1
|
Ali Z, Al-Ghouti MA, Abou-Saleh H, Rahman MM. Unraveling the Omega-3 Puzzle: Navigating Challenges and Innovations for Bone Health and Healthy Aging. Mar Drugs 2024; 22:446. [PMID: 39452854 PMCID: PMC11509197 DOI: 10.3390/md22100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, n-3 PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), are essential polyunsaturated fats primarily obtained from fatty fish and plant-based sources. Compelling evidence from preclinical and epidemiological studies consistently suggests beneficial effects of ω-3 PUFAs on bone health and healthy aging processes. However, clinical trials have yielded mixed results, with some failing to replicate these benefits seen in preclinical models. This contraindication is mainly due to challenges such as low bioavailability, potential adverse effects with higher doses, and susceptibility to oxidation of ω-3 fatty acids, hindering their clinical effectiveness. This review comprehensively discusses recent findings from a clinical perspective, along with preclinical and epidemiological studies, emphasizing the role of ω-3 PUFAs in promoting bone health and supporting healthy aging. Additionally, it explores strategies to improve ω-3 PUFA efficacy, including nanoparticle encapsulation and incorporation of specialized pro-resolving mediators (SPM) derived from DHA and EPA, to mitigate oxidation and enhance solubility, thereby improving therapeutic potential. By consolidating evidence from various studies, this review underscores current insights and future directions in leveraging ω-3 PUFAs for therapeutic applications.
Collapse
Affiliation(s)
- Zayana Ali
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohammad Ahmed Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
2
|
Gill R, Al-Badr M, Alghouti M, Mohamed NA, Abou-Saleh H, Rahman MM. Revolutionizing Cardiovascular Health with Nano Encapsulated Omega-3 Fatty Acids: A Nano-Solution Approach. Mar Drugs 2024; 22:256. [PMID: 38921567 PMCID: PMC11204627 DOI: 10.3390/md22060256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) offer diverse health benefits, such as supporting cardiovascular health, improving cognitive function, promoting joint and musculoskeletal health, and contributing to healthy aging. Despite their advantages, challenges like oxidation susceptibility, low bioavailability, and potential adverse effects at high doses persist. Nanoparticle encapsulation emerges as a promising avenue to address these limitations while preserving stability, enhanced bioavailability, and controlled release. This comprehensive review explores the therapeutic roles of omega-3 fatty acids, critically appraising their shortcomings and delving into modern encapsulation strategies. Furthermore, it explores the potential advantages of metal-organic framework nanoparticles (MOF NPs) compared to other commonly utilized nanoparticles in improving the therapeutic effectiveness of omega-3 fatty acids within drug delivery systems (DDSs). Additionally, it outlines future research directions to fully exploit the therapeutic benefits of these encapsulated omega-3 formulations for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Richa Gill
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| | - Mashael Al-Badr
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| | - Mohammad Alghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Nura Adam Mohamed
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| |
Collapse
|
3
|
Mohammadi T. Ameliorative effects of omega-3 and omega-6 on spermatogenesis, testicular antioxidant status and in vivo fertility index in heat-stressed rats. J Therm Biol 2024; 122:103885. [PMID: 38861860 DOI: 10.1016/j.jtherbio.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The current study aimed to investigate the use of omega-6 (ω6) or omega-3 (ω3) in reducing heat-induced damage to the testicles. This is due to the known detrimental effects of heat and the potential protective properties of ω6 and ω3. In the study, 48 male rats were divided into eight groups, each containing 6 rats. Group I (control) received normal saline. Group 2 was exposed to high temperatures (43 °C for 20 min/day) and also received normal saline for 60 days. Groups 3-7 underwent identical HS conditions and received varying doses of ω6 or ω3 (0.5 mg/kg DHPG, 1 mg/kg DHPG, 5 mg/kg HT, 0.5 mg/kg DHPG + 5 mg/kg HT, and 1 mg/kg DHPG + 5 mg/kg HT), respectively. After 60 days, various tests were conducted on the testicular tissue, sperm quality, oxidative status, gene activity, and in vivo fertility indexes to evaluate the effects of the treatments. Treatment with ω6 and ω3 could reduce abnormal morphology and DNA damage while increasing total and progressive motility, characteristics motility, viability, and plasma membrane functional impairment compared with HS-exposed groups. Antioxidant status levels in testicular tissue were improved after administration of ω6 and ω3. Furthermore, after receiving ω6 and ω3, there were significantly lower expression levels of P53 and Caspase-3 and significantly higher expression levels of Bcl-2 compared to the HS-exposed group. Furthermore, the results showed that administration of ω6 and ω3 to rats exposed to HS could increase their in vivo fertility indexes compared to the group not exposed to HS. According to our data, all doses of ω6 and ω3 (particularly doses of ω6-1.25 and ω3-300) can improve the testicular damage, testicular antioxidant defense mechanism, regulate germ cell apoptosis, and increase in vivo fertility indexes.
Collapse
Affiliation(s)
- Tohid Mohammadi
- Department of Basic Science, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| |
Collapse
|
4
|
Abdelzaher WY, Ibrahim MA, Hassan M, El-Tahawy NFG, Fawzy MA, Hafez HM. Protective effect of eicosapentaenoic acid against estradiol valerate-induced endometrial hyperplasia via modulation of NF-κB/HIF-1α/VEGF signaling pathway in rats. Chem Biol Interact 2023; 373:110399. [PMID: 36774993 DOI: 10.1016/j.cbi.2023.110399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Early diagnosis and treatment of endometrial hyperplasia (EH) remains mandatory for endometrial cancer (EC) prevention. OBJECTIVE To study the possible protective effect of eicosapentaenoic acid (EPA) in EH - induced by estradiol valerate (EV) in rats. METHODS/MATERIALS Adult female Wistar rats were given EV with or without EPA for 10 days. The uterine changes were evaluated by both physical (weight index) and histopathological methods. The markers of oxidative stress (Uterine malondialdehyde (MDA) and serum total antioxidant capacity (TAC) as well as serum estradiol and progesterone levels, and apoptosis (uterine caspase-3) were determined. Immunohistochemical estimations of nuclear factor kappa B (NF-κB) and vascular endothelial growth factor (VEGF) in addition to hypoxia-inducible factor 1 alpha (HIF-1α) immunoblotting were measured in uterine tissue. KEY FINDINGS EV showed significant increase in uterine weight index that is accompanied with histopatholigical evidences of EH. Such changes were associated with significant alterations in oxidative stress markers, modulation of estradiol and progesterone serum levels, an increase in HIF-1α, NF-κB and VEGF immuno-expressions and a significant decrease in caspase-3. EPA, in either dose, showed significant amelioration in uterine weight index as well as in histopathological changes. Such effect was accompanied with significant improvement in the measured hormonal levels, oxidative stress, apoptosis, and inflammatory parameters. CONCLUSIONS EPA in the used doses provided biochemical and histopathological improvement in EV-induced EH via modulation of NF-κB/HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
| | - Mohamed A Ibrahim
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | - Marwa Hassan
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | | | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt.
| | - Heba M Hafez
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| |
Collapse
|
5
|
Toumi E, Mezouar S, Plauzolles A, Chiche L, Bardin N, Halfon P, Mege JL. Gut microbiota in SLE: from animal models to clinical evidence and pharmacological perspectives. Lupus Sci Med 2023; 10:10/1/e000776. [PMID: 36813473 PMCID: PMC9950977 DOI: 10.1136/lupus-2022-000776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/16/2022] [Indexed: 02/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease driven by complex interactions between genetics and environmental factors. SLE is characterised by breaking self-immune tolerance and autoantibody production that triggers inflammation and damage of multiple organs. Given the highly heterogeneous nature of SLE, the treatments currently used are still not satisfactory with considerable side effects, and the development of new therapies is a major health issue for better patient management. In this context, mouse models significantly contribute to our knowledge of the pathogenesis of SLE and are an invaluable tool for testing novel therapeutic targets. Here, we discuss the role of the most used SLE mouse models and their contribution to therapeutic improvement. Considering the complexity of developing targeted therapies for SLE, adjuvant therapies are also increasingly proposed. Indeed, murine and human studies have recently revealed that gut microbiota is a potential target and holds great promises for successful new SLE therapies. However, the mechanisms of gut microbiota dysbiosis in SLE remain unclear to date. In this review, we propose an inventory of existing studies investigating the relationship between gut microbiota dysbiosis and SLE to establish microbiome signature that may serve as a potential biomarker of the disease and its severity as well as a new potential therapy target. This approach may open new possibilities for early diagnosis, prevention and therapeutic perspectives of SLE based on gut microbiome.
Collapse
Affiliation(s)
- Eya Toumi
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France .,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France.,R&D Department, Laboratoire Alphabio, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,Aix Marseille Univ, EFS, CNRS, ADES, 'Biologie des Groupes Sanguins', Marseille, France
| | | | - Laurent Chiche
- Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | - Nathalie Bardin
- Immunology Department, Hopital de la Conception, Marseille, France
| | - Philippe Halfon
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,R&D Department, Laboratoire Alphabio, Marseille, France,Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | - Jean Louis Mege
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,Immunology Department, Hopital de la Conception, Marseille, France
| |
Collapse
|
6
|
Nienaber A, Ozturk M, Dolman R, Blaauw R, Zandberg LL, van Rensburg S, Britz M, Hayford FEA, Brombacher F, Loots DT, Smuts CM, Parihar SP, Malan L. n-3 long-chain PUFA promote antibacterial and inflammation-resolving effects in Mycobacterium tuberculosis-infected C3HeB/FeJ mice, dependent on fatty acid status. Br J Nutr 2022; 127:384-397. [PMID: 33814018 DOI: 10.1017/s0007114521001124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Non-resolving inflammation is characteristic of tuberculosis (TB). Given their inflammation-resolving properties, n-3 long-chain PUFA (n-3 LCPUFA) may support TB treatment. This research aimed to investigate the effects of n-3 LCPUFA on clinical and inflammatory outcomes of Mycobacterium tuberculosis-infected C3HeB/FeJ mice with either normal or low n-3 PUFA status before infection. Using a two-by-two design, uninfected mice were conditioned on either an n-3 PUFA-sufficient (n-3FAS) or -deficient (n-3FAD) diet for 6 weeks. One week post-infection, mice were randomised to either n-3 LCPUFA supplemented (n-3FAS/n-3+ and n-3FAD/n-3+) or continued on n-3FAS or n-3FAD diets for 3 weeks. Mice were euthanised and fatty acid status, lung bacterial load and pathology, cytokine, lipid mediator and immune cell phenotype analysed. n-3 LCPUFA supplementation in n-3FAS mice lowered lung bacterial loads (P = 0·003), T cells (P = 0·019), CD4+ T cells (P = 0·014) and interferon (IFN)-γ (P < 0·001) and promoted a pro-resolving lung lipid mediator profile. Compared with n-3FAS mice, the n-3FAD group had lower bacterial loads (P = 0·037), significantly higher immune cell recruitment and a more pro-inflammatory lipid mediator profile, however, significantly lower lung IFN-γ, IL-1α, IL-1β and IL-17, and supplementation in the n-3FAD group provided no beneficial effect on lung bacterial load or inflammation. Our study provides the first evidence that n-3 LCPUFA supplementation has antibacterial and inflammation-resolving benefits in TB when provided 1 week after infection in the context of a sufficient n-3 PUFA status, whilst a low n-3 PUFA status may promote better bacterial control and lower lung inflammation not benefiting from n-3 LCPUFA supplementation.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Robin Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Renee Blaauw
- Division of Human Nutrition, Stellenbosch University, Tygerberg, Cape Town, Western Cape, South Africa
| | - Lizelle L Zandberg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Simone van Rensburg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Melinda Britz
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Frank E A Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Nutrition and Dietetics, University of Ghana, Accra, Ghana
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, Western Cape, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Cornelius M Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, Western Cape, South Africa
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
7
|
Chen J, Jayachandran M, Bai W, Xu B. A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chem 2022; 369:130874. [PMID: 34455321 DOI: 10.1016/j.foodchem.2021.130874] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022]
Abstract
As one of food sources, fish provides sufficient nutrition to human. Diverse nutrients in fish make fish an important nutrient source available easily across the globe. Fish is proven to possess several health benefits, such as anti-oxidation, anti-inflammation, wound healing, neuroprotection, cardioprotection, and hepatoprotection properties. Fish proteins, such as immunoglobins, act as defense agents against viral and bacterial infections and prevent protein-calorie malnutrition. Besides, fish oil constituents, such as polyunsaturated fatty acids (PUFAs), regulate various signaling pathways, such as nuclear factor kappa B pathway, Toll-like receptor pathway, transforming growth factor-β (TGF-β) pathway, and peroxisome proliferators activated receptor (PPAR) pathways. In this review, the literature about health benefits of fish consumption are accumulated from PubMed, Google Scholar, Scopus, and the mechanistic action of health benefits are summarized. Fish consumption at least twice per week as part of a healthy diet is beneficial for a healthy heart. More advances in this field could pose fish as a major nutrients source of foods.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Baojun Xu
- Programme of Food Science and Technology, BNU-HKBU United International College, Zhuhai, China.
| |
Collapse
|
8
|
Sun H, Chen Z, Ma C, Lian L, Zhao Z, Niu S, Xu L, Sun J. Effects of maternal dietary energy restriction on laying performance, embryonic development, and lipid Metabolism in broilers. Anim Biosci 2021; 35:698-710. [PMID: 34727634 PMCID: PMC9065775 DOI: 10.5713/ab.21.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The objective of this study was to investigate the effects of different degrees of maternal dietary energy restriction on lipid deposition in embryonic tissues during the medium laying period (37 to 39 weeks) in Arbor Acres (AA) broiler breeders. Methods A single factor design was adopted, and 400 AA broiler breeders (20 weeks of age) with a similar weight were randomly allocated into four groups. The birds in the control group were fed a corn-soybean meal based diet, and those in trial groups were fed diets with 80%, 70%, and 50% energy levels of the basal diet. Incubated eggs from the medium laying period were collected. Samples of developing embryos at various stages were prepared for composition analysis. Results The embryo weight in the 80% energy group was higher than those of the other groups on embryonic day (E) 13, but at 21 E, they were significantly decreased with decreasing energy intake of the broiler breeders (p<0.05). Additionally, the levels of crude fat in tissues in the restriction groups were significantly decreased (p<0.05). The long axis and area of adipocytes in breast muscle, thigh muscle and the liver were significantly decreased (p<0.05) at 21 E in the 80%, 70%, and 50% energy groups. Conclusion The effects of the 80% maternal dietary energy restriction energy affects egg production performance, egg quality, and nutrient deposition in egg weights, which then directly impacts on the developmental process of embryos, especially on fat utilization and deposition.
Collapse
Affiliation(s)
- Hao Sun
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Zhihui Chen
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Chenzhan Ma
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Lina Lian
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Zeyu Zhao
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Shupeng Niu
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Liangmei Xu
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Jinhua Sun
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Fletcher P, Hamilton RF, Rhoderick JF, Postma B, Buford M, Pestka JJ, Holian A. Dietary Docosahexaenoic Acid as a Potential Treatment for Semi-acute and Chronic Particle-Induced Pulmonary Inflammation in Balb/c Mice. Inflammation 2021; 45:677-694. [PMID: 34655011 DOI: 10.1007/s10753-021-01576-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Acute and chronic inflammation are vital contributing factors to pulmonary diseases which can be triggered by exposure to occupational and man-made particles; however, there are no established treatments. One potential treatment shown to have anti-inflammatory capabilities is the dietary supplement docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid found in fish oil. DHA's anti-inflammatory mechanisms are unclear for particle-induced inflammation; therefore, this study evaluated DHA as a prophylactic treatment for semi-acute and chronic particle-induced inflammation in vivo. Balb/c mice were fed a control or 1% DHA diet and exposed to dispersion media, an inflammatory multi-walled carbon nanotube (MWCNT), or crystalline silica (SiO2) either once (semi-acute) or once a week for 4 weeks (chronic). The hypothesis was that DHA will decrease pulmonary inflammatory markers in response to particle-induced inflammation. Results indicated that DHA had a trending anti-inflammatory effect in mice exposed to MWCNT. There was a general decrease in inflammatory signals within the lung lavage fluid and upregulation of M2c macrophage gene expression in the spleen tissue. In contrast, mice exposed to SiO2 while on the DHA diet significantly increased most inflammatory markers. However, DHA stabilized the phagolysosomal membrane upon prolonged treatment. This indicated that DHA treatment may depend upon certain inflammatory particle exposures as well as the length of the exposure.
Collapse
Affiliation(s)
- Paige Fletcher
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.
| | - Raymond F Hamilton
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Joseph F Rhoderick
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Britten Postma
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Mary Buford
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - James J Pestka
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
10
|
Effect of Omega-3 or Omega-6 Dietary Supplementation on Testicular Steroidogenesis, Adipokine Network, Cytokines, and Oxidative Stress in Adult Male Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5570331. [PMID: 34257810 PMCID: PMC8260291 DOI: 10.1155/2021/5570331] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/15/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
This study was undertaken to elucidate the effect of omega-3 and omega-6 supplementation on the levels of different adipokines and cytokines, as well as the antioxidant system, in relation to male reproductive hormones and testicular functions. Adult male Sprague-Dawley rats were daily gavaged with either physiological saline (control group), sunflower oil (omega 6 group; 1 mL/kg body weight), or fish oil (omega-3 group; 1000 mg/kg body weight) for 12 weeks. The administration of omega-3 or omega-6 resulted in decreased serum concentrations of kisspeptin 1, gonadotropin-releasing hormone, luteinizing hormone, follicle-stimulating hormone, and testosterone. In addition, it downregulated the mRNA expression levels of steroidogenic genes. The intratesticular levels of apelin, adiponectin, and irisin were elevated while chemerin, leptin, resistin, vaspin, and visfatin were declined following the administration of either omega-3 or omega-6. The testicular concentration of interleukin 10 was increased while interleukin 1 beta, interleukin 6, tumor necrosis factor α, and nuclear factor kappa B were decreased after consumption of omega-3 or omega-6. In the testes, the levels of superoxide dismutase, catalase, glutathione peroxidase 1, and the total antioxidant capacity were improved. In conclusion, the administration of omega-3 or omega-6 adversely affects the process of steroidogenesis but improves the antioxidant and anti-inflammatory status of the reproductive system via modulating the levels of testicular adipokines.
Collapse
|
11
|
Cugno C, Kizhakayil D, Calzone R, Rahman SM, Halade GV, Rahman MM. Omega-3 fatty acid-rich fish oil supplementation prevents rosiglitazone-induced osteopenia in aging C57BL/6 mice and in vitro studies. Sci Rep 2021; 11:10364. [PMID: 33990655 PMCID: PMC8121944 DOI: 10.1038/s41598-021-89827-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Rosiglitazone is an effective insulin-sensitizer, however associated with bone loss mainly due to increased bone resorption and bone marrow adiposity. We investigated the effect of the co-administration of fish oil rich in omega-3 fatty acids (FAs) on rosiglitazone-induced bone loss in C57BL/6 mice and the mechanisms underlying potential preventive effect. Mice fed the iso-caloric diet supplemented with fish oil exhibited significantly higher levels of bone density in different regions compared to the other groups. In the same cohort of mice, reduced activity of COX-2, enhanced activity of alkaline phosphatase, lower levels of cathepsin k, PPAR-γ, and pro-inflammatory cytokines, and a higher level of anti-inflammatory cytokines were observed. Moreover, fish oil restored rosiglitazone-induced down-regulation of osteoblast differentiation and up-regulation of adipocyte differentiation in C3H10T1/2 cells and inhibited the up-regulation of osteoclast differentiation of RANKL-treated RAW264.7 cells. We finally tested our hypothesis on human Mesenchymal Stromal Cells differentiated to osteocytes and adipocytes confirming the beneficial effect of docosahexaenoic acid (DHA) omega-3 FA during treatment with rosiglitazone, through the down-regulation of adipogenic genes, such as adipsin and FABP4 along the PPARγ/FABP4 axis, and reducing the capability of osteocytes to switch toward adipogenesis. Fish oil may prevent rosiglitazone-induced bone loss by inhibiting inflammation, osteoclastogenesis, and adipogenesis and by enhancing osteogenesis in the bone microenvironment.
Collapse
Affiliation(s)
- Chiara Cugno
- Advanced Cell Therapy Core, Sidra Medicine, Doha, Qatar
| | | | - Rita Calzone
- Advanced Cell Therapy Core, Sidra Medicine, Doha, Qatar
| | - Shaikh Mizanoor Rahman
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, The University of South Florida Health, Tampa, FL, USA
| | - Md M Rahman
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
12
|
Little-Letsinger SE, Turner ND, Ford JR, Suva LJ, Bloomfield SA. Omega-3 fatty acid modulation of serum and osteocyte tumor necrosis factor-α in adult mice exposed to ionizing radiation. J Appl Physiol (1985) 2021; 130:627-639. [PMID: 33411639 DOI: 10.1152/japplphysiol.00848.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammation leads to bone loss and fragility. Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) consistently promote bone resorption. Dietary modulation of proinflammatory cytokines is an accepted therapeutic approach to treat chronic inflammation, including that induced by space-relevant radiation exposure. As such, these studies were designed to determine whether an anti-inflammatory diet, high in omega-3 fatty acids, could reduce radiation-mediated bone damage via reductions in the levels of inflammatory cytokines in osteocytes and serum. Lgr5-EGFP C57BL/6 mice were randomized to receive diets containing fish oil and pectin (FOP; high in omega-3 fatty acids) or corn oil and cellulose (COC; high in omega-6 fatty acids) and then acutely exposed to 0.5-Gy 56Fe or 2.0-Gy gamma-radiation. Mice fed the FOP diet exhibited consistent reductions in serum TNF-α in the 56Fe experiment but not the gamma-experiment. The percentage osteocytes (%Ot) positive for TNF-α increased in gamma-exposed COC, but not FOP, mice. Minimal changes in %Ot positive for sclerostin were observed. FOP mice exhibited modest improvements in several measures of cancellous microarchitecture and volumetric bone mineral density (BMD) postexposure to 56Fe and gamma-radiation. Reduced serum TNF-α in FOP mice exposed to 56Fe was associated with either neutral or modestly positive changes in bone structural integrity. Collectively, these data are generally consistent with previous findings that dietary intake of omega-3 fatty acids may effectively mitigate systemic inflammation after acute radiation exposure and facilitate maintenance of BMD during spaceflight in humans.NEW & NOTEWORTHY This is the first investigation, to our knowledge, to test the impact of a diet high in omega-3 fatty acids on multiple bone structural and biological outcomes following space-relevant radiation exposure. Novel in biological outcomes is the assessment of osteocyte responses to this stressor. These data also add to the growing evidence that low-dose exposures to even high-energy ion species like 56Fe may have neutral or even small positive impacts on bone.
Collapse
Affiliation(s)
| | - Nancy D Turner
- Nutrition and Food Sciences, Texas A&M University, College Station, Texas
| | - John R Ford
- Nuclear Engineering, Texas A&M University, College Station, Texas
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Susan A Bloomfield
- Departments of Health and Kinesiology, Texas A&M University, College Station, Texas
| |
Collapse
|
13
|
Qiao J, Wu Y, Ren Y. The impact of a high fat diet on bones: potential mechanisms. Food Funct 2021; 12:963-975. [PMID: 33443523 DOI: 10.1039/d0fo02664f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-fat diet led to bone loss via gut microbiota and fatty acid imbalances, immune disorder and adipose tissue accumulation inside and outside the bone marrow.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Endocrinology and Metabolism
- the Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou
- 310009
- China
| | - Yiwen Wu
- Department of Neurosurgery
- Ningbo Hospital
- Zhejiang University School of Medicine
- Ningbo 315010
- China
| | - Yuezhong Ren
- Department of Endocrinology and Metabolism
- the Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou
- 310009
- China
| |
Collapse
|
14
|
Cao JJ, Gregoire BR, Michelsen KG, Picklo MJ. Decreasing the Ratio of Dietary Linoleic to α-Linolenic Acid from 10 to 4 by Changing Only the Former Does Not Prevent Adiposity or Bone Deterioration in Obese Mice. J Nutr 2020; 150:1370-1378. [PMID: 32135009 DOI: 10.1093/jn/nxaa044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/18/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Linoleic acid (LA; 18:2n-6) has been considered to promote low-grade chronic inflammation and adiposity. Studies show adiposity and inflammation are inversely associated with bone mass. OBJECTIVES This study tested the hypothesis that decreasing the dietary ratio of LA to α-linolenic acid (ALA, 18:3n-3), while keeping ALA constant, mitigates high-fat diet (HF)-induced adiposity and bone loss. METHODS Male C57BL/6 mice at 6 wk old were assigned to 4 treatment groups and fed 1 of the following diets ad libitum for 6 mo: a normal-fat diet (NF; 3.85 kcal/g and 10% energy as fat) with the ratio of the PUFAs LA to ALA at 6; or HFs (4.73 kcal/g and 45% energy as fat) with the ratio of LA to ALA at 10:1, 7:1, or 4:1, respectively. ALA content in the diets was kept the same for all groups at 1% energy. Bone structure, body composition, bone-related cytokines in serum, and gene expression in bone were measured. Data were analyzed using 1-factor ANOVA. RESULTS Compared with those fed the NF, mice fed the HFs had 19.6% higher fat mass (P < 0.01) and 13.5% higher concentration of serum tartrate-resistant acid phosphatase (TRAP) (P < 0.05), a bone resorption cytokine. Mice fed the HFs had 19.5% and 12.2% lower tibial and second lumbar vertebral bone mass, respectively (P < 0.01). Decreasing the dietary ratio of LA to ALA from 10 to 4 did not affect body mass, fat mass, serum TRAP and TNF-α, or any bone structural parameters. CONCLUSIONS These data indicate that decreasing the dietary ratio of LA to ALA from 10 to 4 by simply reducing LA intake does not prevent adiposity or improve bone structure in obese mice.
Collapse
Affiliation(s)
- Jay J Cao
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, USDA, Grand Forks, ND, USA
| | - Brian R Gregoire
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, USDA, Grand Forks, ND, USA
| | - Kim G Michelsen
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, USDA, Grand Forks, ND, USA
| | - Matthew J Picklo
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, USDA, Grand Forks, ND, USA
| |
Collapse
|
15
|
Nishi D, Su KP, Usuda K, Chang JPC, Hamazaki K, Ishima T, Sano Y, Ito H, Isaka K, Tachibana Y, Tanigaki S, Suzuki T, Hashimoto K, Matsuoka YJ. Plasma estradiol levels and antidepressant effects of omega-3 fatty acids in pregnant women. Brain Behav Immun 2020; 85:29-34. [PMID: 30776476 DOI: 10.1016/j.bbi.2019.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids (PUFAs) reduce depressive symptoms through an anti-inflammatory effect, and injection of both omega-3 PUFAs and estradiol (E2) induces antidepressant-like effects in rats by regulating the expression of inflammatory cytokines. The aims of this study were to examine the association of increased E2 during pregnancy with depressive symptoms and with inflammatory cytokines in women who were and were not supplemented with omega-3 PUFAs. METHODS Pregnant women with Edinburgh Postnatal Depression Scale scores ≥9 were recruited at 12-24 weeks of gestation. The participants were randomly assigned to receive 1800 mg omega-3 fatty acids (containing 1206 mg eicosapentaenoic acid [EPA]) or placebo for 12 weeks. E2, omega-3 PUFAs, high-sensitivity C-reactive protein, interleukin-6, and adiponectin were measured at baseline and at the 12-week follow-up. Multivariable regression analyses were conducted to examine the association of the changes of E2 and omega-3 PUFAs with the changes in depressive symptoms and with the changes of inflammatory cytokines at follow-up by intervention group. RESULTS Of the 108 participants in the trial, 100 (92.6%) completed the follow-up assessment including blood sampling. Multivariable regression analyses revealed that the increase of EPA and E2 was significantly associated with a decrease in depressive symptoms among the participants assigned to the omega-3 group, but not among those assigned to the placebo group. Neither E2 nor any PUFAs were associated with a change in inflammatory cytokines. CONCLUSION Supplementation with EPA and increased levels of E2 during pregnancy might function together to alleviate antenatal depression through a mechanism other than anti-inflammation.
Collapse
Affiliation(s)
- Daisuke Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan; Department of Mental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Mental Health Policy, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Kentaro Usuda
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan; Department of Mental Health Policy, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jane Pei-Chen Chang
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kei Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yo Sano
- Toda Chuo Women's Hospital, Saitama, Japan
| | - Hiroe Ito
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Keiich Isaka
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Yoshiyuki Tachibana
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, Japan
| | - Shinji Tanigaki
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan; Department of Obstetrics and Gynecology, Kyorin University School of Medicine, Tokyo, Japan
| | - Tomo Suzuki
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yutaka J Matsuoka
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan; Division of Health Care Research, Center for Public Health Sciences, National Cancer Center Japan, Tokyo, Japan
| |
Collapse
|
16
|
Joffre C, Dinel AL, Chataigner M, Pallet V, Layé S. n-3 Polyunsaturated Fatty Acids and Their Derivates Reduce Neuroinflammation during Aging. Nutrients 2020; 12:nu12030647. [PMID: 32121189 PMCID: PMC7146513 DOI: 10.3390/nu12030647] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
: Aging is associated to cognitive decline, which can lead to loss of life quality, personal suffering, and ultimately neurodegenerative diseases. Neuroinflammation is one of the mechanisms explaining the loss of cognitive functions. Indeed, aging is associated to the activation of inflammatory signaling pathways, which can be targeted by specific nutrients with anti-inflammatory effects. Dietary n-3 polyunsaturated fatty acids (PUFAs) are particularly attractive as they are present in the brain, possess immunomodulatory properties, and are precursors of lipid derivates named specialized pro-resolving mediators (SPM). SPMs are crucially involved in the resolution of inflammation that is modified during aging, resulting in chronic inflammation. In this review, we first examine the effect of aging on neuroinflammation and then evaluate the potential beneficial effect of n-3 PUFA as precursors of bioactive derivates, particularly during aging, on the resolution of inflammation. Lastly, we highlight evidence supporting a role of n-3 PUFA during aging.
Collapse
Affiliation(s)
- Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Correspondence:
| | - Anne-Laure Dinel
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Mathilde Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Abyss Ingredients, 56850 Caudan, France
| | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| |
Collapse
|
17
|
Cao JJ, Gregoire BR, Michelsen KG, Picklo MJ. Increasing Dietary Fish Oil Reduces Adiposity and Mitigates Bone Deterioration in Growing C57BL/6 Mice Fed a High-Fat Diet. J Nutr 2020; 150:99-107. [PMID: 31511877 DOI: 10.1093/jn/nxz215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/30/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Intake of total fat is linked to obesity and inversely associated with bone density in humans. Epidemiologic and animal studies show that long-chain n-3 (ω-3) PUFAs supplied as fish oil (FO) are beneficial to skeletal health. OBJECTIVE This study tested the hypothesis that increasing dietary FO would decrease adiposity and improve bone-related outcomes in growing obese mice. METHODS Male C57BL/6 mice at 6 wk old were assigned to 6 treatment groups and fed either a normal-fat diet (3.85 kcal/g and 10% energy as fat) or a high-fat diet (HF; 4.73 kcal/g and 45% energy as fat) containing either 0%, 3%, or 9% energy as FO (0FO, 3FO, and 9FO, respectively) ad libitum for 6 mo. Bone structure, body composition, and serum bone-related cytokines were measured. RESULTS The HF diet increased the expression of the adipose tissue tumor necrosis factor α (Tnfa) and serum concentrations of leptin and tartrate-resistant acid phosphatase (TRAP), and decreased serum concentrations of osteocalcin and bone-specific alkaline phosphatase (P < 0.05). FO decreased fat mass (P < 0.05), serum TRAP (P < 0.05), and adipose tissue Tnfa expression (P < 0.01). Bone content of long-chain n-3 PUFAs was increased and n-6 PUFAs were decreased with the elevation in dietary FO content (P < 0.01). Compared with mice fed 9FO, animals fed 3FO had higher femoral bone volume/total volume (25%), trabecular number (23%), connectivity density (82%), and bone mass of second lumbar vertebrae (12%) and lower femoral trabecular separation (-19%). Mice fed the 3FO HF diet had 42% higher bone mass than those fed the 0FO HF diet. CONCLUSIONS These data indicate increasing dietary FO ≤3% energy can decrease adiposity and mitigate HF diet-induced bone deterioration in growing C57BL/6 mice possibly by reducing inflammation and bone resorption. FO at 9% diet energy had no further beneficial effects on bone of obese mice.
Collapse
Affiliation(s)
- Jay J Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Brian R Gregoire
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Kim G Michelsen
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Matthew J Picklo
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| |
Collapse
|
18
|
Puga AM, Pajares MA, Varela-Moreiras G, Partearroyo T. Interplay between Nutrition and Hearing Loss: State of Art. Nutrients 2018; 11:35. [PMID: 30586880 PMCID: PMC6356655 DOI: 10.3390/nu11010035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
Hearing loss has been recently ranked as the fifth leading cause of years lived with disability, ahead of many other chronic diseases such as diabetes, dementia, or chronic obstructive pulmonary disease. Moreover, according to the World Health Organization, moderate-to-profound hearing loss affects about 466 million people worldwide. Its incidence varies in each population segment, affecting approximately 10% of children and increasing to 30% of the population over 65 years. However, hearing loss receives still very limited research funding and public awareness. This sensory impairment is caused by genetic and environmental factors, and among the latter, the nutritional status has acquired relevance due its association to hearing loss detected in recent epidemiological studies. Several experimental models have proved that the onset and progression of hearing loss are closely linked to the availability of nutrients and their metabolism. Here, we have reviewed studies focused on nutrient effects on auditory function. These studies support the potential of nutritional therapy for the protection against hearing loss progression, which is especially relevant to the aging process and related quality of life.
Collapse
Affiliation(s)
- Ana M Puga
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain.
- Molecular Hepatology Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain.
| | - Gregorio Varela-Moreiras
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
| | - Teresa Partearroyo
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
| |
Collapse
|
19
|
Yang Y, Kim Y, Je Y. Fish consumption and risk of depression: Epidemiological evidence from prospective studies. Asia Pac Psychiatry 2018; 10:e12335. [PMID: 30238628 DOI: 10.1111/appy.12335] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The evidence on the association of fish or omega-3 fatty acid intake with depression is inconsistent. We conducted a systematic review and meta-analysis of prospective cohort studies to examine this association. METHODS Database searches in PubMed and Web of Science were conducted to identify relevant articles published up to April 2018, which were supplemented by hand-searches of reference lists of the retrieved articles. Using a random-effects model, we calculated pooled relative risks (RR) of depression in relation to consumption of fish or omega-3 fatty acids after adjusting for potential confounders. RESULTS A total of 10 prospective cohort studies with 6672 cases of depression among 109 764 participants were included in the meta-analysis. The pooled adjusted RR of depression for the highest vs lowest category of fish consumption was 0.89 (95% CI: 0.80-0.99). The pooled adjusted RR of depression for the highest vs lowest category of omega-3 intake was 0.87 (95% CI: 0.74-1.04). In the dose-response analysis, the pooled adjusted RRs for an increment of 1 serving/week of fish consumption and 500 mg/day of omega-3 fatty acid intake were 0.89 (95% CI: 0.75-1.04) and 0.99 (95% CI: 0.94-1.04), respectively. There was no evidence of heterogeneity. DISCUSSION Our findings provide quantitative evidence for a modest inverse association between fish or omega-3 fatty acid intake and risk of depression, especially in women. These findings from the observational studies need to be confirmed through large randomized clinical trials of fish consumption or omega-3 fatty acid intake and risk of depression.
Collapse
Affiliation(s)
- Yeonji Yang
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Youngyo Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Youjin Je
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
20
|
Shibata M, Ohara T, Yoshida D, Hata J, Mukai N, Kawano H, Kanba S, Kitazono T, Ninomiya T. Association between the ratio of serum arachidonic acid to eicosapentaenoic acid and the presence of depressive symptoms in a general Japanese population: the Hisayama Study. J Affect Disord 2018; 237:73-79. [PMID: 29787929 DOI: 10.1016/j.jad.2018.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/26/2018] [Accepted: 05/11/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Epidemiological evidence suggests that fish consumption and intake of n-3 polyunsaturated fatty acids (PUFA)-namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-confer protection against depression. However, few studies have addressed the influence of the balance between n-3 PUFA and n-6 PUFA in the human body on depression. METHODS A total of 2,529 community-dwelling Japanese residents aged ≥ 40 years were assessed for depressive symptoms (defined as a score of 16 points or more on the Center for Epidemiologic Studies Depression Scale [CES-D]) in 2007. The serum arachidonic acid (AA) /EPA ratio and AA/DHA ratio were measured in frozen samples collected in 2002 and categorized into quartiles. The odds ratios (ORs) for the presence of depressive symptoms were calculated using a logistic regression model. RESULTS The prevalence of depressive symptoms was 4.3%. There was no significant association between either the serum AA/EPA ratio or AA/DHA ratio and the presence of depressive symptoms. However, subjects with the highest serum AA/EPA ratios (range: 3.28-13.3) had a 4.10 times (95%CI: 1.13-19.80) greater OR for the presence of depressive symptoms than those with the lowest ratios (0.30-1.65) after adjusting for confounding factors in the subgroup with high-sensitivity C-reactive protein (hs-CRP) ≥ 1.0 mg/L, while no clear association was observed in the subgroup with hs-CRP < 1.0 mg/L. LIMITATIONS Reverse causality is possible due to the cross-sectional study design. CONCLUSIONS Our findings suggest that a higher serum AA/EPA ratio is associated with a greater likelihood of depressive symptoms in subjects with systemic inflammation in the general Japanese population.
Collapse
Affiliation(s)
- Mao Shibata
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan; Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daigo Yoshida
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Hata
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoko Mukai
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Kawano
- Developmental Research, Mochida Pharmaceutical Co., Ltd., Gotenba, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
21
|
Inflammatory response following in vitro exposure to methylmercury with and without n-3 long chain polyunsaturated fatty acids in peripheral blood mononuclear cells from systemic lupus erythematosus patients compared to healthy controls. Toxicol In Vitro 2018; 52:272-278. [PMID: 29778720 DOI: 10.1016/j.tiv.2018.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 01/29/2023]
Abstract
Methylmercury (MeHg) is a proposed environmental stimulus in systemic lupus erythematosus (SLE). Humans are primarily exposed to MeHg through fish consumption. Fish are also important sources of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA). This in vitro study investigated the inflammatory response of isolated peripheral blood mononuclear cells (PBMCs), when exposed to either MeHg alone or with added n-3 LCPUFA, from SLE patients (N = 12) compared to healthy sex matched controls (N = 12). The PBMCs were isolated and exposed to 200 nM of MeHg for 24 h with or without pre-exposure to eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) at a concentration of 100 μM each. Supernatants were analyzed for the inflammatory markers. Following exposure to MeHg, mean TNF-α concentrations were significantly higher in SLE patients (2226.01 ± 348.98pg/ml) compared to controls (701.40 ± 680.65 pg/ml) (P = .008). Pre-exposure of cells with MeHg and EPA resulted in a significantly higher concentration of IL-8 in supernatants from SLE patients (2137.83 ± 1559.01 pg/ml) compared to that of the controls (879.26 ± 979.49 pg/ml) (P = .030). EPA and DHA attenuated the pro-inflammatory inducing effects of MeHg in SLE and control cells. In summary, exposure to MeHg stimulated a higher TNF-α response in SLE patients compared with healthy controls; nevertheless the presence of n-3 LCPUFA reduced the overall inflammatory response, albeit to a lesser degree in SLE patients.
Collapse
|
22
|
Yang Y, Je Y. Fish consumption and depression in Korean adults: the Korea National Health and Nutrition Examination Survey, 2013-2015. Eur J Clin Nutr 2018; 72:1142-1149. [PMID: 29339828 DOI: 10.1038/s41430-017-0083-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND/OBJECTIVES There is a growing body of evidence that supports the potential role of fish consumption in relation to depression, but the data in Korean population is scarce. Thus, we examined the association between fish consumption and depression in Korean adults. SUBJECTS/METHODS We conducted a cross-sectional study in 9183 Korean adults aged 19-64 years who participated in the 6TH Korea National Health and Nutrition Examination Survey (2013-2015), which is a large nationally representative study of Korean population. Fish consumption and depression status were assessed using questionnaires. Multivariable logistic regression models were used to compute odds ratios (ORs) and 95% confidence intervals (CIs) for physician-diagnosed clinical depression. RESULTS Out of the 9183 subjects, 389 (4.2%) were diagnosed with depression. After adjusting for potential confounders, the multivariable-adjusted ORs for clinical depression across fish consumption were 1.00 (reference) for <1 time/week, 0.76 (95% CI: 0.56-1.04) for 1-3 times/week and 0.52 (95% CI: 0.37-0.74) for ≥4 times/week (P for trend = 0.0005). The inverse association for ≥4 times/week of fish consumption was stronger in women (OR = 0.44, 95% CI: 0.29-0.67, P for trend < .0001), but there was no significant association in men. CONCLUSIONS Our findings suggest that high consumption of fish is associated with lower odds of depression in Korean adults, particularly in women. These results warrant further prospective studies to verify the association between fish consumption and risk of depression in Korean adults.
Collapse
Affiliation(s)
- Yeonji Yang
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Youjin Je
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
23
|
MENEGOL T, DIPRAT AB, RODRIGUES E, RECH R. Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.13417] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | - Rosane RECH
- Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Partearroyo T, Vallecillo N, Pajares MA, Varela-Moreiras G, Varela-Nieto I. Cochlear Homocysteine Metabolism at the Crossroad of Nutrition and Sensorineural Hearing Loss. Front Mol Neurosci 2017; 10:107. [PMID: 28487633 PMCID: PMC5403919 DOI: 10.3389/fnmol.2017.00107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/30/2017] [Indexed: 12/27/2022] Open
Abstract
Hearing loss (HL) is one of the most common causes of disability, affecting 360 million people according to the World Health Organization (WHO). HL is most frequently of sensorineural origin, being caused by the irreversible loss of hair cells and/or spiral ganglion neurons. The etiology of sensorineural HL (SNHL) is multifactorial, with genetic and environmental factors such as noise, ototoxic substances and aging playing a role. The nutritional status is central in aging disability, but the interplay between nutrition and SNHL has only recently gained attention. Dietary supplementation could therefore constitute the first step for the prevention and potential repair of hearing damage before it reaches irreversibility. In this context, different epidemiological studies have shown correlations among the nutritional condition, increased total plasma homocysteine (tHcy) and SNHL. Several human genetic rare diseases are also associated with homocysteine (Hcy) metabolism and SNHL confirming this potential link. Accordingly, rodent experimental models have provided the molecular basis to understand the observed effects. Thus, increased tHcy levels and vitamin deficiencies, such as folic acid (FA), have been linked with SNHL, whereas long-term dietary supplementation with omega-3 fatty acids improved Hcy metabolism, cell survival and hearing acuity. Furthermore, pharmacological supplementations with the anti-oxidant fumaric acid that targets Hcy metabolism also improved SNHL. Overall these results strongly suggest that cochlear Hcy metabolism is a key player in the onset and progression of SNHL, opening the way for the design of prospective nutritional therapies.
Collapse
Affiliation(s)
- Teresa Partearroyo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San PabloMadrid, Spain
| | - Néstor Vallecillo
- Departamento de Fisiopatología y del Sistema Nervios, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM)Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos IIIMadrid, Spain
| | - María A Pajares
- Departamento de Fisiopatología y del Sistema Nervios, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM)Madrid, Spain.,Investigación en Otoneurocirugía, Instituto de Investigación Sanitaria La Paz (IdiPAZ)Madrid, Spain
| | - Gregorio Varela-Moreiras
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San PabloMadrid, Spain
| | - Isabel Varela-Nieto
- Departamento de Fisiopatología y del Sistema Nervios, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM)Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos IIIMadrid, Spain.,Investigación en Otoneurocirugía, Instituto de Investigación Sanitaria La Paz (IdiPAZ)Madrid, Spain
| |
Collapse
|
25
|
Schmidt FM, Kirkby KC, Lichtblau N. Inflammation and Immune Regulation as Potential Drug Targets in Antidepressant Treatment. Curr Neuropharmacol 2017; 14:674-87. [PMID: 26769225 PMCID: PMC5050395 DOI: 10.2174/1570159x14666160115130414] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/20/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022] Open
Abstract
Growing evidence supports a mutual relationship between inflammation and major depression. A variety of mechanisms are outlined, indicating how inflammation may be involved in the pathogenesis, course and treatment of major depression. In particular, this review addresses 1) inflammatory cytokines as markers of depression and potential predictors of treatment response, 2) findings that cytokines interact with antidepressants and non-pharmacological antidepressive therapies, such as electroconvulsive therapy, deep brain stimulation and physical activity, 3) the influence of cytokines on the cytochrome (CYP) p450-system and drug efflux transporters, and 4) how cascades of inflammation might serve as antidepressant drug targets. A number of clinical trials have focused on agents with immunmodulatory properties in the treatment of depression, of which this review covers nonsteroidal anti-inflammatory drugs (NSAIDs), cytokine inhibitors, ketamine, polyunsaturated fatty acids, statins and curcumin. A perspective is also provided on possible future immune targets for antidepressant therapy, such as toll-like receptor-inhibitors, glycogen synthase kinase-3 inhibitors, oleanolic acid analogs and minocycline. Concluding from the available data, markers of inflammation may become relevant factors for more personalised planning and prediction of response of antidepressant treatment strategies. Agents with anti-inflammatory properties have the potential to serve as clinically relevant antidepressants. Further studies are required to better define and identify subgroups of patients responsive to inflammatory agents as well as to define optimal time points for treatment onset and duration.
Collapse
Affiliation(s)
- Frank M Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstraße 10, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
26
|
Chhetry BT, Hezghia A, Miller JM, Lee S, Rubin-Falcone H, Cooper TB, Oquendo MA, Mann JJ, Sublette ME. Omega-3 polyunsaturated fatty acid supplementation and white matter changes in major depression. J Psychiatr Res 2016; 75:65-74. [PMID: 26802812 PMCID: PMC4948754 DOI: 10.1016/j.jpsychires.2015.12.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/02/2015] [Accepted: 12/07/2015] [Indexed: 01/15/2023]
Abstract
White matter abnormalities are implicated in major depressive disorder (MDD). As omega-3 polyunsaturated fatty acids (PUFAs) are low in MDD and affect myelination, we hypothesized that PUFA supplementation may alleviate depression through improving white matter integrity. Acutely depressed MDD patients (n = 16) and healthy volunteers (HV, n = 12) had 25-direction diffusion tensor imaging before and after 6 weeks of fish oil supplementation. Plasma phospholipid omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and omega-6 PUFA arachidonic acid (AA) levels were determined before and after supplementation using high-throughput extraction and gas chromatography and expressed as a percentage of total phospholipids (PUFA%). Fractional anisotropy (FA) was computed using a least-squares-fit diffusion tensor with non-linear optimization. Regression analyses were performed with changes in PUFA levels or Hamilton Depression Rating Scale scores as predictors, voxel-wise difference maps of FA as outcome, covariates age and sex, with family-wise correction for multiple comparisons. Increases in plasma phospholipid DHA% (but not EPA% or AA%) after fish oil predicted increases in FA in MDD but not HV, in a cluster including genu and body of the corpus callosum, and anterior corona radiata and cingulum (cluster-level p < 0.001, peak t-score = 8.10, p = 0.002). There was a trend for greater change in FA in MDD responders over nonresponders (t = -1.874, df = 13.56, p = 0.08). Decreased depression severity predicted increased FA in left corticospinal tract and superior longitudinal fasciculus (cluster-level p < 0.001, peak t-score = 5.04, p = 0.0001). Increased FA correlated with increased DHA% and decreased depression severity after fish oil supplementation suggests therapeutic effects of omega-3 PUFAs may be related to improvements in white matter integrity.
Collapse
Affiliation(s)
- Binod Thapa Chhetry
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - Adrienne Hezghia
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Jeffrey M. Miller
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Department of Biostatistics, Columbia University, 722 West 168th St., New York, NY 10032, USA
| | - Harry Rubin-Falcone
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - Thomas B. Cooper
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA,Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Maria A. Oquendo
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - J. John Mann
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA,Department of Radiology, Columbia University, 622 West 168th St, New York, NY, USA
| | - M. Elizabeth Sublette
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA,To whom correspondence should be addressed: New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, TEL 646 774-7514, FAX 646 774-7589,
| |
Collapse
|
27
|
Martínez-Vega R, Partearroyo T, Vallecillo N, Varela-Moreiras G, Pajares MA, Varela-Nieto I. Long-term omega-3 fatty acid supplementation prevents expression changes in cochlear homocysteine metabolism and ameliorates progressive hearing loss in C57BL/6J mice. J Nutr Biochem 2015; 26:1424-1433. [PMID: 26321228 DOI: 10.1016/j.jnutbio.2015.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/02/2015] [Accepted: 07/16/2015] [Indexed: 12/17/2022]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) are essential nutrients well known for their beneficial effects, among others on cognitive development and maintenance, inflammation and oxidative stress. Previous studies have shown an inverse association between high plasma levels of PUFAs and age-related hearing loss, and the relationship between low serum folate and elevated plasma homocysteine levels and hearing loss. Therefore, we used C57BL/6J mice and long-term omega-3 supplementation to evaluate the impact on hearing by analyzing their auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) thresholds. The omega-3 group showed significantly lower ABR hearing thresholds (~25 dB sound pressure level) and higher DPOAE amplitudes in mid-high frequencies when compared to the control group. These changes did not correlate with alterations between groups in plasma homocysteine or serum folate levels as measured by high-performance liquid chromatography and a microbiological method, respectively. Aging in the control group was associated with imbalanced cytokine expression toward increased proinflammatory cytokines as determined by quantitative reverse transcriptase polymerase chain reaction; these changes were prevented by omega-3 supplementation. Genes involved in homocysteine metabolism showed decreased expression during aging of control animals, and only alterations in Bhmt and Cbs were significantly prevented by omega-3 feeding. Western blotting showed that omega-3 supplementation precluded the CBS protein increase detected in 10-month-old controls but also produced an increase in BHMT protein levels. Altogether, the results obtained suggest a long-term protective role of omega-3 supplementation on cochlear metabolism and progression of hearing loss.
Collapse
Affiliation(s)
- Raquel Martínez-Vega
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain,; Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Teresa Partearroyo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain
| | - Néstor Vallecillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Gregorio Varela-Moreiras
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, Madrid, Spain
| | - María A Pajares
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain,; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain,; Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana 261, 28046, Madrid, Spain
| |
Collapse
|
28
|
Wauquier F, Léotoing L, Philippe C, Spilmont M, Coxam V, Wittrant Y. Pros and cons of fatty acids in bone biology. Prog Lipid Res 2015; 58:121-45. [PMID: 25835096 DOI: 10.1016/j.plipres.2015.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/06/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022]
Abstract
Despite the growing interest in deciphering the causes and consequences of obesity-related disorders, the mechanisms linking fat intake to bone behaviour remain unclear. Since bone fractures are widely associated with increased morbidity and mortality, most notably in elderly and obese people, bone health has become a major social and economic issue. Consistently, public health system guidelines have encouraged low-fat diets in order to reduce associated complications. However, from a bone point of view, mechanisms linking fat intake to bone alteration remain quite controversial. Thus, after more than a decade of dedicated studies, this timely review offers a comprehensive overview of the relationships between bone and fatty acids. Using clinical evidences as a starting-point to more complex molecular elucidation, this work highlights the complexity of the system and reveals that bone alteration that cannot be solved simply by taking ω-3 pills. Fatty acid effects on bone metabolism can be both direct and indirect and require integrated investigations. Furthermore, even at the level of a single cell, one fatty acid is able to trigger several different independent pathways (receptors, metabolites…) which may all have a say in the final cellular metabolic response.
Collapse
Affiliation(s)
- Fabien Wauquier
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Laurent Léotoing
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Claire Philippe
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Mélanie Spilmont
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Véronique Coxam
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Yohann Wittrant
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France.
| |
Collapse
|
29
|
Low plasma eicosapentaenoic acid levels are associated with elevated trait aggression and impulsivity in major depressive disorder with a history of comorbid substance use disorder. J Psychiatr Res 2014; 57:133-40. [PMID: 25017608 PMCID: PMC4204478 DOI: 10.1016/j.jpsychires.2014.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
Major depressive disorder (MDD) is associated with low levels of omega-3 polyunsaturated fatty acids (PUFAs), holding promise for new perspectives on disease etiology and treatment targets. As aggressive and impulsive behaviors are associated with low omega-3 PUFA levels in some clinical contexts, we investigated plasma PUFA relationships with trait aggression and impulsivity in patients with MDD. Medication-free MDD patients (n = 48) and healthy volunteers (HV, n = 35) were assessed with the Brown-Goodwin Aggression Inventory. A subset (MDD, n = 39; HV, n = 33) completed the Barratt Impulsiveness Scale. Plasma PUFAs eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6) were quantified and ln-transformed to mitigate distributional skew. Ln-transformed PUFA (lnPUFA) levels were predictors in regression models, with aggression or impulsivity scores as outcomes, and cofactors of sex and diagnostic status (MDD with or without a history of substance use disorder [SUD], or HV). Interactions were tested between relevant PUFAs and diagnostic status. Additional analyses explored possible confounds of depression severity, self-reported childhood abuse history, and, in MDD patients, suicide attempt history. Among PUFA, lnEPA but not lnDHA predicted aggression (F1,76 = 12.493, p = 0.001), and impulsivity (F1,65 = 5.598, p = 0.021), with interactions between lnEPA and history of SUD for both aggression (F1,76 = 7.941, p = 0.001) and impulsivity (F1,65 = 3.485, p = 0.037). Results remained significant when adjusted for childhood abuse, depression severity, or history of suicide attempt. In conclusion, low EPA levels were associated with aggression and impulsivity only in patients with MDD and comorbid SUD, even though in most cases SUD was in full sustained remission.
Collapse
|
30
|
Abd El-Azime ASH, Hussein EM, Ashry OM. Synergestic effect of aqueous purslane (Portulaca oleracea L.) extract and fish oil on radiation-induced damage in rats. Int J Radiat Biol 2014; 90:1184-90. [PMID: 24882390 DOI: 10.3109/09553002.2014.926040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To evaluate the impact of oral administration of purslane (Portulaca oleracea) extract or fish oil and their co-treatments in the modulation of radiation-induced damage. MATERIAL AND METHODS Purslane (P) (400 mg/kg body weight) or fish oil (Fo) (60 mg/kg body weight) was administrated to male albino rats via gastric intubation for 15 days after whole body exposure to a single dose of 6 Gy gamma rays. The animals were sacrificed after the elapse of 15 days. RESULTS The results revealed that irradiation induced a significant elevation of total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-c), and atherogenic index: TC/high density lipoprotein cholesterol (HDL-c) in addition to aspartate and alanine transaminase (AST, ALT), alkaline phophatase (ALP), bilirubin, as well as urea, creatinine and uric acid. Moreover, liver, kidney and heart malondialdehyde (MDA) was significantly elevated, whereas nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT) and HDL-c were depressed. Purslane and/or fish oil treatment significantly attenuated lipids alteration, liver and kidney functions as well as oxidative stress in irradiated rats. The results pointed out that dietary fish oil supplementation, at adequate doses, may provide a cushion for a prolonged therapeutic option against radiation-induced damage without harmful side-effects. CONCLUSION It could be concluded that purslane extract and fish oil may have therapeutic potential to improve hepatic and renal functions as well as oxidative stress in irradiated rats. Moreover, their co-administration showed a better improved liver function.
Collapse
Affiliation(s)
- Afrag S H Abd El-Azime
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA) , Cairo , Egypt
| | | | | |
Collapse
|
31
|
Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, Drago F, Caraci F. Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS One 2014; 9:e96905. [PMID: 24805797 PMCID: PMC4013121 DOI: 10.1371/journal.pone.0096905] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/11/2014] [Indexed: 12/14/2022] Open
Abstract
Background Despite omega-3 polyunsaturated fatty acids (PUFA) supplementation in depressed patients have been suggested to improve depressive symptomatology, previous findings are not univocal. Objectives To conduct an updated meta-analysis of randomized controlled trials (RCTs) of omega-3 PUFA treatment of depressive disorders, taking into account the clinical differences among patients included in the studies. Methods A search on MEDLINE, EMBASE, PsycInfo, and the Cochrane Database of RCTs using omega-3 PUFA on patients with depressive symptoms published up to August 2013 was performed. Standardized mean difference in clinical measure of depression severity was primary outcome. Type of omega-3 used (particularly eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) and omega-3 as mono- or adjuvant therapy was also examined. Meta-regression analyses assessed the effects of study size, baseline depression severity, trial duration, dose of omega-3, and age of patients. Results Meta-analysis of 11 and 8 trials conducted respectively on patients with a DSM-defined diagnosis of major depressive disorder (MDD) and patients with depressive symptomatology but no diagnosis of MDD demonstrated significant clinical benefit of omega-3 PUFA treatment compared to placebo (standardized difference in random-effects model 0.56 SD [95% CI: 0.20, 0.92] and 0.22 SD [95% CI: 0.01, 0.43], respectively; pooled analysis was 0.38 SD [95% CI: 0.18, 0.59]). Use of mainly EPA within the preparation, rather than DHA, influenced final clinical efficacy. Significant clinical efficacy had the use of omega-3 PUFA as adjuvant rather than mono-therapy. No relation between efficacy and study size, baseline depression severity, trial duration, age of patients, and study quality was found. Omega-3 PUFA resulted effective in RCTs on patients with bipolar disorder, whereas no evidence was found for those exploring their efficacy on depressive symptoms in young populations, perinatal depression, primary disease other than depression and healthy subjects. Conclusions The use of omega-3 PUFA is effective in patients with diagnosis of MDD and on depressive patients without diagnosis of MDD.
Collapse
Affiliation(s)
- Giuseppe Grosso
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Catania, Italy
- * E-mail:
| | - Andrzej Pajak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Krakow, Poland
| | - Stefano Marventano
- Department “G.F. Ingrassia”, Section of Hygiene and Public Health, University of Catania, Catania, Italy
| | - Sabrina Castellano
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Catania, Italy
| | - Fabio Galvano
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Educational Sciences, University of Catania, Catania, Italy
- IRCCS Associazione Oasi Maria S.S. – Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| |
Collapse
|
32
|
Hashimoto M, Maekawa M, Katakura M, Hamazaki K, Matsuoka Y. Possibility of polyunsaturated fatty acids for the prevention and treatment of neuropsychiatric illnesses. J Pharmacol Sci 2014; 124:294-300. [PMID: 24561447 DOI: 10.1254/jphs.13r14cp] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Increasing evidence from the fields of neurophysiology and neuropathology has uncovered the role of polyunsaturated fatty acids (PUFA) in protecting neuronal cells from oxidative damage, controlling inflammation, regulating neurogenesis, and preserving neuronal function. Numerous epidemiological studies have shown that deficits in the dietary PUFA docosahexaenoic acid and eicosapentaenoic acid are associated with the onset and progression of neuropsychiatric illnesses such as dementia, schizophrenia, depression, and posttraumatic stress disorder (PTSD). Recent clinical trials have offered compelling evidence that suggests that n-3 PUFA could reduce depressive, psychotic, and suicidal symptoms, as well as aggression. Although many studies have had the validity of their results questioned because of small sample size, several studies have indicated that n-3 PUFA are useful therapeutic tools for the treatment of dementia, major depression, bipolar disorder, and PTSD. These findings suggest that the pharmacological and nutritional actions of n-3 PUFA may be beneficial in certain neuropsychiatric illnesses. This review article outlines the role of PUFA in neurodevelopment and the regulatory mechanisms in neuronal stem cell differentiation and also the possible use of PUFA as a prescription medicine for the prophylaxis or treatment of neuropsychiatric illnesses such as dementia, mood disorder, and PTSD.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Japan
| | | | | | | | | |
Collapse
|
33
|
Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor α: a meta-analysis. PLoS One 2014; 9:e88103. [PMID: 24505395 PMCID: PMC3914936 DOI: 10.1371/journal.pone.0088103] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/07/2014] [Indexed: 12/23/2022] Open
Abstract
Background Previous studies did not draw a consistent conclusion about the effects of marine-derived n-3 polyunsaturated fatty acids (PUFAs) on fasting blood level of C-reactive protein (CRP), interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). Methods and Findings A comprehensive search of Web of Science, PubMed, Embase and Medline (from 1950 to 2013) and bibliographies of relevant articles was undertaken. Sixty-eight RCTs with a total of 4601 subjects were included in the meta-analysis. Marine-derived n-3 PUFAs supplementation showed a lowering effect on Marine-derived n-3 PUFAs supplementation had a significant lowering effect on TNF-α, IL-6 and CRP in three groups of subjects (subjects with chronic non-autoimmune disease, subjects with chronic autoimmune disease and healthy subjects). A significant negative linear relationship between duration and effect size of marine-derived n-3 PUFAs supplementation on fasting blood levels of TNF-α and IL-6 in subjects with chronic non-autoimmune disease was observed, indicating that longer duration of supplementation could lead to a greater lowering effect. A similar linear relationship was also observed for IL-6 levels in healthy subjects. Restricted cubic spline analysis and subgroup analysis showed that the lowering effect of marine-derived n-3 PUFAs on CRP, IL-6 and TNF-α in subjects with chronic non-autoimmune disease became weakened when body mass index was greater than 30 kg/m2. The effect of marine-derived n-3 PUFAs from dietary intake was only assessed in subjects with chronic non-autoimmune disease, and a significant lowering effect was observed on IL-6, but not on CRP and TNF-α. Conclusions Marine-derived n-3 PUFAs supplementation had a significant lowering effect on CRP, IL-6 and TNF-α level. The lowering effect was most effective in non-obese subjects and consecutive long-term supplementation was recommended.
Collapse
|
34
|
Hutchins-Wiese HL, Picho K, Watkins BA, Li Y, Tannenbaum S, Claffey K, Kenny AM. High-dose eicosapentaenoic acid and docosahexaenoic acid supplementation reduces bone resorption in postmenopausal breast cancer survivors on aromatase inhibitors: a pilot study. Nutr Cancer 2013; 66:68-76. [PMID: 24274259 DOI: 10.1080/01635581.2014.847964] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Postmenopausal breast cancer survivors are living longer; however, a common class of drugs, aromatase inhibitors (AI), depletes estrogen levels, promotes bone loss, and heightens fracture risk. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may offset AI effects to bone because of the known effects on cellular processes of bone turnover. Therefore, we hypothesized that 4 g of EPA and DHA daily for 3 mo would decrease bone turnover in postmenopausal breast cancer survivors on AI therapy in a randomized, double-blind, placebo controlled pilot study that included 38 women. At baseline and 3 mo, serum fatty acids, bone turnover, and inflammatory markers were analyzed. Serum EPA and DHA, total and long-chain (LC) omega (n)-3 polyunsaturated fatty acids (PUFA) increased, whereas arachidonic acid, total and LC n-6 PUFA, and the LC n-6:n-3 PUFA ratio decreased compared to placebo (all P < .05). Bone resorption was inhibited in the fish oil responders compared to placebo (P < .05). Inflammatory markers were not altered. This short-term, high-dose fish oil supplementation study's findings demonstrate that fish oil can reduce bone resorption; however, longer-term studies are needed to assess bone density preservation and to explore mechanistic pathways in this population at high risk for bone loss.
Collapse
Affiliation(s)
- Heather L Hutchins-Wiese
- a Eastern Michigan University, Dietetics and Human Nutrition, Ypsilanti, Michigan, USA, and Center on Aging, University of Connecticut , Farmington , Connecticut , USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Igarashi M, Chang L, Ma K, Rapoport SI. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet. Prostaglandins Leukot Essent Fatty Acids 2013; 89:403-12. [PMID: 24209500 PMCID: PMC5861380 DOI: 10.1016/j.plefa.2013.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 01/06/2023]
Abstract
Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA's in vivo kinetics might elucidate these effects. [1-(14)C]EPA was infused i.v. for 5min in unanesthetized male rats fed a standard EPA-DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5min, 31-48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA-CoA pools into lipids, mainly phospholipids, were 36 and 2529nmol/s/g×10(-4), insignificant for heart. Deacylation-reacylation half-lives were 22h and 38-128min. Conversion rates to DHA equaled 0.65 and 25.1nmol/s/g×10(-4), respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA.
Collapse
Affiliation(s)
- Miki Igarashi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Building 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
36
|
Méndez L, Pazos M, Gallardo JM, Torres JL, Pérez-Jiménez J, Nogués R, Romeu M, Medina I. Reduced protein oxidation in Wistar rats supplemented with marine ω3 PUFAs. Free Radic Biol Med 2013; 55:8-20. [PMID: 23159545 DOI: 10.1016/j.freeradbiomed.2012.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/10/2012] [Accepted: 11/05/2012] [Indexed: 12/18/2022]
Abstract
The potential effects of various dietary eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6) ratios (1:1, 2:1, and 1:2, respectively) on protein redox states from plasma, kidney, skeletal muscle, and liver were investigated in Wistar rats. Dietary fish oil groups were compared with animals fed soybean and linseed oils, vegetable oils enriched in ω6 linoleic acid (LA; 18:2) and ω3 α-linolenic acid (ALA; 18:3), respectively. Fish oil treatments were effective at reducing the level of total fatty acids in plasma and enriching the plasmatic free fatty acid fraction and erythrocyte membranes in EPA and DHA. A proteomic approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labeling of protein carbonyls, FTSC intensity visualization on 1-DE or 2-DE gels, and protein identification by MS/MS was used for the protein oxidation assessment. Albumin was found to be the most carbonylated protein in plasma for all dietary groups, and its oxidation level was significantly modulated by dietary interventions. Supplementation with an equal EPA:DHA ratio (1:1) showed the lowest oxidation score for plasma albumin, followed in increasing order of carbonylation by 1:2 <2:1 ≈ linseed < soybean. Oxidation patterns of myofibrillar skeletal muscle proteins and cytosolic proteins from kidney and liver also indicated a protective effect on proteins for the fish oil treatments, the 1:1 ratio exhibiting the lowest protein oxidation scores. The effect of fish oil treatments at reducing carbonylation on specific proteins from plasma (albumin), skeletal muscle (actin), and liver (albumin, argininosuccinate synthetase, 3-α-hydroxysteroid dehydrogenase) was remarkable. This investigation highlights the efficiency of dietary fish oil at reducing in vivo oxidative damage of proteins compared to oils enriched in the 18-carbon polyunsaturated fatty acids ω3 ALA and ω6 LA, and such antioxidant activity may differ among different fish oil sources because of variations in EPA/DHA content.
Collapse
Affiliation(s)
- Lucía Méndez
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Cientificas (IIM-CSIC), E-36208 Vigo, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Omega-3 fatty acids suppress Th2-associated cytokine gene expressions and GATA transcription factors in mast cells. J Nutr Biochem 2012; 24:868-76. [PMID: 22902330 DOI: 10.1016/j.jnutbio.2012.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022]
Abstract
Because the interaction between omega-3 fatty acids and mast cells has remained largely unknown in allergies, we investigated whether omega-3 fatty acids affect the activation of mast cells by examining Th2-associated cytokine production and possible molecular mechanisms. Alpha-linolenic acid and its metabolites including eicosapentaenoic acid and decosahexaenoic acid induced a dramatic decrease in the production of interleukin (IL)-4, IL-5 and IL-13 in a dose-dependent manner, as well as mRNA expression of their genes, in activated MC/9 mast cells and bone marrow-derived mast cells. The effects were comparable to those of cyclosporin A (1 μM), a well-known immunosuppressive agent. Nuclear expression of GATA binding protein-1 (GATA-1) and GATA binding protein-2 (GATA-2), essential transcription factors for mast cell activation, was also greatly suppressed. However, their mRNA expressions were not affected. In P815 mast cells, which do not express GATA-1, the suppressive effects on cytokines were abolished. On the contrary, omega-3 fatty acids had less significant effects on IL-4 and IL-5 and resulted in a slight decrease in IL-13 production in EL-4 T cells. Finally, oral administration of fish oil containing high level of omega-3 fatty acids significantly reduced the severity of dermatitis and the thickening of epidermis/dermis in a NC/Nga murine atopic model. The number of cells expressing CD117(+) and FcεRIα(+) was greatly decreased and GATA-1 expression in the cells was also diminished. Taken together, omega-3 fatty acids might target mast cells to a greater extent than T cells to suppress Th2 cytokine expression by inhibiting GATAs for alleviation of allergic disease.
Collapse
|
38
|
Lee YH, Bae SC, Song GG. Omega-3 polyunsaturated fatty acids and the treatment of rheumatoid arthritis: a meta-analysis. Arch Med Res 2012; 43:356-62. [PMID: 22835600 DOI: 10.1016/j.arcmed.2012.06.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/06/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS We undertook this study to assess the effects of omega-3 polyunsaturated fatty acids (PUFAs) (administered at ≥2.7 g/day) for a minimum duration of 3 months on clinical outcomes in patients with rheumatoid arthritis (RA). METHODS The authors surveyed randomized controlled trials (RCTs) that examined the effects of omega-3 PUFAs on clinical outcomes in RA patients using Medline and the Cochrane Controlled Trials Register and by performing manual searches. Meta-analysis of RCTs was performed using fixed and random effects models. Outcomes are presented as standardized mean differences (SMD). RESULTS Ten RCTs involving 183 RA patients and 187 placebo-treated RA controls were included in this meta-analysis. The analysis showed that omega-3 PUFAs clearly reduced nonsteroidal anti-inflammatory drug (NSAID) consumption (SMD -0.518, 95% CI -0.915 to -0.121, p = 0.011) without between-study heterogeneity (I(2) = 0%). Tender joint count (SMD -0.214, 95% CI-0.489-0.062, p = 0.128), swollen joint count (SMD -0.170, 95% CI-0.454-0.114, p = 0.241), morning stiffness (SMD -0.224, 95% CI-0.955-0.212, p = 0.221), and physical function (SMD 0.264, 95% CI-0.232-0.724, p = 0.314) showed a trend to improve more in patients treated with omega-3 PUFAs than in placebo-treated controls, but they did not reach statistical significance. CONCLUSIONS This meta-analysis suggests that the use of omega-3 PUFAs at dosages >2.7 g/day for >3 months reduces NSAID consumption by RA patients. Further studies are needed to explore the clinical and NSAID-sparing effects of omega-3 PUFAs in RA.
Collapse
Affiliation(s)
- Young-Ho Lee
- Department of Internal Medicine, Division of Rheumatology, Korea University College of Medicine, Seoul, Korea.
| | | | | |
Collapse
|
39
|
Rahman MM, Halade GV, Williams PJ, Fernandes G. t10c12-CLA maintains higher bone mineral density during aging by modulating osteoclastogenesis and bone marrow adiposity. J Cell Physiol 2011; 226:2406-14. [PMID: 21660964 PMCID: PMC3103755 DOI: 10.1002/jcp.22578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conjugated linoleic acid (CLA) has been shown to positively influence calcium and bone metabolism. Earlier, we showed that CLA (equal mixture of c9t11-CLA and t10c12-CLA) could protect age-associated bone loss by modulating inflammatory markers and osteoclastogenesis. Since, c9t11-CLA and t10c12-CLA isomers differentially regulate functional parameters and gene expression in different cell types, we examined the efficacy of individual CLA isomers against age-associated bone loss using 12 months old C57BL/6 female mice fed for 6 months with 10% corn oil (CO), 9.5% CO + 0.5% c9t11-CLA, 9.5% CO + 0.5% t10c12-CLA or 9.5% CO + 0.25% c9t11-CLA + 0.25% t10c12-CLA. Mice fed a t10c12-CLA diet maintained a significantly higher bone mineral density (BMD) in femoral, tibial and lumbar regions than those fed CO and c9t11-CLA diets as measured by dual-energy-X-ray absorptiometry (DXA). The increased BMD was accompanied by a decreased production of osteoclastogenic factors, that is, RANKL, TRAP5b, TNF-alpha and IL-6 in serum. Moreover, a significant reduction of high fat diet-induced bone marrow adiposity was observed in t10c12-CLA fed mice as compared to that of CO and c9t11-CLA fed mice, as measured by Oil-Red-O staining of bone marrow sections. In addition, a significant reduction of osteoclast differentiation and bone resorbing pit formation was observed in t10c12-CLA treated RAW 264.7 cell culture stimulated with RANKL as compared to that of c9t11-CLA and linoleic acid treated cultures. In conclusion, these findings suggest that t10c12-CLA is the most potent CLA isomer and it exerts its anti-osteoporotic effect by modulating osteoclastogenesis and bone marrow adiposity.
Collapse
Affiliation(s)
- Md M Rahman
- Department of Medicine, University of Texas Health Science Center at San Antonio, Texas 78229-3900, USA.
| | | | | | | |
Collapse
|
40
|
de Lima-Salgado TM, Alba-Loureiro TC, do Nascimento CS, Nunes MT, Curi R. Molecular mechanisms by which saturated fatty acids modulate TNF-α expression in mouse macrophage lineage. Cell Biochem Biophys 2011; 59:89-97. [PMID: 20809180 DOI: 10.1007/s12013-010-9117-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many macrophage functions are modulated by fatty acids (FAs), including cytokine release, such as tumor necrosis factor-α (TNF-α). TNF-α is of great interest due to its role in the inflammation process observed in several diseases such as rheumatoid arthritis, atherosclerosis, and obesity. However, the mechanisms by which FA effects occur have not been completely elucidated yet. In this study, we used a mouse monocyte lineage (J774 cells) to evaluate the effect of 50 and 100 μM of saturated (palmitic and stearic acids), monounsaturated (oleic acid) and polyunsaturated (linoleic acid) FAs on TNF-α production. Alterations in gene expression, poly(A) tail length and activation of transcription factors were evaluated. Oleic and linoleic acids, usually known as neutral or pro-inflammatory FA, inhibited LPS-induced TNF-α secretion by the cells. Saturated FAs were potent inducers of TNF-α expression and secretion under basal and inflammatory conditions (in the presence of LPS). Although the effect of the saturated FA was similar, the mechanism involved in each case seem to be distinct, as palmitic acid increased EGR-1 and CREB binding activity and stearic acid increased mRNA poly(A) tail. These results may contribute to the understanding of the molecular mechanisms by which saturated FAs modulate the inflammatory response and may lead to design of associations of dietary and pharmacological strategies to counteract the pathological effects of TNF-α.
Collapse
Affiliation(s)
- Thais Martins de Lima-Salgado
- Laboratory of Clinical Emergency, Emergency Medicine Department, Medical School, University of São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
41
|
Xue H, Sawyer MB, Wischmeyer PE, Baracos VE. Nutrition modulation of gastrointestinal toxicity related to cancer chemotherapy: from preclinical findings to clinical strategy. JPEN J Parenter Enteral Nutr 2011; 35:74-90. [PMID: 21224434 DOI: 10.1177/0148607110377338] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemotherapy-induced gut toxicity is a major dose-limiting toxicity for many anticancer drugs. Gastrointestinal (GI) complications compromise the efficacy of chemotherapy, promote overall malnutrition, aggravate cancer cachexia, and may contribute to worsened prognosis. The GI tract is an attractive target for nutrition modulation, owing to its direct exposure to the diet, participation in uptake and metabolism of nutrients, high rate of cell turnover, and plasticity to nutrition stimuli. Glutamine, ω-3 polyunsaturated fatty acids, and probiotics/prebiotics are therapeutic factors that potentially modulate GI toxicity related to cancer treatments. Preclinical and clinical evidence are reviewed to critically define plausible benefits of these factors and their potential development into adjuncts to cancer chemotherapy. Mechanisms underlying the action of these nutrients are being unraveled in the laboratory. Optimal strategies to translate these findings into clinical care still remain to be elucidated. Key questions that remain to be answered include the following: which nutrient or combination of nutrients is selected for which patient and chemotherapy regimen? What mechanisms are responsible for modulation, and how are nutrient(s) administered in a clinically optimal manner? Research exploring interactions between different nutrients in GI protection is ongoing and demands further understanding. How nutrition preparations given to chemotherapy-treated patients are formulated in terms of component selection and dose optimization should be carefully studied and justified.
Collapse
Affiliation(s)
- Hongyu Xue
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
42
|
Rondeau I, Picard S, Bah TM, Roy L, Godbout R, Rousseau G. Effects of different dietary omega-6/3 polyunsaturated fatty acids ratios on infarct size and the limbic system after myocardial infarction. Can J Physiol Pharmacol 2011; 89:169-76. [DOI: 10.1139/y11-007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Changes in dietary omega-6/3 polyunsaturated fatty acids (PUFA) ratios affect anti- and proinflammatory equilibrium. As reperfused myocardial infarction (MI) is an inflammatory pathology that alters the cell integrity of the myocardium but also of other tissues, such as the hippocampus and amygdala, attenuation of the inflammation could be helpful in maintaining cell integrity after MI. Therefore, we hypothesized that a decrease in the dietary omega-6/3 PUFA ratio, without altering the diet content in total fat, proteins, or carbohydrates, will result in a reduction of infarct size and a diminution of postreperfusion apoptosis observed in the amygdala and hippocampus. Male Sprague–Dawley rats were fed 1 of 3 diets containing different omega-6/3 PUFA ratios for 2 weeks (5:1; 1:1; 1:5). Then, myocardial ischemia was induced by left anterior descending coronary artery occlusion for 40 min, followed by reperfusion. Cardioprotective mechanisms were studied in the myocardium at 15 min of reperfusion, along with myocardial infarct size after 24 h of reperfusion. Apoptosis was evaluated in the hippocampus and the amygdala. We found that infarct size was significantly reduced by 32% in groups 1:5 and 1:1 vs. group 5:1. Akt activity was higher in groups 1:5 and 1:1 compared with group 5:1. Caspase-3 enzymatic activity doubled in area CA1 and the dentate gyrus (DG) in group 5:1 compared with groups 1:1 and 1:5. In addition, caspase-8 enzymatic activity was increased in the DG at 24 h, and caspase-9 was enhanced in CA1 at 24 h in group 5:1 vs. groups 1:1 and 1:5. These results demonstrate that the increase in the dietary omega-3 PUFA, at the expense of omega-6 PUFA, reduces infarct size and helps to inhibit apoptosis in the limbic system after MI.
Collapse
Affiliation(s)
- I. Rondeau
- Centre de biomédecine, Hôpital du Sacré-Cœur de Montréal, 5400 Boul. Gouin Ouest, Montreal, QC H4J 1C5, Canada
- Département de pharmacologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
- Département de psychiatrie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - S. Picard
- Centre de biomédecine, Hôpital du Sacré-Cœur de Montréal, 5400 Boul. Gouin Ouest, Montreal, QC H4J 1C5, Canada
- Département de pharmacologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
- Département de psychiatrie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - T. M. Bah
- Centre de biomédecine, Hôpital du Sacré-Cœur de Montréal, 5400 Boul. Gouin Ouest, Montreal, QC H4J 1C5, Canada
- Département de pharmacologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
- Département de psychiatrie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - L. Roy
- Centre de biomédecine, Hôpital du Sacré-Cœur de Montréal, 5400 Boul. Gouin Ouest, Montreal, QC H4J 1C5, Canada
- Département de pharmacologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
- Département de psychiatrie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - R. Godbout
- Centre de biomédecine, Hôpital du Sacré-Cœur de Montréal, 5400 Boul. Gouin Ouest, Montreal, QC H4J 1C5, Canada
- Département de pharmacologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
- Département de psychiatrie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - G. Rousseau
- Centre de biomédecine, Hôpital du Sacré-Cœur de Montréal, 5400 Boul. Gouin Ouest, Montreal, QC H4J 1C5, Canada
- Département de pharmacologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
- Département de psychiatrie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
43
|
Rahman M, Halade GV, Bhattacharya A, Fernandes G. The fat-1 transgene in mice increases antioxidant potential, reduces pro-inflammatory cytokine levels, and enhances PPAR-gamma and SIRT-1 expression on a calorie restricted diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:307-16. [PMID: 20716918 PMCID: PMC2835919 DOI: 10.4161/oxim.2.5.9579] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Both n-3 fatty acids (FA) and calorie-restriction (CR) are known to exert anti-inflammatory and anti-oxidative effects in animals and humans. In this study, we investigated the synergistic anti-inflammatory and anti-oxidative capacity of n-3 FA and CR using Fat-1 transgenic mice (Fat-1) that are capable of converting n-6 FA to n-3 FA endogenously. Wild type (WT) and Fat-1 mice were maintained on ad libitum (AL) or CR (40% less than AL) AIN-93 diet supplemented with 10% corn oil (rich in n-6 FA) for 5 months. Significantly lower levels of n-6/n-3 FA ratio were observed in serum, muscle and liver of Fat-1 mice fed AL or CR as compared to that of WT mice fed AL or CR. Muscle catalase (CAT), super oxide dismutase (SOD), glutathione peroxidase (GPX) activities, and liver CAT and SOD activities were found higher in Fat-1 mice as compared to that of WT mice. These activities were more pronounced in Fat-1/CR group as compared to other groups. Serum pro-inflammatory markers, such as tumor necrosis factor (TNF)α, interleukin (IL)-1β and IL-6 were found lower in Fat-1 mice, as compared to that of WT mice. This anti-inflammatory effect was also more pronounced in Fat-1/CR group as compared to that of other groups. Furthermore, significantly higher levels of peroxisome proliferator-activated receptor (PPA R)gamma and life prolonging gene, sirtuin (SIRT)-1 expression were found in liver of Fat-1/CR mice, as compared to that of WT/CR mice. These data suggest that n-3 FA along with moderate CR may prolong lifespan by attenuating inflammation and oxidative stress.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
| | | | | | | |
Collapse
|
44
|
Martins JG. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 2010; 28:525-42. [PMID: 20439549 DOI: 10.1080/07315724.2009.10719785] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epidemiologic and case-control data suggest that increased dietary intake of omega-3 long-chain polyunsaturated fatty acids (omega3 LC-PUFAs) may be of benefit in depression. However, the results of randomized controlled trials are mixed and controversy exists as to whether either eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) or both are responsible for the reported benefits. OBJECTIVE The aim of the current study was to provide an updated meta-analysis of all double-blind, placebo-controlled, randomized controlled trials examining the effect of omega3 LC-PUFA supplementation in which depressive symptoms were a reported outcome. The study also aimed to specifically test the differential effectiveness of EPA versus DHA through meta-regression and subgroup analyses. DESIGN Studies were selected using the PubMed database on the basis of the following criteria: (1) randomized design; (2) placebo controlled; (3) use of an omega3 LC-PUFA preparation containing DHA, EPA, or both where the relative amounts of each fatty acid could be quantified; and (4) reporting sufficient statistics on scores of a recognizable measure of depressive symptoms. RESULTS Two hundred forty-one studies were identified, of which 28 met the above inclusion criteria and were therefore included in the subsequent meta-analysis. Using a random effects model, overall standardized mean depression scores were reduced in response to omega3 LC-PUFA supplementation as compared with placebo (standardized mean difference = -0.291, 95% CI = -0.463 to -0.120, z = -3.327, p = 0.001). However, significant heterogeneity and evidence of publication bias were present. Meta-regression studies showed a significant effect of higher levels of baseline depression and lower supplement DHAEPA ratio on therapeutic efficacy. Subgroup analyses showed significant effects for: (1) diagnostic category (bipolar disorder and major depression showing significant improvement with omega3 LC-PUFA supplementation versus mild-to-moderate depression, chronic fatigue and non-clinical populations not showing significant improvement); (2) therapeutic as opposed to preventive intervention; (3) adjunctive treatment as opposed to monotherapy; and (4) supplement type. Symptoms of depression were not significantly reduced in 3 studies using pure DHA (standardized mean difference 0.001, 95% CI -0.330 to 0.332, z = 0.004, p = 0.997) or in 4 studies using supplements containing greater than 50% DHA (standardized mean difference = 0.141, 95% CI = -0.195 to 0.477, z = 0.821, p = 0.417). In contrast, symptoms of depression were significantly reduced in 13 studies using supplements containing greater than 50% EPA (standardized mean difference = -0.446, 95% CI = -0.753 to -0.138, z = -2.843, p = 0.005) and in 8 studies using pure ethyl-EPA (standardized mean difference = -0.396, 95% CI = -0.650 to -0.141, z = -3.051, p = 0.002). However, further meta-regression studies showed significant inverse associations between efficacy and study methodological quality, study sample size, and duration, thus limiting the confidence of these findings. CONCLUSIONS The current meta-analysis provides evidence that EPA may be more efficacious than DHA in treating depression. However, owing to the identified limitations of the included studies, larger, well-designed, randomized controlled trials of sufficient duration are needed to confirm these findings.
Collapse
Affiliation(s)
- Julian G Martins
- Academy of Nutritional Medicine, 80 Commercial End, Swaffham Bulbeck, Cambridge CB25 0NE, UK.
| |
Collapse
|
45
|
Rahman MM, Bhattacharya A, Banu J, Kang JX, Fernandes G. Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis. J Cell Mol Med 2010. [PMID: 20141608 DOI: 10.1111/j.1582-4934.2008.00649.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Beneficial effects of n-3 fatty acids (FA) on bone mineral density (BMD) have been reported in mice, rats and human beings, but the precise mechanisms involved have not been described. This study used the Fat-1 mouse, a transgenic model that synthesizes n-3 FA from n-6 FA to directly determine if outcome of bone health were correlated with n-3 FA. Ovariectomized (Ovx) and sham operated wild-type (WT) and Fat-1 mice were fed an AIN-93M diet containing 10% corn oil for 24 weeks. BMD was analysed by dual energy x-ray absorptiometry. Fat-1 Ovx mice exhibited significantly lower level of osteotropic factors like receptor activator of NF-kappaB ligand and tartrate-resistant acid phosphatase (TRAP)5b in serum and higher BMD in distal femoral metaphysis, proximal tibial metaphysis, femoral diaphysis and lumbar vertebra as compared to WT Ovx mice. LPS-stimulated bone marrow (BM) cells from Fat-1 Ovx mice produced significantly lower level of pro-inflammatory cytokines like tumour necrosis factor-alpha, interleukin (IL)-1-beta, IL-6 and higher level of anti-inflammatory cytokines like IL-10, IFN-gamma and higher level of nitric oxide as compared to BM cells from WT Ovx mice. LPS-stimulated COX-II activity as well as NF-kappaB activation in BM cells from Fat-1 Ovx mice was significantly less as compared to BM cells from WT Ovx mice. Furthermore, Fat-1 BM cells generated significantly less number of TRAP osteoclast-like cells as compared to WT BM cells. In conclusion, we offer further insight into the mechanisms involved in preventing the BMD loss in Ovx mice by n-3 FA using a Fat-1 transgenic mouse model.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, San Antonio, TX -78229-3900, USA
| | | | | | | | | |
Collapse
|
46
|
Effects of weight loss and seafood consumption on inflammation parameters in young, overweight and obese European men and women during 8 weeks of energy restriction. Eur J Clin Nutr 2010; 64:987-93. [PMID: 20551965 DOI: 10.1038/ejcn.2010.99] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES In vitro studies have shown that long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) can affect inflammation; however, results from intervention studies in overweight or obese individuals are contradicting. The aim of this study was to investigate the effects of weight loss and seafood consumption on inflammation parameters during energy restriction. SUBJECTS/METHODS In this 8-week intervention trial, 324 subjects (aged 20-40 years, body mass index 27.5-32.5 kg/m(2) from Iceland, Spain and Ireland) were randomized to one of four energy-restricted diets (-30% relative to estimated requirements): salmon (3 x 150 g/week, 2.1 g LC n-3 PUFA per day); cod (3 x 150 g/week, 0.3 g LC n-3 PUFA per day); fish oil capsules (1.3 g LC n-3 PUFA per day); and control (sunflower oil capsules, no seafood). Body weight, high-sensitivity C-reactive protein (CRP), interleukin-6 (IL-6), glutathione reductase and prostaglandin F2 alpha (PGEF2alpha) were measured at baseline and end point. RESULTS Subjects experienced weight loss (-5.2+/-3.2 kg, P<0.001). Taken together for all subjects, there were significant decreases in all inflammation parameters. On a group level, salmon consumption was most effective, three of the four inflammation parameters decreased in the salmon group (high-sensitivity CRP=-32.0%; IL-6=-18.4%; PGEF2alpha=-18.5%; all P<0.05). Cod consumption decreased high-sensitivity CRP and IL-6 (-21.5 and -10.8%, respectively, both P<0.05). Changes in the other two groups were not significant, which can be partly explained by the large s.d. CONCLUSIONS The mean concentrations of inflammation parameters decreased during a period of weight loss and dietary intervention. In our study, salmon consumption was most effective, three of the four measured inflammation parameters decreased significantly in the salmon group.
Collapse
|
47
|
Halade GV, Rahman MM, Bhattacharya A, Barnes JL, Chandrasekar B, Fernandes G. Docosahexaenoic acid-enriched fish oil attenuates kidney disease and prolongs median and maximal life span of autoimmune lupus-prone mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:5280-6. [PMID: 20368275 PMCID: PMC2952419 DOI: 10.4049/jimmunol.0903282] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The therapeutic efficacy of individual components of fish oils (FOs) in various human inflammatory diseases still remains unresolved, possibly due to low levels of n-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) or lower ratio of DHA to EPA. Because FO enriched with DHA (FO-DHA) or EPA (FO-EPA) has become available recently, we investigated their efficacy on survival and inflammatory kidney disease in a well-established animal model of human systemic lupus erythematosus. Results show for the first time that FO-DHA dramatically extends both the median (658 d) and maximal (848 d) life span of (NZB x NZW)F1 (B x W) mice. In contrast, FO-EPA fed mice had a median and maximal life span of approximately 384 and 500 d, respectively. Investigations into possible survival mechanisms revealed that FO-DHA (versus FO-EPA) lowers serum anti-dsDNA Abs, IgG deposition in kidneys, and proteinuria. Further, FO-DHA lowered LPS-mediated increases in serum IL-18 levels and caspase-1-dependent cleavage of pro-IL-18 to mature IL-18 in kidneys. Moreover, FO-DHA suppressed LPS-mediated PI3K, Akt, and NF-kappaB activations in kidney. These data indicate that DHA, but not EPA, is the most potent n-3 fatty acid that suppresses glomerulonephritis and extends life span of systemic lupus erythematosus-prone short-lived B x W mice, possibly via inhibition of IL-18 induction and IL-18-dependent signaling.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
48
|
Smith JD, Cianflone K, Dewailly E, Château-Degat ML, Vohl MC, Julien P. Acylation stimulating protein is higher in Inuit from Nunavik compared to a southern Quebec population. Int J Circumpolar Health 2010; 68:421-32. [PMID: 20044961 DOI: 10.3402/ijch.v68i5.17385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The Inuit of Nunavik in northern Quebec have a lower risk for ischemic heart disease (IHD) compared to Caucasian populations. Acylation stimulating protein (ASP), which is involved in the storage of dietary fat, may play a role. The objective of the study was to determine plasma concentration of ASP in an Inuit and a southern Quebec Caucasian population. STUDY DESIGN This is a cross-sectional study evaluating the relationship between ASP and dietary factors, such as retinol, whose intake is higher in the Inuit. As well, concentrations of ASP were evaluated in relationship to components of the metabolic syndrome. METHODS Medical history was collected via a questionnaire and anthropometric measurements and blood samples were collected. RESULTS ASP was significantly higher in both the Inuit men and women compared to Caucasian men (66.1 +/- 4.1 nM vs 27.5 +/- 2.5 nM, p < 0.0001) and women (71.8 +/- 3.8 nM vs 29.4 +/- 1.3 nM, p < 0.0001). In addition, ASP significantly correlated with total retinol (r = 0.17, p = 0.02) and free retinol (r = 0.15, p = 0.04) in Inuit men but not with other distinctive dietary markers such as omega-3 fatty acids. CONCLUSIONS Inuit men and women have higher ASP which was unrelated to the number of risk factors for IHD that were present.
Collapse
Affiliation(s)
- Jessica D Smith
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y2186, 2725 Chemin Ste-foy, Ste-Foy G1V 4G5, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Wang S, Wu D, Lamon-Fava S, Matthan NR, Honda KL, Lichtenstein AH. In vitro fatty acid enrichment of macrophages alters inflammatory response and net cholesterol accumulation. Br J Nutr 2009; 102:497-501. [PMID: 19660150 PMCID: PMC2826706 DOI: 10.1017/s0007114509231758] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dietary long-chain PUFA, both n-3 and n-6, have unique benefits with respect to CVD risk. The aim of the present study was to determine the mechanisms by which n-3 PUFA (EPA, DHA) and n-6 PUFA (linoleic acid (LA), arachidonic acid (AA)) relative to SFA (myristic acid (MA), palmitic acid (PA)) alter markers of inflammation and cholesterol accumulation in macrophages (MPhi). Cells treated with AA and EPA elicited significantly less inflammatory response than control cells or those treated with MA, PA and LA, with intermediate effects for DHA, as indicated by lower levels of mRNA and secretion of TNFalpha, IL-6 and monocyte chemoattractant protein-1. Differences in cholesterol accumulation after exposure to minimally modified LDL were modest. AA and EPA resulted in significantly lower MPhi scavenger receptor 1 mRNA levels relative to control or MA-, PA-, LA- and DHA-treated cells, and ATP-binding cassette A1 mRNA levels relative to control or MA-, PA- and LA-treated cells. These data suggest changes in the rate of bidirectional cellular cholesterol flux. In summary, individual long-chain PUFA have differential effects on inflammatory response and markers of cholesterol flux in MPhi which are not related to the n position of the first double bond, chain length or degree of saturation.
Collapse
Affiliation(s)
- Shu Wang
- JM USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
- Department of Nutrition, Hospitality and Retailing, Texas Tech University, Lubbock, TX 79409, USA
| | - Dayong Wu
- JM USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Stefania Lamon-Fava
- JM USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Nirupa R. Matthan
- JM USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Kaori L. Honda
- JM USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Alice H. Lichtenstein
- JM USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
50
|
Rahman MM, Bhattacharya A, Banu J, Kang JX, Fernandes G. Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis. J Cell Mol Med 2009; 13:1833-44. [PMID: 20141608 PMCID: PMC2855756 DOI: 10.1111/j.1582-4934.2009.00649.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/07/2008] [Indexed: 12/26/2022] Open
Abstract
Beneficial effects of n-3 fatty acids (FA) on bone mineral density (BMD) have been reported in mice, rats and human beings, but the precise mechanisms involved have not been described. This study used the Fat-1 mouse, a transgenic model that synthesizes n-3 FA from n-6 FA to directly determine if outcome of bone health were correlated with n-3 FA. Ovariectomized (Ovx) and sham operated wild-type (WT) and Fat-1 mice were fed an AIN-93M diet containing 10% corn oil for 24 weeks. BMD was analysed by dual energy x-ray absorptiometry. Fat-1 Ovx mice exhibited significantly lower level of osteotropic factors like receptor activator of NF-kappaB ligand and tartrate-resistant acid phosphatase (TRAP)5b in serum and higher BMD in distal femoral metaphysis, proximal tibial metaphysis, femoral diaphysis and lumbar vertebra as compared to WT Ovx mice. LPS-stimulated bone marrow (BM) cells from Fat-1 Ovx mice produced significantly lower level of pro-inflammatory cytokines like tumour necrosis factor-alpha, interleukin (IL)-1-beta, IL-6 and higher level of anti-inflammatory cytokines like IL-10, IFN-gamma and higher level of nitric oxide as compared to BM cells from WT Ovx mice. LPS-stimulated COX-II activity as well as NF-kappaB activation in BM cells from Fat-1 Ovx mice was significantly less as compared to BM cells from WT Ovx mice. Furthermore, Fat-1 BM cells generated significantly less number of TRAP osteoclast-like cells as compared to WT BM cells. In conclusion, we offer further insight into the mechanisms involved in preventing the BMD loss in Ovx mice by n-3 FA using a Fat-1 transgenic mouse model.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, San Antonio, TX -78229-3900, USA
| | | | | | | | | |
Collapse
|