1
|
Different Protein Sources Enhance 18FDG-PET/MR Uptake of Brown Adipocytes in Male Subjects. Nutrients 2022; 14:nu14163411. [PMID: 36014915 PMCID: PMC9413993 DOI: 10.3390/nu14163411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The unique ability of brown adipocytes to increase metabolic rate suggests that they could be targeted as an obesity treatment. Objective: The objective of the study was to search for new dietary factors that may enhance brown adipose tissue (BAT) activity. Methods: The study group comprised 28 healthy non-smoking males, aged 21–42 years old. All volunteers underwent a physical examination and a 75 g oral glucose tolerance test (75g-OGTT). Serum atrial and brain natriuretic peptide (ANP, BNP), PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16) and eukaryotic translation initiation factor 4E (eIF4E) measurements were taken, and 3-day food intake diaries were completed. Body composition measurements were assessed using dual-energy X-ray absorptiometry (DXA) scanning and bioimpedance methods. An fluorodeoxyglucose-18 (FDG-18) uptake in BAT was assessed by positron emission tomography/magnetic resonance (PET/MR) in all participants after 2 h cold exposure. The results were adjusted for age, daily energy intake, and DXA lean mass. Results: Subjects with detectable BAT (BAT(+)) were characterized by a higher percentage of energy obtained from dietary protein and fat and higher muscle mass (p = 0.01, p = 0.02 and p = 0.04, respectively). In the BAT(+) group, animal protein intake was positively associated (p= 0.04), whereas the plant protein intake negatively correlated with BAT activity (p = 0.03). Additionally, the presence of BAT was inversely associated with BNP concentration in the 2 h of cold exposure (p = 0.002). Conclusion: The outcomes of our study suggest that different macronutrient consumption may be a new way to modulate BAT activity leading to weight reduction.
Collapse
|
2
|
Gehring J, Azzout-Marniche D, Chaumontet C, Piedcoq J, Gaudichon C, Even PC. Protein-carbohydrate interaction effects on energy balance, FGF21, IGF-1, and hypothalamic gene expression in rats. Am J Physiol Endocrinol Metab 2021; 321:E621-E635. [PMID: 34569272 DOI: 10.1152/ajpendo.00246.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amino acids are involved in energy homeostasis, just as are carbohydrates and lipids. Therefore, mechanisms controlling protein intake should operate independently and in combination with systems controlling overall energy intake to coordinate appropriate metabolic and behavioral responses. The objective of this study was to quantify the respective roles of dietary protein and carbohydrate levels on energy balance, plasma fibroblast growth factor 21 (FGF21) and insulin growth factor 1 (IGF-1) concentrations, and hypothalamic neurotransmitters (POMC, NPY, AgRP, and CART). In a simplified geometric framework, 7-wk-old male Wistar rats were fed 12 diets containing 3%-30% protein for 3 wk, in which carbohydrates accounted for 30%-75% of the carbohydrate and fat part of the diet. As a result of this study, most of the studied parameters (body composition, energy expenditure, plasma FGF21 and IGF-1 concentrations, and Pomc/Agrp ratio) responded mainly to the protein content and to a lesser extent to the carbohydrate content in the diet.NEW & NOTEWORTHY As mechanisms controlling protein intake can operate independently and in combination with those controlling energy intakes, we investigated the metabolic and behavioral effects of the protein-carbohydrate interaction. With a simplified geometric framework, we showed that body composition, energy balance, plasma FGF21 and IGF-1 concentrations, and hypothalamic Pomc/Agrp ratio were primarily responsive to protein content and, to a lesser extent, to carbohydrate content of the diet.
Collapse
Affiliation(s)
- Josephine Gehring
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | | | | | - Julien Piedcoq
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Patrick C Even
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
3
|
Drummen M, Tischmann L, Gatta-Cherifi B, Fogelholm M, Raben A, Adam TC, Westerterp-Plantenga MS. High Compared with Moderate Protein Intake Reduces Adaptive Thermogenesis and Induces a Negative Energy Balance during Long-term Weight-Loss Maintenance in Participants with Prediabetes in the Postobese State: A PREVIEW Study. J Nutr 2020; 150:458-463. [PMID: 31754687 PMCID: PMC7056617 DOI: 10.1093/jn/nxz281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Weight loss has been associated with adaptations in energy expenditure. Identifying factors that counteract these adaptations are important for long-term weight loss and weight maintenance. OBJECTIVE The aim of this study was to investigate whether increased protein/carbohydrate ratio would reduce adaptive thermogenesis (AT) and the expected positive energy balance (EB) during weight maintenance after weight loss in participants with prediabetes in the postobese state. METHODS In 38 participants, the effects of 2 diets differing in protein/carbohydrate ratio on energy expenditure and respiratory quotient (RQ) were assessed during 48-h respiration chamber measurements ∼34 mo after weight loss. Participants consumed a high-protein (HP) diet (n = 20; 13 women/7 men; age: 64.0 ± 6.2 y; BMI: 28.9 ± 4.0 kg/m 2) with 25:45:30% or a moderate-protein (MP) diet (n = 18; 9 women/9 men; age: 65.1 ± 5.8 y; BMI: 29.0 ± 3.8 kg/m 2) with 15:55:30% of energy from protein:carbohydrate:fat. Predicted resting energy expenditure (REEp) was calculated based on fat-free mass and fat mass. AT was assessed by subtracting measured resting energy expenditure (REE) from REEp. The main outcomes included differences in components of energy expenditure, substrate oxidation, and AT between groups. RESULTS EB (MP = 0.2 ± 0.9 MJ/d; HP = -0.5 ± 0.9 MJ/d) and RQ (MP = 0.84 ± 0.02; HP = 0.82 ± 0.02) were reduced and REE (MP: 7.3 ± 0.2 MJ/d compared with HP: 7.8 ± 0.2 MJ/d) was increased in the HP group compared with the MP group (P < 0.05). REE was not different from REEp in the HP group, whereas REE was lower than REEp in the MP group (P < 0.05). Furthermore, EB was positively related to AT (rs = 0.74; P < 0.001) and RQ (rs = 0.47; P < 0.01) in the whole group of participants. CONCLUSIONS In conclusion, an HP diet compared with an MP diet led to a negative EB and counteracted AT ∼34 mo after weight loss, in participants with prediabetes in the postobese state. These results indicate the relevance of compliance to an increased protein/carbohydrate ratio for long-term weight maintenance after weight loss. The trial was registered at clinicaltrials.gov as NCT01777893.
Collapse
Affiliation(s)
- Mathijs Drummen
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands,Address correspondence to MD (e-mail: )
| | - Lea Tischmann
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Blandine Gatta-Cherifi
- Department of Endocrinology, Diabetology and Nutrition, Universite de Bordeaux, Bordeaux, France
| | - Mikael Fogelholm
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tanja C Adam
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Margriet S Westerterp-Plantenga
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
Madsen L, Myrmel LS, Fjære E, Øyen J, Kristiansen K. Dietary Proteins, Brown Fat, and Adiposity. Front Physiol 2018; 9:1792. [PMID: 30631281 PMCID: PMC6315128 DOI: 10.3389/fphys.2018.01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
High protein diets have become popular for body weight maintenance and weight loss despite controversies regarding efficacy and safety. Although both weight gain and weight loss are determined by energy consumption and expenditure, data from rodent trials consistently demonstrate that the protein:carbohydrate ratio in high fat diets strongly influences body and fat mass gain per calorie eaten. Here, we review data from rodent trials examining how high protein diets may modulate energy metabolism and the mechanisms by which energy may be dissipated. We discuss the possible role of activating brown and so-called beige/BRITE adipocytes including non-canonical UCP1-independent thermogenesis and futile cycles, where two opposing metabolic pathways are operating simultaneously. We further review data on how the gut microbiota may affect energy expenditure. Results from human and rodent trials demonstrate that human trials are less consistent than rodent trials, where casein is used almost exclusively as the protein source. The lack of consistency in results from human trials may relate to the specific design of human trials, the possible distinct impact of different protein sources, and/or the differences in the efficiency of high protein diets to attenuate obesity development in lean subjects vs. promoting weight loss in obese subjects.
Collapse
Affiliation(s)
- Lise Madsen
- Institute of Marine Research, Bergen, Norway.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Morales FE, Forsse JS, Andre TL, McKinley-Barnard SK, Hwang PS, Anthony IG, Tinsley GM, Spillane M, Grandjean PW, Ramirez A, Willoughby DS. BAIBA Does Not Regulate UCP-3 Expression in Human Skeletal Muscle as a Response to Aerobic Exercise. J Am Coll Nutr 2017; 36:200-209. [PMID: 28318397 DOI: 10.1080/07315724.2016.1256240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE β-Aminoisobutyric acid (BAIBA) has shown to modulate uncoupling protein (UCP)-1 expression, which is mainly expressed in white adipose tissue; however, no studies to date have analyzed its potential effect on the main uncoupling protein of skeletal muscle, UCP-3. The main goal of this study was to assess the potential effect of acute aerobic exercise on serum BAIBA and skeletal muscle UCP-3. The secondary goal was to assess the potential involvement of the transcription factors proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and peroxisome proliferator-activated receptor alpha (PPARα), as well as free fatty acids (FFAs) in UCP-3 expression. A tertiary goal of the study was to evaluate the potential effect of consuming a preexercise meal on the outcome of the first 2 objectives. METHODS In a randomized crossover design, untrained participants performed 2 acute cycling sessions (350 kcal at 70% of their VO2peak) after 2 experimental conditions: (1) consumption of a multi-macronutrient shake and (2) a fasting period of 8 hours. Blood samples were taken at baseline, preexercise, postexercise, 1 hour, and 4 hours postexercise, and muscle biopsies were taken at the last 4 time points. UCP-3 protein concentration and expression, as well as the mRNA expression of PGC-1α and PPARα, were measured in muscle, and BAIBA, glucose, and FFA were measured in serum. RESULTS Aerobic exercise failed to induce a significant effect on serum BAIBA, PGC-1α, and PPARα regardless on the feeding condition. Despite the lack of effect of exercise on the previous variables, UCP-3 expression and protein concentration significantly increased in the shake condition. CONCLUSION The expression of human skeletal muscle UCP-3 as a result of exercise might be controlled by factors other than BAIBA.
Collapse
Affiliation(s)
- Flor E Morales
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Jeffrey S Forsse
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Thomas L Andre
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | | | - Paul S Hwang
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Ian G Anthony
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Grant M Tinsley
- c Department of Kinesiology and Sport Management , Texas Tech University , Lubbock , Texas
| | - Mike Spillane
- d Department of Nutrition , Tecnológico de Monterrey , Monterrey , N.L. , México
| | - Peter W Grandjean
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Alejandro Ramirez
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| | - Darryn S Willoughby
- a Department of Health , Human Performance and Recreation, Baylor University , Waco , Texas
| |
Collapse
|
6
|
Chalvon-Demersay T, Blachier F, Tomé D, Blais A. Animal Models for the Study of the Relationships between Diet and Obesity: A Focus on Dietary Protein and Estrogen Deficiency. Front Nutr 2017; 4:5. [PMID: 28373974 PMCID: PMC5357654 DOI: 10.3389/fnut.2017.00005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/01/2017] [Indexed: 01/26/2023] Open
Abstract
Obesity is an increasing major public health concern asking for dietary strategies to limit weight gain and associated comorbidities. In this review, we present animal models, particularly rats and mice, which have been extensively used by scientists to understand the consequences of diet quality on weight gain and health. Notably, modulation of dietary protein quantity and/or quality has been shown to exert huge effects on body composition homeostasis through the modulation of food intake, energy expenditure, and metabolic pathways. Interestingly, the perinatal window appears to represent a critical period during which the protein intake of the dam can impact the offspring’s weight gain and feeding behavior. Animal models are also widely used to understand the processes and mechanisms that contribute to obesity at different physiological and pathophysiological stages. An interesting example of such aspect is the situation of decreased estrogen level occurring at menopause, which is linked to weight gain and decreased energy expenditure. To study metabolic disorders associated with such situation, estrogen withdrawal in ovariectomized animal models to mimic menopause are frequently used. According to many studies, clear species-specific differences exist between rats and mice that need to be taken into account when results are extrapolated to humans.
Collapse
Affiliation(s)
- Tristan Chalvon-Demersay
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - François Blachier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - Daniel Tomé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - Anne Blais
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| |
Collapse
|
7
|
Bonet ML, Mercader J, Palou A. A nutritional perspective on UCP1-dependent thermogenesis. Biochimie 2017; 134:99-117. [DOI: 10.1016/j.biochi.2016.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
|
8
|
Mulya A, Kirwan JP. Brown and Beige Adipose Tissue: Therapy for Obesity and Its Comorbidities? Endocrinol Metab Clin North Am 2016; 45:605-21. [PMID: 27519133 PMCID: PMC5206678 DOI: 10.1016/j.ecl.2016.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Overweight and obesity are global health problems placing an ever-increasing demand on health care systems. Brown adipose tissue (BAT) is present in significant amounts in adults. BAT has potential as a fuel for oxidation and dissipation as heat production, which makes it an attractive target for obesity therapy. BAT activation results in increased energy expenditure via thermogenesis. The role of BAT/beige adipocyte activation on whole body energy homeostasis, body weight management/regulation, and whole body glucose and lipid homeostasis remains unproven. This paper reviews knowledge on brown/beige adipocytes in energy expenditure and how it may impact obesity therapy and its comorbidities.
Collapse
Affiliation(s)
- Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE40, Cleveland, OH 44195, USA
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE40, Cleveland, OH 44195, USA; Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
9
|
Liisberg U, Myrmel LS, Fjære E, Rønnevik AK, Bjelland S, Fauske KR, Holm JB, Basse AL, Hansen JB, Liaset B, Kristiansen K, Madsen L. The protein source determines the potential of high protein diets to attenuate obesity development in C57BL/6J mice. Adipocyte 2016; 5:196-211. [PMID: 27386160 DOI: 10.1080/21623945.2015.1122855] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/28/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022] Open
Abstract
The notion that the obesogenic potential of high fat diets in rodents is attenuated when the protein:carbohydrate ratio is increased is largely based on studies using casein or whey as the protein source. We fed C57BL/6J mice high fat-high protein diets using casein, soy, cod, beef, chicken or pork as protein sources. Casein stood out as the most efficient in preventing weight gain and accretion of adipose mass. By contrast, mice fed diets based on pork or chicken, and to a lesser extent mice fed cod or beef protein, had increased adipose tissue mass gain relative to casein fed mice. Decreasing the protein:carbohydrate ratio in diets with casein or pork as protein sources led to accentuated fat mass accumulation. Pork fed mice were more obese than casein fed mice, and relative to casein, the pork-based feed induced substantial accumulation of fat in classic interscapular brown adipose tissue accompanied by decreased UCP1 expression. Furthermore, intake of a low fat diet with casein, but not pork, as a protein source reversed diet-induced obesity. Compared to pork, casein seems unique in maintaining the classical brown morphology in interscapular brown adipose tissue with high UCP1 expression. This was accompanied by increased expression of genes involved in a futile cycling of fatty acids. Our results demonstrate that intake of high protein diets based on other protein sources may not have similar effects, and hence, the obesity protective effect of high protein diets is clearly modulated by protein source.
Collapse
Affiliation(s)
- Ulrike Liisberg
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lene Secher Myrmel
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Even Fjære
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander K. Rønnevik
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Bjelland
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | | | - Jacob Bak Holm
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jacob B. Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | | | - Lise Madsen
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Maternal high-fat diet consumption impairs exercise performance in offspring. J Nutr Sci 2014; 3:e61. [PMID: 26101629 PMCID: PMC4473145 DOI: 10.1017/jns.2014.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/19/2014] [Accepted: 08/06/2014] [Indexed: 01/22/2023] Open
Abstract
The aim of the present study was to scrutinise the influence of maternal high-fat diet (mHFD) consumption during gestation and lactation on exercise performance and energy metabolism in male mouse offspring. Female C3H/HeJ mice were fed either a semi-synthetic high-fat diet (HFD; 40 % energy from fat) or a low-fat diet (LFD; 10 % energy from fat) throughout gestation and lactation. After weaning, male offspring of both groups received the LFD. At the age of 7·5 weeks half of the maternal LFD (n 20) and the mHFD (n 21) groups were given access to a running wheel for 28 d as a voluntary exercise training opportunity. We show that mHFD consumption led to a significantly reduced exercise performance (P < 0·05) and training efficiency (P < 0·05) in male offspring. There were no effects of maternal diet on offspring body weight. Lipid and glucose metabolism was disturbed in mHFD offspring, with altered regulation of cluster of differentiation 36 (CD36) (P < 0·001), fatty acid synthase (P < 0·05) and GLUT1 (P < 0·05) gene expression in skeletal muscle. In conclusion, maternal consumption of a HFD is linked to decreased exercise performance and training efficiency in the offspring. We speculate that this may be due to insufficient muscle energy supply during prolonged exercise training. Further, this compromised exercise performance might increase the risk of obesity development in adult life.
Collapse
Key Words
- CD36, cluster of differentiation 36
- Cpt1b, carnitine O-palmitoyltransferase 1b
- Esrrg, oestrogen-related receptor-γ
- FAS, fatty acid synthase
- HFD, high-fat diet
- High-fat diet
- LFD, low-fat diet
- Offspring
- REE, resting energy expenditure
- RQ, respiratory quotient
- RW, running wheel
- Serca2, sarcoplasmic/endoplasmic reticulum Ca ATPase 2
- Skeletal muscle
- Training
- eWAT, epididymal white adipose tissue
- mHFD, maternal high-fat diet
- mLFD, maternal low-fat diet
Collapse
|
11
|
Petzke KJ, Freudenberg A, Klaus S. Beyond the role of dietary protein and amino acids in the prevention of diet-induced obesity. Int J Mol Sci 2014; 15:1374-91. [PMID: 24447927 PMCID: PMC3907874 DOI: 10.3390/ijms15011374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/22/2022] Open
Abstract
High-protein diets have been shown to prevent the development of diet-induced obesity and can improve associated metabolic disorders in mice. Dietary leucine supplementation can partially mimic this effect. However, the molecular mechanisms triggering these preventive effects remain to be satisfactorily explained. Here we review studies showing a connection between high protein or total amino nitrogen intake and obligatory water intake. High amino nitrogen intake may possibly lower lipid storage, and prevent insulin resistance. Suggestions are made for further systematical studies to explore the relationship between water consumption, satiety, and energy expenditure. Moreover, these examinations should better distinguish between leucine-specific and unspecific effects. Research in this field can provide important information to justify dietary recommendations and strategies in promoting long-term weight loss and may help to reduce health problems associated with the comorbidities of obesity.
Collapse
Affiliation(s)
- Klaus J Petzke
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| | - Anne Freudenberg
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| | - Susanne Klaus
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| |
Collapse
|
12
|
Alemán G, Ortiz V, Contreras AV, Quiroz G, Ordaz-Nava G, Langley E, Torres N, Tovar AR. Hepatic amino acid-degrading enzyme expression is downregulated by natural and synthetic ligands of PPARα in rats. J Nutr 2013; 143:1211-8. [PMID: 23761645 DOI: 10.3945/jn.113.176354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Body nitrogen retention is dependent on the amount of dietary protein consumed, as well as the fat and carbohydrate content in the diet, due to the modulation of amino acid oxidation. PPARα is a transcription factor involved in the upregulation of the expression of enzymes of fatty acid oxidation. However, the role of putative PPARα response elements (PPREs) in the promoter of several amino acid-degrading enzymes (AADEs) is not known. The aim of this work was to study the effect of the synthetic ligand Wy 14643 and the natural ligands palmitate, oleate, and linoleate in rats fed graded concentrations of dietary protein (6, 20, or 50 g/100 g of total diet) on the expression of the AADEs histidase, serine dehydratase, and tyrosine aminotransferase. Thus, we fed male Wistar rats diets containing 6, 20, or 50% casein for 10 d. The results showed that addition of Wy 14643 to the diet significantly reduced the expression of the AADEs. Furthermore, the incubation of hepatocytes with natural ligands of PPARα or feeding rats with diets containing soybean oil, safflower oil, lard, or coconut oil as sources of dietary fat significantly repressed the expression of the AADEs. Gene reporter assays and mobility shift assays demonstrated that the PPRE located at -482 bp of the histidase gene actively bound PPARα in rat hepatocytes. These data indicate that PPARα ligands may reduce amino acid catabolism in rats.
Collapse
Affiliation(s)
- Gabriela Alemán
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, DF, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Effects of breeds and dietary protein levels on the growth performance, energy expenditure and expression of avUCP mRNA in chickens. Mol Biol Rep 2013; 40:2769-79. [DOI: 10.1007/s11033-012-2030-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
|
14
|
Estrany ME, Proenza AM, Gianotti M, Lladó I. High‐fat diet feeding induces sex‐dependent changes in inflammatory and insulin sensitivity profiles of rat adipose tissue. Cell Biochem Funct 2012; 31:504-10. [DOI: 10.1002/cbf.2927] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Maria E. Estrany
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears Palma de Mallorca Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto de Salud Carlos III Madrid Spain
| | - Ana M. Proenza
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears Palma de Mallorca Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto de Salud Carlos III Madrid Spain
| | - Magdalena Gianotti
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears Palma de Mallorca Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto de Salud Carlos III Madrid Spain
| | - Isabel Lladó
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears Palma de Mallorca Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
15
|
Betz MJ, Bielohuby M, Mauracher B, Abplanalp W, Müller HH, Pieper K, Ramisch J, Tschöp MH, Beuschlein F, Bidlingmaier M, Slawik M. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats. PLoS One 2012; 7:e38997. [PMID: 22720011 PMCID: PMC3374780 DOI: 10.1371/journal.pone.0038997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/14/2012] [Indexed: 01/24/2023] Open
Abstract
Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets.
Collapse
Affiliation(s)
- Matthias J. Betz
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - Maximilian Bielohuby
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - Brigitte Mauracher
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - William Abplanalp
- Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Hans-Helge Müller
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University, Munich, Germany
| | - Korbinian Pieper
- Clinic of Small Animal Surgery and Reproduction, Centre of Clinical Veterinary Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Juliane Ramisch
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - Matthias H. Tschöp
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technical University, Munich, Germany
| | - Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - Martin Bidlingmaier
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - Marc Slawik
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
- * E-mail:
| |
Collapse
|
16
|
Freudenberg A, Petzke KJ, Klaus S. Comparison of high-protein diets and leucine supplementation in the prevention of metabolic syndrome and related disorders in mice. J Nutr Biochem 2012; 23:1524-30. [PMID: 22405695 DOI: 10.1016/j.jnutbio.2011.10.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/30/2011] [Accepted: 10/12/2011] [Indexed: 12/21/2022]
Abstract
High-protein diets have been shown to promote weight loss, to improve glucose homeostasis and to increase energy expenditure and fat oxidation. We aimed to study whether leucine supplementation is able to mimic the alleviating effects of high-protein diets on metabolic syndrome parameters in mice fed high-fat diet. Male C57BL/6 mice were fed for 20 weeks with semisynthetic high-fat diets (20% w/w of fat) containing either an adequate (10% protein, AP) or high (50% protein, HP) amount of whey protein, or an AP diet supplemented with L-leucine corresponding to the leucine content of the HP diet (6% leucine, AP+L). Body weight and composition, energy expenditure, glucose tolerance, hepatic triacylglycerols (TG), plasma parameters as well as expression levels of mRNA and proteins in different tissues were measured. HP feeding resulted in decreased body weight, body fat and hepatic TG accumulation, as well as increased insulin sensitivity compared to AP. This was linked to an increased total and resting energy expenditure (REE), decreased feed energy efficiency, increased skeletal muscle (SM) protein synthesis, reduced hepatic lipogenesis and increased white fat lipolysis. Leucine supplementation had effects that were intermediate between HP and AP with regard to body composition, liver TG content, insulin sensitivity, REE and feed energy efficiency, and similar effects as HP on SM protein synthesis. However, neither HP nor AP+L showed an activation of the mammalian target of rapamycin pathway in SM. Leucine supplementation had no effect on liver lipogenesis and white fat lipolysis compared to AP. It is concluded that the essential amino acid leucine is able to mimic part but not all beneficial metabolic effects of HP diets.
Collapse
Affiliation(s)
- Anne Freudenberg
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | | | | |
Collapse
|
17
|
Macotela Y, Emanuelli B, Bång AM, Espinoza DO, Boucher J, Beebe K, Gall W, Kahn CR. Dietary leucine--an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One 2011; 6:e21187. [PMID: 21731668 PMCID: PMC3120846 DOI: 10.1371/journal.pone.0021187] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/23/2011] [Indexed: 12/12/2022] Open
Abstract
Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor—leucine—can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD). Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance.
Collapse
Affiliation(s)
- Yazmin Macotela
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brice Emanuelli
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anneli M. Bång
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel O. Espinoza
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeremie Boucher
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kirk Beebe
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - Walter Gall
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - C. Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Differential expression of liver proteins between obesity-prone and obesity-resistant rats in response to a high-fat diet. Br J Nutr 2011; 106:612-26. [PMID: 21535901 DOI: 10.1017/s0007114511000651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rodents respond to a chronic high-fat diet (HFD) in two ways: some readily become obese (obesity prone, OP) and others do not (obesity resistant, OR). Although several hypotheses have been proposed, the mechanisms underlying the inter-individual susceptibility to diet-induced obesity remain to be fully defined. In the present study, two-dimensional gel electrophoresis (2-DE) combined with matrix-assisted laser desorption ionisation time-of-flight MS was carried out for identification of differentially expressed liver proteins in OP and OR rats fed a HFD, in an attempt to discover marker proteins involved in susceptibility and/or resistance to obesity in rat liver. The 2-DE analysis demonstrated that forty spots from 380 visualised spots were differentially regulated between the groups. Among these forty spots, twelve were differentially expressed proteins between OP and OR rats, reaching statistical significance. Of these, five proteins have already been linked to obesity; however, seven proteins involved in obesity susceptibility or resistance were identified for the first time in the present study. In order to validate the proteomic results and gain insight into the metabolic changes between the OP and OR groups, we further confirmed the expression pattern of some proteins of interest by Western blot analysis. Combined results of proteomic analysis with Western blot analysis revealed that reduced lipogenesis and increased fat oxidation were achieved in the livers of OR rats. In conclusion, the present proteomic study is an important advance over the previous steps required for identification of OP and OR rats, and should prove valuable in the search for the pathogenesis of obesity in humans.
Collapse
|
19
|
Estrany ME, Proenza AM, Lladó I, Gianotti M. Isocaloric intake of a high-fat diet modifies adiposity and lipid handling in a sex dependent manner in rats. Lipids Health Dis 2011; 10:52. [PMID: 21486445 PMCID: PMC3095551 DOI: 10.1186/1476-511x-10-52] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/12/2011] [Indexed: 01/09/2023] Open
Abstract
Background High-fat (HF) diet feeding usually leads to hyperphagia and body weight gain, but macronutrient proportions in the diet can modulate energy intake and fat deposition. The mechanisms of fat accumulation and mobilization may differ significantly between depots, and gender can also influence these differences. Aim To investigate, in rats of both sexes, the effect of an isocaloric intake of a diet with an unbalanced proportion of macronutrients on fatty acid composition of visceral and subcutaneous adipose tissues and how this is influenced by both dietary fatty acids and levels of proteins involved in tissue lipid handling. Methods Eight-week-old Wistar rats of both sexes were fed a control diet (3% w/w fat) or high-fat diet (30% w/w fat) for 14 weeks. Fatty acid composition was analyzed by gas-chromatography and levels of LPL, HSL, α2-AR, β3-AR, PKA and CPT1 were determined by Western blot. Results The HF diet did not induce hyperphagia or body weight gain, but promoted an increase of adiposity index only in male rats. HF diet produced an increase of the proportion of MUFA and a decrease in that of PUFA in both adipose depots and in both sexes. The levels of proteins involved in the adrenergic control of the lipolytic pathway increased in the gonadal fat of HF females, whereas LPL levels increased in the inguinal fat of HF males and decreased in that of females. Conclusion Sexual dimorphism in adiposity index reflects a differential sex response to dietary fatty acid content and could be related to the levels of the proteins involved in tissue lipid management.
Collapse
Affiliation(s)
- Maria E Estrany
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut, Universitat de les Illes Balears, Cra, Valldemossa Km 7,5, E-07122 Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
20
|
Stepien M, Gaudichon C, Fromentin G, Even P, Tomé D, Azzout-Marniche D. Increasing protein at the expense of carbohydrate in the diet down-regulates glucose utilization as glucose sparing effect in rats. PLoS One 2011; 6:e14664. [PMID: 21326875 PMCID: PMC3034717 DOI: 10.1371/journal.pone.0014664] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 01/11/2011] [Indexed: 12/22/2022] Open
Abstract
High protein (HP) diet could serve as a good strategy against obesity, provoking the changes in energy metabolic pathways. However, those modifications differ during a dietary adaptation. To better understand the mechanisms involved in effect of high protein diet (HP) on limiting adiposity in rats we studied in parallel the gene expression of enzymes involved in protein and energy metabolism and the profiles of nutrients oxidation. Eighty male Wistar rats were fed a normal protein diet (NP, 14% of protein) for one week, then either maintained on NP diet or assigned to a HP diet (50% of protein) for 1, 3, 6 and 14 days. mRNA levels of genes involved in carbohydrate and lipid metabolism were measured in liver, adipose tissues, kidney and muscles by real time PCR. Energy expenditure (EE) and substrate oxidation were measured by indirect calorimetry. Liver glycogen and plasma glucose and hormones were assayed. In liver, HP feeding 1) decreased mRNA encoding glycolysis enzymes (GK, L-PK) and lipogenesis enzymes(ACC, FAS), 2) increased mRNA encoding gluconeogenesis enzymes (PEPCK), 3) first lowered, then restored mRNA encoding glycogen synthesis enzyme (GS), 4) did not change mRNA encoding β-oxidation enzymes (CPT1, ACOX1, βHAD). Few changes were seen in other organs. In parallel, indirect calorimetry confirmed that following HP feeding, glucose oxidation was reduced and fat oxidation was stable, except during the 1(st) day of adaptation where lipid oxidation was increased. Finally, this study showed that plasma insulin was lowered and hepatic glucose uptake was decreased. Taken together, these results demonstrate that following HP feeding, CHO utilization was increased above the increase in carbohydrate intake while lipogenesis was decreased thus giving a potential explanation for the fat lowering effect of HP diets.
Collapse
Affiliation(s)
- Magdalena Stepien
- INRA/AgroParisTech, CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- INRA,CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Claire Gaudichon
- INRA/AgroParisTech, CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- INRA,CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Gilles Fromentin
- INRA/AgroParisTech, CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- INRA,CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Patrick Even
- INRA/AgroParisTech, CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- INRA,CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Daniel Tomé
- INRA/AgroParisTech, CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- INRA,CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Dalila Azzout-Marniche
- INRA/AgroParisTech, CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- INRA,CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Noatsch A, Petzke KJ, Millrose MK, Klaus S. Body weight and energy homeostasis was not affected in C57BL/6 mice fed high whey protein or leucine-supplemented low-fat diets. Eur J Nutr 2010; 50:479-88. [PMID: 21170537 DOI: 10.1007/s00394-010-0155-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/02/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Leucine is suggested to act as nutrient signal of high-protein diets regulating pathways associated with an alleviation of metabolic syndrome parameters. However, the subject remains controversial. AIM OF THE STUDY The aim of this study was to assess and to compare the effects of high-protein diets with dietary leucine supplementation in mice, particularly on energy homeostasis, body composition, and expression of uncoupling protein (UCP), which are suggested to decrease food energy efficiency. METHODS Male C57BL/6 mice were exposed for 14 weeks to semi-synthetic diets containing either 20% (adequate protein content, AP) or 50% whey protein (high-protein content, HP). A third group was fed the AP diet supplemented with L-leucine (AP + L) corresponding to the leucine content of the HP diet. The total fat content was 5% (w/w). RESULTS Body weight gain, body composition, energy expenditure, and protein expression of UCP1 in brown adipose tissue, and UCP3 in skeletal muscle were not different between groups. In HP-fed mice, a stronger increase in blood glucose levels was detected during glucose tolerance tests compared to AP and AP + L, whereas plasma insulin was similar in all groups. Leucine supplementation did not affect glucose tolerance. Plasma cholesterol was significantly decreased in HP and AP + L when compared to AP. Plasma triglyceride concentrations were increased twofold in HP-fed mice when compared to AP + L and AP groups. Liver and skeletal muscle triglyceride and glycogen concentrations were similar in all groups. Postabsorptive plasma concentrations of branched-chain amino acids were not significantly increased after exposure to HP and AP + L diets, whereas those of lysine were decreased in HP and AP + L mice when compared to AP (P < 0.001). Plasma methionine concentrations were lower after HP intake when compared to AP and AP + L (P < 0.05). CONCLUSIONS We suggest that an exposure of mice to HP diets or a corresponding leucine supplementation has no significant effect on energy homeostasis and UCP expression compared with AP diets when feeding a low-fat diet. The use of high-quality whey protein might at least in part explain the results obtained.
Collapse
Affiliation(s)
- Anne Noatsch
- German Institute of Human Nutrition in Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | | | | | | |
Collapse
|
22
|
Fromme T, Klingenspor M. Uncoupling protein 1 expression and high-fat diets. Am J Physiol Regul Integr Comp Physiol 2010; 300:R1-8. [PMID: 21048077 DOI: 10.1152/ajpregu.00411.2010] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uncoupling protein 1 (Ucp1) is the key component of β-adrenergically controlled nonshivering thermogenesis in brown adipocytes. This process combusts stored and nutrient energy as heat. Cold exposure not only activates Ucp1-mediated thermogenesis to maintain normothermia but also results in adaptive thermogenesis, i.e., the recruitment of thermogenic capacity in brown adipose tissue. As a hallmark of adaptive thermogenesis, Ucp1 synthesis is increased proportionally to temperature and duration of exposure. Beyond this classical thermoregulatory function, it has been suggested that Ucp1-mediated thermogenesis can also be employed for metabolic thermogenesis to prevent the development of obesity. Accordingly, in times of excess caloric intake, one may expect a positive regulation of Ucp1. The general impression from an overview of the present literature is, indeed, an increased brown adipose tissue Ucp1 mRNA and protein content after feeding a high-fat diet (HFD) to mice and rats. The reported increases are very variable in magnitude, and the effect size seems to be independent of dietary fat content and duration of the feeding trial. In white adipose tissue depots Ucp1 mRNA is generally downregulated by HFD, indicating a decline in the number of interspersed brown adipocytes.
Collapse
Affiliation(s)
- Tobias Fromme
- Else-Kröner Fresenius Center, Technische Universität München, Freising, Germany.
| | | |
Collapse
|
23
|
Wei A, Fascetti AJ, Liu KJ, Villaverde C, Green AS, Manzanilla EG, Havel PJ, Ramsey JJ. Influence of a high-protein diet on energy balance in obese cats allowed ad libitum access to food. J Anim Physiol Anim Nutr (Berl) 2010; 95:359-67. [DOI: 10.1111/j.1439-0396.2010.01062.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Stepien M, Gaudichon C, Azzout-Marniche D, Fromentin G, Tomé D, Even P. Postprandial nutrient partitioning but not energy expenditure is modified in growing rats during adaptation to a high-protein diet. J Nutr 2010; 140:939-45. [PMID: 20335631 DOI: 10.3945/jn.109.120139] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been suggested that high-protein (HP) diets may favor weight management by lowering energy intake and reducing body fat. Whether these effects result from changes in energy metabolism remains unclear. We measured the adaptation of energy metabolism components during 2 wk of HP feeding. Fifty male Wistar rats were switched from a control diet to an HP diet (14 and 55% of protein, respectively) for 1, 3, 6, or 14 d. Energy expenditure (EE) and substrate oxidation were measured by indirect calorimetry in feed-deprived rats and after consumption of a test meal. EE components, including the thermic effect of feeding and activity, were not modified during adaptation to an HP diet. Nutrient oxidation in feed-deprived rats was not affected by HP feeding, except for an early increase in protein oxidation. After 1 d, the postprandial inhibition of lipid oxidation (Lox) was blunted, carbohydrate (CHO) oxidation decreased by one-half, and urea clearance decreased by 66%. Thereafter, CHO oxidation gradually rose, resulting in a null CHO balance. Lox and urea clearance recovered after 3 d of adaptation to an HP diet, while protein oxidation reached a plateau. The postprandial oxidation of CHO counterbalanced the amount of ingested CHO as soon as 3 d, leading to a null postprandial CHO balance. We conclude that the inhibition of de novo lipogenesis from dietary CHO, but not EE and Lox, may participate in limiting the adiposity induced by HP feeding. The transient changes occurring during the period of adaptation to the diet highlight that the duration of the diet is critical in HP diet studies.
Collapse
Affiliation(s)
- Magdalena Stepien
- INRA, AgroParisTech, UMR914 Nutrition Physiology and Ingestive Behavior, F-75005 Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
In uteroand postnatal exposure to a high-protein or high-carbohydrate diet leads to differences in adipose tissue mRNA expression and blood metabolites in kittens. Br J Nutr 2009; 102:1136-44. [DOI: 10.1017/s0007114509371652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective of the present study was to measure the differences in body composition, adipose tissue gene expression, blood metabolite and hormone concentrations, and insulin sensitivity in kittens exposed to high-protein (HP) or high-carbohydrate (HC) nutritionin uteroand through the growth period. Eight dams were randomised onto two test diets, and fed the diets throughout gestation and lactation. Male offspring were evaluated for 9 months. Kittens were weaned at 2 months of age onto the same treatment diet as the dam and were allowed to consume dietsad libitum. The HC diet contained 34·3 % crude protein (CP), 19·2 % fat and 30·8 % digestible carbohydrate, while the HP diet contained 52·9 % CP, 23·5 % fat and 10·8 % digestible carbohydrate. Blood samples were collected at 6 months after birth. Body composition was determined at 2 and 8 months of age and an intravenous glucose tolerance test, neutering and adipose tissue biopsy conducted at 8 months of age. Physical activity was quantified at 6 and 9 months. Energy intake, DM intake and body weight were not different between groups. At 2 months, blood TAG were greater (P < 0·05) in kittens fed the HP diet. At 8 months, blood leptin was higher (P < 0·05) in kittens fed the HC diet, while chemokine receptor 5, hormone-sensitive lipase, uncoupling protein 2, leptin and insulin receptor mRNA were greater (P < 0·05) in kittens fed the HP diet. The present results demonstrate some of the changes in blood metabolites and hormones, physical activity and mRNA abundance that occur with feeding high protein levels to kittens.
Collapse
|
26
|
Green AS, Ramsey JJ, Villaverde C, Asami DK, Wei A, Fascetti AJ. Cats are able to adapt protein oxidation to protein intake provided their requirement for dietary protein is met. J Nutr 2008; 138:1053-60. [PMID: 18492833 DOI: 10.1093/jn/138.6.1053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cats require more dietary protein than noncarnivorous species. Earlier work showed that cats lack the ability to regulate hepatic urea cycle enzymes in response to dietary protein concentration. We thus hypothesized that cats are unable to fully adapt protein oxidation to protein intake, particularly at low-protein concentrations. We used indirect respiration calorimetry to assess cats' ability to adapt substrate oxidation to diets containing different concentrations of protein, including 1 below their protein requirement. Nine cats (5 males and 4 females; 2.7 +/- 0.5 y; 4.49 +/- 0.19 kg) consumed each of 4 semipurified diets containing 7.5% [low protein (LP(3))], 14.2% [adequate protein (AP)], 27.1% [moderate protein (MP)], and 49.6% [high protein (HP)] of metabolizable energy from protein in a modified crossover design, beginning with the MP diet and then consuming the remaining diets in random order. After adaptation to each diet, cats completed a 5-d nitrogen balance trial and at least 2 12-h indirect calorimetry measurements. There was a significant effect of diet on protein oxidation (P < 0.0001), which measured 10.4 +/- 0.5, 14.1 +/- 1.0, 25.0 +/- 1.7, and 53.2 +/- 1.7% of total energy expenditure for the LP, AP, M,P and HP diets, respectively. The ratio of protein oxidation:protein intake was higher with the LP diet (1.39 +/- 0.07) than the other 3 diets (AP, 1.00 +/- 0.07; MP, 0.93 +/- 0.06; HP, 1.07 +/- 0.03; P < 0.0001), indicating a net loss of protein with the LP diet. Thus, cats are able to adapt protein oxidation to a wide range of dietary protein concentrations, provided their minimum protein requirement is met.
Collapse
Affiliation(s)
- Alice S Green
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616-8741, USA
| | | | | | | | | | | |
Collapse
|
27
|
Evidence for a long time-course adaptation of glucose metabolism to high-protein feeding in rats without major changes in energy expenditure. Proc Nutr Soc 2008. [DOI: 10.1017/s0029665108007866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Evidence for a long time-course adaptation of glucose metabolism to
high-protein feeding in rats without major changes in energy
expenditure. Proc Nutr Soc 2008. [DOI: 10.1017/s0029665100590016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Ramsay T, Mitchell A. Impact of dietary protein content on uncoupling protein mRNA abundance in swine. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:562-71. [DOI: 10.1016/j.cbpb.2007.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 11/08/2007] [Accepted: 11/08/2007] [Indexed: 11/26/2022]
|
30
|
Im R, Mano H, Nakatani S, Shimizu J, Wada M. Aqueous Extract of Kotahla Himbutu (Salacia reticulata) Stems Promotes Oxygen Comsumption and Supresses Body Fat Accumulation in Mice. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.645] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryanghyok Im
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Hiroshi Mano
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Sachie Nakatani
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Jun Shimizu
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Masahiro Wada
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
31
|
Tremblay F, Lavigne C, Jacques H, Marette A. Role of Dietary Proteins and Amino Acids in the Pathogenesis of Insulin Resistance. Annu Rev Nutr 2007; 27:293-310. [PMID: 17666010 DOI: 10.1146/annurev.nutr.25.050304.092545] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary proteins and amino acids are important modulators of glucose metabolism and insulin sensitivity. Although high intake of dietary proteins has positive effects on energy homeostasis by inducing satiety and possibly increasing energy expenditure, it has detrimental effects on glucose homeostasis by promoting insulin resistance and increasing gluconeogenesis. Varying the quality rather than the quantity of proteins has been shown to modulate insulin resistance induced by Western diets and has revealed that proteins derived from fish might have the most desirable effects on insulin sensitivity. In vitro and in vivo data also support an important role of amino acids in glucose homeostasis through modulation of insulin action on muscle glucose transport and hepatic glucose production, secretion of insulin and glucagon, as well as gene and protein expression in various tissues. Moreover, amino acid signaling is integrated by mammalian target of rapamycin, a nutrient sensor that operates a negative feedback loop toward insulin receptor substrate 1 signaling, promoting insulin resistance for glucose metabolism. This integration suggests that modulating dietary proteins and the flux of circulating amino acids generated by their consumption and digestion might underlie powerful new approaches to treat various metabolic diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Frédéric Tremblay
- Department of Anatomy & Physiology and Lipid Research Unit, Laval University Hospital Research Center, Québec, Canada
| | | | | | | |
Collapse
|