1
|
Sain A, Khamrai D, Kandasamy T, Naskar D. Apigenin exerts anti-cancer effects in colon cancer by targeting HSP90AA1. J Biomol Struct Dyn 2025; 43:3557-3569. [PMID: 38157250 DOI: 10.1080/07391102.2023.2299305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Apigenin, a flavonoid, has shown early promise in colon cancer (CC); thus, exploring potential mechanisms of Apigenin is obligatory. In this study, shared targets of Apigenin and CC were identified through online tools, which were then subjected to functional enrichment analyses, Gene Ontology and KEGG. Further, the protein-protein interaction network of the shared targets was developed (via STRING). The top targets of Apigenin in CC were identified by molecular docking; further investigated for differential gene and protein expression in CC and their influence on CC patient survival (using TCGA data). Out of 13 hub genes, the top 3 targets (HSP90AA1, MMP9, PTGS2) were selected based on docking score. Their expression was significantly elevated and related to poor overall survival in CC (except PTGS2). Molecular dynamics simulation further validated protein-ligand interactions and divulged HSP90AA1 as the best target of Apigenin in CC. Finally, the anti-cancer effects of Apigenin and its major metabolite, luteolin, were investigated in CC, which is involved in the cytotoxicity of CC cells (COLO-205) by reducing HSP90AA1 expression revealed by real-time PCR. Thus, HSP90AA1 was identified as one of the prime targets of Apigenin in CC, and Apigenin could be effective against CC.
Collapse
Affiliation(s)
- Arindam Sain
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Nadia, West Bengal, India
| | - Dipshikha Khamrai
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Nadia, West Bengal, India
| | - Thirukumaran Kandasamy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam, India
| | - Debdut Naskar
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Nadia, West Bengal, India
| |
Collapse
|
2
|
Abdelmaksoud NM, Abulsoud AI, Abdelghany TM, Elshaer SS, Samaha A, Maurice NW, Rizk SM, Senousy MA. Targeting the SIRT3/MnSOD and JNK/HMGB1/Beclin 1 Axes: Role of Apigenin in Multifaceted Metabolic Intervention in Colorectal Cancer. J Biochem Mol Toxicol 2025; 39:e70095. [PMID: 39692359 DOI: 10.1002/jbt.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/11/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer worldwide. While chemotherapy remains the standard treatment approach, natural products have emerged as a promising alternative. Among these, apigenin, a natural flavonoid, has garnered significant attention due to its pro-oxidant and antioxidant properties in various types of cancer. This study aimed to assess the potential impact of apigenin in CRC treatment by targeting mitochondrial SIRT3, HMGB1, and beclin 1-mediated autophagy in a mouse model of CRC. We administered 20 mg/kg of dimethyl hydrazine (DMH) intraperitoneally once weekly for 20 weeks to induce CRC in C57BL/6 mice. After 6 weeks of initiating the study, apigenin was intragastrically co-administered by oral gavage at 25 and 50 mg/kg until the end of week 20. The results revealed significant weight loss, shortening of the colon, and diarrhea in DMH-induced CRC, which are considered the marks of CRC. In addition, histopathological examination revealed dysplastic changes in the DMH-treated group, while no dysplasia was found in the apigenin-treated CRC groups. Importantly, the administration of apigenin to DMH-treated animals has led to a significant reduction of SIRT3 and MnSOD expression levels with a significant increase in LC3-II at either dose and a significant dose-dependent increase in the levels of MDA, c-JNK, HMGB1, and beclin 1 compared to the DMH-treated group. In conclusion, apigenin may have a promising role in suppressing DMH-induced CRC. It elicits a pro-oxidant activity by suppressing the gene expression of SIRT3 and subsequently, its target MnSOD, resulting in increased reactive oxygen species (ROS) and lipid peroxidation. The released ROS, in turn, activates JNK-mediated autophagy by enhancing HMGB1, beclin 1, and LC3-II protein levels.
Collapse
Affiliation(s)
| | - Ahmed I Abulsoud
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
- Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Samaha
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Nadine W Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherine Maher Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| |
Collapse
|
3
|
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, Ramadan WS, Chelakkot AL. Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology 2025; 33:11-47. [PMID: 39580755 DOI: 10.1007/s10787-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Despite the recent advancements in developing bioactive nutraceuticals as anticancer modalities, their pharmacodynamics, safety profiles, and tolerability remain elusive, limiting their success in clinical trials. The failure of anticancer drugs in clinical trials can be attributed to the changes in drug clearance, absorption, and cellular responses, which alter the dose-response efficacy, causing adverse health effects. Flavonoids demonstrate a biphasic dose-response phenomenon exerting a stimulatory or inhibitory effect and often follow a U-shaped curve in different preclinical cancer models. A double-edged sword, bioflavonoids' antioxidant or prooxidant properties contribute to their hormetic behavior and facilitate redox homeostasis by regulating the levels of reactive oxygen species (ROS) in cells. Emerging reports suggest a need to discuss the pharmacodynamic broad-spectrum of plant flavonoids to improve their therapeutic efficacy, primarily to determine the ideal dose for treating cancer. This review discusses the dose-response effects of a few common plant flavonoids against some types of cancers and assesses their safety and tolerability when administered to patients. Moreover, we have emphasized the role of dietary-rich plant flavonoids as nutraceuticals in cancer treatment and prevention.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE.
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Shimy Mathew
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, UAE
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Noor Mustapha Cherkaoui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Mohammed Ayyub
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Serin Yaser Alsaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Joshua George Thomas
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Asha Caroline Cyril
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
4
|
Wang R, Li Y, Ji J, Kong L, Huang Y, Liu Z, Lu L. The Emerging Role of Herbal Medicines in Cancer by Interfering with Posttranslational Modifications. Antioxid Redox Signal 2025; 42:150-164. [PMID: 38970420 DOI: 10.1089/ars.2023.0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Significance: Herbal medicines have a long history of comprehensive cancer treatment through various posttranslational modifications (PTMs). Recently, emerging evidence revealed that dysregulation of reactive oxygen species (ROS) and ROS-regulated signaling pathways influence cancer initiation, growth, and progression in a paradoxical role with either low levels or increasing levels of basal ROS. However, ROS-triggered modifications of target proteins in the face of ROS-mediated signal transduction are not fully understood in the anticancer therapies of herbal medicines. In this review, we briefly introduce the PTM-dependent regulations of herbal medicines, and then focus on the current ideals that targeting ROS-dependent PTMs via antioxidant and redox signaling pathways can provide a promising strategy in herbal-based anticancer effects. Recent Advances: Advanced development in highly sensitive mass spectrometry-based techniques has helped utilize ROS-triggered protein modifications in numerous cancers. Accumulating evidence has been achieved in laboratory to extensively ascertain the biological mechanism of herbal medicines targeting ROS in cancer therapy. Two general mechanisms underlining ROS-induced cell signaling include redox state and oxidative modification of target protein, indicating a new perspective to comprehend the intricate dialogues between herbal medicines and cancer cellular contexts. Critical Issues: Complex components of herbal medicines limit the benefits of herbal-based cancer therapies. In this review, we address that ROS-dependent PTMs add a layer of proteomic complexity to the cancer through altering the protein structure, expression, function, and localization. Elaborating ROS-triggered PTMs implicated in cell signaling, apoptosis, and transcriptional regulation function, and the possible cellular signaling, has provided important information about the contribution of many ROS targeting herbal therapies in anticancer effects. Continued optimization of proteomic strategies for PTM analysis in herbal medicines is also briefly discussed. Future Directions: Rigorous evaluations of herbal medicines and proteomic strategies are necessary to explore the aberrant regulation of ROS-triggered antioxidant and redox signaling contributing to the novel protein targets and herbal-associated pharmacological issues. These efforts will eventually help develop more herbal drugs as modern therapeutic agents. Antioxid. Redox Signal. 42, 150-164.
Collapse
Affiliation(s)
- Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui Ji
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingwei Kong
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yukai Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Zhuang H, Zhang X, Wu S, Yong P, Yan H. Opportunities and challenges of foodborne polyphenols applied to anti-aging health foods. Food Sci Biotechnol 2024; 33:3445-3461. [PMID: 39493397 PMCID: PMC11525373 DOI: 10.1007/s10068-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract With the increasing proportion of the global aging population, aging mechanisms and anti-aging strategies become hot topics. Nonetheless, the safety of non-natural anti-aging active molecule and the changes in physiological function that occur during aging have not been clarified. There is therefore a need to develop safer pharmaceutical interventions for anti-aging. Numerous types of research have shown that food-derived biomolecules are of great interest due to their unique contribution to anti-aging safety issues and the prevention of degenerative diseases. Among these, polyphenolic organic compounds are widely used in anti-aging research for their ability to mitigate the physiological functional changes that occur during aging. The mechanisms include the free radical theory, immune aging theory, cellular autophagy theory, epigenetic modification theory, gut microbial effects on aging theory, telomere shortening theory, etc. This review elucidates the mechanisms underlying the anti-aging effects of polyphenols found in food-derived bioactive molecules, while also addressing the challenges associated with anti-aging pharmaceuticals. The review concludes by offering insights into the current landscape of anti-aging active molecule research, aiming to serve as a valuable resource for further scholarly inquiry. Graphical abstract
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| |
Collapse
|
6
|
Demir K, Turgut R, Şentürk S, Işıklar H, Günalan E. The Therapeutic Effects of Bioactive Compounds on Colorectal Cancer via PI3K/Akt/mTOR Signaling Pathway: A Critical Review. Food Sci Nutr 2024; 12:9951-9973. [PMID: 39723045 PMCID: PMC11666977 DOI: 10.1002/fsn3.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 12/28/2024] Open
Abstract
Understanding the molecular signaling pathways of colorectal cancer (CRC) can be accepted as the first step in treatment strategy. Permanent mTOR signaling activation stimulates the CRC process via various biological processes. It supplies the survival of CRC stem cells, tumorigenesis, morbidity, and decreased response to drugs in CRC pathogenesis. Therefore, inhibition of the mTOR signaling by numerous bioactive components may be effective against CRC. The study aims to discuss the therapeutic capacity of various polyphenols, terpenoids, and alkaloids on CRC via the PI3K/Akt/mTOR pathway. The potential molecular effects of bioactive compounds on the mTOR pathway's upstream and downstream targets are examined. Each bioactive component causes various physiological processes, such as triggering free radical production, disruption of mitochondrial membrane potential, cell cycle arrest, inhibition of CRC stem cell migration, and suppression of glycolysis through mTOR signaling inhibition. As a result, carcinogenesis is inhibited by inducing apoptosis and autophagy. However, it should be noted that studies are primarily in vitro dose-dependent treatment researchers. This study raises awareness about the role of phenolic compounds in treating CRC, contributing to their future use as anticancer agents. These bioactive compounds have the potential to be developed into food supplementation to prevent and treat various cancer types including CRC. This review has the potential to lead to further development of clinical studies. In the future, mTOR inhibition by applying several bioactive agents using advanced drug delivery systems may contribute to CRC treatment with 3D cell culture and in vivo clinical studies.
Collapse
Affiliation(s)
- Kübra Demir
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
- Faculty of Health Science, Department of Nutrition and DieteticsSabahattin Zaim UniversityIstanbulTürkiye
| | - Rana Turgut
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Selcen Şentürk
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Handan Işıklar
- Faculty of Medicine, Department of Internal MedicineYalova UniversityYalovaTürkiye
| | - Elif Günalan
- Faculty of Health Science, Department of Nutrition and DieteticsIstanbul Health and Technology UniversityIstanbulTürkiye
| |
Collapse
|
7
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Moar K, Yadav S, Pant A, Deepika, Maurya PK. Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review. Indian J Clin Biochem 2024; 39:470-488. [PMID: 39346722 PMCID: PMC11436542 DOI: 10.1007/s12291-024-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 10/01/2024]
Abstract
The use of drugs in chemotherapy poses numerous side effects. Hence the use of natural substances that can help in the prevention and cure of the disease is a dire necessity. Cancer is a deadly illness and combination of diseases, the menace of which is rising with every passing year. The research community and scientists from all over the world are working towards finding a cure of the disease. The use of polyphenols which are naturally derived from plants have a great potential to be used as anti-cancer drugs and also the use of fruits and vegetables which are rich in these polyphenols can also help in the prevention of diseases. The study aims to compile the available literature and research studies on the anti-cancer effects of polyphenols and the signaling pathways that are affected by them. To review the anti-cancer effects of polyphenols, Google Scholar, PubMed and ScienceDirect were used to study the literature available. The article that have been used for literature review were filtered using keywords including cancer, polyphenols and signaling pathways. Majorly articles from the last 10 years have been considered for the review but relevant articles from earlier than 10 years have also been considered. Almost 400 articles were studied for the review and 200 articles have been cited. The current review shows the potential of polyphenols as anti-cancer compounds and how the consumption of a diet rich in polyphenols can help in the prevention of cancer. Because of their capacity to affect a variety of oncogenic and oncosuppressive signaling pathways, phytochemicals derived from plants have been effectively introduced as an alternative anticarcinogenic medicines. Graphical Abstract
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| |
Collapse
|
9
|
Ahmadzadeh K, Roshdi Dizaji S, Ramezani F, Imani F, Shamseddin J, Sarveazad A, Yousefifard M. Potential therapeutic effects of apigenin for colorectal adenocarcinoma: A systematic review and meta-analysis. Cancer Med 2024; 13:e70171. [PMID: 39254067 PMCID: PMC11386296 DOI: 10.1002/cam4.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
PURPOSE Therapeutic management of colorectal cancer (CRC) does not yet yield promising long-term results. Therefore, there is a need for further investigation of possible therapeutic options. Various experiments have studied the effects of apigenin on CRC and have shown conflicting results. This systematic review and meta-analysis investigates the currently existing evidence on the effect of apigenin on CRC. METHODS Medline, Embase, Scopus, and Web of Science databases were searched for articles related to apigenin and its effect on CRC in the preclinical setting. Cell viability, growth inhibition, apoptosis, and cell cycle arrest for in-vitro, and body weight, tumor size, and mortality in in-vivo studies were extracted as outcomes. RESULTS Thirty-nine articles investigating colorectal adenocarcinoma were included in this meta-analysis. Thirty-seven of these studies had data for in vitro experiments, with eight studies having data for in vivo experiments. Six articles had both in vitro and in vivo assessments. Our analysis showed apigenin reduces cell viability and induces growth inhibition, apoptosis, and cell cycle arrest in in vitro studies. The few in vivo studies indicate that apigenin decreases tumor size while showing no effects on the body weight of animal colorectal adenocarcinoma models. CONCLUSION Our results demonstrated that apigenin, through reducing cell viability, inducing growth inhibition, apoptosis, and cell cycle arrest, and also by decreasing the tumor size, can be considered as a possible adjuvant agent in the management of colorectal adenocarcinoma. However, further in vivo studies are needed before any efforts to translate the current evidence into clinical studies.
Collapse
Affiliation(s)
| | | | - Fatemeh Ramezani
- Physiology Research CenterIran University of Medical SciencesTehranIran
| | - Farnad Imani
- Pain Research Center, Department of Anesthesiology and Pain MedicineIran University of Medical SciencesTehranIran
| | - Jebreil Shamseddin
- Infectious and Tropical Diseases Research CenterHormozgan Health Institute, Hormozgan University of Medical SciencesBandar AbbasIran
| | - Arash Sarveazad
- Colorectal Research CenterIran University of Medical SciencesTehranIran
- Nursing Care Research CenterIran University of Medical SciencesTehranIran
| | - Mahmoud Yousefifard
- Physiology Research CenterIran University of Medical SciencesTehranIran
- Pediatric Chronic Kidney Disease Research CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Abdelmaksoud NM, Abulsoud AI, Abdelghany TM, Elshaer SS, Rizk SM, Senousy MA, Maurice NW. Uncovering SIRT3 and SHMT2-dependent pathways as novel targets for apigenin in modulating colorectal cancer: In vitro and in vivo studies. Exp Cell Res 2024; 441:114150. [PMID: 38971519 DOI: 10.1016/j.yexcr.2024.114150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Despite significant advances in the treatment of colorectal cancer (CRC), identification of novel targets and treatment options are imperative for improving its prognosis and survival rates. The mitochondrial SIRT3 and SHMT2 have key roles in metabolic reprogramming and cell proliferation. This study investigated the potential use of the natural product apigenin in CRC treatment employing both in vivo and in vitro models and explored the role of SIRT3 and SHMT2 in apigenin-induced CRC apoptosis. The role of SHMT2 in CRC patients' survival was verified using TCGA database. In vivo, apigenin treatment restored the normal colon appearance. On the molecular level, apigenin augmented the immunohistochemical expression of cleaved caspase-3 and attenuated SIRT3 and SHMT2 mRNA expression CRC patients with decreased SHMT2 expression had improved overall and disease-free survival rates. In vitro, apigenin reduced the cell viability in a time-dependent manner, induced G0/G1 cell cycle arrest, and increased the apoptotic cell population compared to the untreated control. Mechanistically, apigenin treatment mitigated the expression of SHMT2, SIRT3, and its upstream long intergenic noncoding RNA LINC01234 in CRC cells. Conclusively, apigenin induces caspase-3-dependent apoptosis in CRC through modulation of SIRT3-triggered mitochondrial pathway suggesting it as a promising therapeutic agent to improve patient outcomes.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11823, Egypt; Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt.
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Sherine Maher Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Nadine W Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
11
|
Gupta M, Ahmad J, Ahamad J, Kundu S, Goel A, Mishra A. Flavonoids as promising anticancer therapeutics: Contemporary research, nanoantioxidant potential, and future scope. Phytother Res 2023; 37:5159-5192. [PMID: 37668281 DOI: 10.1002/ptr.7975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
Flavonoids are natural polyphenolic compounds considered safe, pleiotropic, and readily available molecules. It is widely distributed in various food products such as fruits and vegetables and beverages such as green tea, wine, and coca-based products. Many studies have reported the anticancer potential of flavonoids against different types of cancers, including solid tumors. The chemopreventive effect of flavonoids is attributed to various mechanisms, including modulation of autophagy, induction of cell cycle arrest, apoptosis, and antioxidant defense. Despite of significant anticancer activity of flavonoids, their clinical translation is limited due to their poor biopharmaceutical attributes (such as low aqueous solubility, limited permeability across the biological membranes (intestinal and blood-brain barrier), and stability issue in biological systems). A nanoparticulate system is an approach that is widely utilized to improve the biopharmaceutical performance and therapeutic efficacy of phytopharmaceuticals. The present review discusses the significant anticancer potential of promising flavonoids in different cancers and the utilization of nanoparticulate systems to improve their nanoantioxidant activity further to enhance the anticancer activity of loaded promising flavonoids. Although, various plant-derived secondary metabolites including flavonoids have been recommended for treating cancer, further vigilant research is warranted to prove their translational values.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Archit Goel
- All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
12
|
Shi J, Ji X, Shan S, Zhao M, Bi C, Li Z. The interaction between apigenin and PKM2 restrains progression of colorectal cancer. J Nutr Biochem 2023; 121:109430. [PMID: 37597817 DOI: 10.1016/j.jnutbio.2023.109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Apigenin, a flavonoid that widely existed in vegetables and fruits, possesses anticarcinogenic, low toxicity, and no mutagenic properties, suggesting that apigenin is a potential therapeutic agent for tumors. However, the underlying anti-cancer molecular target of apigenin is still unclear. Therefore, to reveal the direct target and amino acid site of apigenin against colorectal cancer is the focus of this study. In the present study, the results proved that the anti-CRC activity of apigenin was positively correlated with pyruvate kinase M2 (PKM2) expression, characterized by the inhibition of cell proliferation and increase of apoptotic effects induced by apigenin in LS-174T cells of knock down PKM2. Next, pull-down and MALDI-TOF/TOF analysis determined that apigenin might interact directly with PKM2 in HCT-8 cells. Further, the study confirmed that lysine residue 433 (K433) was a key amino acid site for PKM2 binding to apigenin. Apigenin restricted the glycolysis of LS-174T and HCT-8 cells by targeting the K433 site of PKM2, thereby playing an anti-CRC role in vivo and in vitro. Meanwhile, apigenin markedly attenuated tumor growth without any adverse effects. Taken together, these findings reveal that apigenin is worthy of consideration as a promising PKM2 inhibitor for the prevention of CRC.
Collapse
Affiliation(s)
- Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Xiaodan Ji
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Mengyun Zhao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Cai Bi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China.
| |
Collapse
|
13
|
Goyal H, Sharma R, Lamba D, Kaur J. Folic acid depletion along with inhibition of the PERK arm of endoplasmic reticulum stress pathway promotes a less aggressive phenotype of hepatocellular carcinoma cells. Mol Cell Biochem 2023; 478:2057-2068. [PMID: 36609634 DOI: 10.1007/s11010-022-04651-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Folate is a vital vitamin involved in one-carbon metabolism and any changes in folate status may lead to epigenetic alterations. It is already known that stages and liver cancer progression are negatively correlated with folate levels. Nevertheless, mechanisms involved in folate deficiency in HCC (Hepatocellular carcinoma) are still not completely understood. So, this study tests the hypothesis that due to the increased demand for ER (endoplasmic reticulum) proteins, folate deficiency might lead to the induction of UPR (unfolded protein response), which is further correlated with HCC outcomes. HCC cells were cultured in both folate normal (FN) and folate deficient (FD) conditions and the expression of genes of ER stress pathway was investigated. The results demonstrated activation of UPR via induction of PERK, ATF4, and LAMP3. Besides this, FD reduced the migratory capacity and the invasiveness of HCC cells along with the reduction in mesenchymal markers like vimentin but increased apoptosis. Treatment with GSK2606414 (PERK inhibitor) decreased the FD induced expression of PERK, ATF4, and LAMP3 in FD cells. Also, GSK2606414 was found to increase apoptotic cell death and to further reduce the cancer hallmarks selectively in FD cells but not in FN cells. Altogether, our data suggest that targeting the ER stress pathway along with folate deficiency may provide a more promising elimination of the metastatic potential of HCC cells contributing to more effective therapeutic agents.
Collapse
Affiliation(s)
- Himanshi Goyal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Renuka Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dikshit Lamba
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
14
|
Hossain MA, Rahman MH, Sultana H, Ahsan A, Rayhan SI, Hasan MI, Sohel M, Somadder PD, Moni MA. An integrated in-silico Pharmaco-BioInformatics approaches to identify synergistic effects of COVID-19 to HIV patients. Comput Biol Med 2023; 155:106656. [PMID: 36805222 PMCID: PMC9911982 DOI: 10.1016/j.compbiomed.2023.106656] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND With high inflammatory states from both COVID-19 and HIV conditions further result in complications. The ongoing confrontation between these two viral infections can be avoided by adopting suitable management measures. PURPOSE The aim of this study was to figure out the pharmacological mechanism behind apigenin's role in the synergetic effects of COVID-19 to the progression of HIV patients. METHOD We employed computer-aided methods to uncover similar biological targets and signaling pathways associated with COVID-19 and HIV, along with bioinformatics and network pharmacology techniques to assess the synergetic effects of apigenin on COVID-19 to the progression of HIV, as well as pharmacokinetics analysis to examine apigenin's safety in the human body. RESULT Stress-responsive, membrane receptor, and induction pathways were mostly involved in gene ontology (GO) pathways, whereas apoptosis and inflammatory pathways were significantly associated in the Kyoto encyclopedia of genes and genomes (KEGG). The top 20 hub genes were detected utilizing the shortest path ranked by degree method and protein-protein interaction (PPI), as well as molecular docking and molecular dynamics simulation were performed, revealing apigenin's strong interaction with hub proteins (MAPK3, RELA, MAPK1, EP300, and AKT1). Moreover, the pharmacokinetic features of apigenin revealed that it is an effective therapeutic agent with minimal adverse effects, for instance, hepatoxicity. CONCLUSION Synergetic effects of COVID-19 on the progression of HIV may still be a danger to global public health. Consequently, advanced solutions are required to give valid information regarding apigenin as a suitable therapeutic agent for the management of COVID-19 and HIV synergetic effects. However, the findings have yet to be confirmed in patients, suggesting more in vitro and in vivo studies.
Collapse
Affiliation(s)
- Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh; Center for Advanced Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, 7003, Bangladesh.
| | - Habiba Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Asif Ahsan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Saiful Islam Rayhan
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Imran Hasan
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Pratul Dipta Somadder
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
15
|
Santin (5,7-Dihydroxy-3,6,4'-Trimetoxy-Flavone) Enhances TRAIL-Mediated Apoptosis in Colon Cancer Cells. Life (Basel) 2023; 13:life13020592. [PMID: 36836951 PMCID: PMC9962120 DOI: 10.3390/life13020592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
TRAIL (Tumor necrosis factor-Related Apoptosis-Inducing Ligand) has the ability to selectively kill cancer cells without being toxic to normal cells. This endogenous ligand plays an important role in surveillance and anti-tumor immunity. However, numerous tumor cells are resistant to TRAIL-induced apoptosis. In this study, the apoptotic effect of santin in combination with TRAIL on colon cancer cells was examined. Flow cytometry was used to detect the apoptosis and expression of death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Mitochondrial membrane potential (ΔΨm) was evaluated by DePsipher staining with the use of fluorescence microscopy. We have shown for the first time that flavonoid santin synergizes with TRAIL to induce apoptosis in colon cancer cells. Santin induced TRAIL-mediated apoptosis through increased expression of death receptors TRAIL-R1 and TRAIL-R2 and augmented disruption of the mitochondrial membrane in SW480 and SW620 cancer cells. The obtained data may indicate the potential role of santin in colon cancer chemoprevention through the enhancement of TRAIL-mediated apoptosis.
Collapse
|
16
|
Pandey P, Khan F, Upadhyay TK. Deciphering the modulatory role of apigenin targeting oncogenic pathways in human cancers. Chem Biol Drug Des 2023; 101:1446-1458. [PMID: 36746671 DOI: 10.1111/cbdd.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Cancer is a complicated malignancy controlled by numerous intrinsic and extrinsic pathways. There has been a significant increase in interest in recent years in the elucidation of cancer treatments based on natural extracts that have fewer side effects. Numerous natural product-derived chemicals have been investigated for their anticancer effects in the search for an efficient chemotherapeutic method. Therefore, the rationale behind this review is to provide a detailed insights about the anticancerous potential of apigenin via modulating numerous cell signaling pathways. An ingestible plant-derived flavonoid called apigenin has been linked to numerous anticancerous potential in numerous experimental and biological studies. Apigenin has been reported to induce cell growth arrest and apoptotic induction by modulating multiple cell signaling pathways in a wider range of human tumors including those of the breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach. Oncogenic protein networks, abnormal cell signaling, and modulation of the apoptotic machinery are only a few examples of diverse molecular interactions and processes that have not yet been thoroughly addressed by scientific research. Thus, keeping this fact in mind, we tried to focus our review towards summarizing the apigenin-mediated modulation of oncogenic pathways in various malignancies that can be further utilized to develop a potent therapeutic alternative for the treatment of various cancers.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
17
|
De S, Paul S, Manna A, Majumder C, Pal K, Casarcia N, Mondal A, Banerjee S, Nelson VK, Ghosh S, Hazra J, Bhattacharjee A, Mandal SC, Pal M, Bishayee A. Phenolic Phytochemicals for Prevention and Treatment of Colorectal Cancer: A Critical Evaluation of In Vivo Studies. Cancers (Basel) 2023; 15:993. [PMID: 36765950 PMCID: PMC9913554 DOI: 10.3390/cancers15030993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer-related death worldwide. Limitations with existing treatment regimens have demanded the search for better treatment options. Different phytochemicals with promising anti-CRC activities have been reported, with the molecular mechanism of actions still emerging. This review aims to summarize recent progress on the study of natural phenolic compounds in ameliorating CRC using in vivo models. This review followed the guidelines of the Preferred Reporting Items for Systematic Reporting and Meta-Analysis. Information on the relevant topic was gathered by searching the PubMed, Scopus, ScienceDirect, and Web of Science databases using keywords, such as "colorectal cancer" AND "phenolic compounds", "colorectal cancer" AND "polyphenol", "colorectal cancer" AND "phenolic acids", "colorectal cancer" AND "flavonoids", "colorectal cancer" AND "stilbene", and "colorectal cancer" AND "lignan" from the reputed peer-reviewed journals published over the last 20 years. Publications that incorporated in vivo experimental designs and produced statistically significant results were considered for this review. Many of these polyphenols demonstrate anti-CRC activities by inhibiting key cellular factors. This inhibition has been demonstrated by antiapoptotic effects, antiproliferative effects, or by upregulating factors responsible for cell cycle arrest or cell death in various in vivo CRC models. Numerous studies from independent laboratories have highlighted different plant phenolic compounds for their anti-CRC activities. While promising anti-CRC activity in many of these agents has created interest in this area, in-depth mechanistic and well-designed clinical studies are needed to support the therapeutic use of these compounds for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Samhita De
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Sourav Paul
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | - Anirban Manna
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | | | - Koustav Pal
- Jawaharlal Institute Post Graduate Medical Education and Research, Puducherry 605 006, India
| | - Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Vinod Kumar Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Anantapur 515 721, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology, Chennai 600 036, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | | | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
18
|
Moslehi M, Rezaei S, Talebzadeh P, Ansari MJ, Jawad MA, Jalil AT, Rastegar-Pouyani N, Jafarzadeh E, Taeb S, Najafi M. Apigenin in cancer therapy: Prevention of genomic instability and anticancer mechanisms. Clin Exp Pharmacol Physiol 2023; 50:3-18. [PMID: 36111951 DOI: 10.1111/1440-1681.13725] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
The incidence of cancer has been growing worldwide. Better survival rates following the administration of novel drugs and new combination therapies may concomitantly cause concern regarding the long-term adverse effects of cancer therapy, for example, second primary malignancies. Moreover, overcoming tumour resistance to anticancer agents has been long considered as a critical challenge in cancer research. Some low toxic adjuvants such as herb-derived molecules may be of interest for chemoprevention and overcoming the resistance of malignancies to cancer therapy. Apigenin is a plant-derived molecule with attractive properties for chemoprevention, for instance, promising anti-tumour effects, which may make it a desirable adjuvant to reduce genomic instability and the risks of second malignancies among normal tissues. Moreover, it may improve the efficiency of anticancer modalities. This paper aims to review various effects of apigenin in both normal tissues and malignancies. In addition, we explain how apigenin may have the ability to protect usual cells against the genotoxic repercussions following radiotherapy and chemotherapy. Furthermore, the inhibitory effects of apigenin on tumours will be discussed.
Collapse
Affiliation(s)
- Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Rezaei
- Department of Chemistry, University of Houston, Houston, Texas, USA
| | - Pourya Talebzadeh
- Student Research Committee, Tehran Medical Faculty, Islamic Azad University, Tehran, Iran
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
Cicek M, Unsal V, Emre A, Doganer A. Investigation of the Effects of Apigenin, a Possible Therapeutic Agent, on Cytotoxic and SWH Pathway in Colorectal Cancer (HT29) Cells. Adv Pharm Bull 2023; 13:188-195. [PMID: 36721804 PMCID: PMC9871274 DOI: 10.34172/apb.2023.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023] Open
Abstract
Purpose: Colorectal cancer (CRC) is one of the most common and fatal malignancies in humans, still leading to serious morbidity and mortality. We here aimed to investigate the effects of flavonoid apigenin, which is considered to have anti-tumoral activity on CRC with high epidemiological prevalence, on cell proliferation and cell survivals, and the positive and negative dose-dependent effects of genetic or mutational alterations in SWH pathway components on HT29 CRC cell lines. Methods: Human colon cancer cell lines HT-29 were commercially available. In each flask, 5 groups were formed, each of which consists of 5,000 cells for different dose groups and the cells were plated. After a 24 and 48 h incubation period, cytotoxicity values were measured by MTT assay and gene expression was assessed by real-time polymerase chain reaction (PCR) analysis method. Results: Application of 12.5 and 25 nM of apigenin significantly increased cell death in HT29 cell lines. LATS1, STK3 and TP53 gene expression decreased in the same dose groups compared to control and other groups. Conclusion: It has been concluded that TP53 gene is strongly correlated with LATS1 and STK3 genes among the SWH pathway factors in the progression of CRC and could be used as an important marker for early detection of malignant transmission. In addition, it may be effective in CRC cases especially when 25 nM of apigenin applies for therapeutic purpose.
Collapse
Affiliation(s)
- Mustafa Cicek
- Department of Medical Biology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaraş, Turkey
| | - Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, 47200, Mardin, Turkey.,Corresponding Author: Velid Unsal, Tel: (0482) 2134002,
| | - Arif Emre
- Department of Surgery, Kahramanmaras Sutcu Imam University Faculty of Medicine, 46100, Kahramanmaras, Turkey
| | - Adem Doganer
- Department of Biostatistics and Medical Informatics, Kahramanmaras Sutcu Imam University Faculty of Medicine, 46100, Kahramanmaras, Turkey
| |
Collapse
|
20
|
Sain A, Kandasamy T, Naskar D. In silico approach to target PI3K/Akt/mTOR axis by selected Olea europaea phenols in PIK3CA mutant colorectal cancer. J Biomol Struct Dyn 2022; 40:10962-10977. [PMID: 34296655 DOI: 10.1080/07391102.2021.1953603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Worldwide disease burden of colorectal cancer (CRC) increasing alarmingly, but a suitable therapeutic strategy is not available yet. Abnormal activation of the PI3K/Akt/mTOR signalling because of mutation in the PIK3CA gene is a driving force behind CRC development. Therefore, this study aimed to comprehensively characterise the potential of phenolic compounds from Olea europaea against the PI3K/Akt/mTOR axis by using in silico methodologies. Molecular docking was utilised to study key interactions between phenolic compounds of O. europaea and target proteins PI3K, Akt, mTOR with reference to known inhibitor of target. Drug likeness and ADME/T properties of selected phenols were explored by online tools. Dynamic properties and binding free energy of target-ligand interactions were studied by molecular dynamic simulation and MM-PBSA method respectively. Molecular docking revealed apigenin, luteolin, pinoresinol, oleuropein, and oleuropein aglycone as the top five phenolic compounds which showed comparable/better binding affinity than the known inhibitor of the respective target protein. Drug likeness and ADME/T properties were employed to select the top three phenols namely, apigenin, luteolin, and pinoresinol which shown to bind stably to the catalytic cleft of target proteins as confirmed by molecular dynamics simulations. Therefore, Apigenin, luteolin, and pinoresinol have the potential to be used as the non-toxic alternative to synthetic chemical inhibitors generally used in CRC treatment as they can target PI3K/Akt/mTOR axis. Particularly, pinoresinol showed great potential as dual PI3K/mTOR inhibitor. However, this study needs to be complemented with future in vitro and in vivo studies to provide an alternative way of CRC treatment. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arindam Sain
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Debdut Naskar
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| |
Collapse
|
21
|
Zhang Y, Liu K, Yan C, Yin Y, He S, Qiu L, Li G. Natural Polyphenols for Treatment of Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248810. [PMID: 36557939 PMCID: PMC9787795 DOI: 10.3390/molecules27248810] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a prevalent and serious gastrointestinal malignancy with high mortality and morbidity. Chemoprevention refers to a newly emerged strategy that uses drugs with chemopreventive properties to promote antioxidation, regulate cancer cell cycle, suppress proliferation, and induce cellular apoptosis, so as to improve cancer treatment outcomes. Natural polyphenols are currently recognized as a class of chemopreventive agents that have shown remarkable anticarcinogenic properties. Numerous in vitro and in vivo studies have elucidated the anti-CRC mechanisms of natural polyphenols, such as regulation of various molecular and signaling pathways. Natural polyphenols are also reportedly capable of modulating the gut microbiota and cancer stem cells (CSCs) to suppress tumor formation and progression. Combined use of different natural polyphenols is recommended due to their low bioavailability and instability, and combination treatment can exert synergistical effects, reduce side effects, and avoid drug resistance in CRC treatment. In summary, the application of polyphenols in the chemoprevention and treatment of CRC is promising. Further clinical evaluation of their effectiveness is warranted and anticipated.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Kunjian Liu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chengqiu Yan
- Anorectal Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yu Yin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuangyan He
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Qiu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guofeng Li
- Anorectal Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
- Correspondence:
| |
Collapse
|
22
|
Ngernyuang N, Wongwattanakul M, Charusirisawad W, Shao R, Limpaiboon T. Green synthesized apigenin conjugated gold nanoparticles inhibit cholangiocarcinoma cell activity and endothelial cell angiogenesis in vitro. Heliyon 2022; 8:e12028. [PMID: 36506385 PMCID: PMC9732323 DOI: 10.1016/j.heliyon.2022.e12028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy of the biliary tract with extremely poor clinical outcomes due to a lack of effective therapies to improve disease management. The emerging green synthesis of gold nanoparticles (AuNPs) has extensively provided their use in biomedical applications. In this study, we developed AuNPs via reducing gold salts with apigenin (4',5,7-trihydroxyflavone). The synthesized apigenin-conjugated AuNPs (api-AuNPs) were physicochemically characterized by various techniques before evaluation their biological and functional inhibition in a CCA cell line, KKU-M055. The mean size of api-AuNPs was 90.34 ± 22.82 nm with zeta potential of -36 ± 0.55. The half-maximal inhibitory concentration (IC50, 0.8 mg/mL) of api-AuNPs on cell proliferation of KKU-M055 was 1.9-fold less than that of an immortalized human cholangiocyte cell line, MMNK1 (IC50, 1.5 mg/mL). Moreover, api-AuNPs induced cell apoptosis via the up-regulation of Bax, Bid, and Caspase 3, and down-regulation of Bcl2, leading to elevated caspase 3/7, 8, 9 activities and reactive oxygen species (ROS) production. The api-AuNPs significantly inhibited the migration of KKU-M055 cells and suppressed the proliferation, migration, and in vitro tube formation of vascular endothelial cells. Collectively, our findings indicate the dual abilities of api-AuNPs that potentially inhibit cancer cell growth and motility as well as endothelial cell-mediated angiogenesis, which may offer a novel therapeutic avenue to treat CCA patients effectively.
Collapse
Affiliation(s)
- Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wannit Charusirisawad
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Rong Shao
- Development of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
23
|
Recent advances in the development of transplanted colorectal cancer mouse models. Transl Res 2022; 249:128-143. [PMID: 35850446 DOI: 10.1016/j.trsl.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Despite progress in prevention and treatment, colorectal cancer (CRC) remains the third most common malignancy worldwide and the second most common cause of cancer death in 2020. To evaluate various characteristics of human CRC, a variety of mouse models have been established. Transplant mouse models have distinct advantages in studying the clinical behavior and therapeutic progress of CRC. Host, xenograft, and transplantation routes are the basis of transplant mouse models. As the effects of the tumor microenvironment and the systemic environment on cancer cells are gradually revealed, 3 key elements of transplanted CRC mouse models have been revolutionized. This has led to the development of humanized mice, patient-derived xenografts, and orthotopic transplants that reflect the human systemic environment, patient's tumor of origin, and tumor growth microenvironments in immunodeficient mice, respectively. These milestone events have allowed for great progress in tumor biology and the treatment of CRC. This article reviews the evolution of these events and points out their strengths and weaknesses as innovative and useful preclinical tools to study CRC progression and metastasis and to exploit novel treatment schedules by establishing a testing platform. This review article depicts the optimal transplanted CRC mouse models and emphasizes the significance of surgical models in the study of CRC behavior and treatment response.
Collapse
|
24
|
Guo TH, Li YY, Hong SW, Cao QY, Chen H, Xu Y, Dai GL, Shao G. Evidence for Anticancer Effects of Chinese Medicine Monomers on Colorectal Cancer. Chin J Integr Med 2022; 28:939-952. [PMID: 35419728 DOI: 10.1007/s11655-022-3466-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
Colorectal cancer is one of the most commonly occurring cancers worldwide. Although clinical reports have indicated the anticancer effects of Chinese herbal medicine, the multiple underlying molecular and biochemical mechanisms of action remain to be fully characterized. Chinese medicine (CM) monomers, which are the active components of CM, serve as the material basis of the functional mechanisms of CM. The aim of this review is to summarize the current experimental evidence from in vitro, in vivo, and clinical studies for the effects of CM monomers in colorectal cancer prevention and treatment, providing some useful references for future research.
Collapse
Affiliation(s)
- Tian-Hao Guo
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan-Yuan Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng-Wei Hong
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qian-Yu Cao
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Heng Chen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Xu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guo-Liang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Gang Shao
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
25
|
Apigenin in cancer therapy: From mechanism of action to nano-therapeutic agent. Food Chem Toxicol 2022; 168:113385. [PMID: 36007853 DOI: 10.1016/j.fct.2022.113385] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Apigenin (APG) is a flavonoid presence in beverages, vegetables, and fruits containing anti-diabetic, anti-oxidant, and anti-viral activities, as well as cancer management properties. There is growing evidence that APG presented extensive anti-cancer effects in several cancer types by modulating various cellular processes, including angiogenesis, apoptosis, metastasis, autophagy, cell cycle, and immune responses, through activation or inhibition of different cell signaling pathways and molecules. By emerging nanotechnology and its advent in the biomedicine field, cancer therapy has been changed based on nanotechnology-based delivery systems. APG nanoformulations have been used to target tumor cells specifically, improve cellular uptake of APG, and overcome limitations of the free form of APG, such as low solubility and poor bioavailability. In this review, the biotherapeutic activity of APG and its mechanisms, both in free form and nanoformulation, toward cancer cells are discussed to shed some light on APG anti-tumor activity in different cancers.
Collapse
|
26
|
Akkour K, Alanazi IO, Alfadda AA, Alhalal H, Masood A, Musambil M, Rahman AMA, Alwehaibi MA, Arafah M, Bassi A, Benabdelkamel H. Tissue-Based Proteomic Profiling in Patients with Hyperplasia and Endometrial Cancer. Cells 2022; 11:cells11132119. [PMID: 35805203 PMCID: PMC9265283 DOI: 10.3390/cells11132119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Uterine cancers are among the most prevalent gynecological malignancies, and endometrial cancer (EC) is the most common in this group. This study used tissue-based proteomic profiling analysis in patients with endometrial cancer and hyperplasia, and control patients. Conventional 2D gel electrophoresis, followed by a mass spectrometry approach with bioinformatics, including a network pathway analysis pipeline, was used to identify differentially expressed proteins and associated metabolic pathways between the study groups. Thirty-six patients (twelve with endometrial cancer, twelve with hyperplasia, and twelve controls) were enrolled in this study. The mean age of the participants was 46–75 years. Eighty-seven proteins were significantly differentially expressed between the study groups, of which fifty-three were significantly differentially regulated (twenty-eight upregulated and twenty-five downregulated) in the tissue samples of EC patients compared to the control (Ctrl). Furthermore, 26 proteins were significantly dysregulated (8 upregulated and 18 downregulated) in tissue samples of hyperplasia (HY) patients compared to Ctrl. Thirty-two proteins (nineteen upregulated and thirteen downregulated) including desmin, peptidyl prolyl cis-trans isomerase A, and zinc finger protein 844 were downregulated in the EC group compared to the HY group. Additionally, fructose bisphosphate aldolase A, alpha enolase, and keratin type 1 cytoskeletal 10 were upregulated in the EC group compared to those in the HY group. The proteins identified in this study were known to regulate cellular processes (36%), followed by biological regulation (16%). Ingenuity pathway analysis found that proteins that are differentially expressed between EC and HY are linked to AKT, ACTA2, and other signaling pathways. The panels of protein markers identified in this study could be used as potential biomarkers for distinguishing between EC and HY and early diagnosis and progression of EC from hyperplasia and normal patients.
Collapse
Affiliation(s)
- Khalid Akkour
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Ibrahim O. Alanazi
- The National Center for Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hani Alhalal
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Moudi A. Alwehaibi
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11461, Saudi Arabia
| | - Maria Arafah
- Department of Pathology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia;
| | - Ali Bassi
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Correspondence:
| |
Collapse
|
27
|
Tao S, Li J, Wang H, Ding S, Han W, He R, Ren Z, Wei G. Anti-colon Cancer Effects of Dendrobium officinale Kimura & Migo Revealed by Network Pharmacology Integrated With Molecular Docking and Metabolomics Studies. Front Med (Lausanne) 2022; 9:879986. [PMID: 35847793 PMCID: PMC9280342 DOI: 10.3389/fmed.2022.879986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
Objective The present study aimed to investigate the potential mechanism of Dendrobium officinale (D. officinale) on colorectal cancer and the relevant targets in the pathway using a network pharmacological approach. Methods (1) We identified the major bioactive components of D. officinale by UPLC-ESI-MS/MS and established the in-house library by using the literature mining method. (2) Target prediction was performed by SwissADME and SwissTargetPrediction. (3) A protein–protein interaction (PPI) network and component–target–pathway network (C-T-P network) were constructed. (4) The GO pathways and the KEGG pathway enrichment analysis were carried out by the Metascape database. (5) Molecular docking was performed by AutoDock software. (6) A series of experimental assays including cell proliferation, cell invasion and migration, and TUNEL staining in CRC were performed in CRC cell lines (HT-29, Lovo, SW-620, and HCT-116) to confirm the inhibitory effects of D. officinale. Results (1) In total, 396 candidate active components of D. officinale were identified by UPLC-ESI-MS/MS and selected from the database. (2) From OMIM, GeneCards, DrugBank, and TTD databases, 1,666 gene symbols related to CRC were gathered, and (3) 34 overlapping gene symbols related to CRC and drugs were obtained. (4) These results suggested that the anti-CRC components of D. officinale were mainly apigenin, naringenin, caffeic acid, γ-linolenic acid, α-linolenic acid, cis-10-heptadecenoic acid, etc., and the core targets of action were mainly ESR1, EGFR, PTGS2, MMP9, MMP2, PPARG, etc. (5) The proliferation of muscle cells, the regulation of inflammatory response, the response of cells to organic cyclic compounds, and the apoptotic signaling pathway might serve as principal pathways for CRC treatment. (6) The reliability of some important active components and targets was further validated by molecular docking. The molecular docking analysis suggested an important role of apigenin, naringenin, PTGS2, and MMP9 in delivering the pharmacological activity of D. officinale against CRC. (7) These results of the evaluation experiment in vitro suggested that D. officinale had a strong inhibitory effect on CRC cell lines, and it exerted anti-CRC activity by activating CRC cell apoptosis and inhibiting CRC cell migration and invasion. Conclusion This study may provide valuable insights into exploring the mechanism of action of D. officinale against CRC.
Collapse
Affiliation(s)
- Shengchang Tao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Jinyan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Centre of Chinese Herbal Resource, Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
| | - Huan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Centre of Chinese Herbal Resource, Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
| | - Shaobo Ding
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Weichao Han
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Ruirong He
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zhiyao Ren
- The Research Centre of Chinese Herbal Resource, Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Gang Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Gang Wei
| |
Collapse
|
28
|
Xi Y, Liu J, Shen G. Low expression of IGFBP4 and TAGLN accelerate the poor overall survival of osteosarcoma. Sci Rep 2022; 12:9298. [PMID: 35665757 PMCID: PMC9166812 DOI: 10.1038/s41598-022-13163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
Osteosarcoma is a common malignant bone tumor characterized by the production of osteoid stroma by the tumor. However, effect of IGFBP4 and TAGLN on the survival of osteosarcoma is unclear. The GEO database was used to identify the differentially expressed genes (DEGs) between control samples and osteosarcoma. Genes for biological process (BP), cellular composition (CC), and molecular function (MF) were examined using DAVID, Metascape, and GSEA. GSE14359 and GSE36001 were downloaded in the GEO database. GEO2R was used to find DEGs between control samples and osteosarcoma. The cytoHubb also found the hub genes of IGFBP4 and TAGLN. The Kaplan–Meier method was used to analyze overall survival. A total of 134 patients with osteosarcoma were enrolled in this study. The RNA levels of IGFBP4 and TAGLN were evaluated by RT-qPCR. The correlation between IGFBP4 and TAGLN expression and their associations with clinical indicators were analyzed using Spearman's rho test and Pearson's Chi-squared test. Univariate and multivariate Cox regression analyses were used to determine the potential prognostic factors. And the animal model was used to verify the role of hub genes on the osteosarcoma by the RT-qPCR and immunofluorescence. Support Vector Machine (SVM) was performed to construct the correlation among the expression of IGFBP4, TAGLN, and osteosarcoma. Through bioinformatics, IGFBP4 and TAGLN were identified as the hub genes of osteosarcoma. And osteosarcoma patients with high expression levels of IGFBP4 (HR = 0.56, P = 0.013) and TAGLN (HR = 0.52, P = 0.012) had better overall survival times than those with low expression levels. The results showed that pathologic grade (P = 0.017), tumor metastasis (P < 0.001), and enneking stage (P < 0.001) were significantly correlated with IGFBP4. Also, pathologic grade (P = 0.002), tumor metastasis (P < 0.001), and enneking stage (P < 0.001) were significantly related to the TAGLN. Spearman’s correlation coefficient displayed that IGFBP4 were significantly correlated with the tumor metastasis (ρ = − 0.843, P < 0.001), enneking stage (ρ = − 0.500, P < 0.001), and TAGLN (ρ = 0.821, P < 0.001). IGFBP4 (HR = 0.252, 95% CI 0.122–0.517, P < 0.001) and TAGLN (HR = 0.155, 95% CI 0.089–0.269, P < 0.001) were significantly associated with overall survival. Based on the qPCR and immunofluorescence, IGFBP4 and TAGLN were down-regulated in the osteosarcoma tissue than the control group. And the SVM presented that there exists strong relationship among the expression of IGFBP4, TAGLN, and osteosarcoma. IGFBP4 and TAGLN may be attractive molecular targets for osteosarcoma, opening a new avenue for research into the disease.
Collapse
Affiliation(s)
- Yue Xi
- Department of Orthopaedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, 1279 Sanmen Road, Hongkou District, Shanghai, 200011, China
| | - Jianlin Liu
- Department of Orthopaedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, 1279 Sanmen Road, Hongkou District, Shanghai, 200011, China
| | - Gufeng Shen
- Department of Orthopaedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, 1279 Sanmen Road, Hongkou District, Shanghai, 200011, China.
| |
Collapse
|
29
|
Hu Z, Li M, Cao Y, Akan OD, Guo T, Luo F. Targeting AMPK Signaling by Dietary Polyphenols in Cancer Prevention. Mol Nutr Food Res 2021; 66:e2100732. [PMID: 34802178 DOI: 10.1002/mnfr.202100732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a serious public health problem in the world and a major disease affecting human health. Dietary polyphenols have shown good potential in the treatment of various cancers. It is worth noting that cancer cells usually exhibit metabolic abnormalities of high glucose intake and inefficient utilization. AMPK is the key molecule in the regulation of energy metabolism and is closely related with obesity and diabetes. Recent studies indicate that AMPK also plays an important role in cancer prevention and regulating cancer-related genes and pathways, and dietary polyphenols can significantly regulate AMPK activity. In this review, the progress of dietary polyphenols preventing carcinogenesis via AMPK pathway is systemically summarized. From the viewpoint of interfering energy metabolism, the anti-cancer effects of dietary polyphenols are explained. AMPK pathway modulated by different dietary polyphenols affects pathways and target genes are summarized. Dietary polyphenols exert anti-cancer effect through the target molecules regulated by AMPK, which broadens the understanding of polyphenols anti-cancer mechanisms and provides value reference for the investigators of the novel field.
Collapse
Affiliation(s)
- Zuomin Hu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Mengyuan Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yunyun Cao
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Otobong Donald Akan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Tianyi Guo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Feijun Luo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| |
Collapse
|
30
|
The Effects of Flavonoid Apigenin on Male Reproductive Health: Inhibition of Spermatogonial Proliferation through Downregulation of Prmt7/ Akt3 Pathway. Int J Mol Sci 2021; 22:ijms222212209. [PMID: 34830091 PMCID: PMC8621337 DOI: 10.3390/ijms222212209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Apigenin, a common dietary flavonoid abundantly present in a variety of fruits and vegetables, has promising anticancer properties. As an effector of apigenin in myoblasts, protein arginine methyltransferase 7 (Prmt7) is required for male germ cell development. However, whether apigenin may influence male reproductive health through Prmt7 is still unclear. To this end, mouse spermatogonia were treated with different concentrations (2.5 to 50 μM) of apigenin for 48 h, which showed that apigenin could cause reduced cell proliferation in conjunction with longer S phase and G2/M phase (with concentrations of 10 and 20 μM, respectively), and increased apoptosis of spermatogonia (with concentration of 20 μM). Reduced Prmt7 expression was found in 20 μM apigenin-treated spermatogonia. Moreover, siRNA-induced Prmt7 knockdown exhibited similar influence on spermatogonia as that of apigenin treatment. In mechanistic terms, transcriptome analysis revealed 287 differentially expressed genes between Prmt7-downregulated and control spermatogonia. Furthermore, rescue experiments suggested that the effects of apigenin on spermatogonia might be mediated through the Prmt7/Akt3 pathway. Overall, our study supports that apigenin can interfere with mouse spermatogonial proliferation by way of the downregulated Prmt7/Akt3 pathway, which demonstrates that the concentration should be taken into account in future applications of apigenin for cancer therapy of men.
Collapse
|
31
|
Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: a comprehensive review. Br J Nutr 2021; 128:1257-1273. [PMID: 34338174 DOI: 10.1017/s0007114521002919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of death across the world and incidence rate of CRC increasing alarmingly each passing year. Diet, genomic anomalies, inflammation and deregulated signalling pathways are among the major causes of CRC. Because of numerous side effects of CRC therapies available now, researchers all over the world looking for alternative treatment/preventive strategy with lesser/no side effects. Olive oil which is part of Mediterranean diet contains numerous phenolic compounds that fight against free radicals and inflammation and also well-known for protective role against CRC. The current review focused on the recent evidences where olive oil and its phenolic compounds such as hydroxytyrosol, oleuropein and oleocanthal showed activities against CRC as well to analyse the cellular and molecular signalling mechanism through which these compounds act on. These compounds shown to combat CRC by reducing proliferation, migration, invasion and angiogenesis through regulation of numerous signalling pathways including MAPK pathway, PI3K-Akt pathway and Wnt/β-catenin pathway and at the same time, induce apoptosis in different CRC model. However, further research is an absolute necessity to establish these compounds as nutritional supplements and develop therapeutic strategy in CRC.
Collapse
|
32
|
Yammine A, Namsi A, Vervandier-Fasseur D, Mackrill JJ, Lizard G, Latruffe N. Polyphenols of the Mediterranean Diet and Their Metabolites in the Prevention of Colorectal Cancer. Molecules 2021; 26:3483. [PMID: 34201125 PMCID: PMC8227701 DOI: 10.3390/molecules26123483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
The Mediterranean diet is a central element of a healthy lifestyle, where polyphenols play a key role due to their anti-oxidant properties, and for some of them, as nutripharmacological compounds capable of preventing a number of diseases, including cancer. Due to the high prevalence of intestinal cancer (ranking second in causing morbidity and mortality), this review is focused on the beneficial effects of selected dietary phytophenols, largely present in Mediterranean cooking: apigenin, curcumin, epigallocatechin gallate, quercetin-rutine, and resveratrol. The role of the Mediterranean diet in the prevention of colorectal cancer and future perspectives are discussed in terms of food polyphenol content, the effectiveness, the plasma level, and the importance of other factors, such as the polyphenol metabolites and the influence of the microbiome. Perspectives are discussed in terms of microbiome-dependency of the brain-second brain axis. The emergence of polyphenol formulations may strengthen the efficiency of the Mediterranean diet in the prevention of cancer.
Collapse
Affiliation(s)
- Aline Yammine
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Amira Namsi
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioScience Institute, College Road, T12 YT20 Cork, Ireland;
| | - Gérard Lizard
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Norbert Latruffe
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| |
Collapse
|
33
|
Cheng Y, Han X, Mo F, Zeng H, Zhao Y, Wang H, Zheng Y, Ma X. Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p. PHYTOMEDICINE 2021; 89:153603. [PMID: 34175590 DOI: 10.1016/j.phymed.2021.153603] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Apigenin (API) is a naturally occurring plant-derived flavone, which is abundantly present in common fruits and vegetables, and shows little or no toxicity of daily diet. The treatment of colorectal cancer is limited by high recurrence rate and multidrug resistance. PURPOSE The purpose of this study was to explore the potential therapeutic effect and possible mechanisms of API on colorectal cancer cells. METHODS Cell proliferation and apoptosis of human colon cancer cell line HCT116 was assessed after API treatment. A comprehensive transcriptome profile of API-treated HCT116 cells was acquired by high-throughput sequencing. The regulation of miRNA215-5p and E2F1/3 were identified by bioinformatics analyses. An inhibitor of miRNA215-5p, inhibitor 215, was applied to confirm the role of this microRNA played in the anti-cancer effect of API. Luciferase reporter gene assay was performed to identify targeting relationship between miRNA215-5p and E2F1/3. RESULT API significantly promoted cell apoptosis and anti-proliferation of HCT116 cells in a dose-dependent manner. Bioinformatics analyses identified several altered miRNAs among which the expression of miRNA-215-5p showed markedly increased. Meanwhile, the expression of E2F1 and E2F3 was decreased by API, which was associated with miRNA215-5p. Luciferase reporter gene assay showed miRNA-215-5p could directly bind to 3' UTR of E2F1/3. Inhibition of miRNA-215-5p significantly inhibited apoptosis and cell cycle arrest at G0/G1 phase induced by API. CONCLUSIONS The result of this study confirmed the anti-cancer effect of API on human colorectal cancer cells and investigated the underlying mechanism by a comprehensive transcriptome profile of API-treated cells.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuejiao Han
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Department of Medical oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hao Zeng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Wang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Zheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Papachristou F, Anninou N, Koukoulis G, Paraskakis S, Sertaridou E, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha A. Differential effects of cisplatin combined with the flavonoid apigenin on HepG2, Hep3B, and Huh7 liver cancer cell lines. Mutat Res 2021; 866:503352. [PMID: 33985696 DOI: 10.1016/j.mrgentox.2021.503352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The potential of apigenin (APG) to enhance cisplatin's (CDDP) chemotherapeutic efficacy was investigated in HepG2, Hep3B, and Huh7 liver cancer cell lines. The presence of 20 μM APG sensitized all cell lines to CDDP treatment (degree of sensitization based on the MTT assay: HepG2>Huh7>Hep3B). As reflected by sister chromatid exchange levels, the degree of genetic instability as well as DNA repair by homologous recombination differed among cell lines. CDDP and 20 μM APG cotreatment exhibited a synergistic genotoxic effect on Hep3B cells and a less than additive effect on HepG2 and Huh7 cells. Cell cycle delays were noticed during the first mitotic division in Hep3B and Huh7 cells and the second mitotic division in HepG2 cells. CDDP and CDDP + APG treatments reduced the clonogenic capacity of all cell lines; however, there was a discordance in drug sensitivity compared with the MMT assay. Furthermore, a senescence-like phenotype was induced, especially in Hep3B and Huh7 cells. Unlike CDDP monotherapy, the combined treatment exhibited a significant anti-invasive and anti-migratory action in all cancer cell lines. The fact that the three liver cancer cell lines responded differently, yet positively, to CDDP + APG cotreatment could be attributed to variations they present in gene expression. Complex mechanisms seem to influence cellular responses and cell fate.
Collapse
Affiliation(s)
- Fotini Papachristou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece.
| | - Nikolia Anninou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Georgios Koukoulis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Stefanos Paraskakis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Eleni Sertaridou
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Christos Tsalikidis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Michael Pitiakoudis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Constantinos Simopoulos
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| |
Collapse
|
35
|
Zhang X, Zhang W, Chen F, Lu Z. Combined effect of chrysin and apigenin on inhibiting the development and progression of colorectal cancer by suppressing the activity of P38-MAPK/AKT pathway. IUBMB Life 2021; 73:774-783. [PMID: 33625784 DOI: 10.1002/iub.2456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/05/2023]
Abstract
Either apigenin or chrysin alone has been found to exert anti-inflammatory and tumor suppressive effect. However, the combined effect of apigenin and chrysin on colorectal cancer (CRC) has not been fully clarified. We attempted to explore the effect of chrysin and apigenin on CRC and its related mechanism. SW480 and HCT-116 cells were treated with either apigenin or chrysin alone or two-drug combination at different doses of 5, 25, 50, 100 μM for optimal concentration determination. Then, we focused on the individual and combined effect of apigenin and chrysin on clonogenicity, apoptosis, metastasis-related behaviors of CRC cells by colony formation assay, cell scratch assay, flow cytometry, and transwell assay. The changes of the activation of P38-MAPK/AKT pathway were evaluated underlying apigenin and chrysin intervention, further after co-treated with P38-MAPK agonist anisomycin. Apigenin (25 μM) combined with chrysin (25 μM) were determined to be optimal. Treatment with the combination of apigenin (25 μM) and chrysin (25 μM) significantly reduced cell clone numbers, migration, and invasion ability, while increased the cell apoptosis in both CRC cell lines. The combined effect was higher than chrysin or apigenin alone. Meanwhile, p-P38 and p-AKT were significantly downregulated by chrysin and apigenin treatment. The tumor inhibitive effect of apigenin combined with chrysin was obviously reversed by adding P38 agonist, anisomycin. Apigenin (25 μM) combined with chrysin (25 μM) showed synergetic effect in inhibiting the growth and metastasis of CRC cells by suppressing the activity of P38-MAPK/AKT pathway.
Collapse
Affiliation(s)
- Xiaozhan Zhang
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, China
| | - Wen Zhang
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, China
| | - Fei Chen
- Department of Emergency, Liaocheng People's Hospital, Liaocheng, China
| | - Zhaohui Lu
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
36
|
Lee Y, Lee J, Lim C. Anticancer activity of flavonoids accompanied by redox state modulation and the potential for a chemotherapeutic strategy. Food Sci Biotechnol 2021; 30:321-340. [PMID: 33868744 PMCID: PMC8017064 DOI: 10.1007/s10068-021-00899-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Since researchers began studying the mechanism of flavonoids' anticancer activity, little attention has been focused on the modulation of redox state in cells as a potential chemotherapeutic strategy. However, recent studies have begun identifying that the anticancer effect of flavonoids occurs both in their antioxidative activity which scavenges ROS and their prooxidative activity which generates ROS. Against this backdrop, this study attempts to achieve a comprehensive analysis of the individual and separate study findings regarding flavonoids' modulation of redox state in cancer cells. It focuses on the mechanism behind the anticancer effect, and mostly on the modulation of redox potential by flavonoids such as quercetin, hesperetin, apigenin, genistein, epigallocatechin-3-gallate (EGCG), luteolin and kaempferol in both in vitro and animal models. In addition, the clinical applications of and bioavailability of flavonoids were reviewed to help build a treatment strategy based on flavonoids' prooxidative potential.
Collapse
Affiliation(s)
- Yongkyu Lee
- Foood and Nutrition, College of Science and Engineering, Dongseo University, Jurae-ro 47, Sasang-Gu, Busan, 47011 Korea
| | - Jehyung Lee
- Department of Medicine, College of Medicine, Dong-A University, Daesingongwon-ro 32, Seo-Gu, Busan, 49201 Korea
| | - Changbaek Lim
- Central Research & Development Center, Daewoo Pharmaceutical Co, LTD. 153, Dadae-ro, Saha-gu, Busan, 49393 Korea
| |
Collapse
|
37
|
Guo C, Kang X, Cao F, Yang J, Xu Y, Liu X, Li Y, Ma X, Fu X. Network Pharmacology and Molecular Docking on the Molecular Mechanism of Luo-hua-zi-zhu (LHZZ) Granule in the Prevention and Treatment of Bowel Precancerous Lesions. Front Pharmacol 2021; 12:629021. [PMID: 33692692 PMCID: PMC7938190 DOI: 10.3389/fphar.2021.629021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
The Luo-hua-zi-zhu (LHZZ) granule has been widely used for the treatment of colorectal adenoma (CRA), which is a precursor of colorectal cancer (CRC). However, the active components of LUZZ and its mechanism of action against CRA have not yet been elucidated. This study was designed to investigate the effect of LHZZ on CRA and explore its pharmacological mechanisms. First, a total of 24 chemical constituents were identified in the 50% aqueous methanol extract of LHZZ granule based on the mass fragment patterns and mass spectral library using the high resolution UPLC-Q-TOF MS/MS system. Subsequently, based on a network pharmacology study, 16 bioactive compounds and 28 targets of the LHZZ associated with CRA were obtained, forming a compound-target network. Molecular docking tests showed tight docking of these compounds with predicted targeted proteins. The protein–protein interaction (PPI) network identified AKT1, CASP3, TP53 and EGFR as hub targets. The Kyoto Encyclopedia of Genes and Genomes pathway network and pathway-target-compound network revealed that the apoptosis pathway was enriched by multiple signaling pathways and multiple targets, including the hub targets. Finally, the reliability of the core targets was evaluated using molecular docking technology and in vitro studies. Our study indicated that the LHZZ particle has preventive and treatment effect on colorectal adenoma through multi-component, multi-target and multi-pathway.
Collapse
Affiliation(s)
- Cui Guo
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xingdong Kang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Shanghai, China
| | - Fang Cao
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jian Yang
- The Second Military Medical University, Shanghai, China
| | - Yimin Xu
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Liu
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pain, Shibei Hospital, Shanghai, China
| | - Yuan Li
- Infection Prevention and Control Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiumei Ma
- Department of Radiotherapy, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Fu
- Second Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Han Q, Zhang C, Zhang Y, Li Y, Wu L, Sun X. Bufarenogin induces intrinsic apoptosis via Bax and ANT cooperation. Pharmacol Res Perspect 2021; 9:e00694. [PMID: 33421322 PMCID: PMC7796793 DOI: 10.1002/prp2.694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
Toads have high medicinal value and have been used for medicinal purposes since the Tang Dynasty period (7th-10th Century AD). Bufarenogin, an active anti-tumor constituent of toad venom, shows anti-tumor activity. In this study, we investigated the inhibitory effects of bufarenogin on the growth and metastasis of colorectal cancer (CRC), particularly its effects on mediating intrinsic signaling pathways that initiate apoptosis. An orthotopic CRC model was established in nude mice via surgical orthotopic implantation to investigate tumor growth. Immunohistochemistry, immunofluorescence, and Western blotting assays were performed to evaluate protein expression. The in vitro results revealed the anti-proliferative effect of bufarenogin against CRC cells. Bufarenogin caused cell death via apoptosis, as revealed by Annexin V/7-amino-actinomycin D double staining, which was verified using a pan-caspase inhibitor. Bufarenogin induced B-cell lymphoma 2-associated X protein (Bax)-dependent intrinsic apoptosis, as demonstrated by mitochondrial translocation of Bax and cytoplasm release of HCT116 wild-type cells and cytochrome C (soluble pro-apoptotic factors). Additionally, we showed that adenine-nucleotide translocator interacted with Bax. Bufarenogin induced intrinsic apoptosis through the cooperation of Bax and adenine-nucleotide translocator and inhibited the metastasis and growth of orthotopical CRC cells.
Collapse
Affiliation(s)
- Qinrui Han
- Shunde HospitalSouthern Medical UniversityThe First People's Hospital of ShundeFoshanChina
| | - Chun Zhang
- Shunde HospitalSouthern Medical UniversityThe First People's Hospital of ShundeFoshanChina
| | - Yongbin Zhang
- The Laboratory of Experimental Animal CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yuan Li
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Liyi Wu
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Xuegang Sun
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
39
|
Ciccone L, Vandooren J, Nencetti S, Orlandini E. Natural Marine and Terrestrial Compounds as Modulators of Matrix Metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:86. [PMID: 33498927 PMCID: PMC7911533 DOI: 10.3390/ph14020086] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Several studies have reported neuroprotective effects by natural products. A wide range of natural compounds have been investigated, and some of these may play a beneficial role in Alzheimer's disease (AD) progression. Matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, have been implicated in AD. In particular, MMP-2 and MMP-9 are able to trigger several neuroinflammatory and neurodegenerative pathways. In this review, we summarize and discuss existing literature on natural marine and terrestrial compounds, as well as their ability to modulate MMP-2 and MMP-9, and we evaluate their potential as therapeutic compounds for neurodegenerative and neuroinflammatory diseases, with a focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven—Herestraat 49—Box 1044, 3000 Leuven, Belgium;
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, via Santa Maria 53, 56126 Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
40
|
Marine Seagrass Extract of Thalassia testudinum Suppresses Colorectal Tumor Growth, Motility and Angiogenesis by Autophagic Stress and Immunogenic Cell Death Pathways. Mar Drugs 2021; 19:md19020052. [PMID: 33499163 PMCID: PMC7912590 DOI: 10.3390/md19020052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Marine plants have become an inexhaustible reservoir of new phytopharmaceuticals for cancer treatment. We demonstrate in vitro/in vivo antitumor efficacy of a standardized polyphenol extract from the marine angiosperm Thalassia testudinum (TTE) in colon tumor cell lines (RKO, SW480, and CT26) and a syngeneic allograft murine colorectal cancer model. MTT assays revealed a dose-dependent decrease of cell viability of RKO, CT26, and SW480 cells upon TTE treatment with IC50 values of, respectively, 175, 115, and 60 μg/mL. Furthermore, TTE significantly prevented basal and bFGF-induced angiogenesis in the chicken chorioallantoic membrane angiogenesis assay. In addition, TTE suppressed bFGF-induced migration of endothelial cells in a wound closure assay. Finally, TTE treatment abrogated CT26 colorectal cancer growth and increased overall organism survival in a syngeneic murine allograft model. Corresponding transcriptome profiling and pathway analysis allowed for the identification of the mechanism of action for the antitumor effects of TTE. In line with our in vitro/in vivo results, TTE treatment triggers ATF4-P53-NFκB specific gene expression and autophagy stress pathways. This results in suppression of colon cancer cell growth, cell motility, and angiogenesis pathways in vitro and in addition promotes antitumor immunogenic cell death in vivo.
Collapse
|
41
|
Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, Dutta U, Kunnumakkara AB. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 2020; 267:118814. [PMID: 33333052 DOI: 10.1016/j.lfs.2020.118814] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advanced stage of this disease are the development of chemoresistance, severe adverse effects of the drugs, and high treatment cost. Therefore, the development of drugs that are safe, efficacious, and cost-effective remains a 'Holy Grail' in cancer research. However, the research over the past four decades shed light on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action. Apigenin is one such compound, which is known to be safe and has significant potential in the prevention and therapy of this disease. AIM To assess the literature available on the potential of apigenin and its analogs in modulating the key molecular targets leading to the prevention and treatment of different types of cancer. METHOD A comprehensive literature search has been carried out on PubMed for obtaining information related to the sources and analogs, chemistry and biosynthesis, physicochemical properties, biological activities, bioavailability and toxicity of apigenin. KEY FINDINGS The literature search resulted in many in vitro, in vivo and a few cohort studies that evidenced the effectiveness of apigenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK/ERK, Wnt/β-catenin, etc., which play a crucial role in the development and progression of cancer. In addition, apigenin was also shown to inhibit chemoresistance and radioresistance and make cancer cells sensitive to these agents. Reports have further revealed the safety of the compound and the adaptation of nanotechnological approaches for improving its bioavailability. SIGNIFICANCE Hence, the present review recapitulates the properties of apigenin and its pharmacological activities against different types of cancer, which warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Enush Daimari
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
42
|
Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P, Khan H, Mazaheri S, Darvish M, Mirzaei H. Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer. Front Chem 2020; 8:829. [PMID: 33195038 PMCID: PMC7593821 DOI: 10.3389/fchem.2020.00829] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is the most lethal malignancy of the gastrointestinal tract. Due to its propensity for early local and distant spread, affected patients possess extremely poor prognosis. Currently applied treatments are not effective enough to eradicate all cancer cells, and minimize their migration. Besides, these treatments are associated with adverse effects on normal cells and organs. These therapies are not able to increase the overall survival rate of patients; hence, finding novel adjuvants or alternatives is so essential. Up to now, medicinal herbs were utilized for therapeutic goals. Herbal-based medicine, as traditional biotherapeutics, were employed for cancer treatment. Of them, apigenin, as a bioactive flavonoid that possesses numerous biological properties (e.g., anti-inflammatory and anti-oxidant effects), has shown substantial anticancer activity. It seems that apigenin is capable of suppressing the proliferation of cancer cells via the induction of cell cycle arrest and apoptosis. Besides, apigenin inhibits metastasis via down-regulation of matrix metalloproteinases and the Akt signaling pathway. In pancreatic cancer cells, apigenin sensitizes cells in chemotherapy, and affects molecular pathways such as the hypoxia inducible factor (HIF), vascular endothelial growth factor (VEGF), and glucose transporter-1 (GLUT-1). Herein, the biotherapeutic activity of apigenin and its mechanisms toward cancer cells are presented in the current review to shed some light on anti-tumor activity of apigenin in different cancers, with an emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Bakhoda
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Pooyan Makvandi
- Centre for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pisa, Italy.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
43
|
Liu J, Zhang Y, Li Q, Wang Y. Transgelins: Cytoskeletal Associated Proteins Implicated in the Metastasis of Colorectal Cancer. Front Cell Dev Biol 2020; 8:573859. [PMID: 33117801 PMCID: PMC7575706 DOI: 10.3389/fcell.2020.573859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Transgelins, including transgelin-1 (T-1), transgelin-2 (T-2), and transgelin-3 (T-3), are a family of actin-binding proteins (ABPs) that can alter the structure and morphology of the cytoskeleton. These proteins function by regulating migration, proliferation and apoptosis in many different cancers. Several studies have shown that in various types of tumor cells, including colorectal cancer (CRC) cells, and in the tumor microenvironment, the expression and biological effects of transgelins are diverse and may transform during tumor progression. Previous researches have demonstrated that transgelin levels are positively correlated with metastasis in CRC, and down-regulating their expression can inhibit this process. In advanced disease, T-1 is a tumor activator with increasing expression, and T-2 expression increases with the progression of CRC. Finally, T-3 is only expressed in neurons and is not associated with CRC. This evidence suggests that T-1 and T-2 are potential biomarkers and therapeutic targets for CRC metastasis.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Inhibitory Effects of Apigenin on Tumor Carcinogenesis by Altering the Gut Microbiota. Mediators Inflamm 2020; 2020:7141970. [PMID: 33082711 PMCID: PMC7559228 DOI: 10.1155/2020/7141970] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022] Open
Abstract
The flavonoid apigenin is common to many plants. Although the responsible mechanisms have yet to be elucidated, apigenin demonstrates tumor suppression in vitro and in vivo. This study uses an azoxymethane (AOM)/dextran sodium sulfate- (DSS-) induced colon cancer mouse model to investigate apigenin's potential mechanism of action exerted through its effects upon gut microbiota. The size and quantity of tumors were reduced significantly in the apigenin treatment group. Using 16S rRNA high-throughput sequencing of fecal samples, the composition of gut microbiota was significantly affected by apigenin. Further experiments in which gut microbiota were reduced and feces were transplanted provided further evidence of apigenin-modulated gut microbiota exerting antitumor effects. Apigenin was unable to reduce the number or size of tumors when gut microbiota were depleted. Moreover, tumor inhibition effects were initiated following the transplant of feces from mice treated with apigenin. Our findings suggest that the effect of apigenin on the composition of gut microbiota can suppress tumors.
Collapse
|
45
|
Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med Hypotheses 2020; 141:109723. [DOI: 10.1016/j.mehy.2020.109723] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023]
|
46
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient's CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development - even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
47
|
Mirza-Aghazadeh-Attari M, Ekrami EM, Aghdas SAM, Mihanfar A, Hallaj S, Yousefi B, Safa A, Majidinia M. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci 2020; 255:117481. [PMID: 32135183 DOI: 10.1016/j.lfs.2020.117481] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the biggest challenges facing medicine and its cure is regarded to be the Holy Grail of medicine. Therapy in cancer is consisted as various artificial cytotoxic agents and radiotherapy, and recently immunotherapy. Recently much attention has been directed to the use of natural occurring agents in cancer therapy. One of the main group of agents utilized in this regard is polyphenols which are found abundantly in berries, fruits and vegetables. Polyphenols show to exert direct and indirect effects in progression of cancer, angiogenesis, proliferation and enhancing resistance to treatment. One of the cellular pathways commonly affected by polyphenols is PI3K/Akt/mTOR pathway, which has far ranging effects on multiple key aspects of cellular growth, metabolism and death. In this review article, evidence regarding the biology of polyphenols in cancer via PI3K/Akt/mTOR pathway is discussed and their application on cancer pathophysiology in various types of human malignancies is shown.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elyad Mohammadi Ekrami
- Department of Anesthesiology & Critical Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Ali Mousavi Aghdas
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Hallaj
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
48
|
Dvorakova M, Lapcik P, Bouchalova P, Bouchal P. Transgelin Silencing Induces Different Processes in Different Breast Cancer Cell Lines. Proteomics 2020; 20:e1900383. [PMID: 32061197 DOI: 10.1002/pmic.201900383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Indexed: 12/30/2022]
Abstract
Transgelin is a protein reported to be a marker of several cancers. However, previous studies have shown both up- and down-regulation of transgelin in tumors when compared with non-tumor tissues and the mechanisms whereby transgelin may affect the development of cancer remain largely unknown. Transgelin is especially abundant in smooth muscle cells and is associated with actin stress fibers. These contractile structures participate in cell motility, adhesion, and the maintenance of cell morphology. Here, the role of transgelin in breast cancer is focused on. Initially, the effects of transgelin on cell migration of the breast cancer cell lines, BT 549 and PMC 42, is studied. Interestingly, transgelin silencing increased the migration of PMC 42 cells, but decreased the migration of BT 549 cells. To clarify these contradictory results, the changes in protein abundances after transgelin silencing in these two cell lines are analyzed using quantitative proteomics. The results confirmed the role of transgelin in the migration of BT 549 cells and suggest the involvement of transgelin in apoptosis and small molecule biochemistry in PMC 42 cells. The context-dependent function of transgelin reflects the different molecular backgrounds of these cell lines, which differ in karyotypes, mutation statuses, and proteome profiles.
Collapse
Affiliation(s)
- Monika Dvorakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| |
Collapse
|
49
|
Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M, Sharifi-Rad J. Apigenin as an anticancer agent. Phytother Res 2020; 34:1812-1828. [PMID: 32059077 DOI: 10.1002/ptr.6647] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022]
Abstract
Apigenin is an edible plant-derived flavonoid that has been reported as an anticancer agent in several experimental and biological studies. It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways. Apigenin induces apoptosis by the activation of extrinsic caspase-dependent pathway by upregulating the mRNA expressions of caspase-3, caspase-8, and TNF-α. It induces intrinsic apoptosis pathway as evidenced by the induction of cytochrome c, Bax, and caspase-3, while caspase-8, TNF-α, and B-cell lymphoma 2 levels remained unchanged in human prostate cancer PC-3 cells. Apigenin treatment leads to significant downregulation of matrix metallopeptidases-2, -9, Snail, and Slug, suppressing invasion. The expressions of NF-κB p105/p50, PI3K, Akt, and the phosphorylation of p-Akt decreases after treatment with apigenin. However, apigenin-mediated treatment significantly reduces pluripotency marker Oct3/4 protein expression which might be associated with the downregulation of PI3K/Akt/NF-κB signaling.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Deakin University, Melbourne, Victoria, Australia
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University of Agriculture Multan, Multan, Pakistan
| | - Tahira Batool Qaisarani
- Department of Agricultural Engineering and Technology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Hanif Mughal
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile.,Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Singh D, Khan MA, Siddique HR. Apigenin, A Plant Flavone Playing Noble Roles in Cancer Prevention Via Modulation of Key Cell Signaling Networks. Recent Pat Anticancer Drug Discov 2020; 14:298-311. [DOI: 10.2174/1574892814666191026095728] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/29/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Background:
Cancer is a global health problem and the continuous rise in incidence and
mortality due to cancer carries a real economic burden to all countries. Accumulation of genetic mutation,
exposure of environmental carcinogens and food habits due to change in lifestyles are the key
reasons for cancer. Targeting cancer cells, we need a multitargeting molecule with low/no toxicity.
Objective :
To review the current update of the research status of chemopreventive/therapeutic molecule,
Apigenin.
Methods:
Compare the results of the published articles and granted patents on this compound. We also
discuss the pros and cons of the present research and future direction.
Results:
Cancer cells have characteristic alterations and dysregulation of various cell signaling pathways
that control cell homeostasis, proliferation, motility, and survival in normal cells. Natural flavonoids
are the compounds well known for their anti-inflammatory, anti-oxidant, and anti-cancerous
properties. Apigenin, along with several other physiological effects, has a very low intrinsic toxicity
and striking effects on the proliferation of cancer cells. Interestingly, this multitargeting molecule is
getting wide acceptance among researchers. It is evident from the recent patents filed in this compound.
At present, three patents have been granted only on the anticancer properties of apigenin.
Conclusion:
This mini-review will explain the present research status of apigenin and will further
shine some light on how apigenin performs its anti-cancerous actions by interfering with the key cellsignaling
pathways.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Mohammad A. Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| |
Collapse
|