1
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
2
|
Xu K, Zhou X, Ren Y, Zhao S, Feng J, Zhang H, Zhong Q, Wu W, Chen J, Xie P. IDH2/PPARγ pathway as a novel diagnostic biomarker panel for schizophrenia. Asian J Psychiatr 2023; 89:103788. [PMID: 37757538 DOI: 10.1016/j.ajp.2023.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing 400016, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wentao Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Han N, Yuan M, Yan L, Tang H. Emerging Insights into Liver X Receptor α in the Tumorigenesis and Therapeutics of Human Cancers. Biomolecules 2023; 13:1184. [PMID: 37627249 PMCID: PMC10452869 DOI: 10.3390/biom13081184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Liver X receptor α (LXRα), a member of the nuclear receptor superfamily, is identified as a protein activated by ligands that interacts with the promoters of specific genes. It regulates cholesterol, bile acid, and lipid metabolism in normal physiological processes, and it participates in the development of some related diseases. However, many studies have demonstrated that LXRα is also involved in regulating numerous human malignancies. Aberrant LXRα expression is emerging as a fundamental and pivotal factor in cancer cell proliferation, invasion, apoptosis, and metastasis. Herein, we outline the expression levels of LXRα between tumor tissues and normal tissues via the Oncomine and Tumor Immune Estimation Resource (TIMER) 2.0 databases; summarize emerging insights into the roles of LXRα in the development, progression, and treatment of different human cancers and their diversified mechanisms; and highlight that LXRα can be a biomarker and therapeutic target in diverse cancers.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Man Yuan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Effects of Lycopene Attenuating Injuries in Ischemia and Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9309327. [PMID: 36246396 PMCID: PMC9568330 DOI: 10.1155/2022/9309327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Tissue and organ ischemia can lead to cell trauma, tissue necrosis, irreversible damage, and death. While intended to reverse ischemia, reperfusion can further aggravate an ischemic injury (ischemia-reperfusion injury, I/R injury) through a range of pathologic processes. An I/R injury to one organ can also harm other organs, leading to systemic multiorgan failure. A type of carotenoid, lycopene, has been shown to treat and prevent many diseases (e.g., rheumatoid arthritis, cancer, diabetes, osteoporosis, male infertility, neurodegenerative diseases, and cardiovascular disease), making it a hot research topic in health care. Some recent researches have suggested that lycopene can evidently ameliorate ischemic and I/R injuries to many organs, but few clinical studies are available. Therefore, it is essential to review the effects of lycopene on ischemic and I/R injuries to different organs, which may help further research into its potential clinical applications.
Collapse
|
5
|
Hao Q, Wu Y, Vadgama JV, Wang P. Phytochemicals in Inhibition of Prostate Cancer: Evidence from Molecular Mechanisms Studies. Biomolecules 2022; 12:1306. [PMID: 36139145 PMCID: PMC9496067 DOI: 10.3390/biom12091306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer is one of the leading causes of death for men worldwide. The development of resistance, toxicity, and side effects of conventional therapies have made prostate cancer treatment become more intensive and aggressive. Many phytochemicals isolated from plants have shown to be tumor cytotoxic. In vitro laboratory studies have revealed that natural compounds can affect cancer cell proliferation by modulating many crucial cellular signaling pathways frequently dysregulated in prostate cancer. A multitude of natural compounds have been found to induce cell cycle arrest, promote apoptosis, inhibit cancer cell growth, and suppress angiogenesis. In addition, combinatorial use of natural compounds with hormone and/or chemotherapeutic drugs seems to be a promising strategy to enhance the therapeutic effect in a less toxic manner, as suggested by pre-clinical studies. In this context, we systematically reviewed the currently available literature of naturally occurring compounds isolated from vegetables, fruits, teas, and herbs, with their relevant mechanisms of action in prostate cancer. As there is increasing data on how phytochemicals interfere with diverse molecular pathways in prostate cancer, this review discusses and emphasizes the implicated molecular pathways of cell proliferation, cell cycle control, apoptosis, and autophagy as important processes that control tumor angiogenesis, invasion, and metastasis. In conclusion, the elucidation of the natural compounds' chemical structure-based anti-cancer mechanisms will facilitate drug development and the optimization of drug combinations. Phytochemicals, as anti-cancer agents in the treatment of prostate cancer, can have significant health benefits for humans.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
6
|
Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential. Mar Drugs 2022; 20:md20080524. [PMID: 36005527 PMCID: PMC9410494 DOI: 10.3390/md20080524] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
For more than 40 years, marine microorganisms have raised great interest because of their major ecological function and their numerous applications for biotechnology and pharmacology. Particularly, Archaea represent a resource of great potential for the identification of new metabolites because of their adaptation to extreme environmental conditions and their original metabolic pathways, allowing the synthesis of unique biomolecules. Studies on archaeal carotenoids are still relatively scarce and only a few works have focused on their industrial scale production and their biotechnological and pharmacological properties, while the societal demand for these bioactive pigments is growing. This article aims to provide a comprehensive review of the current knowledge on carotenoid metabolism in Archaea and the potential applications of these pigments in biotechnology and medicine. After reviewing the ecology and classification of these microorganisms, as well as their unique cellular and biochemical characteristics, this paper highlights the most recent data concerning carotenoid metabolism in Archaea, the biological properties of these pigments, and biotechnological considerations for their production at industrial scale.
Collapse
|
7
|
Can Diet Prevent Urological Cancers? An Update on Carotenoids as Chemopreventive Agents. Nutrients 2022; 14:nu14071367. [PMID: 35405980 PMCID: PMC9002657 DOI: 10.3390/nu14071367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Urological cancers, namely prostate, bladder, kidney, testicular, and penile cancers, are common conditions that constitute almost one-quarter of all malignant diseases in men. Urological cancers tend to affect older individuals, and their development is influenced by modifiable metabolic, behavioral, and environmental risk factors. Phytochemicals may have cancer-fighting properties and protect against cancer development, slow its spread, and reduce the risk of cancer deaths in humans. This paper aims to review the current literature in regard to the effects of carotenoids in reducing urological cancer risk.
Collapse
|
8
|
Wang Q, Wang L, Abdullah ., Tian W, Song M, Cao Y, Xiao J. Co-delivery of EGCG and Lycopene via a Pickering Double Emulsion induced Synergistic Hypolipidemic Effect. Food Funct 2022; 13:3419-3430. [DOI: 10.1039/d2fo00169a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of “synergy” and its applications has rapidly increased in the food industry as a practical strategy to preserve and improve health-promoting effects of the functional ingredients. In this...
Collapse
|
9
|
Moran NE, Thomas-Ahner JM, Smith JW, Silva C, Hason NA, Erdman JW, Clinton SK. β-Carotene Oxygenase 2 Genotype Modulates the Impact of Dietary Lycopene on Gene Expression during Early TRAMP Prostate Carcinogenesis. J Nutr 2021; 152:950-960. [PMID: 34964896 PMCID: PMC8971008 DOI: 10.1093/jn/nxab445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epidemiologic studies suggest lycopene and tomato intake are inversely associated with human prostate cancer incidence. In the genetically driven murine prostate carcinogenesis model transgenic adenocarcinoma of the mouse prostate (TRAMP), prostate cancer is inhibited by feeding of lycopene or tomatoes, and these effects are modulated by the β-carotene oxygenase 2 (Bco2) genotype. OBJECTIVE We sought insight into this interaction through evaluation of prostate gene expression patterns during early TRAMP carcinogenesis. METHODS Three-week-old TRAMP/+ or TRAMP/- × Bco2+/+ or Bco2-/- mice were fed a control, lycopene beadlet, or 10% tomato powder-containing semipurified diet (providing 0, 384 and 462 mg lycopene/kg diet, respectively) for 5 wk. Gene expression patterns were evaluated by prostate cancer- and cholesterol and lipoprotein metabolism-focused arrays at age 8 wk. RESULTS The TRAMP genotype profoundly alters gene expression patterns, specifically inducing pathways associated with cell survival [z-score = 2.09, -log(P value) = 29.2, p53 signaling (z-score 1.13, -log(P value) = 13.5], and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling [z-score = 0.302, -log(P value) = 12.1], while repressing phosphatase and tensin homolog (PTEN) signaling [(z-score = -0.905, -log(P value) = 12.3], cholesterol synthesis [z-score = -1.941, -log(P-value) = 26.2], and LXR/RXR pathway activation [z-score = -1.941, -log(P value) = 23.1]. In comparison, lycopene- and tomato-feeding modestly modulate strong procarcinogenic TRAMP signaling. Lycopene decreased gene expression related to carcinogenesis [ Nkx3-1(NK3 homeobox 1)], tomato feeding increased expression of a gene involved in circadian regulation [Arntl (aryl hydrocarbon receptor nuclear translocator like)], and tomato and/or lycopene increased expression of genes involved in lipid metabolism [Fasn (fatty acid synthase), Acaca(acetyl-CoA carboxylase alpha), Srebf1 (sterol regulatory element binding transcription factor 1), Hmgcr (3-hydroxy-3-methylglutaryl-coA reductase), and Ptgs1 (prostaglandin-endoperoxide synthase 1)] (all P < 0.05). The impact of Bco2 genotype was limited to a subset of lycopene-impacted genes [Apc (adenomatous polyposis coli), Mto1 (mitochondrial TRNA translation optimization 1), Nfkb1 (nuclear factor kappa B subunit 1), andRbm39 (RNA binding motif protein 39)]. CONCLUSIONS The TRAMP genotype strongly impacts procarcinogenic gene expression prior to emergence of histopathologic disease. Dietary tomato and lycopene modestly temper these processes, while Bco2 genotype has a limited impact at this early stage. These observed patterns provide insight into the complex interactions between a dietary variable, here tomatoes and lycopene, genes impacting nutrient metabolism, and their modulating influences on oncogene-driven prostate carcinogenesis. These findings provide further mechanistic support, consistent with cancer outcomes in rodents experiments and human epidemiologic studies.
Collapse
Affiliation(s)
| | - Jennifer M Thomas-Ahner
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joshua W Smith
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Ceasar Silva
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Noor A Hason
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Dulińska-Litewka J, Sharoni Y, Hałubiec P, Łazarczyk A, Szafrański O, McCubrey JA, Gąsiorkiewicz B, Laidler P, Bohn T. Recent Progress in Discovering the Role of Carotenoids and Their Metabolites in Prostatic Physiology and Pathology with a Focus on Prostate Cancer-A Review-Part I: Molecular Mechanisms of Carotenoid Action. Antioxidants (Basel) 2021; 10:antiox10040585. [PMID: 33920256 PMCID: PMC8069951 DOI: 10.3390/antiox10040585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Among the vast variety of plant-derived phytochemicals, the group of carotenoids has continuously been investigated in order to optimize their potential application in the area of dietary intervention and medicine. One organ which has been especially targeted in many of these studies and clinical trials is the human prostate. Without doubt, carotenoids (and their endogenous derivatives—retinoids and other apo-carotenoids) are involved in intra- and intercellular signaling, cell growth and differentiation of prostate tissue. Due to the accumulation of new data on the role of different carotenoids such as lycopene (LC) and β-carotene (BC) in prostatic physiology and pathology, the present review aims to cover the past ten years of research in this area. Data from experimental studies are presented in the first part of the review, while epidemiological studies are disclosed and discussed in the second part. The objective of this compilation is to emphasize the present state of knowledge regarding the most potent molecular targets of carotenoids and their main metabolites, as well as to propose promising carotenoid agents for the prevention and treatment of prostatic diseases.
Collapse
Affiliation(s)
- Joanna Dulińska-Litewka
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
- Correspondence: ; Tel.: +48-12-422-3272
| | - Yoav Sharoni
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653 Beer Sheva, Israel;
| | - Przemysław Hałubiec
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
| | - Agnieszka Łazarczyk
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
| | - Oskar Szafrański
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody Medical Sciences Building, East Carolina University, Greenville, NC 27834, USA;
| | - Bartosz Gąsiorkiewicz
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
| | - Piotr Laidler
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.); (B.G.); (P.L.)
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-23 1445 Strassen, Luxembourg;
| |
Collapse
|
11
|
Qi WJ, Sheng WS, Peng C, Xiaodong M, Yao TZ. Investigating into anti-cancer potential of lycopene: Molecular targets. Biomed Pharmacother 2021; 138:111546. [PMID: 34311540 DOI: 10.1016/j.biopha.2021.111546] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Lycopene, the main pigment of tomatoes, possess the strongest antioxidant activity among carotenoids. Lycopene has unique structure and chemical properties. We searched the literature, via PubMed, Embase, Web of Science and Google database so on to screen citations from inception to Oct 2020 for inclusion in this study. We found that as a common phytochemical, it did not attract much attention in the past few years. However, recent studies have indicated that, in addition to antioxidant activity and the second stage of detoxification, the anticancer of lycopene is also considered to be an important determinant of tumor development including the inhibition of cell proliferation, inhibition of cell cycle progression, induction of apoptosis, inhibition of cell invasion, angiogenesis and metastasis. The effect mechanisms of lycopene are related to the regulation of several signal transduction pathways, such as PI3K/Akt pathway, modulation of insulin-like growth factors system, the suppression of activity of sex steroid hormones, the modification of relevant gene expression, and the alteration of mitochondrial function. These novel findings have suggested that lycopene acts as a promising functional natural pigment, and may be associated with a decreased risk of different types of cancer. This review presents the latest knowledge with respect to its molecular mechanisms and its molecular targets of the inhibitory effects on carcinogenesis.
Collapse
Affiliation(s)
- Wang Jia Qi
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, No. 71, Xin Min Street, Changchun 130021, Jilin, China
| | - Wang Shi Sheng
- College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116023, China
| | - Chu Peng
- Pharmacological Department, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Ma Xiaodong
- Pharmacological Department, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Tang Ze Yao
- Pharmacological Department, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
12
|
Zheng S, Li L, Li N, Du Y, Zhang N. 1, 6-O, O-Diacetylbritannilactone from Inula britannica Induces Anti-Tumor Effect on Oral Squamous Cell Carcinoma via miR-1247-3p/LXRα/ABCA1 Signaling. Onco Targets Ther 2020; 13:11097-11109. [PMID: 33149621 PMCID: PMC7605651 DOI: 10.2147/ott.s263014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy affecting the oral cavity and is associated with severe morbidity and high mortality. 1, 6-O, O-Diacetylbritannilactone (OODBL) isolated from the medicinal herb of Inula britannica has various biological activities such as anti-inflammation and anti-cancer. However, the effect of OODBL on OSCC progression remains unclear. Here, we were interested in the function of OODBL in the development of OSCC. Methods The effect of OODBL on OSCC progression was analyzed by MTT assays, colony formation assays, transwell assays, apoptosis analysis, cell cycle analysis, and in vivo tumorigenicity analysis. The mechanism investigation was performed by qPCR assays, Western blot analysis, and luciferase reporter gene assays. Results We found that OODBL inhibits the proliferation of OSCC cells in vitro. Moreover, the migration and invasion were attenuated by OODBL treatment in the OSCC cells. OODBL arrested cells at the G0/G1 phase and induced cell apoptosis. OODBL was able to up-regulate the expression of LXRα, ABCA1, and ABCG1 in the system. In addition, OODBL activated LXRα/ABCA1 signaling by targeting miR-1247-3p. Furthermore, the expression levels of cytochrome c in the cytoplasm, cleaved caspase-9, and cleaved caspase-3 were dose-dependently reduced by OODBL. Besides, OODBL increased the expression ratio of Bax to Bcl-2. Moreover, OODBL repressed tumor growth of OSCC cells in vivo. Discussion Thus, we conclude that OODBL inhibits OSCC progression by modulating miR-1247-3p/LXRα/ABCA1 signaling. Our finding provides new insights into the mechanism by which OODBL exerts potent anti-tumor activity against OSCC. OODBL may be a potential anti-tumor candidate, providing a novel clinical treatment strategy of OSCC.
Collapse
Affiliation(s)
- Shaohua Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shanxi Province, 710061, People's Republic of China
| | - Lihua Li
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People's Republic of China
| | - Na Li
- Department of Stomatology, Xi'an Shiyou University Hospital, Xi'an City, Shanxi Province, 710065, People's Republic of China
| | - Yi Du
- Jinan Stomatological Hospital, Jinan City, Shandong Province 250001, People's Republic of China
| | - Nan Zhang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xian City, Shanxi Province 710061, People's Republic of China
| |
Collapse
|
13
|
Rinninella E, Mele MC, Cintoni M, Raoul P, Ianiro G, Salerno L, Pozzo C, Bria E, Muscaritoli M, Molfino A, Gasbarrini A. The Facts about Food after Cancer Diagnosis: A Systematic Review of Prospective Cohort Studies. Nutrients 2020; 12:E2345. [PMID: 32764484 PMCID: PMC7468771 DOI: 10.3390/nu12082345] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Nutritional guidelines suggest specific energy and protein requirements for patients with cancer. However, cancer patients, often malnourished, use self-made or web-based diets to ameliorate the prognosis of their disease. This review aimed to investigate the associations between post-diagnostic diet and prognostic outcomes in cancer patients. A systematic literature search was performed in Pubmed and Web of Science databases from inception to 30 October 2019, based on fixed inclusion and exclusion criteria. The risk of bias was assessed. A total of 29 prospective studies was identified. Breast (n = 11), colorectal (n = 9), prostate (n = 8) cancers are the most studied. Low- fat diet, healthy quality diet, regular consumption of fiber such as vegetables and high-quality protein intake are beneficial while Western diet (WD) and high consumption of saturated fats could be associated with a higher risk of mortality. Bladder (n = 1), gynecological (n = 1), lung, stomach, and pancreatic cancers still remain almost unexplored. This systematic review suggested that detrimental dietary patterns such as WD should be avoided but none of the food categories (meat, dairy products) should be eliminated in cancer patients' diet. Further large prospective studies are needed to assess the role of post-diagnostic diet in patients with cancer.
Collapse
Affiliation(s)
- Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Maria Cristina Mele
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; (M.C.M.); (E.B.); (A.G.)
- UOSD di Nutrizione Avanzata in Oncologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Marco Cintoni
- Scuola di Specializzazione in Scienza dell’Alimentazione, Università di Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Pauline Raoul
- UOSD di Nutrizione Avanzata in Oncologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Gianluca Ianiro
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | | | - Carmelo Pozzo
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Emilio Bria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; (M.C.M.); (E.B.); (A.G.)
- Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Maurizio Muscaritoli
- Dipartimento di Medicina Traslazionale e di Precisione, Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy; (M.M.); (A.M.)
| | - Alessio Molfino
- Dipartimento di Medicina Traslazionale e di Precisione, Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy; (M.M.); (A.M.)
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; (M.C.M.); (E.B.); (A.G.)
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| |
Collapse
|
14
|
Mustra Rakic J, Wang XD. Role of lycopene in smoke-promoted chronic obstructive pulmonary disease and lung carcinogenesis. Arch Biochem Biophys 2020; 689:108439. [PMID: 32504553 DOI: 10.1016/j.abb.2020.108439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are a major cause of morbidity and mortality worldwide, with cigarette smoking being the single most important risk factor for both. Emerging evidence indicates alterations in reverse cholesterol transport-mediated removal of excess cholesterol from lung, and intracellular cholesterol overload to be involved in smoke-promoted COPD and lung cancer development. Since there are currently few effective treatments for COPD and lung cancer, it is important to identify food-derived, biologically active compounds, which can protect against COPD and lung cancer development. High intake of the carotenoid lycopene, as one of phytochemicals, is associated with a decreased risk of chronic lung lesions. This review article summarizes and discusses epidemiologic evidence, in vitro and in vivo studies regarding the prevention of smoke-promoted COPD and lung carcinogenesis through dietary lycopene as an effective intervention strategy. We focus on the recent research implying that lycopene preventive effect is through targeting the main genes involved in reverse cholesterol transport. This review also indicates gaps in knowledge about the function of lycopene against COPD and lung cancer, offering directions for further research.
Collapse
Affiliation(s)
- Jelena Mustra Rakic
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
15
|
Wang D, Hiebl V, Xu T, Ladurner A, Atanasov AG, Heiss EH, Dirsch VM. Impact of natural products on the cholesterol transporter ABCA1. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112444. [PMID: 31805338 DOI: 10.1016/j.jep.2019.112444] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In different countries and areas of the world, traditional medicine has been and is still used for the treatment of various disorders, including chest pain or liver complaints, of which we now know that they can be linked with altered lipid and cholesterol homeostasis. As ATP-binding cassette transporter A1 (ABCA1) plays an essential role in cholesterol metabolism, its modulation may be one of the molecular mechanisms responsible for the experienced benefit of traditional recipes. Intense research activity has been dedicated to the identification of natural products from traditional medicine that regulate ABCA1 expression. AIMS OF THE REVIEW This review surveys natural products, originating from ethnopharmacologically used plants, fungi or marine sources, which influence ABCA1 expression, providing a reference for future study. MATERIALS AND METHODS Information on regulation of ABCA1 expression by natural compounds from traditional medicine was extracted from ancient and modern books, materia medica, and electronic databases (PubMed, Google Scholar, Science Direct, and ResearchGate). RESULTS More than 60 natural compounds from traditional medicine, especially traditional Chinese medicine (TCM), are reported to regulate ABCA1 expression in different in vitro and in vivo models (such as cholesterol efflux and atherosclerotic animal models). These active compounds belong to the classes of polyketides, terpenoids, phenylpropanoids, tannins, alkaloids, steroids, amino acids and others. Several compounds appear very promising in vivo, which need to be further investigated in animal models of diseases related to ABCA1 or in clinical studies. CONCLUSION Natural products from traditional medicine constitute a large promising pool for compounds that regulate ABCA1 expression, and thus may prevent/treat diseases related to cholesterol metabolism, like atherosclerosis or Alzheimer's disease. In many cases, the molecular mechanisms of these natural products remain to be investigated.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Verena Hiebl
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, 05-552, Jastrzębiec, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchevstr., 1113, Sofia, Bulgaria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
16
|
A high consumption of tomato and lycopene is associated with a lower risk of cancer mortality: results from a multi-ethnic cohort. Public Health Nutr 2020; 23:1569-1575. [DOI: 10.1017/s1368980019003227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractObjective:We investigated the association between the consumption of tomato and lycopene and cancer mortality among US adults.Design:Prospective.Setting:The National Health and Nutrition Examination Survey (1999–2010).Participants:Participants with estimated dietary data on tomato and lycopene consumption were included. Outcome data up until 31 December 2011 were also ascertained. Cox proportional hazard regression models were used to relate baseline tomato and lycopene consumption with cancer mortality. We conducted a competing-risk survival analysis to account for deaths from other causes.Results:Adjusted Cox models showed that tomato and lycopene intake were inversely related (hazard ratio (95 % CI)) to cancer mortality: 0·86 (0·81, 0·92) and 0·79 (0·74, 0·82), respectively. In the adjusted competing-risk models, the sub-hazard ratios (95 % CI) were 0·89 (0·83, 0·94) and 0·82 (0·78, 0·86) for cancer mortality for tomato and lycopene intake, respectively. No significant interaction was found for the association between tomato and lycopene consumption and cancer mortality while comparing older (aged >50 years) v. younger adults (Pinteraction > 0·173 for all) and obese v. non-obese (Pinteraction > 0·352 for all).Conclusions:Our results demonstrate the potential beneficial effects of a high dietary intake of tomato and lycopene on cancer death. Further prospective studies are needed to explore the association.
Collapse
|
17
|
Mechanistic understanding of β-cryptoxanthin and lycopene in cancer prevention in animal models. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158652. [PMID: 32035228 DOI: 10.1016/j.bbalip.2020.158652] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
To better understand the potential function of carotenoids in the chemoprevention of cancers, mechanistic understanding of carotenoid action on genetic and epigenetic signaling pathways is critically needed for human studies. The use of appropriate animal models is the most justifiable approach to resolve mechanistic issues regarding protective effects of carotenoids at specific organs and tissue sites. While the initial impetus for studying the benefits of carotenoids in cancer prevention was their antioxidant capacity and pro-vitamin A activity, significant advances have been made in the understanding of the action of carotenoids with regards to other mechanisms. This review will focus on two common carotenoids, provitamin A carotenoid β-cryptoxanthin and non-provitamin A carotenoid lycopene, as promising chemopreventive agents or chemotherapeutic compounds against cancer development and progression. We reviewed animal studies demonstrating that β-cryptoxanthin and lycopene effectively prevent the development or progression of various cancers and the potential mechanisms involved. We highlight recent research that the biological functions of β-cryptoxanthin and lycopene are mediated, partially via their oxidative metabolites, through their effects on key molecular targeting events, such as NF-κB signaling pathway, RAR/PPARs signaling, SIRT1 signaling pathway, and p53 tumor suppressor pathways. The molecular targets by β-cryptoxanthin and lycopene, offer new opportunities to further our understanding of common and distinct mechanisms that involve carotenoids in cancer prevention. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
|
18
|
Elias MDB, Oliveira FL, Guma FCR, Martucci RB, Borojevic R, Teodoro AJ. Lycopene inhibits hepatic stellate cell activation and modulates cellular lipid storage and signaling. Food Funct 2019; 10:1974-1984. [PMID: 30889234 DOI: 10.1039/c8fo02369g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatic stellate cells are liver-specific perivascular cells, identified as the major source of collagen in liver fibrosis, following their activation and conversion to myofibroblast-like cells. Lycopene is a carotenoid with biological activities and protective effects described in different pathologies, but little is known about its role in liver protection. We evaluated the influence of lycopene on the cell cycle and lipid metabolism and monitored the possible pathways involved in lycopene inhibition of stellate cell activation. Lycopene induced expression of the lipocyte phenotype, with an accumulation of fat droplets in cytoplasm, with high synthesis and turnover of phospholipids and triglycerides. Cell proliferation analysis showed that lycopene reduced the growth of GRX cells. Lycopene induced an arrest in the G0/G1 phase, followed by a decrease of cells in the G2/M phase, regardless of the concentration of lycopene used. Lycopene modulated relevant signaling pathways related to cholesterol metabolism, cellular proliferation, and lipid metabolism. Also, lycopene treatment increased the expression of RXR-α, RXR-β, and PPARγ, important biomarkers of liver regeneration. These results show that lycopene was able to negatively modulate events related to the activation of hepatic stellate cells through mechanisms that involve changes in expression of cellular lipid metabolism factors, and suggest that this compound might provide a novel pharmacological approach for the prevention and treatment of fibrotic liver diseases.
Collapse
Affiliation(s)
- Monique de Barros Elias
- Laboratory of Functional Foods, Universidade Federal do Estado do Rio de Janeiro, Av. Pastuer 296, Brazil.
| | | | | | | | | | | |
Collapse
|
19
|
Kaplan A, Kutlu HM, Ciftci GA. Fe 3O 4 Nanopowders: Genomic and Apoptotic Evaluations on A549 Lung Adenocarcinoma Cell Line. Nutr Cancer 2019; 72:708-721. [PMID: 31335223 DOI: 10.1080/01635581.2019.1643031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The magnetite nanoparticles are progressively used in a wide range of biological applications. In the present study, we purposed to show apoptosis-inducing ability of Fe3O4 nanopowders on A549 cells. In addition, the toxic effects of Fe3O4 nanopowders were researched on L929 cells. The cytotoxicity of Fe3O4 nanopowders were evaluated on A549 and L929 cells by MTT assay and inhibited cell proliferation by time and dose-dependent manner on A549 cells but was not toxic on L929 cells. According to these findings, IC30 value of Fe3O4 nanopowders was determined as 5 µM. The early and late apoptotic cells were detected by Annexin V-FITC/PI assay using IC30 concentration of Fe3O4 nanopowders. Furthermore, The IC30 value of Fe3O4 nanopowders was not effective in the activation of caspase-3 but was effective on loss of mitochondrial membrane potential. The apoptotic index of A549 cells was investigated and found out to increase by IC30 value of Fe3O4 nanopowders using TUNEL, BrdU, Bcl-2 immunocytochemical assays. The upregulated and downregulated genes were profiled and the presence of some apoptotic genes was determined with administration of IC30 value of Fe3O4 nanopowders by microarray assay. This work suggests that Fe3O4 nanopowders could be a good candidate for therapy of lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Ayse Kaplan
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskisehir, Turkey
| | - Hatice Mehtap Kutlu
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskisehir, Turkey
| | - Gulsen Akalin Ciftci
- Faculty of Pharmacy, Department of Biochemistry, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
20
|
Mustra Rakic J, Liu C, Veeramachaneni S, Wu D, Paul L, Chen CYO, Ausman LM, Wang XD. Lycopene Inhibits Smoke-Induced Chronic Obstructive Pulmonary Disease and Lung Carcinogenesis by Modulating Reverse Cholesterol Transport in Ferrets. Cancer Prev Res (Phila) 2019; 12:421-432. [PMID: 31177203 DOI: 10.1158/1940-6207.capr-19-0063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer share the same etiologic factor, cigarette smoking. Higher consumption of dietary lycopene has been associated with lower risks of COPD and lung cancer in smokers. We investigated whether lycopene feeding protects against COPD and lung cancer in ferrets, a nonrodent model that closely mimics cigarette smoke (CS)-induced chronic bronchitis, emphysema, and lung tumorigenesis in human. We also explored whether the protective effect of lycopene is associated with restoring reverse cholesterol transport (RCT), a key driver in persistent inflammation with CS exposure. Ferrets (4 groups, n = 12-16/group) were exposed to a combination of tobacco carcinogen (NNK) and CS with or without consuming lycopene at low and high doses (equivalent to ∼30 and ∼90 mg lycopene/day in human, respectively) for 22 weeks. Results showed that dietary lycopene at a high dose significantly inhibited NNK/CS-induced chronic bronchitis, emphysema, and preneoplastic lesions, including squamous metaplasia and atypical adenomatous hyperplasia, as compared with the NNK/CS alone (P < 0.05). Lycopene feeding also tended to decrease the lung neoplastic lesions. Furthermore, lycopene feeding significantly inhibited NNK/CS-induced accumulation of total cholesterol, and increased mRNA expression of critical genes related to the RCT (PPARα, LXRα, and ATP-binding cassette transporters ABCA1 and ABCG1) in the lungs, which were downregulated by the NNK/CS exposure. The present study has provided the first evidence linking a protective role of dietary lycopene against COPD and preneoplastic lesions to RCT-mediated cholesterol accumulation in lungs.
Collapse
Affiliation(s)
- Jelena Mustra Rakic
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts.,Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Chun Liu
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts
| | - Sudipta Veeramachaneni
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts
| | - Dayong Wu
- Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts.,Nutritional Immunology Lab, JM USDA-HNRCA at Tufts University, Boston, Massachusetts
| | - Ligi Paul
- Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - C-Y Oliver Chen
- Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Lynne M Ausman
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts.,Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts. .,Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| |
Collapse
|
21
|
Ganjali S, Ricciuti B, Pirro M, Butler AE, Atkin SL, Banach M, Sahebkar A. High-Density Lipoprotein Components and Functionality in Cancer: State-of-the-Art. Trends Endocrinol Metab 2019; 30:12-24. [PMID: 30473465 DOI: 10.1016/j.tem.2018.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/05/2023]
Abstract
Cancer is the second leading cause of death in western countries, and thus represents a major global public health issue. Whilst it is well-recognized that diet, obesity, and smoking are risk factors for cancer, the role of low levels of high-density lipoprotein cholesterol (HDL-C) in cancer is less well appreciated. Conflicting evidence suggests that serum HDL-C levels may be either positively or negatively associated with cancer incidence and mortality. Such disparate associations are supported in part by the multitude of high-density lipoprotein (HDL) functions that can all have an impact on cancer cell biology. The aim of this review is to provide a comprehensive overview of the crosstalk between HDLs and cancer, focusing on the molecular mechanisms underlying this association.
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Biagio Ricciuti
- Department of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Ngoc NB, Lv P, Zhao WE. Suppressive effects of lycopene and β-carotene on the viability of the human esophageal squamous carcinoma cell line EC109. Oncol Lett 2018; 15:6727-6732. [PMID: 29731858 DOI: 10.3892/ol.2018.8175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/10/2018] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms underlying the chemopreventive effects of carotenoids in different types of cancer are receiving increasing attention. In the present study, the role of peroxisome proliferator-activated receptor γ (PPARγ) in the effect of lycopene and β-carotene on the viability of EC109 human esophageal squamous carcinoma cells was investigated. The viability of EC109 cells was evaluated using MTT assays. The effects of lycopene and β-carotene on the expression of PPARγ, p21WAF1/CIP1, cyclin D1 and cyclooxygenase-2 (COX-2) were analyzed by western blotting. Lycopene and β-carotene (5-40 µM) dose- and time-dependently reduced the viability of the EC109 cells. GW9662, an irreversible PPARγ antagonist, partly attenuated the decrease in EC109 cell viability induced by these carotenoids. Lycopene and β-carotene treatments upregulated the expression of PPARγ and p21WAF1/CIP1, and downregulated the expression of cyclin D1 and COX-2. These modulatory effects of the carotenoid treatments were suppressed by GW9662, suggesting that the inhibition of EC109 cell viability by lycopene and β-carotene involves PPARγ signaling pathways and the modulation of p21WAF1/CIP1, cyclin D1 and COX-2 expression.
Collapse
Affiliation(s)
- Nguyen Ba Ngoc
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.,Faculty of Food Industry, College of Food Industry, Danang 550000, Vietnam
| | - Pin Lv
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.,School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Wen-En Zhao
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
23
|
Houston M. Dyslipidemia. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Huang H, He Y, Zhang L, Xiang H, Li D, Liu W, Xu XT, Goodin S, Zhang K, Zheng X. Phenethyl isothiocyanate in combination with dibenzoylmethane inhibits the androgen-independent growth of prostate cancer cells. Food Funct 2018; 9:2398-2408. [DOI: 10.1039/c7fo01983a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study investigates the inhibitory effect of PEITC and DBM in combination on the progression of androgen-dependent VCaP prostate tumors to androgen independence.
Collapse
|
25
|
Tomato consumption and prostate cancer risk: a systematic review and meta-analysis. Sci Rep 2016; 6:37091. [PMID: 27841367 PMCID: PMC5107915 DOI: 10.1038/srep37091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
Previous studies have reported controversial results on the association between tomato consumption and prostate cancer risk. Hence, we performed a meta-analysis to comprehensively evaluate this relationship. A total of 24 published studies with 15,099 cases were included. Relative risks (RR) and 95% confidence intervals (CI) were pooled with a random-effects model. Tomato intake was associated with a reduced risk of prostate cancer (RR 0.86, 95% CI 0.75–0.98, P = 0.019; P < 0.001 for heterogeneity, I2 = 72.7%). When stratified by study design, the RRs for case-control and cohort studies were 0.76 (95% CI 0.61–0.94, P = 0.010) and 0.96 (95% CI 0.84–1.10, P = 0.579), respectively. In the subgroup analysis by geographical region, significant protective effects were observed in Asian (RR 0.43, 95% CI 0.22–0.85, P = 0.015) and Oceania populations (RR 0.81, 95% CI 0.67–0.99, P = 0.035), but not in other geographical populations. Begg’s test indicated a significant publication bias (P = 0.015). Overall, tomato intake may have a weak protective effect against prostate cancer. Because of the huge heterogeneity and null results in cohort studies, further prospective studies are needed to explore the potential relationship between tomato consumption and prostate cancer risk.
Collapse
|
26
|
Sun C, Zhang G, Luan S, Luan C, Shao H, Dong F, Liu X. Evodiamine inhibits the proliferation of leukemia cell line K562 by regulating peroxisome proliferators-activated receptor gamma (PPARγ) pathway. J Recept Signal Transduct Res 2015; 36:422-8. [DOI: 10.3109/10799893.2015.1122040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Casey SC, Amedei A, Aquilano K, Azmi AS, Benencia F, Bhakta D, Bilsland AE, Boosani CS, Chen S, Ciriolo MR, Crawford S, Fujii H, Georgakilas AG, Guha G, Halicka D, Helferich WG, Heneberg P, Honoki K, Keith WN, Kerkar SP, Mohammed SI, Niccolai E, Nowsheen S, Vasantha Rupasinghe HP, Samadi A, Singh N, Talib WH, Venkateswaran V, Whelan RL, Yang X, Felsher DW. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol 2015; 35 Suppl:S199-S223. [PMID: 25865775 PMCID: PMC4930000 DOI: 10.1016/j.semcancer.2015.02.007] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer.
Collapse
Affiliation(s)
- Stephanie C Casey
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Fabian Benencia
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Alan E Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chandra S Boosani
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Laboratory, Guildford, Surrey, United Kingdom
| | | | - Sarah Crawford
- Department of Biology, Southern Connecticut State University, New Haven, CT, United States
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | | | - William G Helferich
- University of Illinois at Urbana-Champaign, Champaign-Urbana, IL, United States
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, Prague, Czech Republic
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sid P Kerkar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | | | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, Canada
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science University, Amman, Jordan
| | | | - Richard L Whelan
- Mount Sinai Roosevelt Hospital, Icahn Mount Sinai School of Medicine, New York City, NY, United States
| | - Xujuan Yang
- University of Illinois at Urbana-Champaign, Champaign-Urbana, IL, United States
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
28
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
29
|
Linnewiel-Hermoni K, Khanin M, Danilenko M, Zango G, Amosi Y, Levy J, Sharoni Y. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch Biochem Biophys 2015; 572:28-35. [DOI: 10.1016/j.abb.2015.02.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/24/2022]
|
30
|
Kolberg M, Pedersen S, Bastani NE, Carlsen H, Blomhoff R, Paur I. Tomato Paste Alters NF-κB and Cancer-Related mRNA Expression in Prostate Cancer Cells, Xenografts, and Xenograft Microenvironment. Nutr Cancer 2015; 67:305-15. [DOI: 10.1080/01635581.2015.990575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Lin PH, Aronson W, Freedland SJ. Nutrition, dietary interventions and prostate cancer: the latest evidence. BMC Med 2015; 13:3. [PMID: 25573005 PMCID: PMC4286914 DOI: 10.1186/s12916-014-0234-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) remains a leading cause of mortality in US men and the prevalence continues to rise world-wide especially in countries where men consume a 'Western-style' diet. Epidemiologic, preclinical and clinical studies suggest a potential role for dietary intake on the incidence and progression of PCa. 'This minireview provides an overview of recent published literature with regard to nutrients, dietary factors, dietary patterns and PCa incidence and progression. Low carbohydrates intake, soy protein, omega-3 (w-3) fat, green teas, tomatoes and tomato products and zyflamend showed promise in reducing PCa risk or progression. A higher saturated fat intake and a higher β-carotene status may increase risk. A 'U' shape relationship may exist between folate, vitamin C, vitamin D and calcium with PCa risk. Despite the inconsistent and inconclusive findings, the potential for a role of dietary intake for the prevention and treatment of PCa is promising. The combination of all the beneficial factors for PCa risk reduction in a healthy dietary pattern may be the best dietary advice. This pattern includes rich fruits and vegetables, reduced refined carbohydrates, total and saturated fats, and reduced cooked meats. Further carefully designed prospective trials are warranted.
Collapse
Affiliation(s)
- Pao-Hwa Lin
- Department of Medicine, Division of Nephrology, Duke University Medical Center, Box 3487, Durham, NC 27710 USA
| | - William Aronson
- Urology Section, Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA USA
- Department of Urology, UCLA School of Medicine, Los Angeles, CA USA
| | - Stephen J Freedland
- Urology Section, Department of Surgery, Durham Veterans Affairs Medical Center, Division of Urology, Durham, NC USA
- Duke Prostate Center, Departments of Surgery and Pathology, Duke University Medical Center, Durham, NC USA
| |
Collapse
|
32
|
Du C, Li Y, Guo Y, Han M, Zhang W, Qian H. Torularhodin, isolated from Sporidiobolus pararoseus, inhibits human prostate cancer LNCaP and PC-3 cell growth through Bcl-2/Bax mediated apoptosis and AR down-regulation. RSC Adv 2015. [DOI: 10.1039/c5ra23983d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Torularhodin is one of the principal carotenoids inSporidiobolus pararoseusand has a similar structure to that of lycopene.
Collapse
Affiliation(s)
- Chao Du
- School of Food Science and Technology
- Jiangnan University
- P. R. China
| | - Yingchao Li
- School of Food Science and Technology
- Jiangnan University
- P. R. China
| | - Yahui Guo
- School of Food Science and Technology
- Jiangnan University
- P. R. China
| | - Mei Han
- School of Biotechnology
- Jiangnan University
- P. R. China
| | - Weiguo Zhang
- School of Biotechnology
- Jiangnan University
- P. R. China
| | - He Qian
- School of Food Science and Technology
- Jiangnan University
- P. R. China
- National Engineering Research Center for Functional Food
- Jiangnan University
| |
Collapse
|
33
|
Fletcher CE, Dart DA, Bevan CL. Interplay between steroid signalling and microRNAs: implications for hormone-dependent cancers. Endocr Relat Cancer 2014; 21:R409-29. [PMID: 25062737 DOI: 10.1530/erc-14-0208] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hormones are key drivers of cancer development. To date, interest has largely been focussed on the classical model of hormonal gene regulation, but there is increasing evidence for a role of hormone signalling pathways in post-translational regulation of gene expression. In particular, a complex and dynamic network of bi-directional interactions with microRNAs (miRs) at all stages of biogenesis and during target gene repression is emerging. miRs, which act mainly by negatively regulating gene expression through association with 3'-UTRs of mRNA species, are increasingly understood to be important in development, normal physiology and pathogenesis. Given recent demonstrations of altered miR profiles in a diverse range of cancers, their ability to function as oncogenes or tumour suppressors, and hormonal regulation of miRs, understanding mechanisms by which miRs are generated and regulated is vitally important. miRs are transcribed by RNA polymerase II and then processed in the nucleus by the Drosha-containing Microprocessor complex and in the cytoplasm by Dicer, before mature miRs are incorporated into the RNA-induced silencing complex. It is increasingly evident that multiple cellular signalling pathways converge upon the miR biogenesis cascade, adding further layers of regulatory complexity to modulate miR maturation. This review summarises recent advances in identification of novel components and regulators of the Microprocessor and Dicer complexes, with particular emphasis on the role of hormone signalling pathways in regulating their activity. Understanding hormone regulation of miR production and how this is perturbed in cancer are critical for the development of miR-based therapeutics and biomarkers.
Collapse
Affiliation(s)
- Claire E Fletcher
- Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, Du Cane Road, London W12 0NN, UKCardiff University School of MedicineCardiff University Peking University Cancer Institute, Cardiff CF14 4XN, UK
| | - D Alwyn Dart
- Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, Du Cane Road, London W12 0NN, UKCardiff University School of MedicineCardiff University Peking University Cancer Institute, Cardiff CF14 4XN, UK Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, Du Cane Road, London W12 0NN, UKCardiff University School of MedicineCardiff University Peking University Cancer Institute, Cardiff CF14 4XN, UK
| | - Charlotte L Bevan
- Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, Du Cane Road, London W12 0NN, UKCardiff University School of MedicineCardiff University Peking University Cancer Institute, Cardiff CF14 4XN, UK
| |
Collapse
|
34
|
Tan HL, Moran NE, Cichon MJ, Riedl KM, Schwartz SJ, Erdman JW, Pearl DK, Thomas-Ahner JM, Clinton SK. β-Carotene-9',10'-oxygenase status modulates the impact of dietary tomato and lycopene on hepatic nuclear receptor-, stress-, and metabolism-related gene expression in mice. J Nutr 2014; 144:431-9. [PMID: 24553694 PMCID: PMC3952621 DOI: 10.3945/jn.113.186676] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tomato and lycopene (ψ,ψ-carotene) consumption is hypothesized to protect against nonalcoholic steatohepatitis and hepatocarcinogenesis, processes that may depend upon diet and gene interactions. To investigate the interaction of tomato or lycopene feeding with β-carotene-9',10'-monooxygenase (Bco2) on hepatic metabolic and signaling pathways, male wild-type (WT) and Bco2(-/-) mice (3-wk-old; n = 36) were fed semi-purified control, 10% tomato powder-containing, or 0.25% lycopene beadlet-containing diets for 3 wk. Serum lycopene concentrations were higher in lycopene- and tomato-fed Bco2(-/-) mice compared with WT (P = 0.03). Tomato- and lycopene-fed mice had detectable hepatic apolipoprotein (apo)-6'-, apo-8'-, and apo-12'-lycopenal concentrations. Hepatic expression of β-carotene-15,15'-monooxygenase was increased in Bco2(-/-) mice compared with WT (P = 0.02), but not affected by diet. Evaluation of hepatic gene expression by focused quantitative reverse transcriptase-polymerase chain reaction arrays for nuclear receptors and coregulators (84 genes) and stress and metabolism (82 genes) genes indicates that tomato feeding affected 31 genes (≥1.5-fold, P < 0.05) and lycopene feeding affected 19 genes, 16 of which were affected by both diets. Lycopene down-regulation of 7 nuclear receptors and coregulators, estrogen-related receptor-α, histone deacetylase 3, nuclear receptor coactivator 4, RevErbA-β, glucocorticoid receptor, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ, coactivator 1 β was dependent upon interaction with Bco2 status. Lycopene and tomato feeding induced gene expression patterns consistent with decreased lipid uptake, decreased cell proliferation and mitosis, down-regulated aryl hydrocarbon receptor signaling, and decreased expression of genes involved in retinoid X receptor heterodimer activation. Tomato feeding also caused expression changes consistent with down-regulation of DNA synthesis and terpenoid metabolism. These data suggest tomato components, particularly lycopene, affect hepatic gene expression, potentially affecting hepatic responses to metabolic, infectious, or chemical stress.
Collapse
Affiliation(s)
- Hsueh-Li Tan
- The Interdisciplinary Program in Nutrition,Comprehensive Cancer Center, and
| | | | - Morgan J. Cichon
- Department of Food Science and Technology, Ohio State University, Columbus, OH
| | - Ken M. Riedl
- Department of Food Science and Technology, Ohio State University, Columbus, OH
| | - Steven J. Schwartz
- Comprehensive Cancer Center, and,Department of Food Science and Technology, Ohio State University, Columbus, OH
| | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL; and
| | - Dennis K. Pearl
- Comprehensive Cancer Center, and,Department of Statistics and
| | | | - Steven K. Clinton
- Comprehensive Cancer Center, and,Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, OH,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
An appraisal of the therapeutic value of lycopene for the chemoprevention of prostate cancer: A nutrigenomic approach. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Zhao H, Gu H, Zhang H, Li JH, Zhao WE. PPARγ-dependent pathway in the growth-inhibitory effects of K562 cells by carotenoids in combination with rosiglitazone. Biochim Biophys Acta Gen Subj 2013; 1840:545-55. [PMID: 24036327 DOI: 10.1016/j.bbagen.2013.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Carotenoids have been found to play roles in the prevention and therapy of some cancers which PPARγ was also discovered to be involved in. The present studies were directed to determine the inhibitory effects of carotenoids in combination with rosiglitazone, a synthetic PPARγ agonist, on K562 cell proliferation and elucidate the contribution of PPARγ-dependent pathway to cell proliferation suppression. METHODS The effects of carotenoid and rosiglitazone combination on K562 cell proliferation were evaluated by trypan blue dye exclusion assay and MTT assay. When PPARγ has been inhibited by GW9662 and siRNA, cycle-related regulator expression in K562 cells treated with carotenoid and rosiglitazone combination was analyzed by Western blotting. RESULTS Rosiglitazone inhibited K562 cell proliferation and augmented the inhibitory effects of carotenoids on the cell proliferation greatly. Specific PPARγ inhibition attenuated the cell growth suppression induced by carotenoid and rosiglitazone combination. GW9662 pre-treatment attenuated the enhanced up-regulation of PPARγ expression caused by the combination treatment. Moreover, GW9662 and PPARγ siRNA also significantly attenuated the up-regulation of p21 and down-regulation of cyclin D1 caused by carotenoids and rosiglitazone. CONCLUSIONS PPARγ signaling pathway, via stimulating p21 and inhibiting cyclin D1, may play an important role in the anti-proliferative effects of carotenoid and rosiglitazone combination on K562 cells. GENERAL SIGNIFICANCE Carotenoids in combination with rosiglitazone are hopeful to provide attractive dietary or supplementation-based and pharmaceutical strategies to treat cancer diseases.
Collapse
Affiliation(s)
- Han Zhao
- School of Chemical Engineering and Energy, Zhengzhou University, No. 100 Science Road, Zhengzhou 450001, PR China
| | | | | | | | | |
Collapse
|
37
|
Trejo-Solís C, Pedraza-Chaverrí J, Torres-Ramos M, Jiménez-Farfán D, Cruz Salgado A, Serrano-García N, Osorio-Rico L, Sotelo J. Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:705121. [PMID: 23970935 PMCID: PMC3736525 DOI: 10.1155/2013/705121] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/05/2013] [Accepted: 06/19/2013] [Indexed: 12/15/2022]
Abstract
Epidemiological studies suggest that including fruits, vegetables, and whole grains in regular dietary intake might prevent and reverse cellular carcinogenesis, reducing the incidence of primary tumours. Bioactive components present in food can simultaneously modulate more than one carcinogenic process, including cancer metabolism, hormonal balance, transcriptional activity, cell-cycle control, apoptosis, inflammation, angiogenesis and metastasis. Some studies have shown an inverse correlation between a diet rich in fruits, vegetables, and carotenoids and a low incidence of different types of cancer. Lycopene, the predominant carotenoid found in tomatoes, exhibits a high antioxidant capacity and has been shown to prevent cancer, as evidenced by clinical trials and studies in cell culture and animal models. In vitro studies have shown that lycopene treatment can selectively arrest cell growth and induce apoptosis in cancer cells without affecting normal cells. In vivo studies have revealed that lycopene treatment inhibits tumour growth in the liver, lung, prostate, breast, and colon. Clinical studies have shown that lycopene protects against prostate cancer. One of the main challenges in cancer prevention is the integration of new molecular findings into clinical practice. Thus, the identification of molecular biomarkers associated with lycopene levels is essential for improving our understanding of the mechanisms underlying its antineoplastic activity.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Departamentos de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía (INNN), C.P. 14269, Mexico City, DF, Mexico
| | - Jose Pedraza-Chaverrí
- Neurobiología Molecular y Celular INNN-UNAM, Instituto Nacional de Neurología y Neurocirugía (INNN), C.P. 14269, Mexico City, DF, Mexico
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), C.P. 04510, Mexico City, DF, Mexico
| | - Mónica Torres-Ramos
- Unidad Periferica de NeuroCiencias INNN-UNAM, Instituto Nacional de Neurología y Neurocirugía (INNN), C.P. 14269, Mexico City, DF, Mexico
| | - Dolores Jiménez-Farfán
- Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), C.P. 04510, Mexico City, DF, Mexico
| | - Arturo Cruz Salgado
- Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), C.P. 04510, Mexico City, DF, Mexico
| | - Norma Serrano-García
- Neurobiología Molecular y Celular INNN-UNAM, Instituto Nacional de Neurología y Neurocirugía (INNN), C.P. 14269, Mexico City, DF, Mexico
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), C.P. 04510, Mexico City, DF, Mexico
| | - Laura Osorio-Rico
- Neuroquimica, Instituto Nacional de Neurología y Neurocirugía (INNN), C.P. 14269, Mexico City, DF, Mexico
| | - Julio Sotelo
- Departamentos de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía (INNN), C.P. 14269, Mexico City, DF, Mexico
| |
Collapse
|
38
|
Holzapfel NP, Holzapfel BM, Champ S, Feldthusen J, Clements J, Hutmacher DW. The potential role of lycopene for the prevention and therapy of prostate cancer: from molecular mechanisms to clinical evidence. Int J Mol Sci 2013; 14:14620-46. [PMID: 23857058 PMCID: PMC3742263 DOI: 10.3390/ijms140714620] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 05/29/2013] [Accepted: 06/20/2013] [Indexed: 11/23/2022] Open
Abstract
Lycopene is a phytochemical that belongs to a group of pigments known as carotenoids. It is red, lipophilic and naturally occurring in many fruits and vegetables, with tomatoes and tomato-based products containing the highest concentrations of bioavailable lycopene. Several epidemiological studies have linked increased lycopene consumption with decreased prostate cancer risk. These findings are supported by in vitro and in vivo experiments showing that lycopene not only enhances the antioxidant response of prostate cells, but that it is even able to inhibit proliferation, induce apoptosis and decrease the metastatic capacity of prostate cancer cells. However, there is still no clearly proven clinical evidence supporting the use of lycopene in the prevention or treatment of prostate cancer, due to the only limited number of published randomized clinical trials and the varying quality of existing studies. The scope of this article is to discuss the potential impact of lycopene on prostate cancer by giving an overview about its molecular mechanisms and clinical effects.
Collapse
Affiliation(s)
- Nina Pauline Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; E-Mails: (N.P.H.); (B.M.H.)
| | - Boris Michael Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; E-Mails: (N.P.H.); (B.M.H.)
| | - Simon Champ
- Human Nutrition, BASF SE, G-ENH/MB, 68623 Lampertheim, Germany; E-Mails: (S.C.); (J.F.)
| | - Jesper Feldthusen
- Human Nutrition, BASF SE, G-ENH/MB, 68623 Lampertheim, Germany; E-Mails: (S.C.); (J.F.)
| | - Judith Clements
- Australian Prostate Cancer Research Centre, Translational Research Institute, 37 Kent Street, Woolongabba, QLD 4102, Brisbane, Australia; E-Mail:
| | - Dietmar Werner Hutmacher
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; E-Mails: (N.P.H.); (B.M.H.)
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive Northwest, Atlanta, GA 30332, USA
- Institute of Advanced Study, Technical University of Munich, Lichtenbergstr. 2a, 85748 Garching, Munich, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3138-6077; Fax: +61-7-3138-6030
| |
Collapse
|
39
|
Rafi MM, Kanakasabai S, Reyes MD, Bright JJ. Lycopene modulates growth and survival associated genes in prostate cancer. J Nutr Biochem 2013; 24:1724-34. [PMID: 23746934 DOI: 10.1016/j.jnutbio.2013.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 02/27/2013] [Accepted: 03/12/2013] [Indexed: 11/16/2022]
Abstract
Lycopene is a fat soluble red-orange carotenoid pigment present in tomato that reduces the risk for prostate cancer, a common malignancy among men. However, the mechanism by which lycopene attenuates prostate cancer is not fully defined. In this study we examined the effect of lycopene on proliferation, survival, and biomarker gene expression in prostate cancer (PC-3) cells in culture. WST-1 assay showed that lycopene induces a biphasic effect on PC-3 cells with a modest increase in proliferation at 1-5 μM, no change at 10-25 μM and a decrease at 50-100 μM doses in culture. Interestingly, combination treatment with lycopene induced anti-proliferative effect of Temozolomide on PC-3 cells. Lycopene also augmented the anti-proliferative effect of peroxisome proliferator-activated receptor gamma (PPARγ) agonists, but not Doxorubicin or Taxol, in prostate cancer. Flow cytometry analyses showed that lycopene, in combination with chemotherapeutic agents and PPARγ agonists, induced modest cell cycle arrest with significant increase in cell death by apoptosis and necrosis on prostate cancer. Gene array and quantitative reverse transcription polymerase chain reaction analyses showed that lycopene alters the expression of growth and apoptosis associated biomarkers in PC-3 cells. These findings highlight that lycopene attenuates prostate cancer by modulating the expression of growth and survival associated genes.
Collapse
Affiliation(s)
- Mohamed M Rafi
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ08901, USA
| | | | | | | |
Collapse
|
40
|
Mo W, Zhang J, Li X, Meng D, Gao Y, Yang S, Wan X, Zhou C, Guo F, Huang Y, Amente S, Avvedimento EV, Xie Y, Li Y. Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer. PLoS One 2013; 8:e56592. [PMID: 23451058 PMCID: PMC3579835 DOI: 10.1371/journal.pone.0056592] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/11/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) have been recognized as significantly involved in prostate cancer (PCa). Since androgen receptor (AR) plays a central role in PCa carcinogenesis and progression, it is imperative to systematically elucidate the causal association between AR and miRNAs, focusing on the molecular mechanisms by which miRNAs mediate AR signalling. In this study, we performed a series of time-course microarrays to observe the dynamic genome-wide expressions of mRNAs and miRNAs in parallel in hormone-sensitive prostate cancer LNCaP cells stimulated by androgen. Accordingly, we introduced Response Score to identify AR target miRNAs, as well as Modulation Score to identify miRNA target mRNAs. Based on theoretical identification and experimental validation, novel mechanisms addressing cell viability in PCa were unravelled for 3 miRNAs newly recognized as AR targets. (1) miR-19a is directly up-regulated by AR, and represses SUZ12, RAB13, SC4MOL, PSAP and ABCA1, respectively. (2) miR-27a is directly up-regulated by AR, and represses ABCA1 and PDS5B. (3) miR-133b is directly up-regulated by AR, and represses CDC2L5, PTPRK, RB1CC1, and CPNE3, respectively. Moreover, we found miR-133b is essential to PCa cell survival. Our study gives certain clues on miRNAs mediated AR signalling to cell viability by influencing critical pathways, especially by breaking through androgen’s growth restriction effect on normal prostate tissue.
Collapse
Affiliation(s)
- Wenjuan Mo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jiyuan Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Xia Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Delong Meng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Yun Gao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Shu Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Xuechao Wan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Caihong Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Fenghua Guo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Stefano Amente
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Enrico V. Avvedimento
- Department of Molecular Medicine and Biotechnology, Università degli Studi “Federico II”, Naples, Italy
- * E-mail: (EVA); (YL)
| | - Yi Xie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
- * E-mail: (EVA); (YL)
| |
Collapse
|
41
|
Masko EM, Allott EH, Freedland SJ. The relationship between nutrition and prostate cancer: is more always better? Eur Urol 2012; 63:810-20. [PMID: 23219353 DOI: 10.1016/j.eururo.2012.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/07/2012] [Indexed: 12/22/2022]
Abstract
CONTEXT Prostate cancer (PCa) remains one of the most diagnosed malignancies in the world, correlating with regions where men consume more of a so-called Western-style diet. As such, there is much interest in understanding the role of lifestyle and diet on the incidence and progression of PCa. OBJECTIVE To provide a summary of published literature with regard to dietary macro- and micronutrients and PCa incidence and progression. EVIDENCE ACQUISITION A literature search was completed using the PubMed database for all studies published on diet and PCa in June 2012 or earlier. Primary literature and meta-analyses were given preference over other review articles when possible. EVIDENCE SYNTHESIS The literature was reviewed on seven dietary components: carbohydrates, protein, fat and cholesterol, vegetables, vitamins and minerals, and phytochemicals. Current literature linking these nutrients to PCa is limited at best, but trends in the published data suggest consumption of carbohydrates, saturated and ω-6 fats, and certain vitamin supplements may promote PCa risk and progression. Conversely, consumption of many plant phytochemicals and ω-3 fatty acids seem to slow the risk and progression of the disease. All other nutrients seem to have no effect or data are inconclusive. A brief summary about the clinical implications of dietary interventions with respect to PCa prevention, treatment, and survivorship is provided. CONCLUSIONS Due to the number and heterogeneity of published studies investigating diet and PCa, it is difficult to determine what nutrients make up the perfect diet for the primary and secondary prevention of PCa. Because diets are made of multiple macro- and micronutrients, further prospective studies are warranted, particularly those investigating the relationship between whole foods instead of a single nutritional component.
Collapse
Affiliation(s)
- Elizabeth M Masko
- Division of Urologic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
42
|
Sharoni Y, Linnewiel-Hermoni K, Zango G, Khanin M, Salman H, Veprik A, Danilenko M, Levy J. The role of lycopene and its derivatives in the regulation of transcription systems: implications for cancer prevention. Am J Clin Nutr 2012; 96:1173S-8S. [PMID: 23053550 DOI: 10.3945/ajcn.112.034645] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Evidence from epidemiologic studies has suggested that carotenoids, and lycopene in particular, decrease the risk of cancer: however, not all studies support this view. To gain insight into the molecular mechanisms whereby lycopene and other carotenoids may exert their chemoprotective effects, we and others performed a series of studies that used a large panel of cancer cell lines of different lineages and animal models of human cancer. In this review we address some of the mechanisms proposed for the cancer-preventive activity of tomato lycopene, focusing on the induction of the antioxidant response element transcription system and the inhibition of the transcriptional activity of sex hormones, such as estrogens and androgens, and the activity of growth factors, such as insulin-like growth factor. We also considered the modulation by lycopene of the transcription factors peroxisome proliferator-activated receptor, retinoid X receptor, liver X receptor, and activating protein-1. The ligands and the phytonutrient regulators of these transcription systems contain electrophilic active groups, whereas lycopene and nonxanthophylic carotenoids are devoid of them. Thus, we suggest that at least some of the cellular effects of carotenoids are mediated through their derivatives formed either by chemical oxidation or by enzymatic cleavage inside the cells. This review highlights findings that pertain to this exciting avenue of research, which is currently under intense scrutiny in several laboratories worldwide.
Collapse
Affiliation(s)
- Yoav Sharoni
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka Medical Center of Kupat Holim, Beer Sheva, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang CM, Lu YL, Chen HY, Hu ML. Lycopene and the LXRα agonist T0901317 synergistically inhibit the proliferation of androgen-independent prostate cancer cells via the PPARγ-LXRα-ABCA1 pathway. J Nutr Biochem 2012; 23:1155-62. [DOI: 10.1016/j.jnutbio.2011.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 06/15/2011] [Accepted: 06/24/2011] [Indexed: 11/26/2022]
|
44
|
Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules 2012; 17:3202-42. [PMID: 22418926 PMCID: PMC6268471 DOI: 10.3390/molecules17033202] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/15/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023] Open
Abstract
Carotenoids are natural fat-soluble pigments that provide bright coloration to plants and animals. Dietary intake of carotenoids is inversely associated with the risk of a variety of cancers in different tissues. Preclinical studies have shown that some carotenoids have potent antitumor effects both in vitro and in vivo, suggesting potential preventive and/or therapeutic roles for the compounds. Since chemoprevention is one of the most important strategies in the control of cancer development, molecular mechanism-based cancer chemoprevention using carotenoids seems to be an attractive approach. Various carotenoids, such as β-carotene, a-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, fucoxanthin, canthaxanthin and astaxanthin, have been proven to have anti-carcinogenic activity in several tissues, although high doses of β-carotene failed to exhibit chemopreventive activity in clinical trials. In this review, cancer prevention using carotenoids are reviewed and the possible mechanisms of action are described.
Collapse
Affiliation(s)
- Takuji Tanaka
- Tohkai Cytopathology Institute, Cancer Research and Prevention-TCI-CaRP, 5-1-2 Minami-Uzura, Gifu 500-8285, Japan.
| | | | | |
Collapse
|
45
|
Chung J, Koo K, Lian F, Hu KQ, Ernst H, Wang XD. Apo-10'-lycopenoic acid, a lycopene metabolite, increases sirtuin 1 mRNA and protein levels and decreases hepatic fat accumulation in ob/ob mice. J Nutr 2012; 142:405-10. [PMID: 22259190 PMCID: PMC3278264 DOI: 10.3945/jn.111.150052] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/12/2011] [Accepted: 11/30/2011] [Indexed: 01/22/2023] Open
Abstract
Lycopene has been shown to be beneficial in protecting against high-fat diet-induced fatty liver. The recent demonstration that lycopene can be converted by carotene 9',10'-oxygenase into a biologically active metabolite, ALA, led us to propose that the function of lycopene can be mediated by ALA. In the present study, male ob/ob mice were fed a liquid high-fat diet (60% energy from fat) with ALA supplementation (ALA group, 240 μg · kg body weight(-1) · d(-1)) or without ALA supplementation as the control (C group) for 16 wk. Steatosis, SIRT1 expression and activity, genes involved in lipid metabolism, and ALA concentrations in the livers of mice were examined. The results showed that ALA supplementation resulted in a significant accumulation of ALA in the liver and markedly decreased the steatosis in the ALA group without altering body and liver weights compared to the C group. The mRNA and protein levels of hepatic SIRT1 were higher in the ALA group compared to the C group. SIRT1 activity also was higher in the ALA group, as indicated by the lower levels of acetylated forkhead box class O1 protein levels. In addition, the mRNA level of acetyl CoA carboxylase 1 was significantly lower in the ALA group than in the C group. Because SIRT1 plays a key role in lipid homeostasis, the present study suggests that the lycopene metabolite, ALA, protects against the development of steatosis in ob/ob mice by upregulating SIRT1 gene expression and activity.
Collapse
Affiliation(s)
- Jayong Chung
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | - Kyeongok Koo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | - Fuzhi Lian
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Kang Quan Hu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | | | - Xiang-Dong Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|
46
|
Yang CM, Huang SM, Liu CL, Hu ML. Apo-8'-lycopenal induces expression of HO-1 and NQO-1 via the ERK/p38-Nrf2-ARE pathway in human HepG2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1576-1585. [PMID: 22260728 DOI: 10.1021/jf204451n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lycopene and its metabolite apo-10'-lycopenoic acid have been shown to induce phase II detoxifying/antioxidant enzymes through activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2)-antioxidant response element (ARE) transcription system. However, little is known about whether apo-8'-lyocpenal, one of the main metabolites of lycopene in rat livers, in lycopene-containing food, and in human plasma, has similar effects. This study investigated the effect of apo-8'-lycopenal on Nrf2-ARE system-mediated heme oxygenase 1 (HO-1) and NAD(P)H:quinine oxidoreductase 1 (NQO-1) expression in human HepG2 cells. It was found that apo-8'-lycopenal (1-10 μM) significantly increased nuclear Nrf2 accumulation, ARE-luciferase activity, Nrf2-ARE binding activity, chymotrypsin-like activity, and downstream HO-1 and NQO-1 expression, but decreased cytosolic Kelch-like ECH-associated protein 1 (Keap1) expression. Results also revealed that the ERK/p38-Nrf2 pathway is involved in activation of HO-1 and NQO-1 expression by apo-8'-lycopenal using Nrf2 siRNA and ERK/p38 specific inhibitors. In addition, the activation time of lycopene on nuclear Nrf2 accumulation is slower than that of apo-8'-lycopenal, suggesting that the chemopreventive effects of lycopene may be partially attributed to its metabolites.
Collapse
Affiliation(s)
- Chih-Min Yang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | |
Collapse
|
47
|
Sharoni Y, Linnewiel-Hermoni K, Khanin M, Salman H, Veprik A, Danilenko M, Levy J. Carotenoids and apocarotenoids in cellular signaling related to cancer: a review. Mol Nutr Food Res 2011; 56:259-69. [PMID: 22102431 DOI: 10.1002/mnfr.201100311] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/22/2011] [Accepted: 09/15/2011] [Indexed: 01/01/2023]
Abstract
The basis for the vivid color of carotenoids and their antioxidant activity is the multiple conjugated double bonds, which are characteristic for these phytonutrients. Moreover, the cleavage of these oxidation-prone double bonds leads to the formation of apocarotenoids. A large number of carbonyl-containing oxidation products are expected to be produced as a result of carotenoid oxidation and these can be further metabolized into the corresponding acids and alcohols. As discussed in this review, many, but not all, of these potential products have been detected and identified in plants as well as in human and animal plasma and tissues. Some of these compounds were found to be biologically active as anticancer agents. In addition to the inhibition of cancer cell proliferation, several carotenoid metabolites were shown to modulate the activity of various transcription systems. These include ligand-activated nuclear receptors, such as the retinoic acid receptor, retinoid X receptor, peroxisome proliferator-activated receptor and estrogen receptor, as well as other transcription systems that have an important role in cancer, such as the electrophile/antioxidant response element pathway and nuclear factor-κB. Therefore, apocarotenoids can be considered as natural compounds with multifunctional, rather than monofunctional, activity and, thus, can be useful in the prevention of cancer and other degenerative diseases.
Collapse
Affiliation(s)
- Yoav Sharoni
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | | | |
Collapse
|
48
|
Simone RE, Russo M, Catalano A, Monego G, Froehlich K, Boehm V, Palozza P. Lycopene inhibits NF-kB-mediated IL-8 expression and changes redox and PPARγ signalling in cigarette smoke-stimulated macrophages. PLoS One 2011; 6:e19652. [PMID: 21625550 PMCID: PMC3098254 DOI: 10.1371/journal.pone.0019652] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/07/2011] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that lycopene, the major carotenoid present in tomato, may be preventive against smoke-induced cell damage. However, the mechanisms of such a prevention are still unclear. The aim of this study was to investigate the role of lycopene on the production of the pro-inflammatory cytokine IL-8 induced by cigarette smoke and the possible mechanisms implicated. Therefore, human THP-1 macrophages were exposed to cigarette smoke extract (CSE), alone and following a 6-h pre-treatment with lycopene (0.5–2 µM). CSE enhanced IL-8 production in a time- and a dose-dependent manner. Lycopene pre-treatment resulted in a significant inhibition of CSE-induced IL-8 expression at both mRNA and protein levels. NF-kB controlled the transcription of IL-8 induced by CSE, since PDTC prevented such a production. Lycopene suppressed CSE-induced NF-kB DNA binding, NF-kB/p65 nuclear translocation and phosphorylation of IKKα and IkBα. Such an inhibition was accompanied by a decrease in CSE-induced ROS production and NOX-4 expression. Lycopene further inhibited CSE-induced phosphorylation of the redox-sensitive ERK1/2, JNK and p38 MAPKs. Moreover, the carotenoid increased PPARγ levels which, in turn, enhanced PTEN expression and decreased pAKT levels in CSE-exposed cells. Such effects were abolished by the PPARγ inhibitor GW9662. Taken together, our data indicate that lycopene prevented CSE-induced IL-8 production through a mechanism involving an inactivation of NF-kB. NF-kB inactivation was accompanied by an inhibition of redox signalling and an activation of PPARγ signalling. The ability of lycopene in inhibiting IL-8 production, NF-kB/p65 nuclear translocation, and redox signalling and in increasing PPARγ expression was also found in isolated rat alveolar macrophages exposed to CSE. These findings provide novel data on new molecular mechanisms by which lycopene regulates cigarette smoke-driven inflammation in human macrophages.
Collapse
Affiliation(s)
| | - Marco Russo
- Institute of Nutrition, Friedrich-Schiller-Universität, Jena, Germany
| | - Assunta Catalano
- Institute of General Pathology, Catholic University, Rome, Italy
| | - Giovanni Monego
- Institute of Anatomy, Catholic University School of Medicine, Rome, Italy
| | - Kati Froehlich
- Institute of Nutrition, Friedrich-Schiller-Universität, Jena, Germany
| | - Volker Boehm
- Institute of Nutrition, Friedrich-Schiller-Universität, Jena, Germany
| | - Paola Palozza
- Institute of General Pathology, Catholic University, Rome, Italy
- * E-mail:
| |
Collapse
|