1
|
Wang Z, Hu Y, Xue Y, Wu Y, Zeng Q, Chen H, Guo Y, Liang P, Liang T, Shen C, Jiang C, Liu L, Shen Q, Zhu H, Liu Q. 4'-OH as the Action Site of Lipids and MRP1 for Enhanced Transdermal Delivery of Flavonoids. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36913526 DOI: 10.1021/acsami.2c18086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To date, the transdermal delivery study mainly focused on the drug delivery systems' design and efficacy evaluation. Few studies reported the structure-affinity relationship of the drug with the skin, further revealing the action sites of the drugs for enhanced permeation. Flavonoids attained a considerable interest in transdermal administration. The aim is to develop a systematic approach to evaluate the substructures that were favorable for flavonoid delivery into the skin and understand how these action sites interacted with lipids and bound to multidrug resistance protein 1 (MRP1) for enhanced transdermal delivery. First, we investigated the permeation properties of various flavonoids on the porcine skin or rat skin. We found that 4'-OH (hydroxyl group on the carbon 4' position) rather than 7-OH on the flavonoids was the key group for flavonoid permeation and retention, while 4'-OCH3 and -CH2═CH2-CH-(CH3)2 were unfavorable for drug delivery. 4'-OH could decrease flavonoids' lipophilicity to an appropriate log P and polarizability for better transdermal drug delivery. In the stratum corneum, flavonoids used 4'-OH as a hand to specifically grab the C═O group of the ceramide NS (Cer), which increased the miscibility of flavonoids and Cer and then disturbed the lipid arrangement of Cer, thereby facilitating their penetration. Subsequently, we constructed overexpressed MRP1 HaCaT/MRP1 cells by permanent transfection of human MRP1 cDNA in wild HaCaT cells. In the dermis, we observed that 4'-OH, 7-OH, and 6-OCH3 substructures were involved in H-bond formation within MRP1, which increased the flavonoid affinity with MRP1 and flavonoid efflux transport. Moreover, the expression of MRP1 was significantly enhanced after the treatment of flavonoids on the rat skin. Collectively, 4'-OH served as the action site for increased lipid disruption and enhanced affinity for MRP1, which facilitate the transdermal delivery of flavonoids, providing valuable guidelines for molecular modification and drug design of flavonoids.
Collapse
Affiliation(s)
- Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Hongkai Chen
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yinglin Guo
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| |
Collapse
|
2
|
Čižauskaitė A, Šimčikas D, Schultze D, Kallifatidis G, Bruns H, Čekauskas A, Herr I, Baušys A, Strupas K, Schemmer P. Sulforaphane has an additive anticancer effect to FOLFOX in highly metastatic human colon carcinoma cells. Oncol Rep 2022; 48:205. [PMID: 36177901 DOI: 10.3892/or.2022.8420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Patients with CRC may need chemotherapy (CTx) in a neoadjuvant, adjuvant or palliative setting through the course of the disease. Unfortunately, its effect is limited by chemoresistance and chemotoxicity. Novel more effective and non‑toxic CTx regimens are needed to further improve CRC treatment outcomes. Thus, the present study was designed to test the hypothesis that non‑toxic sulforaphane (SF) is effective against CRC and has additive effects in combination with conventional 5‑fluorouracil, oxaliplatin and folinic acid (FOLFOX) CTx in vitro. Highly metastatic human colon cancer cells, CX‑1, and fibroblasts were treated with FOLFOX ± SF. Cell viability was assessed using an MTT assay. The level of apoptosis and the expression of apoptotic proteins were measured by TUNEL assay and quantitative PCR analysis. Aldehyde dehydrogenase isoform 1 (ALDH1) and multidrug resistance protein 2 (MRP2) levels were evaluated. The ability of cells to form spheroids was measured in three‑dimensional cell culture. SF alone and in combination with FOLFOX effectively decreased the viability of the CX‑1 cells, promoted apoptosis within the CX‑1 cells, prevented cellular spheroid formation and decreased ALDH1 activity. However, SF promoted MRP2 expression and protein levels. In conclusion, SF together with conventional FOLFOX has additive anticancer effects against highly metastatic human CRC in vitro.
Collapse
Affiliation(s)
- Agnė Čižauskaitė
- Department of General and Transplant Surgery, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Dainius Šimčikas
- Department of General and Transplant Surgery, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Daniel Schultze
- Department of General and Transplant Surgery, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Georgios Kallifatidis
- Department of General and Transplant Surgery, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Helge Bruns
- Department of General and Transplant Surgery, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Albertas Čekauskas
- Department of Urology, Vilnius University Hospital Santaros Clinics, 08410 Vilnius, Lithuania
| | - Ingrid Herr
- Department of General and Transplant Surgery, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Augustinas Baušys
- Department of Abdominal Surgery and Oncology, National Cancer Institute, 08406 Vilnius, Lithuania
| | - Kęstutis Strupas
- Centre for Visceral Medicine and Translational Research, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Peter Schemmer
- Department of General and Transplant Surgery, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| |
Collapse
|
3
|
Bertova A, Kontar S, Polozsanyi Z, Simkovic M, Rosenbergova Z, Rebros M, Sulova Z, Breier A, Imrichova D. Effects of Sulforaphane-Induced Cell Death upon Repeated Passage of Either P-Glycoprotein-Negative or P-Glycoprotein-Positive L1210 Cell Variants. Int J Mol Sci 2022; 23:ijms231810818. [PMID: 36142752 PMCID: PMC9501161 DOI: 10.3390/ijms231810818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The expression of the membrane ABCB1 transporter in neoplastic cells is one of the most common causes of reduced sensitivity to chemotherapy. In our previous study, we investigated the effect of a single culture of ABCB1-negative (S) and ABCB1-positive variants of L1210 cells (R and T) in the presence of sulforaphane (SFN). We demonstrated that SFN induces the onset of autophagy more markedly in S cells than in R or T cells. In the current study, we focused on the effect of the repeated culture of S, R and T cells in SFN-containing media. The repeated cultures increased the onset of autophagy compared to the simple culture, mainly in S cells and to a lesser extent in R and T cells, as indicated by changes in the cellular content of 16 and 18 kDa fragments of LC3B protein or changes in the specific staining of cells with monodansylcadaverine. We conclude that SFN affects ABCB1-negative S cells more than ABCB1-positive R and T cells during repeated culturing. Changes in cell sensitivity to SFN appear to be related to the expression of genes for cell-cycle checkpoints, such as cyclins and cyclin-dependent kinases.
Collapse
Affiliation(s)
- Anna Bertova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Szilvia Kontar
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Zoltan Polozsanyi
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Martin Simkovic
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Zuzana Rosenbergova
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Martin Rebros
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
- Correspondence: (A.B.); (D.I.)
| | - Denisa Imrichova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
- Correspondence: (A.B.); (D.I.)
| |
Collapse
|
4
|
Yuan T, Hu J, Zhu X, Yin H, Yin J. Oxidative stress-mediated up-regulation of ABC transporters in lung cancer cells. J Biochem Mol Toxicol 2022; 36:e23095. [PMID: 35478211 DOI: 10.1002/jbt.23095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/12/2022]
Abstract
This paper aimed to evaluate the role of oxidative stress in the regulation of ABC transporters in human lung cancer (A549) cells facing substrate (doxorubicin, DOX) and non-substrate (ethanol, ETH and hydrogen peroxide, HP) chemicals. After 24-h treatment, all the chemicals caused significant cytotoxicity as reflected by the reduction in cell viability and the increase in reactive oxygen species (ROS) levels. Depending on the rescuing effects of ROS scavenger including glutathione (GSH) and Vitamin C (VC), the toxicity dependence on oxidative stress were found to be HP>ETH>DOX. Addition of transporter inhibitors significantly enhanced the ROS levels and death-inducing effects of chemicals, indicating the universal detoxification function of ABC transporters. At moderate ROS levels (about 3-4 folds of control levels, caused by 10 μM DOX, 400 mM ETH, and 400 μM HP), all the three chemicals induced the gene expressions and activities of ABC transporters, but these values decreased at too high ROS levels (8.36 folds of control levels) caused by HP at LC50 (800 μM). Such induction could be attenuated by GSH and KCZ, and was completely abolished by 50 μM KCZ, indicating an important role of oxidative stress and pregnane X receptor (PXR) in the induction of ABC transporters. After all, this paper revealed a critical role of oxidative stress in the modulation of ABC transporters by either substrate or non-substrate chemicals during 24-h treatment. Such information should be beneficial for overcoming ABC transporter-mediated multidrug resistance (MDR). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tongkuo Yuan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, 215163, PR China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China.,Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan, 250001, PR China
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xiaoming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Huancai Yin
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, 215163, PR China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China.,Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan, 250001, PR China
| | - Jian Yin
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, 215163, PR China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China.,Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan, 250001, PR China
| |
Collapse
|
5
|
Takagi T, Inoue H, Fujii S, Takahashi N, Uehara M. Erucin inhibits osteoclast formation via suppressing cell-cell fusion molecule DC-STAMP without influencing mineralization by osteoblasts. BMC Res Notes 2022; 15:105. [PMID: 35296341 PMCID: PMC8925049 DOI: 10.1186/s13104-022-05988-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Objective Erucin (ERN), an isothiocyanate, is derived from the vegetable arugula. Although ERN has antitumor and antioxidant activity, the effect of ERN on osteoclast and osteoblast differentiation is not well documented. In this study, we evaluated the effects of ERN on osteoclast and osteoblast differentiation in vitro. Results ERN significantly reduced the formation of 1α,25(OH)2D3-induced tartrate-resistant acid phosphatase (TRAP)-positive cells at non-cytotoxic concentrations. Furthermore, ERN downregulated the mRNA expression of osteoclast-associated genes, such as nuclear factor of activated T cells cytoplasmic-1, TRAP, and cathepsin K. In addition, ERN suppressed mRNA expression of dendritic cell specific transmembrane protein (DC-STAMP), which encodes cell–cell fusion. However, ERN did not affect mineralization by osteoblasts. Thus, our data suggest that ERN may attenuate osteoclastic bone resorption by inhibiting multinucleation of mononuclear pre-osteoclasts and by suppressing mRNA expression of DC-STAMP in bone marrow cells without influencing mineralization by osteoblasts. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05988-3.
Collapse
Affiliation(s)
- Tomohiro Takagi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Department of Nutritional Sciences, Faculty of Nutritional Sciences, Tohto University, 4-2-7, Nishi, Kamishiba-cyo, Fukaya-shi, Saitama, 366-0052, Japan
| | - Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Shungo Fujii
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Department of Health and Nutrition, Faculty of Human Science, Hokkaido Bunkyo University, 5-196-1, Koganechuo, Eniwa-shi, Hokkaido, 061-1449, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| |
Collapse
|
6
|
Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers (Basel) 2021; 13:cancers13194796. [PMID: 34638282 PMCID: PMC8508555 DOI: 10.3390/cancers13194796] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As of the past decade, phytochemicals have become a major target of interest in cancer chemopreventive and chemotherapeutic research. Sulforaphane (SFN) is a metabolite of the phytochemical glucoraphanin, which is found in high abundance in cruciferous vegetables, such as broccoli, watercress, Brussels sprouts, and cabbage. In both distant and recent research, SFN has been shown to have a multitude of anticancer effects, increasing the need for a comprehensive review of the literature. In this review, we critically evaluate SFN as an anticancer agent and its mechanisms of action based on an impressive number of in vitro, in vivo, and clinical studies. Abstract There is substantial and promising evidence on the health benefits of consuming broccoli and other cruciferous vegetables. The most important compound in broccoli, glucoraphanin, is metabolized to SFN by the thioglucosidase enzyme myrosinase. SFN is the major mediator of the health benefits that have been recognized for broccoli consumption. SFN represents a phytochemical of high interest as it may be useful in preventing the occurrence and/or mitigating the progression of cancer. Although several prior publications provide an excellent overview of the effect of SFN in cancer, these reports represent narrative reviews that focused mainly on SFN’s source, biosynthesis, and mechanisms of action in modulating specific pathways involved in cancer without a comprehensive review of SFN’s role or value for prevention of various human malignancies. This review evaluates the most recent state of knowledge concerning SFN’s efficacy in preventing or reversing a variety of neoplasms. In this work, we have analyzed published reports based on in vitro, in vivo, and clinical studies to determine SFN’s potential as a chemopreventive agent. Furthermore, we have discussed the current limitations and challenges associated with SFN research and suggested future research directions before broccoli-derived products, especially SFN, can be used for human cancer prevention and intervention.
Collapse
|
7
|
Calabrese EJ, Kozumbo WJ. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol Res 2020; 163:105283. [PMID: 33160067 DOI: 10.1016/j.phrs.2020.105283] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
In numerous experimental models, sulforaphane (SFN) is shown herein to induce hormetic dose responses that are not only common but display endpoints of biomedical and clinical relevance. These hormetic responses are mediated via the activation of nuclear factor erythroid- derived 2 (Nrf2) antioxidant response elements (AREs) and, as such, are characteristically biphasic, well integrated, concentration/dose dependent, and specific with regard to the targeted cell type and the temporal profile of response. In experimental disease models, the SFN-induced hormetic activation of Nrf2 was shown to effectively reduce the occurrence and severity of a wide range of human-related pathologies, including Parkinson's disease, Alzheimer's disease, stroke, age-related ocular damage, chemically induced brain damage, and renal nephropathy, amongst others, while also enhancing stem cell proliferation. Although SFN was broadly chemoprotective within an hormetic dose-response context, it also enhanced cell proliferation/cell viability at low concentrations in multiple tumor cell lines. Although the implications of the findings in tumor cells are largely uncertain at this time and warrant further consideration, the potential utility of SFN in cancer treatment has not been precluded. This assessment of SFN complements recent reports of similar hormesis-based chemoprotections by other widely used dietary supplements, such as curcumin, ginkgo biloba, ginseng, green tea, and resveratrol. Interestingly, the mechanistic profile of SFN is similar to that of numerous other hormetic agents, indicating that activation of the Nrf2/ARE pathway is probably a central, integrative, and underlying mechanism of hormesis itself. The Nrf2/ARE pathway provides an explanation for how large numbers of agents that both display hormetic dose responses and activate Nrf2 can function to limit age-related damage, the progression of numerous disease processes, and chemical- and radiation- induced toxicities. These findings extend the generality of the hormetic dose response to include SFN and many other chemical activators of Nrf2 that are cited in the biomedical literature and therefore have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, United States.
| | | |
Collapse
|
8
|
Singh D, Arora R, Bhatia A, Singh H, Singh B, Arora S. Molecular targets in cancer prevention by 4-(methylthio)butyl isothiocyanate - A comprehensive review. Life Sci 2020; 241:117061. [PMID: 31794774 DOI: 10.1016/j.lfs.2019.117061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022]
Abstract
The consumption of cruciferous vegetables rich in isothiocyanates has long been associated with a reduced risk of various types of cancer. 4-(methylthio)butyl isothiocyanate also called erucin is an isothiocyanate present in appreciable quantity in the seeds of Eruca sativa Mill. plant. Although the literature has revealed its protective effects via inducing phase II enzymes and inhibiting carcinogen activating phase I enzymes, recent studies also suggest that, it inhibits the proliferation of cancer cells by altering the telomerase activity, dynamics of microtubules, expression of histone deacetylases, and other molecular pathways. With this in mind, the emphasis has been made to review the molecular targets involved in cancer prevention by 4-(methylthio)butyl isothiocyanate.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Rohit Arora
- Department of Biochemistry, Sri Guru Ram Das University of Health Science, Amritsar 143005, India.
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
9
|
Consumption of baby kale increased cytochrome P450 1A2 (CYP1A2) activity and influenced bilirubin metabolism in a randomized clinical trial. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Xu Y, Han X, Li Y, Min H, Zhao X, Zhang Y, Qi Y, Shi J, Qi S, Bao Y, Nie G. Sulforaphane Mediates Glutathione Depletion via Polymeric Nanoparticles to Restore Cisplatin Chemosensitivity. ACS NANO 2019; 13:13445-13455. [PMID: 31670945 DOI: 10.1021/acsnano.9b07032] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Platinum (Pt)-based chemotherapy is a broadly used therapeutic regimen against various cancers. However, the insufficient cellular uptake, deactivation by thiol-containing species and nonspecific distribution of cisplatin (CDDP) result in its low chemosensitivity as well as systemic side effects, which can largely constrain the employment of CDDP in clinical treatment. To circumvent these problems, in this study, polymeric nanoparticles were utilized to codeliver a water-soluble CDDP derivative, poly(γ,l-glutamic acid)-CDDP conjugate, and a naturally occurring compound derived from broccoli, sulforaphane, which can achieve efficient glutathione (GSH) depletion, to improve the accumulation of CDDP in cancer cells. Results show that compared with combinational treatment of CDDP and SFN, the nanoparticles were more effectively internalized and could significantly reduce GSH content in breast cancer cells, leading to a notable increase in DNA-bound Pt and DNA damage-induced apoptosis. Moreover, in an orthotopic breast cancer model, the nanoparticles achieved a significantly higher tumor accumulation and exhibited a more powerful antitumor activity. Finally, this nanoenhanced chemotherapy was further confirmed in a liver cancer model with high-expression of GSH. Taken together, this sulforaphane-based nanostrategy holds great promise to enhance the sensitivity and therapeutic efficacy of Pt-based chemotherapy.
Collapse
Affiliation(s)
- Ying Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Sino-Danish Center for Education and Research , Sino-Danish College of University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Huan Min
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yingqiu Qi
- School of Basic Medical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan , P.R. China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Sheng Qi
- School of Pharmacy , University of East Anglia , Norwich , Norfolk NR4 7TJ , U.K
| | - Yongping Bao
- Norwich Medical School , University of East Anglia , Norwich , Norfolk NR4 7UQ , U.K
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| |
Collapse
|
11
|
Li NN, Guo Y, Jiang CJ, Zhou YY, Li CH, Li ZG, Wang DL. Allyl isothiocyanate upregulates MRP1 expression through Notch1 signaling in human bronchial epithelial cells. Can J Physiol Pharmacol 2019; 98:324-331. [PMID: 31747319 DOI: 10.1139/cjpp-2019-0448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multidrug resistance associated protein-1 (MRP1) and Notch signaling are closely related and both play a critical role in chronic obstructive pulmonary disease (COPD) establishment and progression. The aim of our work was to test whether Notch1 is involved in allyl isothiocyanate (AITC) induced MRP1 expression. We used cigarette smoke extract (CSE) to simulate the smoking microenvironment in vitro. The results demonstrated that CSE led to apoptosis as well as reduced the expression of Notch1, Hes1, and MRP1, while AITC significantly reversed this downregulation. Transfected with Notch1 siRNA downregulated MRP1 expression and activity, aggravated the suppression effect by CSE, and abolished the AITC-induced Notch1, Hes1, and MRP1 expression. Validation of the correlation between Notch1 and MRP1 was implemented by gel-shift assays (electrophoretic mobility shift assay). The result revealed an interaction between a specific promoter region of MRP1 and the intracellular domain of Notch1. In conclusion, Notch1 signaling positively regulated MRP1 in 16HBE cells and AITC induced MRP1 expression and function may be attributed to Notch1 signaling. These findings show that Notch1 and MRP1 might have a potential protective effect in the COPD process and become a new therapeutic target for COPD or other lung diseases. It also provides a theoretical basis for the therapeutic effects of AITC.
Collapse
Affiliation(s)
- Ni-Ni Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yan Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Cheng-Jun Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuan-Yuan Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chen-Hui Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Ze-Geng Li
- The First Affiliated Hospital to Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Dian-Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| |
Collapse
|
12
|
Modulation of hepatic ABC transporters by Eruca vesicaria intake: Potential diet-drug interactions. Food Chem Toxicol 2019; 133:110797. [PMID: 31479713 DOI: 10.1016/j.fct.2019.110797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/02/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The aim of this work was to evaluate whether oral administration of Eruca vesicaria, a species of rocket cultivated in Argentina, could modify cyclophosphamide (CP)-induced genotoxicity through modulation of hepatic ABC transporters. Daily oral administration of E. vesicaria fresh leaves juice (1.0, 1.4 and 2.0 g/kg) for 14 days did not alter genotoxicity biomarkers -alkaline comet assay and micronucleus test -in neither male nor female mice. Instead, repeated intake of this cruciferous decreased CP-induced DNA damage dose-dependently and it caused hepatic overexpression of P-glycoprotein (P-gp; 1.4 and 2.0 g/kg) and multidrug resistance protein 2 (MRP2; 2.0 g/kg), but not breast cancer resistance protein (Bcrp). The antigenotoxic effect of E. vesicaria was prevented by 50 mg/kg verapamil (P-gp inhibitor) or 10 mg/kg indomethacin (MRP2 inhibitor). In turn, CP-induced cytotoxicity (10 mM, 24 h) on human hepatoma cells (HepG2/C3A) was significantly reduced by preincubation with E. vesicaria (1.4 mg/ml; 48 h); this effect was absent when CP was coincubated with 35 μM verapamil, 80 μM indomethacin or 10 μM KO-143 (BCRP inhibitor). Altogether, these results allow us to demonstrate that repeated intake of E. vesicaria exhibited antigenotoxicity, at least in part, by induction of hepatic ABC transporters in vivo in mice as well as in vitro in human liver cells. This could account for other diet-drug interactions.
Collapse
|
13
|
Li Z, Liu Y, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H. Natural Sulforaphane From Broccoli Seeds Against Influenza A Virus Replication in MDCK Cells. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19858221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| |
Collapse
|
14
|
Tan-Koi WC, Limenta M, Mohamed EHM, Lee EJD. The Importance of Ethnicity Definitions and Pharmacogenomics in Ethnobridging and Pharmacovigilance. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
15
|
Food Bioactive Compounds and Their Interference in Drug Pharmacokinetic/Pharmacodynamic Profiles. Pharmaceutics 2018; 10:pharmaceutics10040277. [PMID: 30558213 PMCID: PMC6321138 DOI: 10.3390/pharmaceutics10040277] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
Preclinical and clinical studies suggest that many food molecules could interact with drug transporters and metabolizing enzymes through different mechanisms, which are predictive of what would be observed clinically. Given the recent incorporation of dietary modifications or supplements in traditional medicine, an increase in potential food-drug interactions has also appeared. The objective of this article is to review data regarding the influence of food on drug efficacy. Data from Google Scholar, PubMed, and Scopus databases was reviewed for publications on pharmaceutical, pharmacokinetic, and pharmacodynamic mechanisms. The following online resources were used to integrate functional and bioinformatic results: FooDB, Phenol-Explorer, Dr. Duke's Phytochemical and Ethnobotanical Databases, DrugBank, UniProt, and IUPHAR/BPS Guide to Pharmacology. A wide range of food compounds were shown to interact with proteins involved in drug pharmacokinetic/pharmacodynamic profiles, starting from drug oral bioavailability to enteric/hepatic transport and metabolism, blood transport, and systemic transport/metabolism. Knowledge of any food components that may interfere with drug efficacy is essential, and would provide a link for obtaining a holistic view for cancer, cardiovascular, musculoskeletal, or neurological therapies. However, preclinical interaction may be irrelevant to clinical interaction, and health professionals should be aware of the limitations if they intend to optimize the therapeutic effects of drugs.
Collapse
|
16
|
Lubelska K, Wiktorska K, Mielczarek L, Milczarek M, Zbroińska-Bregisz I, Chilmonczyk Z. Sulforaphane Regulates NFE2L2/Nrf2-Dependent Xenobiotic Metabolism Phase II and Phase III Enzymes Differently in Human Colorectal Cancer and Untransformed Epithelial Colon Cells. Nutr Cancer 2016; 68:1338-1348. [DOI: 10.1080/01635581.2016.1224369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics. Toxicol Appl Pharmacol 2016; 303:45-57. [DOI: 10.1016/j.taap.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
|
18
|
Chen YJ, Myracle AD, Wallig MA, Jeffery EH. Dietary broccoli protects against fatty liver development but not against progression of liver cancer in mice pretreated with diethylnitrosamine. J Funct Foods 2016; 24:57-62. [PMID: 27672403 DOI: 10.1016/j.jff.2016.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Western-style high fat, high sugar diets are associated with non-alcoholic fatty liver disease (NAFLD) and increased liver cancer risk. Sulforaphane from broccoli may protect against these. Previously we initiated broccoli feeding to mice prior to exposure to the hepatocarcinogen diethylnitrosamine (DEN), and saw protection against NAFLD and liver cancer. Here we administered DEN to unweaned mice, initiating broccoli feeding two weeks later, to determine if broccoli protects against cancer progression. Specifically, male 15-day-old C57BL/6J mice were given DEN and placed on a Western or Western+10%Broccoli diet from the age of 4 weeks through 7 months. Dietary broccoli decreased hepatic triacylglycerols, NAFLD, liver damage and tumour necrosis factor by month 5 without changing body weight or relative liver weight, but did not slow carcinogenesis, seen in 100% of mice. We conclude that broccoli, a good source of sulforaphane, slows progression of hepatic lipidosis, but not tumourigenesis in this robust model.
Collapse
Affiliation(s)
- Yung-Ju Chen
- Department of Food Science and Human Nutrition, University of Illinois, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Angela D Myracle
- Department of Food Science and Human Nutrition, University of Illinois, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Matthew A Wallig
- Department of Pathobiology, University of Illinois, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Elizabeth H Jeffery
- Department of Food Science and Human Nutrition, University of Illinois, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Udasin RG, Wen X, Bircsak KM, Aleksunes LM, Shakarjian MP, Kong ANT, Heck DE, Laskin DL, Laskin JD. Nrf2 Regulates the Sensitivity of Mouse Keratinocytes to Nitrogen Mustard via Multidrug Resistance-Associated Protein 1 (Mrp1). Toxicol Sci 2015; 149:202-12. [PMID: 26454883 DOI: 10.1093/toxsci/kfv226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sulfur mustard and nitrogen mustard (mechlorethamine, HN2) are potent vesicants developed as chemical warfare agents. These electrophilic, bifunctional alkylating agents cause skin injury, including inflammation, edema, and blistering. HN2 covalently modifies macromolecules such as DNA, RNA, and proteins or is scavenged by glutathione, forming adducts that can contribute to toxicity. Multidrug resistance-associated protein 1 (Mrp1/MRP1) is a transmembrane ATPase known to efflux glutathione-conjugated electrophiles. In the present studies, we examined the effects of modulating Mrp1-mediated transport activity on the sensitivity of primary and PAM212 mouse keratinocytes to HN2. Primary keratinocytes, and to a lesser extent, PAM212 cells, express Mrp1 mRNA and protein and possess Mrp1 functional activity, as measured by calcein efflux. Sulforaphane, an activator of Nrf2, increased Mrp1 mRNA, protein, and functional activity in primary keratinocytes and PAM212 cells and decreased their sensitivity to HN2-induced growth inhibition (IC(50) = 1.4 and 4.8 µM in primary keratinocytes and 1 and 13 µM in PAM212 cells, in the absence and presence of sulforaphane, respectively). The Mrp1 inhibitor, MK-571, reversed the effects of sulforaphane on HN2-induced growth inhibition in both primary keratinocytes and PAM212 cells. In primary keratinocytes from Nrf2(-/-) mice, sulforaphane had no impact on Mrp1 expression or activity, or on sensitivity to HN2, demonstrating that its effects depend on Nrf2. These data suggest that Mrp1-mediated efflux is important in regulating HN2-induced keratinocyte growth inhibition. Enhancing HN2 efflux from keratinocytes may represent a novel strategy for mitigating vesicant-induced cytotoxicity.
Collapse
Affiliation(s)
- Ronald G Udasin
- *Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Xia Wen
- *Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Kristin M Bircsak
- *Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Lauren M Aleksunes
- *Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Michael P Shakarjian
- Department of Environmental Health Science, New York Medical College, Valhalla, New York
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey; and
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, New York
| | - Debra L Laskin
- *Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- §Department of Environmental and Occupational Medicine, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey.
| |
Collapse
|
20
|
Wang W, He Y, Yu G, Li B, Sexton DW, Wileman T, Roberts AA, Hamilton CJ, Liu R, Chao Y, Shan Y, Bao Y. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity. PLoS One 2015; 10:e0138771. [PMID: 26402917 PMCID: PMC4581733 DOI: 10.1371/journal.pone.0138771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/10/2015] [Indexed: 12/28/2022] Open
Abstract
The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3–6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.
Collapse
Affiliation(s)
- Wei Wang
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Guodong Yu
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Baolong Li
- Center of Safety Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Darren W Sexton
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Alexandra A Roberts
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Chris J Hamilton
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Ruoxi Liu
- School of Chemistry, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Yimin Chao
- School of Chemistry, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Yujuan Shan
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
21
|
Synergy between sulforaphane and selenium in protection against oxidative damage in colonic CCD841 cells. Nutr Res 2015; 35:610-7. [DOI: 10.1016/j.nutres.2015.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 01/15/2023]
|
22
|
Azarenko O, Jordan MA, Wilson L. Erucin, the major isothiocyanate in arugula (Eruca sativa), inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics. PLoS One 2014; 9:e100599. [PMID: 24950293 PMCID: PMC4065051 DOI: 10.1371/journal.pone.0100599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 01/25/2023] Open
Abstract
Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthio)butane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill.), kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM) in parallel with cell cycle arrest at mitosis (IC50 = 13 µM) and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5-15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities.
Collapse
Affiliation(s)
- Olga Azarenko
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Mary Ann Jordan
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Leslie Wilson
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Angelino D, Jeffery E. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.09.029] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
24
|
Allyl isothiocyanate increases MRP1 function and expression in a human bronchial epithelial cell line. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:547379. [PMID: 24672635 PMCID: PMC3942196 DOI: 10.1155/2014/547379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/26/2013] [Accepted: 12/11/2013] [Indexed: 11/28/2022]
Abstract
Multidrug resistance-associated protein 1 (MRP1), a member of the ATP-binding
cassette (ABC) superfamily of transporters, plays an important role in normal lung
physiology by protecting cells against oxidative stress and toxic xenobiotics. The present
study investigates the effects of allyl isothiocyanate (AITC) on MRP1 mRNA and MRP1
protein expression and transporter activity in the immortalised human bronchial epithelial
cell line 16HBE14o-. MRP1 mRNA and MRP1 protein expression in 16HBE14o- cells
that were treated with allyl isothiocyanate were analysed by real-time PCR assay and
Western blotting. The transport of carboxyfluorescein, a known MRP1 substrate, was
measured by functional flow cytometry to evaluate MRP1 activity. Treatment with AITC
at concentrations of 5–40 μM increased MRP1 protein levels in a
concentration-dependent manner. AITC treatments at concentrations of 1–40 μM caused
concentration-dependent increases in MRP1 mRNA levels that were up to seven times
greater than the levels found in control cells. Finally, AITC treatment at concentrations of
5–40 μM significantly increased MRP1-dependent efflux in 16HBE14o- cells. These
results suggest that AITC can increase the expression and activity of MRP1 in
16HBE14o- cells in a concentration-dependent manner. The upregulation of MRP1
activity and expression by AITC could produce therapeutic effects in the treatment of
lung disease.
Collapse
|
25
|
Piberger AL, Köberle B, Hartwig A. The broccoli-born isothiocyanate sulforaphane impairs nucleotide excision repair: XPA as one potential target. Arch Toxicol 2013; 88:647-58. [PMID: 24352536 DOI: 10.1007/s00204-013-1178-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/26/2013] [Indexed: 11/28/2022]
Abstract
The isothiocyanate sulforaphane (SFN), the major hydrolysis product of glucosinolates present in broccoli, has frequently been proposed to exert anticarcinogenic properties, mainly due to the induction of the nrf2/Keap1/ARE-signaling pathway. As potential underlying mechanism, a SFN-dependent zinc release from Keap1, the negative regulator of nrf2, has been described. This raises the question whether SFN is able to interfere with other zinc binding structures as well, for example those essential for DNA repair. Within this study, a SFN-induced deliberation of zinc from a synthesized peptide resembling the zinc binding domain of the xeroderma pigmentosum A (XPA) protein was observed starting at 50 μM SFN. Since XPA is absolutely required for nucleotide excision repair, the impact of SFN on the repair of (+)-anti-benzo[a]pyrene 7,8-diol-9,10-epoxide ((+)-anti-BPDE)-induced DNA adducts in HCT 116 cells was investigated. While preincubation with SFN did not affect initial lesion levels, a dose-dependent repair inhibition of (+)-anti-BPDE-induced DNA damage during the first 12 h after lesion induction was observed, starting at 1 μM SFN. In contrast, the later phase of DNA repair was not impaired by SFN. In support of an inactivation of XPA also in cells, SFN increased the (+)-anti-BPDE-induced cytotoxicity XPA dependently in XP12RO cells. Comparison of p53-proficient and p53-deficient cells revealed no difference in SFN-induced DNA repair inhibition, indicating that p53 is no cellular target of SFN. Since DNA repair processes are required to maintain DNA integrity, the presented data suggest a potential impairment of genomic stability by SFN.
Collapse
Affiliation(s)
- Ann Liza Piberger
- Department of Food Chemistry and Toxicology, Institute of Applied Bioscience, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | | | | |
Collapse
|
26
|
Melchini A, Traka MH, Catania S, Miceli N, Taviano MF, Maimone P, Francisco M, Mithen RF, Costa C. Antiproliferative activity of the dietary isothiocyanate erucin, a bioactive compound from cruciferous vegetables, on human prostate cancer cells. Nutr Cancer 2013; 65:132-8. [PMID: 23368923 DOI: 10.1080/01635581.2013.741747] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is becoming increasingly clear that many dietary agents, such as isothiocyanates (ITCs) from cruciferous vegetables, can retard or prevent the process of prostate carcinogenesis. Erucin (ER) is a dietary ITC, which has been recently considered a promising cancer chemopreventive phytochemical. The potential protective activity of ER against prostate cancer was investigated using prostate adenocarcinoma cells (PC3), to analyze its effects on pathways involved in cell growth regulation, such as the cyclin-dependent kinase (CDKs) inhibitor p21(WAF1/CIP1) (p21), phosphatidylinositol-3 kinase/AKT, and extracellular signal-regulated kinases (ERK)1/2 signaling pathways. We have shown for the first time that ER increases significantly p21 protein expression and ERK1/2 phosphorylation in a dose-dependent manner to inhibit PC3 cell proliferation (P ≤ 0.01). Compared to the structurally related sulforaphane, a well-studied broccoli-derived ITC, ER showed lower potency in inhibiting proliferation of PC3 cells, as well as in modulating p21 and pERK1/2 protein levels. Neither of the naturally occurring ITCs was able to affect significantly pAKT protein levels in prostate cells at all concentrations tested (0-25 μM). It is clearly important for the translation of laboratory findings to clinical approaches to investigate in animal and cell studies the molecular mechanisms by which ITCs may exert health promoting effects.
Collapse
|
27
|
|
28
|
Rodríguez-Fragoso L, Martínez-Arismendi JL, Orozco-Bustos D, Reyes-Esparza J, Torres E, Burchiel SW. Potential risks resulting from fruit/vegetable-drug interactions: effects on drug-metabolizing enzymes and drug transporters. J Food Sci 2012; 76:R112-24. [PMID: 22417366 DOI: 10.1111/j.1750-3841.2011.02155.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has been well established that complex mixtures of phytochemicals in fruits and vegetables can be beneficial for human health. Moreover, it is becoming increasingly apparent that phytochemicals can influence the pharmacological activity of drugs by modifying their absorption characteristics through interactions with drug transporters as well as drug-metabolizing enzyme systems. Such effects are more likely to occur in the intestine and liver, where high concentrations of phytochemicals may occur. Alterations in cytochrome P450 and other enzyme activities may influence the fate of drugs subject to extensive first-pass metabolism. Although numerous studies of nutrient-drug interactions have been published and systematic reviews and meta-analyses of these studies are available, no generalizations on the effect of nutrient-drug interactions on drug bioavailability are currently available. Several publications have highlighted the unintended consequences of the combined use of nutrients and drugs. Many phytochemicals have been shown to have pharmacokinetic interactions with drugs. The present review is limited to commonly consumed fruits and vegetables with significant beneficial effects as nutrients and components in folk medicine. Here, we discuss the phytochemistry and pharmacokinetic interactions of the following fruit and vegetables: grapefruit, orange, tangerine, grapes, cranberry, pomegranate, mango, guava, black raspberry, black mulberry, apple, broccoli, cauliflower, watercress, spinach, tomato, carrot, and avocado. We conclude that our knowledge of the potential risk of nutrient-drug interactions is still limited. Therefore, efforts to elucidate potential risks resulting from food-drug interactions should be intensified in order to prevent undesired and harmful clinical consequences.
Collapse
|
29
|
Barrera LN, Cassidy A, Wang W, Wei T, Belshaw NJ, Johnson IT, Brigelius-Flohé R, Bao Y. TrxR1 and GPx2 are potently induced by isothiocyanates and selenium, and mutually cooperate to protect Caco-2 cells against free radical-mediated cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1914-24. [PMID: 22820176 DOI: 10.1016/j.bbamcr.2012.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/03/2012] [Accepted: 07/12/2012] [Indexed: 02/07/2023]
Abstract
Currently, there is significant interest in the field of diet-gene interactions and the mechanisms by which food compounds regulate gene expression to modify cancer susceptibility. From a nutrition perspective, two key components potentially exert cancer chemopreventive effects: isothiocyanates (ITCs), present in cruciferous vegetables, and selenium (Se) which, as selenocysteine, is an integral part of selenoproteins. However, the role of these compounds in the expression of key selenoenzymes once the cancer process has been initiated still needs elucidation. Therefore, this investigation examined the effect of two forms of selenium, selenium-methylselenocysteine and sodium selenite, both individually and in combination with two ITCs, sulforaphane or iberin, on the expression of the two selenoenzymes, thioredoxin reductase 1 (TrxR1) and gastrointestinal glutathione peroxidase (GPx2), which are targets of ITCs, in Caco-2 cells. Co-treatment with both ITCs and Se induced expression of TrxR1 and GPx2 more than either compound alone. Moreover, pre-treatment of cells with ITC+Se enhanced cytoprotection against H(2)O(2)-induced cell death through a ROS-dependent mechanism. Furthermore, a single and double knockdown of TrxR1 and/or GPx2 suggested that both selenoproteins were responsible for protecting against H(2)O(2)-induced cell death. Together, these data shed new light on the mechanism of interactions between ITC and Se in which translational expression of the enhanced transcripts by the former is dependent on an adequate Se supply, resulting in a cooperative antioxidant protective effect against cell death.
Collapse
Affiliation(s)
- Lawrence N Barrera
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Isothiocyanate-drug interactions in the human adenocarcinoma cell line Caco-2. Mol Cell Biochem 2012; 367:19-29. [PMID: 22527941 DOI: 10.1007/s11010-012-1314-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/03/2012] [Indexed: 01/01/2023]
Abstract
Isothiocyanates, among which alyssin is counted, are the compounds that have proved chemopreventive properties and the ability to induce the 2 and the 3 detoxification phase by affecting the transcription factor nuclear erythroid 2-related factor (Nrf2). Having a positive effect on the human body, these compounds are used as dietary supplements. Because of the observed increase in the consumption of dietary supplements taken along with the drugs routinely used in medical practice, this study examined the possibility of interactions between alyssin and drugs, which could have an impact on cell metabolism. We have determined the effects of the tested substances and their interactions on the expression and activity of the phase 2 genes, as well as on the drug transport, which could be influenced by affecting the expression of transport proteins that belong to the 3 phase of metabolism. It was also studied whether the transcription factor Nrf2 is responsible for the interactions that occurred. The results showed that the interactions between alyssin and the tested drugs strengthen or weaken the effect of the drugs given separately depending on the concentration of alyssin and the type of drug. Even though Nrf2 is involved in the interaction, it seems that it is not the only factor regulating the interactions between the tested medications.
Collapse
|
31
|
Li D, Wang W, Shan Y, Barrera LN, Howie AF, Beckett GJ, Wu K, Bao Y. Synergy between sulforaphane and selenium in the up-regulation of thioredoxin reductase and protection against hydrogen peroxide-induced cell death in human hepatocytes. Food Chem 2012; 133:300-7. [PMID: 25683399 DOI: 10.1016/j.foodchem.2012.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/26/2011] [Accepted: 01/14/2012] [Indexed: 02/07/2023]
Abstract
Dietary isothiocyanates and selenium are chemopreventive agents and potent inducers of antioxidant enzymes. It has been previously shown that sulforaphane and selenium have a synergistic effect on the upregulation of thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells. In this paper, further evidence is presented to show that sulforaphane and selenium synergistically induce TrxR-1 expression in immortalised human hepatocytes. Sulforaphane was found to be more toxic toward hepatocytes than HepG2 cells with IC50=25.1 and 56.4 μM, respectively. Sulforaphane can protect against hydrogen peroxide-induced cell death and this protection was enhanced by co-treatment with selenium. Using siRNA to knock down TrxR-1 or Nrf2, sulforaphane (5 μM)-protected cell viability was reduced from 73% to 46% and 34%, respectively, suggesting that TrxR-1 is an important enzyme in protection against hydrogen peroxide-induced cell death. Sulforaphane-induced TrxR-1 expression was positively associated with significant levels of Nrf2 translocation into the nucleus, but co-treatment with selenium showed no significant increase in Nrf2 translocation. Moreover, MAPK (ERK, JNK and p38) and PI3K/Akt signalling pathways were found to play no significant role in sulforaphane-induced Nrf2 translocation into the nucleus. However, blocking ERK and JNK signalling pathways decreased sulforaphane-induced TrxR-1 mRNA by about 20%; whereas blocking p38 and PI3K/AKT increased TrxR-1 transcription. In summary, a combination of sulforaphane and selenium resulted in a synergistic upregulation of TrxR-1 that contributed to the enhanced protection against free radical-mediated oxidative damage in human hepatocytes.
Collapse
Affiliation(s)
- Dan Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Wei Wang
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Yujuan Shan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lawrence N Barrera
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alexander F Howie
- University of Edinburgh, Division of Reproduction and Development Sciences, Edinburgh EH16 4SB, UK
| | - Geoffrey J Beckett
- University of Edinburgh, Division of Reproduction and Development Sciences, Edinburgh EH16 4SB, UK
| | - Kun Wu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Yongping Bao
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
32
|
Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P. Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 2011; 750:107-131. [PMID: 22178957 DOI: 10.1016/j.mrrev.2011.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.
Collapse
Affiliation(s)
- Carmela Fimognari
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Lorenzo Ferruzzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Monia Lenzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
33
|
Clarke JD, Riedl K, Bella D, Schwartz SJ, Stevens JF, Ho E. Comparison of isothiocyanate metabolite levels and histone deacetylase activity in human subjects consuming broccoli sprouts or broccoli supplement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10955-63. [PMID: 21928849 PMCID: PMC3201700 DOI: 10.1021/jf202887c] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Increased consumption of cruciferous vegetables such as broccoli may reduce the risk of various cancers. Myrosinase is required to convert dietary glucosinolates from broccoli into bioactive isothiocyanates. We evaluated isothiocyanate excretion profiles in healthy subjects who consumed broccoli sprouts or broccoli supplement (no myrosinase) with equivalent glucosinolate content. Urinary metabolites of two major isothiocyanates, sulforaphane and erucin, were measured by liquid chromatography coupled with tandem mass spectrometry. Peak excretion of sulforaphane and erucin was higher and occurred sooner in subjects who consumed broccoli sprouts as compared to subjects who consumed the supplement. A subject-dependent shift in the ratio of urinary sulforaphane to erucin metabolites was observed in both groups, indicating conversion of sulforaphane to erucin. Lower histone deacetylase activity was observed in the peripheral blood mononuclear cells only in subjects consuming sprouts. Fresh broccoli sprouts differ from broccoli supplements in regards to excretion of isothiocyanates and bioactivity in human subjects.
Collapse
Affiliation(s)
- John D. Clarke
- Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR 97331
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331
| | - Ken Riedl
- The Ohio State University, Columbus, OH 43210
| | - Deborah Bella
- Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR 97331
| | | | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331
| | - Emily Ho
- Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR 97331
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
34
|
Liang H, Yuan Q. Natural sulforaphane as a functional chemopreventive agent: including a review of isolation, purification and analysis methods. Crit Rev Biotechnol 2011; 32:218-34. [DOI: 10.3109/07388551.2011.604838] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Li Y, Revalde JL, Reid G, Paxton JW. Interactions of dietary phytochemicals with ABC transporters: possible implications for drug disposition and multidrug resistance in cancer. Drug Metab Rev 2011; 42:590-611. [PMID: 20433315 DOI: 10.3109/03602531003758690] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Common foods, such as fruits and vegetables, contain a large variety of secondary metabolites known as phytochemicals, many of which have been associated with health benefits. However, there is a limited knowledge of the processes by which these, mainly charged, phytochemicals (and/or their metabolites) are absorbed into the body, reach their biological target, and how they are eliminated. Recent studies have indicated that some of these phytochemicals are substrates and modulators of specific members of the superfamily of ABC transporting proteins. In this review, we present the reported interactions between the different classes of phytochemicals and ABC transporters and the mechanism by which they modulate the activity of these transporters. We also discuss the implications that such interactions may have on the pharmacokinetics of xenobiotics and the possible role of phytochemicals in the reversal of multidrug resistance in cancer chemotherapy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
36
|
Clarke JD, Hsu A, Riedl K, Bella D, Schwartz SJ, Stevens JF, Ho E. Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacol Res 2011; 64:456-63. [PMID: 21816223 DOI: 10.1016/j.phrs.2011.07.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 01/23/2023]
Abstract
Broccoli consumption may reduce the risk of various cancers and many broccoli supplements are now available. The bioavailability and excretion of the mercapturic acid pathway metabolites isothiocyanates after human consumption of broccoli supplements has not been tested. Two important isothiocyanates from broccoli are sulforaphane and erucin. We employed a cross-over study design in which 12 subjects consumed 40 g of fresh broccoli sprouts followed by a 1 month washout period and then the same 12 subjects consumed 6 pills of a broccoli supplement. As negative controls for isothiocyanate consumption four additional subjects consumed alfalfa sprouts during the first phase and placebo pills during the second. Blood and urine samples were collected for 48h during each phase and analyzed for sulforaphane and erucin metabolites using LC-MS/MS. The bioavailability of sulforaphane and erucin is dramatically lower when subjects consume broccoli supplements compared to fresh broccoli sprouts. The peaks in plasma concentrations and urinary excretion were also delayed when subjects consumed the broccoli supplement. GSTP1 polymorphisms did not affect the metabolism or excretion of sulforaphane or erucin. Sulforaphane and erucin are able to interconvert in vivo and this interconversion is consistent within each subject but variable between subjects. This study confirms that consumption of broccoli supplements devoid of myrosinase activity does not produce equivalent plasma concentrations of the bioactive isothiocyanate metabolites compared to broccoli sprouts. This has implications for people who consume the recommended serving size (1 pill) of a broccoli supplement and believe they are getting equivalent doses of isothiocyanates.
Collapse
Affiliation(s)
- John D Clarke
- Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Lai RH, Miller MJ, Jeffery E. Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food Funct 2010; 1:161-6. [PMID: 21776467 DOI: 10.1039/c0fo00110d] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the absence of the plant enzyme myrosinase, such as in cooked broccoli, glucoraphanin is considered to be hydrolyzed by bacteria in the lower gut to produce the bioactive isothiocyanate sulforaphane. Simulated digestion using US Pharmacopeia methods caused no loss of glucoraphanin, confirming that glucoraphanin is not destroyed by digestive enzymes during passage through the digestive tract and is able to reach the rat cecum intact. Introduction of glucoraphanin (150 μmol/kg BW) directly into the cecum resulted in appearance of isothiocyanates in the mesenteric plasma by 120 min. In contrast, introduction of sulforaphane (150 μmol/kg BW) directly into the cecum resulted in the appearance of isothiocyanates in the mesenteric plasma within 15 min. Plasma levels remained constant for over an hour. Anaerobic incubation ex vivo of cecal microbiota from male F344 rats with glucoraphanin resulted in very low levels of the hydrolytic metabolite erucin nitrile, showing that hydrolysis of glucosinolates is carried out by cecal microbiota, but metabolism ex vivo by microbiota did not reflect not reflect metabolism in situ. These data are the first to report direct evidence of hydrolysis of glucoraphanin to sulforaphane in the cecum of rats and to show that sulforaphane is able to cross the cecal enterocyte for systemic absorption.
Collapse
Affiliation(s)
- Ren-Hau Lai
- Division of Nutritional Sciences, University of Illinois, 905 S Goodwin Ave, Urbana, IL 61801, USA
| | | | | |
Collapse
|
38
|
Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 2010; 42:482-538. [PMID: 20233023 DOI: 10.3109/03602531003654915] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
39
|
Biological profile of erucin: a new promising anticancer agent from cruciferous vegetables. Toxins (Basel) 2010; 2:593-612. [PMID: 22069601 PMCID: PMC3153205 DOI: 10.3390/toxins2040593] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/16/2010] [Accepted: 03/30/2010] [Indexed: 02/05/2023] Open
Abstract
Consumption of cruciferous vegetables has been associated with a reduced risk in the development of various types of cancer. This has been attributed to the bioactive hydrolysis products that are derived from these vegetables, namely isothiocyanates. Erucin is one such product derived from rocket salads, which is structurally related to sulforaphane, a well-studied broccoli-derived isothiocyanate. In this review, we present current knowledge on mechanisms of action of erucin in chemoprevention obtained from cell and animal models and relate it to other isothiocyanates. These mechanisms include modulation of phase I, II and III detoxification, regulation of cell growth by induction of apoptosis and cell cycle arrest, induction of ROS-mechanisms and regulation androgen receptor pathways.
Collapse
|
40
|
Zhang W, Han Y, Lim SL, Lim LY. Dietary regulation of P-gp function and expression. Expert Opin Drug Metab Toxicol 2010; 5:789-801. [PMID: 19545213 DOI: 10.1517/17425250902997967] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Food-drug interactions have been associated with clinically important pharmacokinetic and pharmacodynamic changes of a drug. The aim of this paper is to review the regulation of P-glycoprotein (P-gp) by dietary components and to correlate the changes in cellular P-gp function and expression with drug bioavailability. In summary, the published literature has provided extensive data supporting the modulation of drug bioavailability through P-gp regulation by components in food groups such as fruit juices, spices, herbs, cruciferous vegetables and green tea. Most of these data were, however, derived from in vitro cell models and, except for the St John's wort, the clinical significance of most reported interactions remains to be clarified. Studies on piperine and capsaicin have underscored an often poor correlation between in vivo and in vitro data, whereas experiments involving curcumin highlighted differences between acute and chronic consumption of a dietary component on P-gp function and expression in vivo. A better understanding of the pharmacokinetic and pharmacodynamic profiles of the dietary components will aid in addressing these knowledge gaps.
Collapse
|
41
|
Chambers KF, Bacon JR, Kemsley EK, Mills RD, Ball RY, Mithen RF, Traka MH. Gene expression profile of primary prostate epithelial and stromal cells in response to sulforaphane or iberin exposure. Prostate 2009; 69:1411-21. [PMID: 19489030 DOI: 10.1002/pros.20986] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Broccoli consumption has been associated with a reduced risk of prostate cancer. Isothiocyanates (ITCs) derived from glucosinolates that accumulate in broccoli are dietary compounds that may mediate these health effects. Sulforaphane (SF, 4-methylsulphinylbutyl ITC) derives from heading broccoli (calabrese) and iberin (IB, 3-methylsulphinypropyl ITC) from sprouting broccoli. While there are many studies regarding the biological activity of SF, mainly undertaken with cancerous cells, there are few studies associated with IB. METHODS Primary epithelial and stromal cells were derived from benign prostatic hyperplasia tissue. Affymetrix U133 Plus 2.0 whole genome arrays were used to compare global gene expression between these cells, and to quantify changes in gene expression following exposure to physiologically appropriate concentrations of SF and IB. Ontology and pathway analyses were used to interpret results. Changes in expression of a subset of genes were confirmed by real-time RT-PCR. RESULTS Global gene expression profiling identified epithelial and stromal-specific gene expression profiles. SF induced more changes in epithelial cells, whereas IB was more effective in stromal cells. Although IB and SF induced different changes in gene expression in both epithelial and stromal cells, these were associated with similar pathways, such as cell cycle and detoxification. Both ITCs increased expression of PLAGL1, a tumor suppressor gene, in stromal cells and suppressed expression of the putative tumor promoting genes IFITM1, CSPG2, and VIM in epithelial cells. CONCLUSION These data suggest that IB and SF both alter genes associated with cancer prevention, and IB should be investigated further as a potential chemopreventative agent. Prostate 69: 1411-1421, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Karen F Chambers
- Natural Products and Health Programme, Institute of Food Research, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Melchini A, Costa C, Traka M, Miceli N, Mithen R, De Pasquale R, Trovato A. Erucin, a new promising cancer chemopreventive agent from rocket salads, shows anti-proliferative activity on human lung carcinoma A549 cells. Food Chem Toxicol 2009; 47:1430-6. [PMID: 19328833 DOI: 10.1016/j.fct.2009.03.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/16/2009] [Accepted: 03/20/2009] [Indexed: 01/06/2023]
Abstract
Erucin (ER) is a dietary isothiocyanate present in cruciferous vegetables, such as rocket salads (Erucasativa Mill., Diplotaxis sp.), that has been recently considered a promising cancer chemopreventive phytochemical. Biological activity of ER was investigated on human lung adenocarcinoma A549 cells, analyzing its effects on molecular pathways involved in apoptosis and cell cycle arrest, such as PARP-1 cleavage, p53 and p21 protein expression. Our results show that ER affects the A549 cell proliferation, enhancing significantly p53 and p21 protein expression in a dose-dependent manner (p<0.001). PARP-1 cleavage occurs only after exposure to high concentrations of ER (50 microM), in accordance to previous studies showing similar bioactivity of other isothiocyanates (ITCs). Our study reports for the first time that the induction of p53, p21 and PARP-1 cleavage may participate in the anti-proliferative activity of ER in human lung adenocarcinoma A549 cells. Comparison of data with those obtained with the isothiocyanate sulforaphane (SF), structurally related to ER, underlines the strong relationship between structural analogy of ITCs and their biological activity. The ability of dietary compounds to modulate molecular mechanisms that affect cancer cell proliferation is certainly a key point of the cancer prevention potential by functional foods.
Collapse
Affiliation(s)
- A Melchini
- Dip. Farmaco-Biologico, Facoltà di Farmacia, Università di Messina, Villaggio Annunziata, 98168 Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|