sciences, Faculty of Science, King AbdulAziz University , Jeddah, KSA
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute [GEBRI] , City for Scientific Research and Technology Applications, Alexandria, Egypt
| |
Collapse
|
12
|
Lee S, Kelleher SL. Biological underpinnings of breastfeeding challenges: the role of genetics, diet, and environment on lactation physiology. Am J Physiol Endocrinol Metab 2016; 311:E405-22. [PMID: 27354238 PMCID: PMC5005964 DOI: 10.1152/ajpendo.00495.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/22/2016] [Indexed: 02/06/2023]
Abstract
Lactation is a dynamic process that has evolved to produce a complex biological fluid that provides nutritive and nonnutritive factors to the nursing offspring. It has long been assumed that once lactation is successfully initiated, the primary factor regulating milk production is infant demand. Thus, most interventions have focused on improving breastfeeding education and early lactation support. However, in addition to infant demand, increasing evidence from studies conducted in experimental animal models, production animals, and breastfeeding women suggests that a diverse array of maternal factors may also affect milk production and composition. In this review, we provide an overview of our current understanding of the role of maternal genetics and modifiable factors, such as diet and environmental exposures, on reproductive endocrinology, lactation physiology, and the ability to successfully produce milk. To identify factors that may affect lactation in women, we highlight some information gleaned from studies in experimental animal models and production animals. Finally, we highlight the gaps in current knowledge and provide commentary on future research opportunities aimed at improving lactation outcomes in breastfeeding women to improve the health of mothers and their infants.
Collapse
Affiliation(s)
- Sooyeon Lee
- Departments of Cellular and Molecular Physiology
| | - Shannon L Kelleher
- Departments of Cellular and Molecular Physiology, Pharmacology, and Surgery, Pennsylvania State Hershey College of Medicine, Hershey, Pennsylvania; and Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
13
|
|
14
|
Ma RN, Deng CJ, Zhang XM, Yue XP, Lan XY, Chen H, Lei CZ. A novel SNP of α-lactalbumin gene in Chinese dairy goats. Mol Biol 2010. [DOI: 10.1134/s0026893310040059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Abstract
Adiponectin is a protein hormone produced by adipose tissue, whose circulating levels are inversely related to adiposity and inflammation. Adiponectin circulates as oligomers, from the low-molecular-weight trimer to the high-molecular-weight octodecamer (18 mer). Each oligomer has distinct biological activities, which include enhancement of insulin sensitivity and metabolic control and suppression of inflammation. Adiponectin occurs in human milk at higher concentrations than leptin. The adiponectin in human milk is almost entirely of the high-molecular-weight form, the form with the highest activity in controlling many types of metabolic processes. Human adiponectin fed to infant mice is transported across the intestinal mucosa into the serum. An inverse relationship between adiponectin levels in milk and adiposity (weight-for-height) of the breast-fed infant was observed and could be due to modulation of infant metabolism by milk adiponectin and may be related to the observed protection against obesity by breast-feeding. Human milk may be a medium whereby the hormonal milieu (in response to internal factors and the environment) of the mother can be used to communicate with the breast-fed infant to modify infant metabolic processes. Transmission of information from mother to infant through milk may allow adaptation to fluctuating environmental conditions.
Collapse
|
16
|
Santos LHLMLM, Ferreira IMPLVO. Quantification of α-lactalbumin in human milk: Method validation and application. Anal Biochem 2007; 362:293-5. [PMID: 17223064 DOI: 10.1016/j.ab.2006.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 12/04/2006] [Indexed: 11/22/2022]
Affiliation(s)
- Lúcia H L M L M Santos
- REQUIMTE, Serviço de Bromatologia, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 4050-047 Porto, Portugal
| | | |
Collapse
|
17
|
Ferreira IMPLVO. Chromatographic Separation and Quantification of Major Human Milk Proteins. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070601093796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
|
19
|
Zubieta AC, Lönnerdal B. Effect of suboptimal nutrition during lactation on milk protein gene expression in the rat. J Nutr Biochem 2006; 17:604-10. [PMID: 16488129 DOI: 10.1016/j.jnutbio.2005.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 10/10/2005] [Accepted: 10/17/2005] [Indexed: 11/23/2022]
Abstract
Human milk provides infants with proteins that aid in the prevention of infections and facilitate the digestion and absorption of other nutrients. Maternal diet is not believed to affect the protein concentration of breast milk. However, the maternal factors that regulate the expression of genes for specific milk proteins are not well characterized. We hypothesized that nutrition could be one of the factors. We fed Sprague-Dawley rats five diets representing common nutrient deficiencies and energy deficiency during pregnancy and lactation: low-zinc (Zn; 7 microg/g), low-iron (Fe; 6 microg/g), low-protein (12.5% albumin), pair-fed control diet (lactation only, 20% less kcal) and control diet (Zn, 25 microg/g; Fe, 100 mug/g; protein, 21%) ad libitum. At day 10 of lactation, the mammary gland was removed for RNA extraction. Northern blots of mRNA from the different groups were performed by hybridization with beta-casein and whey acidic protein (WAP) cDNA probes. The expression of beta-casein mRNA in rat mammary gland was significantly (P<.005) increased in the pair-fed group when compared to the control group. The expression of WAP mRNA was also significantly (P<.005) increased in the pair-fed group as well as in the low-Fe group when compared to the control group. The concentration of beta-casein in milk was significantly higher for the low-zinc and the pair-fed groups only. The concentration of WAP in milk was not different among groups. These results suggest that compromised maternal nutrition can affect the expression of two individual milk proteins and may have functional implications with regard to bioactive proteins in milk.
Collapse
Affiliation(s)
- Ana Claudia Zubieta
- Department of Human Nutrition, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
20
|
Martin LJ, Woo JG, Geraghty SR, Altaye M, Davidson BS, Banach W, Dolan LM, Ruiz-Palacios GM, Morrow AL. Adiponectin is present in human milk and is associated with maternal factors. Am J Clin Nutr 2006; 83:1106-11. [PMID: 16685053 DOI: 10.1093/ajcn/83.5.1106] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous studies have shown that human milk has a role in the gastrointestinal, neural, and immune development of neonates. If present in milk, adiponectin would be a promising candidate for influencing infant development, given its metabolic functions. OBJECTIVES Our objectives were to determine whether adiponectin is present in human milk and to characterize maternal factors associated with potential variation in milk adiponectin concentrations. DESIGN We quantified adiponectin concentrations in human milk samples from donors to the Cincinnati Children's Research Human Milk Bank and randomly selected participants in a cohort study in Mexico City funded by the National Institutes of Health. Using cross-sectional and longitudinal data, we examined milk adiponectin concentrations in relation to lactation duration, maternal body mass index (BMI; in kg/m(2)), and ethnicity. RESULTS Adiponectin was detected in human skim milk (range: 4.2-87.9 ng/mL). In cross-sectional and longitudinal analyses, duration of lactation was negatively associated with milk adiponectin concentrations (beta = -0.059 +/- 0.024 and -0.059 +/- 0.007, respectively; P < 0.02 for both). Maternal postpregnancy BMI was positively associated with milk adiponectin concentrations (beta = 0.08 +/- 0.02, P < 0.0001; longitudinal analysis). Mexican mothers had lower median milk adiponectin concentrations at 1 mo than did the non-Hispanic white subjects from Cincinnati (11.5 and 19.8 ng/mL; P = 0.003). CONCLUSIONS Adiponectin is present in human milk and its concentrations are associated with duration of lactation, maternal adiposity, and ethnicity. Given the importance of adiponectin in inflammation, insulin sensitivity, and fatty acid metabolism, future studies should examine milk adiponectin's role in infant metabolic development.
Collapse
Affiliation(s)
- Lisa J Martin
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|