1
|
Sakayanathan P, Loganathan C, Thayumanavan P. Protection of pancreatic beta cells against high glucose-induced toxicity by astaxanthin-s-allyl cysteine diester: alteration of oxidative stress and apoptotic-related protein expression. Arch Physiol Biochem 2024; 130:316-324. [PMID: 35482540 DOI: 10.1080/13813455.2022.2064878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
Abstract
Purpose: High glucose (HG)-induced oxidative stress is associated with apoptosis in pancreatic β-cells. The protective effect of astaxanthin-s-allyl cysteine diester (AST-SAC) against HG-induced oxidative stress in pancreatic β-cells (βTC-tet cell line) in in vitro was studied.Materials and Methods: βTC-tet cell line was exposed to HG in the presence and absence of AST-SAC. Various parameters such as cell viability, reactive oxygen species generation, mitochondrial membrane potential, DNA fragmentation and expression of proteins involved in apoptosis [p53, B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax), cytochrome c and caspase 3] were studied.Results: Pre-treatment of βTC-tet cells with AST-SAC (4, 8 and 12 μg/ml) in the presence of HG (25 mM) protected the viability of the cells in a dose-dependent manner. AST-SAC treatment mitigated the oxidative stress thereby preventing the mitochondrial dysfunction, DNA damage and apoptosis in βTC-tet cells against HG toxicity. Treatment with AST-SAC prevented the increased expression of p53 under HG conditions. Further, AST-SAC treatment maintained the level of pro-apoptotic (Bax, cleaved caspase-3 and cytochrome c) and anti-apoptotic (Bcl-2) proteins to that of the control level under HG exposed conditions in βTC-tet cells.Conclusion: Altogether, AST-SAC alleviated HG-induced oxidative damage and apoptosis in pancreatic β-cells by enhancing the antioxidant status and altering apoptotic-related protein expression.
Collapse
Affiliation(s)
| | - Chitra Loganathan
- Department of Biochemistry, Periyar University, Salem, India
- Research and Development center, Bioinnov Solutions LLP, Salem, India
| | | |
Collapse
|
2
|
Lontro Alves L, Gomes Pereira P, Torres Ciambarella B, Porto Campos M, Rabelo K, Rosa Nascimento AL, Leal de Carvalho dos Santos Cunha R, Borba Vieira Andrade C, Cesar Nunes Moraes A, Bernardi A, Verdini Guimarães F, Fuentes Ribeiro da Silva J, José de Carvalho J. Beneficial Effects of Capybara Oil Supplementation on Steatosis and Liver Apoptosis in Obese Mice. J Obes 2024; 2024:7204607. [PMID: 38831961 PMCID: PMC11147678 DOI: 10.1155/2024/7204607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Obesity is a complex chronic disease characterized by excess body fat (adipose) that is harmful to health and has been a major global health problem. It may be associated with several diseases, such as nonalcoholic fatty liver disease (NAFLD). Polyunsaturated fatty acids (PUFA) are lipid mediators that have anti-inflammatory characteristics and can be found in animals and plants, with capybara oil (CO) being a promising source. So, we intend to evaluate the hepatic pathophysiological alterations in C57Bl/6 mice with NAFLD, caused by obesity, and the possible beneficial effects of OC in the treatment of this disease. Eighteen 3-month-old male C57Bl/6 mice received a control or high-fat diet for 18 weeks. From the 15th to the 18th week, the animals received treatment-through orogastric gavage-with placebo or free capybara oil (5 g/kg). Parameters inherent to body mass, glucose tolerance, evaluation of liver enzymes, percentage of hepatic steatosis, oxidative stress, the process of cell death with the apoptotic biomarkers (Bax, Bcl2, and Cytochrome C), and the ultrastructure of hepatocytes were analyzed. Even though the treatment with CO was not able to disassemble the effects on the physiological parameters, it proved to be beneficial in reversing the morphological and ultrastructural damage present in the hepatocytes. Thus, demonstrating that CO has beneficial effects in reducing steatosis and the apoptotic pathway, it is a promising treatment for NAFLD.
Collapse
Affiliation(s)
- Luciana Lontro Alves
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Priscila Gomes Pereira
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bianca Torres Ciambarella
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Miguel Porto Campos
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Kíssila Rabelo
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Lúcia Rosa Nascimento
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cherley Borba Vieira Andrade
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alan Cesar Nunes Moraes
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Electron Microscopy Laboratory of Biology Institute, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Andressa Bernardi
- Inflammation Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Jorge José de Carvalho
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Advanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutrients 2022; 14:nu14132675. [PMID: 35807857 PMCID: PMC9268915 DOI: 10.3390/nu14132675] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a “western” diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.
Collapse
|
4
|
Amick KA, Mahapatra G, Bergstrom J, Gao Z, Craft S, Register TC, Shively CA, Molina AJA. Brain region-specific disruption of mitochondrial bioenergetics in cynomolgus macaques fed a Western versus a Mediterranean diet. Am J Physiol Endocrinol Metab 2021; 321:E652-E664. [PMID: 34569271 PMCID: PMC8791787 DOI: 10.1152/ajpendo.00165.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction is evident in diseases affecting cognition and metabolism such as Alzheimer's disease and type 2 diabetes. Human studies of brain mitochondrial function are limited to postmortem tissue, preventing the assessment of bioenergetics by respirometry. Here, we investigated the effect of two diets on mitochondrial bioenergetics in three brain regions: the prefrontal cortex (PFC), the entorhinal cortex (ERC), and the cerebellum (CB), using middle-aged nonhuman primates. Eighteen female cynomolgus macaques aged 12.3 ± 0.7 yr were fed either a Mediterranean diet that is associated with healthy outcomes or a Western diet that is associated with poor cognitive and metabolic outcomes. Average bioenergetic capacity within each brain region did not differ between diets. Distinct brain regions have different metabolic requirements related to their function and disease susceptibility. Therefore, we also examined differences in bioenergetic capacity between brain regions. Mitochondria isolated from animals fed a Mediterranean diet maintained distinct differences in mitochondrial bioenergetics between brain regions, whereas animals fed the Western diet had diminished distinction in bioenergetics between brain regions. Notably, fatty acid β-oxidation was not affected between regions in animals fed a Western diet. In addition, bioenergetics in animals fed a Western diet had positive associations with fasting blood glucose and insulin levels in PFC and ERC mitochondria but not in CB mitochondria. Altogether, these data indicate that a Western diet disrupts bioenergetic patterns across brain regions and that circulating blood glucose and insulin levels in Western-diet fed animals influence bioenergetics in brain regions susceptible to Alzheimer's disease and type 2 diabetes.NEW & NOTEWORTHY We show that compared with cynomolgus macaques fed a Mediterranean diet, a Western diet resulted in diminished bioenergetic pattern between brain regions related to blood glucose and insulin levels, specifically in brain regions susceptible to neurodegeneration and diabetes. In addition, fatty acid metabolism not directly linked to the TCA cycle and glucose metabolism did not show differences in bioenergetics due to diet.
Collapse
Affiliation(s)
- K Allison Amick
- Section of Gerontology and Geriatrics, Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
- Department of Neuroscience, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Gargi Mahapatra
- Section of Gerontology and Geriatrics, Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jaclyn Bergstrom
- Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, California
| | - Zhengrong Gao
- Section of Gerontology and Geriatrics, Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Suzanne Craft
- Section of Gerontology and Geriatrics, Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Thomas C Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Carol A Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Anthony J A Molina
- Section of Gerontology and Geriatrics, Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
- Division of Geriatrics and Gerontology, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| |
Collapse
|
5
|
Borg DJ, Faridi P, Giam KL, Reeves P, Fotheringham AK, McCarthy DA, Leung S, Ward MS, Harcourt BE, Ayala R, Scheijen JL, Briskey D, Dudek NL, Schalkwijk CG, Steptoe R, Purcell AW, Forbes JM. Short Duration Alagebrium Chloride Therapy Prediabetes Does Not Inhibit Progression to Autoimmune Diabetes in an Experimental Model. Metabolites 2021; 11:426. [PMID: 34203471 PMCID: PMC8305727 DOI: 10.3390/metabo11070426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Mechanisms by which advanced glycation end products (AGEs) contribute to type 1 diabetes (T1D) pathogenesis are poorly understood. Since life-long pharmacotherapy with alagebrium chloride (ALT) slows progression to experimental T1D, we hypothesized that acute ALT therapy delivered prediabetes, may be effective. However, in female, non-obese diabetic (NODShiLt) mice, ALT administered prediabetes (day 50-100) did not protect against experimental T1D. ALT did not decrease circulating AGEs or their precursors. Despite this, pancreatic β-cell function was improved, and insulitis and pancreatic CD45.1+ cell infiltration was reduced. Lymphoid tissues were unaffected. ALT pre-treatment, prior to transfer of primed GC98 CD8+ T cell receptor transgenic T cells, reduced blood glucose concentrations and delayed diabetes, suggesting islet effects rather than immune modulation by ALT. Indeed, ALT did not reduce interferon-γ production by leukocytes from ovalbumin-pre-immunised NODShiLt mice and NODscid recipients given diabetogenic ALT treated NOD splenocytes were not protected against T1D. To elucidate β-cell effects, NOD-derived MIN6N8 β-cell major histocompatibility complex (MHC) Class Ia surface antigens were examined using immunopeptidomics. Overall, no major changes in the immunopeptidome were observed during the various treatments with all peptides exhibiting allele specific consensus binding motifs. As expected, longer MHC Class Ia peptides were captured bound to H-2Db than H-2Kb under all conditions. Moreover, more 10-12 mer peptides were isolated from H-2Db after AGE modified bovine serum albumin (AGE-BSA) treatment, compared with bovine serum albumin (BSA) or AGE-BSA+ALT treatment. Proteomics of MIN6N8 cells showed enrichment of processes associated with catabolism, the immune system, cell cycling and presynaptic endocytosis with AGE-BSA compared with BSA treatments. These data show that short-term ALT intervention, given prediabetes, does not arrest experimental T1D but transiently impacts β-cell function.
Collapse
Affiliation(s)
- Danielle J. Borg
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
- Pregnancy and Development, Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Pouya Faridi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Kai Lin Giam
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Peta Reeves
- Tolerance and Autoimmunity Group, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia; (P.R.); (R.S.)
| | - Amelia K. Fotheringham
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Domenica A. McCarthy
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Sherman Leung
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Micheal S. Ward
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Brooke E. Harcourt
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Rochelle Ayala
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Jean L. Scheijen
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, 6211 Maastricht, The Netherlands; (J.L.S.); (C.G.S.)
- Cardiovascular Research Institute Maastricht, 6211 Maastricht, The Netherlands
| | - David Briskey
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4067, Australia;
| | - Nadine L. Dudek
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Casper G. Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, 6211 Maastricht, The Netherlands; (J.L.S.); (C.G.S.)
- Cardiovascular Research Institute Maastricht, 6211 Maastricht, The Netherlands
| | - Raymond Steptoe
- Tolerance and Autoimmunity Group, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia; (P.R.); (R.S.)
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Josephine M. Forbes
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Mater Clinical School, The University of Queensland, Brisbane, QLD 4101, Australia
| |
Collapse
|
6
|
Zhuang A, Yap FYT, McCarthy D, Leung C, Sourris KC, Penfold SA, Thallas-Bonke V, Coughlan MT, Schulz BL, Forbes JM. Globally elevating the AGE clearance receptor, OST48, does not protect against the development of diabetic kidney disease, despite improving insulin secretion. Sci Rep 2019; 9:13664. [PMID: 31541173 PMCID: PMC6754370 DOI: 10.1038/s41598-019-50221-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/09/2019] [Indexed: 01/08/2023] Open
Abstract
The accumulation of advanced glycation end products (AGEs) have been implicated in the development and progression of diabetic kidney disease (DKD). There has been interest in investigating the potential of AGE clearance receptors, such as oligosaccharyltransferase-48 kDa subunit (OST48) to prevent the detrimental effects of excess AGE accumulation seen in the diabetic kidney. Here the objective of the study was to increase the expression of OST48 to examine if this slowed the development of DKD by facilitating the clearance of AGEs. Groups of 8-week-old heterozygous knock-in male mice (n = 9-12/group) over-expressing the gene encoding for OST48, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST+/-) and litter mate controls were randomised to either (i) no diabetes or (ii) diabetes induced via multiple low-dose streptozotocin and followed for 24 weeks. By the study end, global over expression of OST48 increased glomerular OST48. This facilitated greater renal excretion of AGEs but did not affect circulating or renal AGE concentrations. Diabetes resulted in kidney damage including lower glomerular filtration rate, albuminuria, glomerulosclerosis and tubulointerstitial fibrosis. In diabetic mice, tubulointerstitial fibrosis was further exacerbated by global increases in OST48. There was significantly insulin effectiveness, increased acute insulin secretion, fasting insulin concentrations and AUCinsulin observed during glucose tolerance testing in diabetic mice with global elevations in OST48 when compared to diabetic wild-type littermates. Overall, this study suggested that despite facilitating urinary-renal AGE clearance, there were no benefits observed on kidney functional and structural parameters in diabetes afforded by globally increasing OST48 expression. However, the improvements in insulin secretion seen in diabetic mice with global over-expression of OST48 and their dissociation from effects on kidney function warrant future investigation.
Collapse
Affiliation(s)
- Aowen Zhuang
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia.,School of Medicine, University of Queensland, St Lucia, Australia
| | - Felicia Y T Yap
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Immunology, Central and Eastern Clinical School, AMREP Precinct, Monash University, Melbourne, Australia
| | - Domenica McCarthy
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Chris Leung
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Australia
| | - Karly C Sourris
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Sally A Penfold
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | | | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia. .,School of Medicine, University of Queensland, St Lucia, Australia. .,Mater Clinical School, University of Queensland, St Lucia, Australia.
| |
Collapse
|
7
|
Parthsarathy V, McLaughlin CM, Harnedy PA, Allsopp PJ, Crowe W, McSorley EM, FitzGerald RJ, O'Harte FPM. Boarfish (Capros aper
) protein hydrolysate has potent insulinotropic and GLP-1 secretory activity in vitro
and acute glucose lowering effects in mice. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vadivel Parthsarathy
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| | - Christopher M. McLaughlin
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| | - Padraigin A. Harnedy
- Department of Biological Sciences; University of Limerick; Castletroy Limerick Ireland
| | - Philip J. Allsopp
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| | - William Crowe
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| | - Emeir M. McSorley
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| | - Richard J. FitzGerald
- Department of Biological Sciences; University of Limerick; Castletroy Limerick Ireland
| | - Finbarr P. M. O'Harte
- School of Biomedical Sciences; Ulster University; Cromore Road Coleraine BT52 1SA Co. Derry Northern Ireland UK
| |
Collapse
|
8
|
Lombardo GE, Lepore SM, Morittu VM, Arcidiacono B, Colica C, Procopio A, Maggisano V, Bulotta S, Costa N, Mignogna C, Britti D, Brunetti A, Russo D, Celano M. Effects of Oleacein on High-Fat Diet-Dependent Steatosis, Weight Gain, and Insulin Resistance in Mice. Front Endocrinol (Lausanne) 2018; 9:116. [PMID: 29615982 PMCID: PMC5868215 DOI: 10.3389/fendo.2018.00116] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Many reports indicate that the protective action of nutraceuticals in the Mediterranean diet, against metabolic and cardiovascular diseases, can be attributed to the action of polyphenolic components of extra-virgin olive oil (EVOO). Here, we evaluated the protective effects of oleacein, one of the most abundant secoiridoids in EVOO, on the damages/metabolic alterations caused by high-fat diet (HFD) in male C57BL/6JolaHsd mice. After 5 weeks of treatment with 20 mg/kg of oleacein, body weight, glycemia, insulinemia, serum lipids, and histologic examination of liver tissue indicated a protective action of oleacein against abdominal fat accumulation, weight gain, and liver steatosis, with improvement of insulin-dependent glucose and lipid metabolism. Both serum parameters and hepatic histologic examination were altered in mice fed with HFD. By contrast, in the animals that received oleacein, plasma glucose, cholesterol and triglyceride serum levels, and liver histology were similar to controls fed with normocaloric diet. In addition, protein levels of FAS, SREBP-1, and phospho-ERK in liver were positively modulated by oleacein, indicating an improvement in liver insulin sensitivity. In a group of obese mice, treatment with oleacein determined a light, but still significant reduction of the increase in body weight, mainly due to lesser liver steatosis enlargement, associated with reduced levels of SREBP-1 and phospho-ERK and lower levels of total serum cholesterol; in these animals, altered plasma glucose and triglyceride serum levels were not reverted by oleacein. These results indicate that HFD-related hepatic insulin resistance may be partially prevented by oral administration of oleacein, suggesting a protective role of this nutraceutical against diet-dependent metabolic alterations. Additional studies are necessary to check whether oleacein can be used as an adjuvant to improve insulin sensitivity in humans.
Collapse
Affiliation(s)
| | | | - Valeria Maria Morittu
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Carmela Colica
- CNR, IBFM UOS of Germaneto, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Antonio Procopio
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Valentina Maggisano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Nicola Costa
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Chiara Mignogna
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- Interdepartmental Service Center, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Diego Russo,
| | - Diego Russo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Diego Russo,
| | - Marilena Celano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
9
|
De Oliveira CM, De Oliveira C, Scarabelot VL, Ströher R, Macedo IC, Souza A, Lopes BC, Caumo W, Torres ILS. Hypercaloric diet and chronic stress desynchronizes the temporal pattern of rats’ insulin release. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1395528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Cleverson Moraes De Oliveira
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia – ICBS, UFRGS, Porto Alegre, Brasil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Carla De Oliveira
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia – ICBS, UFRGS, Porto Alegre, Brasil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Vanesssa Leal Scarabelot
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia – ICBS, UFRGS, Porto Alegre, Brasil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Centro de Ciências Biológicas e da Saúde (CCBS) – Universidade do Oeste do Paraná – UNIOESTE, Cascavel, Brasil
| | - Roberta Ströher
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia – ICBS, UFRGS, Porto Alegre, Brasil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS) – Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brasil
| | - Isabel Cristina Macedo
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia – ICBS, UFRGS, Porto Alegre, Brasil
- Departamento de Ciências Biológicas, Universidade Federal do Pampa, São Gabriel, Brasil
| | - Andressa Souza
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia – ICBS, UFRGS, Porto Alegre, Brasil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Bettega Costa Lopes
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia – ICBS, UFRGS, Porto Alegre, Brasil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Wolnei Caumo
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Iraci Lucena Silva Torres
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia – ICBS, UFRGS, Porto Alegre, Brasil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS) – Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brasil
| |
Collapse
|
10
|
Zhuang A, Yap FY, Bruce C, Leung C, Plan MR, Sullivan MA, Herath C, McCarthy D, Sourris KC, Kantharidis P, Coughlan MT, Febbraio MA, Hodson MP, Watt MJ, Angus P, Schulz BL, Forbes JM. Increased liver AGEs induce hepatic injury mediated through an OST48 pathway. Sci Rep 2017; 7:12292. [PMID: 28947796 PMCID: PMC5612946 DOI: 10.1038/s41598-017-12548-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
The protein oligosaccharyltransferase-48 (OST48) is integral to protein N-glycosylation in the endoplasmic reticulum (ER) but is also postulated to act as a membrane localised clearance receptor for advanced glycation end-products (AGE). Hepatic ER stress and AGE accumulation are each implicated in liver injury. Hence the objective of this study was to increase the expression of OST48 and examine the effects on hepatic function and structure. Groups of 8 week old male mice (n = 10-12/group) over-expressing the gene for OST48, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST+/-), were followed for 24 weeks, while randomised to diets either low or high in AGE content. By week 24 of the study, either increasing OST48 expression or consumption of high AGE diet impaired liver function and modestly increased hepatic fibrosis, but their combination significantly exacerbated liver injury in the absence of steatosis. DDOST+/- mice had increased both portal delivery and accumulation of hepatic AGEs leading to central adiposity, insulin secretory defects, shifted fuel usage to fatty and ketoacids, as well as hepatic glycogen accumulation causing hepatomegaly along with hepatic ER and oxidative stress. This study revealed a novel role of the OST48 and AGE axis in hepatic injury through ER stress, changes in fuel utilisation and glucose intolerance.
Collapse
Affiliation(s)
- Aowen Zhuang
- Glycation and Diabetes, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- School of Medicine, University of Queensland, St Lucia, Australia
| | - Felicia Yt Yap
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Immunology and Medicine, Central and Eastern Clinical School, AMREP Precinct, Monash University, Clayton, Australia
| | - Clinton Bruce
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Burwood, Australia
| | - Chris Leung
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Australia
| | - Manuel R Plan
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| | - Mitchell A Sullivan
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Australia
| | - Chandana Herath
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Australia
| | - Domenica McCarthy
- Glycation and Diabetes, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Karly C Sourris
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Immunology and Medicine, Central and Eastern Clinical School, AMREP Precinct, Monash University, Clayton, Australia
| | - Phillip Kantharidis
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Melinda T Coughlan
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Immunology and Medicine, Central and Eastern Clinical School, AMREP Precinct, Monash University, Clayton, Australia
| | - Mark A Febbraio
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Mark P Hodson
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, Australia
| | - Matthew J Watt
- Biomedicine Discovery Program and the Department of Physiology, Monash University, Clayton, Australia
| | - Peter Angus
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Josephine M Forbes
- Glycation and Diabetes, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Australia.
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Australia.
- Mater Clinical School, University of Queensland, St Lucia, Australia.
| |
Collapse
|
11
|
Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice. Br J Nutr 2017; 117:21-29. [PMID: 28093090 DOI: 10.1017/s0007114516004591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diets enriched with advanced glycation end products (AGE) have recently been related to muscle dysfunction processes. However, it remains unclear whether long-term exposure to an AGE-enriched diet impacts physiological characteristics of skeletal muscles. Therefore, we explored the differences in skeletal muscle mass, contractile function and molecular responses between mice receiving a diet high in AGE (H-AGE) and low in AGE (L-AGE) for 16 weeks. There were no significant differences between L-AGE and H-AGE mice with regard to body weight, food intake or epididymal fat pad weight. However, extensor digitorum longus (EDL) and plantaris (PLA) muscle weights in H-AGE mice were lower compared with L-AGE mice. Higher levels of N ε -(carboxymethyl)-l-lysine, a marker for AGE, in EDL muscles of H-AGE mice were observed compared with L-AGE mice. H-AGE mice showed lower muscle strength and endurance in vivo and lower muscle force production of PLA muscle in vitro. mRNA expression levels of myogenic factors including myogenic factor 5 and myogenic differentiation in EDL muscle were lower in H-AGE mice compared with L-AGE mice. The phosphorylation status of 70-kDa ribosomal protein S6 kinase Thr389, an indicator of protein synthesis signalling, was lower in EDL muscle of H-AGE mice than that of L-AGE mice. These findings suggest that long-term exposure to an AGE-enriched diet impairs skeletal muscle growth and muscle contractile function, and that these muscle dysfunctions may be attributed to the inhibition of myogenic potential and protein synthesis.
Collapse
|
12
|
Zhuang A, Forbes JM. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)? Glycoconj J 2016; 33:645-52. [PMID: 27270766 DOI: 10.1007/s10719-016-9693-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/07/2023]
Abstract
Diabetic patients are postulated to be in a perpetual state of oxidative stress and inflammation at sites where chronic complications occur. The accumulation of AGEs derived from both endogenous and exogenous sources (such as the diet) have been implicated in the development and progression of diabetic complications, particularly nephropathy. There has been some interest in investigating the potential for reducing the AGE burden in chronic disease, through the action of AGE "clearance" receptors, such as the advanced glycation end-product receptor 1 (AGE-R1). Reducing the burden of AGEs has been linked to attenuation of inflammation, slower progression of diabetic complications (in particular vascular and renal complications) and has been shown to extend lifespan. To date, however, there have been no direct investigations into whether AGE-R1 has any role in modulating normal kidney function, or specifically during the development and progression of diabetes. This mini-review will focus on the recent advances in knowledge around the mechanistic function of AGE-R1 and the implications of this for the pathogenesis of diabetic kidney disease.
Collapse
Affiliation(s)
- Aowen Zhuang
- Glycation and Diabetes Group, Mater Research Institute, Translational Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Group, Mater Research Institute, Translational Research Institute, The University of Queensland, South Brisbane, Queensland, Australia. .,Mater Clinical School, The University of Queensland, South Brisbane, Queensland, Australia.
| |
Collapse
|
13
|
de Courten B, de Courten MP, Soldatos G, Dougherty SL, Straznicky N, Schlaich M, Sourris KC, Chand V, Scheijen JL, Kingwell BA, Cooper ME, Schalkwijk CG, Walker KZ, Forbes JM. Diet low in advanced glycation end products increases insulin sensitivity in healthy overweight individuals: a double-blind, randomized, crossover trial. Am J Clin Nutr 2016; 103:1426-33. [PMID: 27030534 DOI: 10.3945/ajcn.115.125427] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/01/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The consumption of advanced glycation end products (AGEs) has increased because of modern food processing and has been linked to the development of type 2 diabetes in rodents. OBJECTIVE We determined whether changing dietary AGE intake could modulate insulin sensitivity and secretion in healthy, overweight individuals. DESIGN We performed a double-blind, randomized, crossover trial of diets in 20 participants [6 women and 14 men; mean ± SD body mass index (in kg/m(2)): 29.8 ± 3.7]. Isoenergetic- and macronutrient-matched diets that were high or low in AGE content were alternately consumed for 2 wk and separated by a 4-wk washout period. At the beginning and end of each dietary period, a hyperinsulinemic-euglycemic clamp and an intravenous glucose tolerance test were performed. Dietary, plasma and urinary AGEs N(€)-(carboxymethyl)lysine (CML), N(€)-(carboxyethyl)lysin (CEL), and methylglyoxal-derived hydroimadazolidine (MG-H1) were measured with the use of mass spectrometry. RESULTS Participants consumed less CML, CEL, and MG-H1 during the low-AGE dietary period than during the high-AGE period (all P < 0.05), which was confirmed by changes in urinary AGE excretion. There was an overall difference in insulin sensitivity of -2.1 mg · kg(-1) · min(-1) between diets (P = 0.001). Insulin sensitivity increased by 1.3 mg · kg(-1) · min(-1) after the low-AGE diet (P = 0.004), whereas it showed a tendency to decrease by 0.8 mg · kg(-1) · min(-1) after the high-AGE diet (P = 0.086). There was no difference in body weight or insulin secretion between diets (P = NS). CONCLUSIONS A diet that is low in AGEs may reduce the risk of type 2 diabetes by increasing insulin sensitivity. Hence, a restriction in dietary AGE content may be an effective strategy to decrease diabetes and cardiovascular disease risks in overweight individuals. This trial was registered at clinicaltrials.gov as NCT00422253.
Collapse
Affiliation(s)
- Barbora de Courten
- Monash Centre for Health, Research and Implementation, School of Public Health and Preventive Medicine, and Baker IDI Heart and Diabetes Institute, Melbourne, Australia;
| | - Maximilian Pj de Courten
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Georgia Soldatos
- Monash Centre for Health, Research and Implementation, School of Public Health and Preventive Medicine, and Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | - Nora Straznicky
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Markus Schlaich
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Karly C Sourris
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Vibhasha Chand
- Monash Centre for Health, Research and Implementation, School of Public Health and Preventive Medicine, and Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Jean Ljm Scheijen
- Laboratory for Metabolism and Vascular Medicine, Experimental Internal Medicine, Maastricht University, Maastricht, Netherlands
| | | | - Mark E Cooper
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Casper G Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Experimental Internal Medicine, Maastricht University, Maastricht, Netherlands
| | - Karen Z Walker
- Department of Nutrition and Dietetics, Monash University, Melbourne, Australia; Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Josephine M Forbes
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Glycation and Diabetes, Mater Research Institute-University of Queensland, ITranslational Research Institute, Brisbane, Australia; and Mater Clinical School, University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Lombardo GE, Arcidiacono B, De Rose RF, Lepore SM, Costa N, Montalcini T, Brunetti A, Russo D, De Sarro G, Celano M. Normocaloric Diet Restores Weight Gain and Insulin Sensitivity in Obese Mice. Front Endocrinol (Lausanne) 2016; 7:49. [PMID: 27303363 PMCID: PMC4882321 DOI: 10.3389/fendo.2016.00049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
An increased incidence of obesity is registered worldwide, and its association with insulin resistance and type 2 diabetes is closely related with increased morbidity and mortality for cardiovascular diseases. A major clinical problem in the management of obesity is the non-adherence or low adherence of patients to a hypocaloric dietetic restriction. In this study, we evaluated in obese mice the effects of shifting from high-calorie foods to normal diet on insulin sensitivity. Male C57BL/6JOlaHsd mice (n = 20) were fed with high fat diet (HFD) for a 24-week period. Afterward, body weight, energy, and food intake were measured in all animals, together with parameters of insulin sensitivity by homeostatic model assessment of insulin resistance and plasma glucose levels in response to insulin administration. Moreover, in half of these mice, Glut4 mRNA levels were measured in muscle at the end of the high fat treatment, whereas the rest of the animals (n = 10) were shifted to normocaloric diet (NCD) for 10 weeks, after which the same analyses were carried out. A significant reduction of body weight was found after the transition from high to normal fat diet, and this decrease correlated well with an improvement in insulin sensitivity. In fact, we found a reduction in serum insulin levels and the recovery of insulin responsiveness in terms of glucose disposal measured by insulin tolerance test and Glut4 mRNA and protein expression. These results indicate that obesity-related insulin resistance may be rescued by shifting from HFD to NCD.
Collapse
Affiliation(s)
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | | - Saverio Massimo Lepore
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Nicola Costa
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Diego Russo,
| | - Diego Russo
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Diego Russo,
| | | | - Marilena Celano
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
15
|
Kellow NJ, Coughlan MT. Effect of diet-derived advanced glycation end products on inflammation. Nutr Rev 2015; 73:737-59. [PMID: 26377870 DOI: 10.1093/nutrit/nuv030] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products (AGEs) formed via the Maillard reaction during the thermal processing of food contributes to the flavor, color, and aroma of food. A proportion of food-derived AGEs and their precursors is intestinally absorbed and accumulates within cells and tissues. AGEs have been implicated in the pathogenesis of diabetes-related complications and several chronic diseases via interaction with the receptor for AGEs, which promotes the transcription of genes that control inflammation. The dicarbonyls, highly reactive intermediates of AGE formation, are also generated during food processing and may incite inflammatory responses through 1) the suppression of protective pathways, 2) the incretin axis, 3) the modulation of immune-mediated signaling, and 4) changes in gut microbiota profile and metabolite sensors. In animal models, restriction of dietary AGEs attenuates chronic low-grade inflammation, but current evidence from human studies is less clear. Here, the emerging relationship between excess dietary AGE consumption and inflammation is explored, the utility of dietary AGE restriction as a therapeutic strategy for the attenuation of chronic diseases is discussed, and possible avenues for future investigation are suggested.
Collapse
Affiliation(s)
- Nicole J Kellow
- N.J. Kellow and M.T. Coughlan are with the Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia. M.T. Coughlan is with the Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- N.J. Kellow and M.T. Coughlan are with the Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia. M.T. Coughlan is with the Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Kandarakis SA, Piperi C, Topouzis F, Papavassiliou AG. Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog Retin Eye Res 2014; 42:85-102. [PMID: 24905859 DOI: 10.1016/j.preteyeres.2014.05.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/27/2022]
Abstract
Advanced glycation end products (AGEs) have been implicated in vision loss associated with macula degeneration, cataract formation, diabetic retinopathy and glaucoma. This pathogenic potential is mainly attributed to their accumulation in ocular tissues where they mediate aberrant crosslinking of extracellular matrix proteins and disruption of endothelial junctional complexes that affects cell permeability, mediates angiogenesis and breakdown of the inner blood-retinal barrier. Furthermore, AGEs severely affect cellular metabolism by disrupting ATP production, enhancing oxidative stress and modulating gene expression of anti-angiogenic and anti-inflammatory genes. Elucidation of AGE-induced mechanisms of action in different eye compartments will help in the understanding of the complex cellular and molecular processes associated with eye diseases. Several pharmaceutical agents with anti-glycating and anti-oxidant properties as well as AGE crosslink 'breakers' have been currently applied to eye diseases. The role of diet and the beneficial effects of certain nutriceuticals provide an alternative way to manage chronic visual disorders that affect the quality of life of millions of people.
Collapse
Affiliation(s)
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Fotis Topouzis
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, 'AHEPA' Hospital, Thessaloniki, Greece
| | | |
Collapse
|
17
|
Król E, Krejpcio Z, Iwanik K. Supplementary chromium(III) propionate complex does not protect against insulin resistance in high-fat-fed rats. Biol Trace Elem Res 2014; 157:147-55. [PMID: 24415067 PMCID: PMC3905177 DOI: 10.1007/s12011-013-9877-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 12/16/2013] [Indexed: 01/19/2023]
Abstract
Improper eating habits such as high-fat or high-carbohydrate diets are responsible for metabolic changes resulting in impaired glucose tolerance, hyperinsulinemia, insulin resistance, and ultimately diabetes. Although the essentiality of trivalent chromium for humans has been recently questioned by researchers, pharmacological dosages of this element can improve insulin sensitivity in experimental animals and diabetic subjects. The aim of the study was to assess the preventive potential of the supplementary chromium(III) propionate complex (CrProp) in rats fed a high-fat diet. The experiment was conducted on 32 male Wistar rats divided into four groups and fed the following diets: the control (C, AIN-93G), high-fat diets (HF, 40% energy from fat), and a high-fat diet supplemented with CrProp at dosages of 10 and 50 mg Cr/kg diet (HF + Cr10 and HF + Cr50, respectively). After 8 weeks, high-fat feeding led to an increased body mass, hyperinsulinemia, insulin resistance, a decreased serum urea concentration, accumulation of lipid droplets in hepatocytes, and increased renal Fe and splenic Cu contents. Supplementary CrProp in both dosages did not alleviate these changes but increased renal Cr content and normalized splenic Cu content in high-fat-fed rats. Supplementary CrProp does not prevent the development of insulin resistance in rats fed a high-fat diet.
Collapse
Affiliation(s)
- Ewelina Król
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland,
| | | | | |
Collapse
|
18
|
Neves FA, Cortez E, Bernardo AF, Mattos ABM, Vieira AK, Malafaia TDO, Thole AA, Rodrigues-Cunha ACDS, Garcia-Souza EP, Sichieri R, Moura AS. Heart energy metabolism impairment in Western-diet induced obese mice. J Nutr Biochem 2013; 25:50-7. [PMID: 24314865 DOI: 10.1016/j.jnutbio.2013.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/20/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
Nutritional transition has contributed to growing obesity, mainly by changing eating habits of the population. The mechanisms by which diet-induced obesity leads to cardiac injury are not completely understood, but it is known that obesity is associated to impaired cardiac function and energy metabolism, increasing morbidity and mortality. Therefore, our study aimed to investigate the mechanisms underlying cardiac metabolism impairment related to Western diet-induced obesity. After weaning, male Swiss mice were fed a Western diet for 16 weeks in order to induce obesity. After this period, the content of proteins involved in heart energy metabolism GLUT1, cytosolic lysate and plasma membrane GLUT4, AMPK, pAMPK, IRβ, IRS-1, PGC-1α, CPT1 and UCP2 was evaluated. Also, the oxidative phosphorylation of myocardial fibers was measured by high-resolution respirometry. Mice in the Western diet group (WG) presented altered biometric parameters compared to those in control group, including higher body weight, increased myocardial lipid deposition and glucose intolerance, which demonstrate the obesogenic role of Western diet. WG presented increased CPT1 and UCP2 contents and decreased IRS-1, plasma membrane GLUT4 and PGC-1α contents. In addition, WG presented cardiac mitochondrial dysfunction and reduced biogenesis, demonstrating a lower capacity of carbohydrates and fatty acid oxidation and also decreased coupling between oxidative phosphorylation and adenosine triphosphate synthesis. Cardiac metabolism impairment related to Western diet-induced obesity is probably due to damaged myocardial oxidative capacity, reduced mitochondrial biogenesis and mitochondria uncoupling, which compromise the bioenergetic metabolism of heart.
Collapse
Affiliation(s)
- Fabiana A Neves
- Laboratory of Nutrition Physiology and Development, Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Forbes JM, Sourris KC, de Courten MPJ, Dougherty SL, Chand V, Lyons JG, Bertovic D, Coughlan MT, Schlaich MP, Soldatos G, Cooper ME, Straznicky NE, Kingwell BA, de Courten B. Advanced glycation end products (AGEs) are cross-sectionally associated with insulin secretion in healthy subjects. Amino Acids 2013; 46:321-6. [PMID: 23832534 DOI: 10.1007/s00726-013-1542-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/04/2013] [Indexed: 12/23/2022]
Abstract
It has been postulated that chronic exposure to high levels of advanced glycation end products (AGEs), in particular from dietary sources, can impair insulin secretion. In the present study, we investigated the cross-sectional relationship between AGEs and acute insulin secretion during an intravenous glucose tolerance test (IVGTT) and following a 75 g oral glucose tolerance test (OGTT) in healthy humans. We report the cross-sectional association between circulating AGE concentrations and insulin secretory function in healthy humans (17 F: 27 M, aged 30 ± 10 years) with a wide range of BMI (24.6-31.0 kg/m(2)). Higher circulating concentrations of AGEs were related to increased first phase insulin secretion during IVGTT (r = 0.43; p < 0.05) and lower 2-h glucose concentrations during OGTT (r = -0.31; p < 0.05). In addition, fasting (r = -0.36; p < 0.05) and 2-h glucose concentrations were negatively related to circulating levels of soluble receptor for AGE (RAGE) isoforms (r = -0.39; p < 0.01). In conclusion, in healthy humans, we show a cross-sectional association between advanced glycation end products and acute insulin secretion during glucose tolerance testing.
Collapse
|