1
|
Tuşat M, Eröz R, Bölükbaş F, Özkan E, Demirtaş MS, Erdal H, Özocak OO. Extra virgin olive oil mitigates lung injury in necrotizing enterocolitis: Effects on TGFβ1, Caspase-3, and MDA in a neonatal rat model. PLoS One 2025; 20:e0320938. [PMID: 40233022 PMCID: PMC11999148 DOI: 10.1371/journal.pone.0320938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NE), which is common in premature babies, has been associated with lung damage. Our aim is to explore the effect of enterally administered extra virgin olive oil (EO) with rich polyphenol content on clinical parameters, histopathological score, Transforming growt factor beta-1 (TGFβ1), Caspase 3 and Malondialdehyde (MDA) levels in NE-related lung injury of neonatal rats. METHODS Three groups (control, NE, NE+EO) were created, with 8 neonatal rats in each group. NE was induced by hypoxia-hyperoxia-hypothermia and formula feeding. EO was given to the treatment group by orogastric probe for 3 days. Intestinal and lung tissue were excised for analysis. RESULTS TGFβ1 expression levels, TGFβ1 and MDA concentration levels were higher in the NE compared to NE + EO and control groups (p < 0.001), and their levels decreased after EO treatment compared to the NE group (p < 0.001). It was determined that EO treatment significantly reduced the histopathological damage and the caspase-3 (CASP3) expression level in the lung (p < 0.001). CONCLUSION Our findings emphasize that TGFß1 has an crucial function in NE-related lung injury and that EO has therapeutic potential in NE-related lung injury.
Collapse
Affiliation(s)
- Mustafa Tuşat
- Aksaray University Medical Faculty, Department of Pediatric Surgery, Aksaray University, Aksaray, Turkey
| | - Recep Eröz
- Aksaray University Medical Faculty, Department of Medical Genetics, Aksaray University, Aksaray, Turkey
| | - Ferhan Bölükbaş
- Aksaray University Veterinary Faculty, Department of Histology and Embryology, Aksaray University, Aksaray, Turkey
| | - Erkan Özkan
- Aksaray University Veterinary Faculty, Department of Parasitology, Aksaray University, Aksaray, Turkey
| | - Mehmet Semih Demirtaş
- Aksaray University Medical Faculty, Department of Pediatrics, Aksaray University, Aksaray, Turkey
| | - Hüseyin Erdal
- Aksaray University Veterinary Faculty, Department of Histology and Embryology, Aksaray University, Aksaray, Turkey
| | - Osman Okan Özocak
- Erciyes University Medical Faculty, Department of Cardiovascular Surgery, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Katsa ME, Gil APR, Makri EM, Papadogiannis S, Ioannidis A, Kalliostra M, Ketselidi K, Diamantakos P, Melliou E, Magiatis P, Nomikos T. Effect of oleocanthal-rich olive oil on postprandial oxidative stress markers of patients with type 2 diabetes mellitus. Food Nutr Res 2024; 68:10882. [PMID: 39691690 PMCID: PMC11650448 DOI: 10.29219/fnr.v68.10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 12/19/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by postprandial dysmetabolism, which has been linked to post-meal redox disturbances. Oleocanthal (OO), one of the most potent bioactive phenols of extra virgin olive oil, has shown redox modulating properties in vitro. However, its acute, in vivo antioxidant properties have never been studied before. Objective The aim of this study was to investigate the kinetics of five redox markers (Thiobarbituric acid-reactive substances [TBARS] and glutathione peroxidase activity in serum-GPx3 and erythrocytes (GPx1), protein carbonyls in serum) after the consumption different meals. Design Five different isocaloric meals comprised of white bread and butter (BU) or butter plus ibuprofen (BU-IBU) or olive oil poor in OO or olive oils containing 250 and 500 mg/Kg of oleocanthal (OO250 and OO500, respectively). We hypothesized that OO-rich olive oil will reduce postprandial oxidative stress in T2DM patients compared to other lipid sources. This study involved 10 patients with T2DM and had a cross-over design. Results The comparison of incremental Area Under Curves (iAUCs) has shown that OO-rich olive oils were able to alleviate the increments of thiobarbituric acid-reactive substances (TBARS) and GPx3 and induce a higher red blood cells (RBCs) GPx1 activity compared to OO (P < 0.05). The effect was dose and redox marker depended. Correlation analysis in the pooled sample demonstrated a positive association between postprandial ex vivo platelet sensitivity to ADP and iAUC TBARS. In conclusion, our study has shown that OO-rich olive oils can favorably modulate lipid peroxidation and RBC GPx activity in T2DM patients when consumed as part of a carbohydrate meal. Discussion This study demonstrates for the first time that, apart from its anti-inflammatory and antiplatelet properties, OO can also exert acute antioxidant effects. Conclusion This finding emphasizes the health benefits of extra virgin olive oil, particularly those with a high OO content, for T2DM patients.
Collapse
Affiliation(s)
- Maria Efthymia Katsa
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Andrea Paola Rojas Gil
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Evangelia-Mantelena Makri
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Spyridon Papadogiannis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Anastasios Ioannidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Marianna Kalliostra
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Kleopatra Ketselidi
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| | - Panagiotis Diamantakos
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Ka-podistrian University of Athens, Athens, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
3
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Subudhi RN, Poonia N, Singh D, Arora V. Natural approaches for the management of ulcerative colitis: evidence of preclinical and clinical investigations. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:42. [PMID: 39078427 PMCID: PMC11289194 DOI: 10.1007/s13659-024-00463-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024]
Abstract
Ulcerative colitis (UC) is a recurring autoimmune disorder characterized by persistent inflammation in the mucosal lining of the lower part of the large intestine. Conventional treatment options such as salicylates, corticosteroids, and immunosuppressants often come with severe side effects, limited bioavailability, and the development of drug resistance, which hampers their therapeutic effectiveness. Therefore, it is imperative to explore natural strategies as safe and alternative treatments for UC. Currently, around 40% of UC patients find relief through natural constituents, which can help reduce toxic side effects and maintain clinical remission. This review aims to provide a summary of both preclinical and clinical evidence supporting the efficacy of various natural substances in the prophylaxis of UC. These natural options include plant extracts, essential oils, nutraceuticals, and phytochemicals. Furthermore, we will delve into the potential mechanisms that underlie the protective and curative actions of these novel herbal agents. In summary, this review will explore the effectiveness of natural remedies for UC, shedding light on their preclinical and clinical findings and the mechanisms behind their therapeutic actions. These alternatives offer hope for improved treatment outcomes and reduced side effects for individuals suffering from this challenging autoimmune condition.
Collapse
Affiliation(s)
- Rudra Narayan Subudhi
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neelam Poonia
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Dilpreet Singh
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Vimal Arora
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
5
|
Li J, Zhang X, Luan F, Duan J, Zou J, Sun J, Shi Y, Guo D, Wang C, Wang X. Therapeutic Potential of Essential Oils Against Ulcerative Colitis: A Review. J Inflamm Res 2024; 17:3527-3549. [PMID: 38836243 PMCID: PMC11149639 DOI: 10.2147/jir.s461466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-sp ecific inflammatory disease of the colorectal mucosa. Researchers have associated UC onset with familial genetics, lifestyle behavior, inflammatory immune factors, intestinal microbiota, and the integrity of the intestinal mucosal barrier. The primary therapeutic interventions for UC consist of pharmacological management to control inflammation and promote mucosal healing and surgical interventions. The available drugs effectively control and decelerate the progression of UC in most patients; nonetheless, their long-term administration can exert adverse effects and influence the therapeutic effect. Plant essential oils (EOs) refer to a group of hydrophobic aromatic volatile substances. EOs have garnered considerable attention in both domestic and international research because of their anti-inflammatory, antibacterial, and antioxidant properties. They include peppermint, peppercorns, rosemary, and lavender, among others. Researchers have investigated the role of EOs in medicine and have elucidated their potential to mitigate the detrimental effects of UC through their anti-inflammatory, antioxidant, antidepressant, and anti-insomnia properties as well as their ability to regulate the intestinal flora. Furthermore, EOs exert minimal toxic adverse effects, further enhancing their appeal for therapeutic applications. However, these speculations are based on theoretical experiments, thereby warranting more clinical studies to confirm their effectiveness and safety. In this article, we aim to provide an overview of the advancements in utilizing natural medicine EOs for UC prevention and treatment. We will explore the potential pathogenesis of UC and examine the role of EOs therapy in basic research, quality stability, and management specification of inadequate EOs for UC treatment. We intend to offer novel insights into the use of EOs in UC prevention and management.
Collapse
Affiliation(s)
- Jinkai Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Fei Luan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jiawei Duan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Changli Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiao Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Tuşat M, Eroz R, Bölükbaş F, Özkan E, Erdal H. Evaluation of the protective and therapeutic effects of extra virgin olive oil rich in phenol in experimental model of neonatal necrotizing enterocolitis by clinical disease score, ınflammation, apoptosis, and oxidative stress markers. Pediatr Surg Int 2024; 40:80. [PMID: 38493431 DOI: 10.1007/s00383-024-05669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND AIM Necrotizing Enterocolitis (NEC) is an inflammation-associated ischemic necrosis of the intestine. To investigate the effects of extra virgin olive oil (EVOO) on inflammation, oxidative stress, apoptosis, and histological changes in NEC-induced newborn rats. MATERIALS AND METHODS 24 rats were randomly divided into three groups: control, NEC and NEC + EVOO. NEC induction was performed using hypoxia-hyperoxia, formula feeding, and cold stress. The NEC + EVOO group received 2 ml/kg EVOO with high phenolic content by gavage twice a day for 3 days. 3 cm of bowel including terminal ileum, cecum, and proximal colon was excised. RESULTS Weight gain and clinical disease scores were significantly higher in the NEC + EVOO group than in the NEC group (p < 0.001). EVOO treatment caused significant decreases in IL1β, IL6 levels (p = 0.016, p = 0.029 respectively) and EGF, MDA levels (p = 0.032, p = 0.013 respectively) compared to NEC group. Significant decreases were observed in IL6 gene expression in the NEC + EVOO group compared to the NEC group (p = 0.002). In the group NEC + EVOO, the number of Caspase-3 positive cells was found to be significantly reduced (p < 0.001) and histopathological examination revealed minimal changes and significantly lower histopathological scores (p < 0.001). CONCLUSION Phenol-rich EVOO prevents intestinal damage caused by NEC by inhibiting inflammation, oxidative stress, apoptosis.
Collapse
Affiliation(s)
- Mustafa Tuşat
- Department of Pediatric Surgery, Aksaray University Medical Faculty, Aksaray, Turkey.
| | - Recep Eroz
- Department of Medical Genetics, Aksaray University Medical Faculty, Aksaray, Turkey
| | - Ferhan Bölükbaş
- Department of Histology and Embryology, Aksaray University Medical Faculty, Aksaray, Turkey
| | - Erkan Özkan
- Faculty of Veterinary Medicine, Department of Parasitology, Aksaray University, Aksaray, Turkey
| | - Hüseyin Erdal
- Department of Medical Genetics, Aksaray University Medical Faculty, Aksaray, Turkey
| |
Collapse
|
7
|
Zhou Y, Wang D, Duan H, Zhou S, Guo J, Yan W. The Potential of Natural Oils to Improve Inflammatory Bowel Disease. Nutrients 2023; 15:nu15112606. [PMID: 37299569 DOI: 10.3390/nu15112606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disorder that includes ulcerative colitis (UC) and Crohn's disease (CD), the exact cause of which is still unknown. Numerous studies have confirmed that diet is one of the major environmental factors associated with IBD, as it can regulate the gut microbiota and reduce inflammation and oxidative stress. Since the consumption of oil is essential in the diet, improving IBD through oil has potential. In this article, we first briefly reviewed the current treatment methods for IBD and introduce the role of natural oils in improving inflammatory diseases. We then focused on the recent discovery of the role of natural oils in the prevention and treatment of IBD and summarized their main mechanisms of action. The results showed that the anti-inflammatory activity of oils derived from different plants and animals has been validated in various experimental animal models. These oils are capable of improving the intestinal homeostasis in IBD animal models through multiple mechanisms, including modulation of the gut microbiota, protection of the intestinal barrier, reduction in colonic inflammation, improvement in oxidative stress levels in the intestine, and regulation of immune homeostasis. Therefore, dietary or topical use of natural oils may have potential therapeutic effects on IBD. However, currently, only a few clinical trials support the aforementioned conclusions. This review emphasized the positive effects of natural oils on IBD and encouraged more clinical trials to provide more reliable evidence on the improvement of human IBD by natural oils as functional substances.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
8
|
Emerging Role of Plant-Based Dietary Components in Post-Translational Modifications Associated with Colorectal Cancer. Life (Basel) 2023; 13:life13020264. [PMID: 36836621 PMCID: PMC9962725 DOI: 10.3390/life13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Its main modifiable risk factors are diet, alcohol consumption, and smoking. Thus, the right approach through lifestyle changes may lead to its prevention. In fact, some natural dietary components have exhibited chemopreventive activity through modulation of cellular processes involved in CRC development. Although cancer is a multi-factorial process, the study of post-translational modifications (PTMs) of proteins associated with CRC has recently gained interest, as inappropriate modification is closely related to the activation of cell signalling pathways involved in carcinogenesis. Therefore, this review aimed to collect the main PTMs associated with CRC, analyse the relationship between different proteins that are susceptible to inappropriate PTMs, and review the available scientific literature on the role of plant-based dietary compounds in modulating CRC-associated PTMs. In summary, this review suggested that some plant-based dietary components such as phenols, flavonoids, lignans, terpenoids, and alkaloids may be able to correct the inappropriate PTMs associated with CRC and promote apoptosis in tumour cells.
Collapse
|
9
|
Lê A, Mantel M, Marchix J, Bodinier M, Jan G, Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: how and when to introduce pre-, pro-, syn-, or postbiotics? Am J Physiol Gastrointest Liver Physiol 2022; 323:G523-G553. [PMID: 36165557 DOI: 10.1152/ajpgi.00002.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marine Mantel
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Justine Marchix
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, I Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Pays de la Loire, Nantes, France
| | - Gwénaël Jan
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| |
Collapse
|
10
|
Thomas SS, Cha YS, Kim KA. Protective Effect of Perilla Oil Against Dextran Sodium Sulfate-Induced Colitis in Mice Challenged with a High-Fat Diet. J Med Food 2022; 25:1021-1028. [DOI: 10.1089/jmf.2022.k.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Shalom Sara Thomas
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Republic of Korea
- Obesity Research Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyung-Ah Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Effects of Olive Oil and Its Components on Intestinal Inflammation and Inflammatory Bowel Disease. Nutrients 2022; 14:nu14040757. [PMID: 35215407 PMCID: PMC8875923 DOI: 10.3390/nu14040757] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
With the rising global burden of inflammatory bowel disease (IBD) and the rising costs of novel biological drugs, there is an increasing need for dietary approaches and functional foods that could modulate the course of IBD. The Mediterranean diet has proven to be efficacious in managing chronic inflammatory diseases, and recent studies have also shown its benefits in the setting of IBD. Since olive oil and its compounds have been shown to provide a considerable anti-inflammatory effect, in this review, we aim to discuss the latest evidence concerning the impact of olive oil and its bioactive compounds on IBD. Numerous preclinical studies have exhibited solid evidence on the mechanisms by which polyphenol-rich extra-virgin olive oil (EVOO) or specific polyphenols like hydroxytyrosol (HT) provide their anti-inflammatory, antioxidative, antitumour, and microbiota-modulation effects. Accordingly, several human studies that explored the effects of olive oil on patients with IBD further confirmed the evidence brought forward by preclinical studies. Nevertheless, there is a need for larger-scale, multicentric, randomized control trials that would finally elucidate olive oil’s level of efficacy in modulating the course of IBD.
Collapse
|
12
|
Vetuschi A, Battista N, Pompili S, Cappariello A, Prete R, Taticchi A, Selvaggini R, Latella G G, Corsetti A, Sferra R. The antiinflammatory and antifibrotic effect of olive phenols and Lactiplantibacillus plantarum IMC513 in dextran sodium sulfate-induced chronic colitis. Nutrition 2022; 94:111511. [PMID: 34813981 DOI: 10.1016/j.nut.2021.111511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES After a chronic intestinal injury, several intestinal cells switch their phenotype to activated myofibroblasts, which in turn release an abnormal amount of extracellular matrix proteins, leading to the onset of the fibrotic process. To date, no resolutive pharmacological treatments are available, and the identification of new therapeutic approaches represents a crucial goal to achieve. The onset, maintenance, and progression of inflammatory bowel disease are related to abnormal intestinal immune responses to environmental factors, including diet and intestinal microflora components. This study aimed to evaluate the potential antiinflammatory and antifibrotic effect of a biologically debittered olive cream and its probiotic oral administration in an experimental model of dextran sodium sulfate (DSS)-induced chronic colitis. METHODS Chronic colitis was induced in mice by three cycles of oral administration of 2.5% DSS (5 d of DSS followed by 7 d of tap water). Mice were randomly divided into five groups: 10 control mice fed with standard diet (SD), 20 mice receiving SD and DSS (SD+DSS), 20 mice receiving an enriched diet (ED) with olive cream and DSS (ED+DSS), 20 mice receiving SD plus probiotics (PB; Lactiplantibacillus plantarum IMC513) and DSS (SD+PB+DSS), and 20 mice receiving ED plus PB and DSS (ED+ PB+DSS). Clinical features and large bowel macroscopic, histologic, and immunohistochemical findings were evaluated. RESULTS The simultaneous administration of ED and PB induced a significant reduction in macroscopic and microscopic colitis scores compared with the other DSS-treated groups. In addition, ED and PB led to a significant decrease in the expression of inflammatory cytokines and profibrotic molecules. CONCLUSIONS The concomitant oral administration of a diet enriched with biologically debittered olive cream and a specific probiotic strain (Lactiplantibacillus plantarum IMC513) can exert synergistic antiinflammatory and antifibrotic action in DSS-induced chronic colitis. Further studies are needed to define the cellular and molecular mechanisms modulated by olive cream compounds and by Lactiplantibacillus plantarum IMC513.
Collapse
Affiliation(s)
- Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Roberto Selvaggini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Latella G
- Department of Life, Health and Environmental Sciences-Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, L'Aquila, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
13
|
Gabbia D, Carpi S, Sarcognato S, Cannella L, Colognesi M, Scaffidi M, Polini B, Digiacomo M, Esposito Salsano J, Manera C, Macchia M, Nieri P, Carrara M, Russo FP, Guido M, De Martin S. The Extra Virgin Olive Oil Polyphenol Oleocanthal Exerts Antifibrotic Effects in the Liver. Front Nutr 2021; 8:715183. [PMID: 34671630 PMCID: PMC8521071 DOI: 10.3389/fnut.2021.715183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis, which is the outcome of wound-healing response to chronic liver damage, represents an unmet clinical need. This study evaluated the anti-fibrotic and anti-inflammatory effects of the polyphenol oleocanthal (OC) extracted from extra virgin olive oil (EVOO) by an in vitro/in vivo approach. The hepatic cell lines LX2 and HepG2 were used as in vitro models. The mRNA expression of pro-fibrogenic markers, namely alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 chain (COL1A1), a panel of metalloproteinases (MMP1, MMP2, MMP3, MMP7, MMP9) and vascular endothelial growth factor A (VEGFA) as well as the pro-oxidant genes NADPH oxidases (NOXs) 1 and 4 were evaluated in TGF-β activated LX2 cells by qRT-PCR. α-SMA and COL1A1 protein expression was assessed by immunofluorescence coupled to confocal microscopy. VEGFA release from LX2 was measured by ELISA. We also evaluated the amount of reactive oxygen species (ROS) produced by H2O2 activated- HepG2 cells. In vivo, OC was administered daily by oral gavage to Balb/C mice with CCl4-induced liver fibrosis. In this model, we measured the mRNA hepatic expression of the three pro-inflammatory interleukins (IL) IL6, IL17, IL23, chemokines such as C-C Motif Chemokine Ligand 2 (CCL2) and C-X-C Motif Chemokine Ligand 12 (CXCL12), and selected miRNAs (miR-181-5p, miR-221-3p, miR-29b-3p and miR-101b-3p) by qRT-PCR. We demonstrated that OC significantly downregulated the gene/protein expression of α-SMA, COL1A1, MMP2, MMP3, MMP7 and VEGF as well as the oxidative enzymes NOX1 and 4 in TGFβ1-activated LX2 cells, and reduced the production of ROS by HepG2. In vivo OC, beside causing a significant reduction of fibrosis at histological assessment, counteracted the CCl4-induced upregulation of pro-fibrotic and inflammatory genes. Moreover, OC upregulated the anti-fibrotic miRNAs (miR-29b-3p and miR-101b-3p) reduced in fibrotic mice, while downregulated the pro-fibrotic miRNAs (miR-221-3p and miR-181-5p), which were dramatically upregulated in fibrotic mice. In conclusion, OC exerts a promising antifibrotic effect via a combined reduction of oxidative stress and inflammation involving putative miRNAs, which in turn reduces hepatic stellate cells activation and liver fibrosis.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | | | - Luana Cannella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Michela Scaffidi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Jasmine Esposito Salsano
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Doctoral School in Life Sciences, University of Siena, Siena, Italy
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Maria Guido
- Department of Medicine, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Effects of olives and their constituents on the expression of ulcerative colitis: a systematic review of randomised controlled trials. Br J Nutr 2021; 127:1153-1171. [PMID: 34100354 DOI: 10.1017/s0007114521001999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extra virgin olive oil is often associated with anti-inflammatory and antioxidant properties. Its effects on inflammatory conditions such as ulcerative colitis (UC), however, have yet to be defined. As such, we aimed to conduct a systematic review and meta-analysis of studies investigating olive-based interventions in UC. A comprehensive database search for randomised controlled trials was performed between 9 July 2018 and 16 August 2018. Studies identified from search alerts were included up to 22 June 2020. Both individuals living with UC at any disease stage and murine models of UC were included in this review. No human trials meeting the eligibility criteria were identified, while nineteen animal studies comprised 849 murine models of UC were included in this review. Pooling of the data could not be performed due to heterogeneous outcomes; however, general trends favouring olive-based interventions were identified. Milder disease expression including weight maintenance, reduced rectal bleeding and well-formed stools favouring olive-based interventions was statistically significant in 16/19 studies, with moderate-to-large effect sizes (-0·66 (95 % CI -1·56, 0·24) to -12·70 (95 % CI -16·8, -8·7)). Olive-based interventions did not prevent the development of colitis-like pathologies in any study. In conclusion, effects of olive-based interventions on murine models of UC appear promising, with milder disease outcomes favouring the intervention in most trials and effect sizes suggesting potential clinical relevance. However, the lack of published randomised controlled human trials warrants further investigation to determine if these effects would translate to individuals living with UC.
Collapse
|
15
|
Millman JF, Okamoto S, Teruya T, Uema T, Ikematsu S, Shimabukuro M, Masuzaki H. Extra-virgin olive oil and the gut-brain axis: influence on gut microbiota, mucosal immunity, and cardiometabolic and cognitive health. Nutr Rev 2021; 79:1362-1374. [PMID: 33576418 PMCID: PMC8581649 DOI: 10.1093/nutrit/nuaa148] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extra-virgin olive oil (EVOO), a popular functional food and major source of fat in the Mediterranean diet, possesses a variety of healthful components, including monounsaturated fatty acids and bioactive phenolic compounds that, individually and collectively, exert beneficial effects on cardiometabolic markers of health and act as neuroprotective agents through their anti-inflammatory and antioxidant activities. The gut microbiota and health of the intestinal environment are now considered important factors in the development of obesity, metabolic disease, and even certain neurodegenerative conditions via the gut-brain axis. Recently, data are emerging which demonstrate that the health-promoting benefits of EVOO may also extend to the gut microbiota. In this review, we aimed to examine findings from recent studies regarding the impact of EVOO on gut microbiota and intestinal health and explore how modulations in composition of gut microbiota, production of microbially produced products, and activity and functioning of the mucosal immune system may lead to favorable outcomes in cardiovascular, metabolic, and cognitive health.
Collapse
Affiliation(s)
- Jasmine F Millman
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Shiki Okamoto
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Taiki Teruya
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Tsugumi Uema
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Shinya Ikematsu
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Michio Shimabukuro
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Masuzaki
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
16
|
Parisio C, Lucarini E, Micheli L, Toti A, Bellumori M, Cecchi L, Calosi L, Bani D, Di Cesare Mannelli L, Mulinacci N, Ghelardini C. Extra virgin olive oil and related by-products (Olea europaea L.) as natural sources of phenolic compounds for abdominal pain relief in gastrointestinal disorders in rats. Food Funct 2020; 11:10423-10435. [PMID: 33237043 DOI: 10.1039/d0fo02293d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Management of abdominal pain, a common symptom of IBDs and IBS, is still a clinical problem. Extra virgin olive oil (EVOO), a main component of the Mediterranean diet, shows positive effects on chronic inflammation in IBDs. In this study, the effect of the oral administration of EVOO (3 mL) and two olive milling by-products, DPA (300 mg kg-1) and DRF (300 mg kg-1), on preventing the development of abdominal pain in a DNBS-induced colitis model in rats was evaluated. The doses were chosen with the aim of simulating a plausible daily intake in humans. DPA and EVOO treatments significantly reduced the abdominal viscero-motor response to colon-rectal distension at 2 and 3 mL of balloon distension volume, both 7 and 14 days after the DNBS-injection. DRF showed efficacy in the reduction of visceral hypersensitivity only with 3 mL balloon inflation. In awake animals, DPA and DRF reduced pain perception (evaluated as abdominal withdrawal reflex) with all balloon distension volumes, while EVOO was effective only with higher distension volumes. Fourteen days after the DNBS-injection, all samples reduced the macroscopic intestinal damage (quantified as the macroscopic damage score) also showing, at the microscopic level, a reduction of the inflammatory infiltrate (quantified by hematoxylin and eosin analysis), fibrosis (highlighted by picrosirius red staining), the increase in mast cells and their degranulation (analyzed by triptase immunohistochemistry). This is the first report on the promotion of abdominal pain relief in a rat model obtained administering EVOO and two derived by-products. Our results suggest a protective role of phenol-rich EVOO and milling by-products, which may be proposed as food ingredients for novel functional foods.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jin J, Wu S, Xie Y, Liu H, Gao X, Zhang H. Live and heat-killed cells of Lactobacillus plantarum Zhang-LL ease symptoms of chronic ulcerative colitis induced by dextran sulfate sodium in rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
18
|
Deng J, Wu Z, Zhao Z, Wu C, Yuan M, Su Z, Wang Y, Wang Z. Berberine-Loaded Nanostructured Lipid Carriers Enhance the Treatment of Ulcerative Colitis. Int J Nanomedicine 2020; 15:3937-3951. [PMID: 32581538 PMCID: PMC7280064 DOI: 10.2147/ijn.s247406] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Berberine (BBR), a major ingredient extracted from Coptis chinensis, is a natural drug with limited oral bioavailability. We developed nanostructured lipid carriers (NLCs) as a delivery system for enhanced anti-inflammatory activity of BBR against ulcerative colitis (UC). Methods BBR-loaded nanostructured lipid carriers (BBR-NLCs) prepared via high-pressure homogenization were evaluated for particle size, zeta potential, drug entrapment efficiency, drug loading, drug release, toxicity, and cellular uptake. The anti-UC activities of free and encapsulated BBR were evaluated in a DSS-induced acute model of UC in mice. Results Spherical BBR-NLCs were prepared with a particle size of 63.96± 0.31 nm, a zeta potential of +3.16 ± 0.05 mV, an entrapment efficiency of 101.97±6.34%, and a drug loading of 6.00±0.09%. BBR-NLCs showed excellent biocompatibility in vivo. Cellular uptake experiments showed that BBR-NLCs improved uptake of BBR by RAW 264.7 cells and Caco-2 cells. Oral administration of BBR-NLCs significantly alleviated colitis symptoms (DAI, colon length, spleen swelling, MPO activity) through inhibition of NF-κB nuclear translocation, decreased expression of pro-inflammatory cytokines (IL-1β, IL-6, MMP-9, CX3CR1, COX-2, TERT), and increased expression of the tight junction protein ZO-1. Conclusion BBR-loaded NLCs improved colitis symptoms, which suggested that this may be a novel formulation for treatment of UC.
Collapse
Affiliation(s)
- Jianping Deng
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510000, People's Republic of China.,Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China
| | - Zicong Wu
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510000, People's Republic of China.,Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China
| | - Zhenling Zhao
- Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China.,College of Life Science and Technology, Jinan University, Guangzhou 510000, People's Republic of China
| | - Chaoxi Wu
- Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China.,College of Life Science and Technology, Jinan University, Guangzhou 510000, People's Republic of China
| | - Min Yuan
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510000, People's Republic of China
| | - Zhengquan Su
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510000, People's Republic of China
| | - Yifei Wang
- Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China.,College of Life Science and Technology, Jinan University, Guangzhou 510000, People's Republic of China
| | - Zhiping Wang
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510000, People's Republic of China.,Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China
| |
Collapse
|
19
|
Rondanelli M, Lamburghini S, Faliva MA, Peroni G, Riva A, Allegrini P, Spadaccini D, Gasparri C, Iannello G, Infantino V, Alalwan TA, Perna S, Miccono A. A food pyramid, based on a review of the emerging literature, for subjects with inflammatory bowel disease. ACTA ACUST UNITED AC 2020; 68:17-46. [PMID: 32499202 DOI: 10.1016/j.endinu.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Emerging literature suggests that diet plays an important modulatory role in inflammatory bowel disease (IBD) through the management of inflammation and oxidative stress. The aim of this narrative review is to evaluate the evidence collected up till now regarding optimum diet therapy for IBD and to design a food pyramid for these patients. The pyramid shows that carbohydrates should be consumed every day (3 portions), together with tolerated fruits and vegetables (5 portions), yogurt (125ml), and extra virgin olive oil; weekly, fish (4 portions), white meat (3 portions), eggs (3 portions), pureed legumes (2 portions), seasoned cheeses (2 portions), and red or processed meats (once a week). At the top of the pyramid, there are two pennants: the red one means that subjects with IBD need some personalized supplementation and the black one means that there are some foods that are banned. The food pyramid makes it easier for patients to decide what they should eat.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia 27100, Italy
| | - Silvia Lamburghini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Milena A Faliva
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Gabriella Peroni
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Antonella Riva
- Research and Development Unit, Indena, Milan 20146, Italy
| | | | - Daniele Spadaccini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Clara Gasparri
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona "Istituto Santa Margherita", Pavia 27100, Italy
| | - Vittoria Infantino
- University of Bari Aldo Moro, Department of Biomedical Science and Human Oncology, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy.
| | - Tariq A Alalwan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Alessandra Miccono
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| |
Collapse
|
20
|
Safety Evaluations of Single Dose of the Olive Secoiridoid S-(-)-Oleocanthal in Swiss Albino Mice. Nutrients 2020; 12:nu12020314. [PMID: 31991771 PMCID: PMC7071127 DOI: 10.3390/nu12020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Epidemiological and clinical studies compellingly showed the ability of Mediterranean diet rich in extra-virgin olive oil (EVOO) to reduce multiple diseases such as cancer, cardiovascular diseases, and aging cognitive functions decline. The S-(-)-Oleocanthal (OC) is a minor phenolic secoiridoid exclusively found in extra-virgin olive oil (EVOO). OC recently gained notable research attention due to its excellent in vitro and in vivo biological effects against multiple cancers, inflammations, and Alzheimer's disease. However, OC safety has not been comprehensively studied yet. This study reports for the first time the detailed safety of oral single OC dose in Swiss albino mice, applying the OECD 420 procedure. Male and female Swiss albino mice (n = 10) were orally treated with a single OC dose of either 10, 250, or 500 mg/kg bodyweight or equivalent volumes of distilled water. Mice fed a regular diet, and carefully observed for 14 days. Further, mice were then sacrificed, blood samples, and organs were collected and subjected to hematological, biochemical, and histological examinations. OC 10 mg/kg oral dose appears to be without adverse effects. Further, 250 mg/kg OC, p.o., is suggested as a possible upper dose for preclinical studies in the future.
Collapse
|
21
|
de Paula do Nascimento R, Lima AV, Oyama LM, Paiotti APR, Cardili L, Martinez CAR, Pereira JA, Silva MF, Garofolo IC, Silveira VLF, Caperuto LC. Extra virgin olive oil and flaxseed oil have no preventive effects on DSS-induced acute ulcerative colitis. Nutrition 2020; 74:110731. [PMID: 32179382 DOI: 10.1016/j.nut.2020.110731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the preventive effects of extra virgin olive oil (EVOO) or flaxseed oil (FO) on dextran sodium sulfate (DSS)-induced acute ulcerative colitis in female mice. METHODS Eighty C57BL/6J mice of 8-weeks-old were divided in four groups: Control (SO), 10%EVOO, 10%FO and 5%EVOO+5%FO. The oils were given through the AIN-93M diet. After 30 days, animals were divided in four more groups, in which half received 3%DSS in water for 5 days. Body weight loss, bleeding and stool consistency were verified for the Disease Activity Index (DAI). Animals were euthanized and their colon and spleen weighted and measured. Histopathological analysis, the concentrations of TNF-α, IL-1β, and IL-10 and the iNOS expression were evaluated in the colon samples. RESULTS Animals that received DSS presented with elevated disease activity index values; increased colon weight-to-length ratio; augmented leukocyte infiltration into the lamina propria and submucosa; and increased production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and greater inducible nitric oxide synthase expression in the distal colon. Individually or in combination, the oils were not able to reverse or mitigate any of the DSS-induced symptoms or damage. Additionally, the group of animals treated with DSS and supplemented with FO displayed increased spleen weight-to-body weight ratio, and the group that received a combination of EVOO and FO presented increased TNF-α levels compared with the respective control group. CONCLUSION Consumption of large amounts of EVOO and FO as a treatment for or prevention against ulcerative colitis could potentially elicit unwanted adverse effects.
Collapse
Affiliation(s)
| | - Amanda Vieira Lima
- Laboratory of Metabolic Physiology, Universidade Federal de São Paulo-Diadema Campus, São Paulo, Brazil
| | - Lila Missae Oyama
- Department of Physiology, Universidade Federal de São Paulo-São Paulo Campus, São Paulo, Brazil
| | - Ana Paula Ribeiro Paiotti
- Laboratory of Molecular and Experimental Pathology/Laboratory of Hepatology Molecular Applied-Discipline of Gastroenterology, Universidade Federal de São Paulo-São Paulo Campus, São Paulo, Brazil
| | - Leonardo Cardili
- Department of Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | | | - José Aires Pereira
- Postgraduate Program in Health Sciences, Universidade São Francisco-Bragança Paulista Campus, São Paulo, Brazil
| | - Milena Ferreira Silva
- Laboratory of Metabolic Physiology, Universidade Federal de São Paulo-Diadema Campus, São Paulo, Brazil
| | - Ingrid Candido Garofolo
- Laboratory of Metabolic Physiology, Universidade Federal de São Paulo-Diadema Campus, São Paulo, Brazil
| | - Vera Lucia Flor Silveira
- Laboratory of Metabolic Physiology, Universidade Federal de São Paulo-Diadema Campus, São Paulo, Brazil
| | - Luciana Chagas Caperuto
- Laboratory of Metabolic Physiology, Universidade Federal de São Paulo-Diadema Campus, São Paulo, Brazil.
| |
Collapse
|
22
|
The effects of extra virgin olive oil and canola oil on inflammatory markers and gastrointestinal symptoms in patients with ulcerative colitis. Eur J Clin Nutr 2020; 74:891-899. [PMID: 31901082 DOI: 10.1038/s41430-019-0549-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/07/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Ulcerative colitis (UC) is an immune-mediated disease that causes inflammation in the gastrointestinal tract. Diet has an important role in the treatment of UC. This study aimed to compare the effects of extra virgin olive oil (EVOO), as a functional food, with canola oil in the treatment of UC. SUBJECTS/METHODS Forty patients were participating in this crossover clinical trial. Thirty two patients completed two intervention rounds. Blood samples were taken before and after 20 days intervention. Disease activity score and gastrointestinal symptoms were evaluated using the Mayo score and gastrointestinal symptom rating scale (GSRS) respectively. RESULTS Erythrocyte sedimentation rate (p = 0.03) and high-sensitivity C-reactive protein (p < 0.001) were decreased significantly after EVOO consumption. Bloating, constipation, fecal urgency, incomplete defecation, and final GSRS were reduced significantly after EVOO consumption (p < 0.05). CONCLUSIONS Intake of EVOO decreased the inflammatory markers and improved gastrointestinal symptoms in UC patients. It seems this functional food can be beneficial in the treatment of UC as a complementary medicine.
Collapse
|
23
|
Park JS, Choi J, Hwang SH, Kim JK, Kim EK, Lee SY, Lee BI, Park SH, Cho ML. Cottonseed Oil Protects Against Intestinal Inflammation in Dextran Sodium Sulfate-Induced Inflammatory Bowel Disease. J Med Food 2019; 22:672-679. [DOI: 10.1089/jmf.2018.4323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun-Hee Hwang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Young Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo-In Lee
- Divisions of Gastroenterology and Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
- Divisions of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
24
|
Bigagli E, Toti S, Lodovici M, Giovannelli L, Cinci L, D'Ambrosio M, Luceri C. Dietary Extra-Virgin Olive Oil Polyphenols Do Not Attenuate Colon Inflammation in Transgenic HLAB-27 Rats but Exert Hypocholesterolemic Effects through the Modulation of HMGCR and PPAR-α Gene Expression in the Liver. Lifestyle Genom 2019; 11:99-108. [PMID: 30630166 DOI: 10.1159/000495516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human studies have demonstrated that olive oil phenolic compounds reduce inflammatory markers associated with chronic diseases. OBJECTIVES To explore the anti-inflammatory effects of extra-virgin olive oil polyphenols in an experimental model of inflammatory bowel disease (IBD). METHODS HLA-B27 transgenic rats were fed an AIN-76 diet containing 10% corn oil (CO) or extra-virgin olive oil with high (EVOO) or low phenolic content (ROO) for 3 months. Wild-type rats (WT) were fed the CO diet. RESULTS CO-fed HLA-B27 animals developed intestinal inflammation characterized by diarrhea, increased myeloperoxidase activity, and mucosal injury. None of these parameters were influenced by EVOO. Gene expression profiling indicated that proinflammatory pathways were upregulated in the colon mucosa of CO-fed HLA-B27 rats compared to WT, and this was further confirmed by RT-PCR for the iNOS, TNFα, and IL1β genes. EVOO significantly reduced TNFα gene expression in the colon mucosa and decreased total cholesterol blood levels compared to CO HLA-B27 rats (89.43 ± 3.66 vs. 111.5 ± 8.10 mg/dL, p < 0.05). This latter effect with EVOO was associated with reduced HMGCR and increased PPAR-α hepatic gene expression, compared to ROO. CONCLUSION These data indicate that olive oil polyphenols do not control colon inflammation in HLA-B27 transgenic rats but exert a positive effect on blood lipids by reducing total cholesterol levels. This preliminary result suggests the need to explore the efficacy of EVOO rich in polyphenols as a complementary strategy for managing hypercholesterolemia and to potentially limit statin-associated myotoxicity.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy
| | | | - Maura Lodovici
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy
| | - Lisa Giovannelli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy
| | - Mario D'Ambrosio
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy
| | - Cristina Luceri
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research, and Child Health - NEUROFARBA, University of Florence, Florence, Italy,
| |
Collapse
|
25
|
Sabino M, Cappelli K, Capomaccio S, Pascucci L, Biasato I, Verini-Supplizi A, Valiani A, Trabalza-Marinucci M. Dietary supplementation with olive mill wastewaters induces modifications on chicken jejunum epithelial cell transcriptome and modulates jejunum morphology. BMC Genomics 2018; 19:576. [PMID: 30068314 PMCID: PMC6090849 DOI: 10.1186/s12864-018-4962-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/26/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Mediterranean diet is considered one of the healthier food habits and olive oil is one of its key components. Olive oil polyphenols are known to induce beneficial effects in several pathological conditions, such as inflammatory bowel disease, and to contrast the proliferation of cancer cells or hypercholesterolemia. Polyphenols are also present in waste products derived from the olive industry: olive mill wastewaters (OMWW) are rich in polyphenols and there is an increasing interest in using OMWW in animal nutrition. OMWW are attributed with positive effects in promoting chicken performance and the quality of food-derived products. However, a tissue-specific transcriptome target analysis of chickens fed with OMWW has never been attempted. RESULTS We explored the effect of dietary OMWW on the intestinal function in broilers. A morphological analysis of the jejunum revealed that OMWW reduced crypt depth, whereas no significant modifications were observed for villus height and the villus height/crypt depth ratio. An RNA Sequencing analysis was performed on isolated, intestinal, epithelial cells and 280 differentially expressed genes were found using a count-based approach. An enrichment analysis revealed that the majority of up regulated genes in the OMWW group were over-represented by the regulation of viral genome replication-related GO-Terms, whereas down regulated genes were mainly involved in cholesterol and lipid metabolism. CONCLUSIONS Our study showed how an industrial waste product can be recycled as a feed additive with a positive relapse. OMWW dietary supplementation can be a nutritional strategy to improve chicken performance and health, prevent intestinal damage, enhance innate immunity and regulate cholesterol metabolism and fat deposition.
Collapse
Affiliation(s)
- Marcella Sabino
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Ilaria Biasato
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Andrea Verini-Supplizi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Via Gaetano Salvemini 1, 06126 Perugia, Italy
| | | |
Collapse
|
26
|
Wani TA, Masoodi F, Gani A, Baba WN, Rahmanian N, Akhter R, Wani IA, Ahmad M. Olive oil and its principal bioactive compound: Hydroxytyrosol – A review of the recent literature. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Bermúdez-Oria A, Rodríguez-Gutiérrez G, Rodríguez-Juan E, González-Benjumea A, Fernández-Bolaños J. Molecular interactions between 3,4-dihydroxyphenylglycol and pectin and antioxidant capacity of this complex in vitro. Carbohydr Polym 2018; 197:260-268. [PMID: 30007612 DOI: 10.1016/j.carbpol.2018.05.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/18/2022]
Abstract
This study explored the interaction of pectin with 3,4-dihydroxyphenylglycol (DHPG), a potent phenolic antioxidant naturally found in olive fruit, via encapsulation into pectinate beads. MALDI TOF-TOF analysis supported the formation of complexes between DHPG and pectin. A combination of covalent bonds (ester bonds) and non-covalent interactions, mostly hydrogen bonding, were suggested as the cause of DHPG-pectin complex formation. Free radical scavenging assays confirmed that DHPG maintained its antioxidant activity after complexation and after a digestion simulated in vitro with gastric and intestinal fluids. Therefore, DHPG-pectin beads could reach the large intestine and contribute to a healthy antioxidant environment.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Elisa Rodríguez-Juan
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Alejandro González-Benjumea
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Profesor García González 1, Seville 41012, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
28
|
Voltes A, Bermúdez A, Rodríguez-Gutiérrez G, Reyes ML, Olano C, Fernández-Bolaños J, Portilla FDL. Anti-Inflammatory Local Effect of Hydroxytyrosol Combined with Pectin-Alginate and Olive Oil on Trinitrobenzene Sulfonic Acid-Induced Colitis in Wistar Rats. J INVEST SURG 2018; 33:8-14. [DOI: 10.1080/08941939.2018.1469697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- A. Voltes
- Colorectal Surgery Units, Department of General and Digestive Surgery, “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
| | - A. Bermúdez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo de Olavide University Campus, Seville, Spain
| | - G. Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo de Olavide University Campus, Seville, Spain
| | - M. L. Reyes
- Colorectal Surgery Units, Department of General and Digestive Surgery, “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
| | - C. Olano
- National Institute of Toxicology and Forensic Sciences, Seville, Spain
| | - J. Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo de Olavide University Campus, Seville, Spain
| | - F. de la Portilla
- Colorectal Surgery Units, Department of General and Digestive Surgery, “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
| |
Collapse
|
29
|
Pang KL, Chin KY. The Biological Activities of Oleocanthal from a Molecular Perspective. Nutrients 2018; 10:E570. [PMID: 29734791 PMCID: PMC5986450 DOI: 10.3390/nu10050570] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia.
| | - Kok-Yong Chin
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Malaysia.
| |
Collapse
|
30
|
Aparicio-Soto M, Sánchez-Hidalgo M, Rosillo MÁ, Castejón ML, Alarcón-de-la-Lastra C. Extra virgin olive oil: a key functional food for prevention of immune-inflammatory diseases. Food Funct 2018; 7:4492-4505. [PMID: 27783083 DOI: 10.1039/c6fo01094f] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nowadays, it is clear that an unhealthy diet is one of the prime factors that contributes to the rise of inflammatory diseases and autoimmunity in the populations of both developed and developing countries. The Mediterranean diet has been associated with a reduced incidence of certain pathologies related to chronic inflammation and the immune system. Olive oil, the principal source of dietary lipids of the Mediterranean diet, possesses a high nutritional quality and a particular composition, which is especially relevant in the case of Extra Virgin Olive Oil (EVOO). EVOO is obtained from olives solely by mechanical or other physical preparation methods, under conditions that do not alter the natural composition. EVOO is described as a key bioactive food with multiple beneficial properties and it may be effective in the management of some immune-inflammatory diseases. In this review, the key research is summarised which provides evidence of the beneficial effects of EVOO and its minor components focusing on their mechanisms on immune-inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and sclerosis.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012 Seville, Spain.
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012 Seville, Spain.
| | - Ma Ángeles Rosillo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012 Seville, Spain.
| | - Ma Luisa Castejón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012 Seville, Spain.
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012 Seville, Spain.
| |
Collapse
|
31
|
Donovan MG, Selmin OI, Doetschman TC, Romagnolo DF. Mediterranean Diet: Prevention of Colorectal Cancer. Front Nutr 2017; 4:59. [PMID: 29259973 PMCID: PMC5723389 DOI: 10.3389/fnut.2017.00059] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer diagnosis and the second and third leading cause of cancer mortality in men and women, respectively. However, the majority of CRC cases are the result of sporadic tumorigenesis via the adenoma–carcinoma sequence. This process can take up to 20 years, suggesting an important window of opportunity exists for prevention such as switching toward healthier dietary patterns. The Mediterranean diet (MD) is a dietary pattern associated with various health benefits including protection against cardiovascular disease, diabetes, obesity, and various cancers. In this article, we review publications available in the PubMed database within the last 10 years that report on the impact of a MD eating pattern on prevention of CRC. To assist the reader with interpretation of the results and discussion, we first introduce indexes and scoring systems commonly used to experimentally determine adherence to a MD, followed by a brief introduction of the influence of the MD pattern on inflammatory bowel disease, which predisposes to CRC. Finally, we discuss key biological mechanisms through which specific bioactive food components commonly present in the MD are proposed to prevent or delay the development of CRC. We close with a discussion of future research frontiers in CRC prevention with particular reference to the role of epigenetic mechanisms and microbiome related to the MD eating pattern.
Collapse
Affiliation(s)
- Micah G Donovan
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Ornella I Selmin
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States.,University of Arizona Cancer Center, Tucson, AZ, United States
| | - Tom C Doetschman
- University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Molecular and Cellular Medicine, University of Arizona, Tucson, AZ, United States
| | - Donato F Romagnolo
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States.,University of Arizona Cancer Center, Tucson, AZ, United States
| |
Collapse
|
32
|
Therapeutic Effects of Olive and Its Derivatives on Osteoarthritis: From Bench to Bedside. Nutrients 2017; 9:nu9101060. [PMID: 28954409 PMCID: PMC5691677 DOI: 10.3390/nu9101060] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 01/11/2023] Open
Abstract
Osteoarthritis is a major cause of morbidity among the elderly worldwide. It is a disease characterized by localized inflammation of the joint and destruction of cartilage, leading to loss of function. Impaired chondrocyte repair mechanisms, due to inflammation, oxidative stress and autophagy, play important roles in the pathogenesis of osteoarthritis. Olive and its derivatives, which possess anti-inflammatory, antioxidant and autophagy-enhancing activities, are suitable candidates for therapeutic interventions for osteoarthritis. This review aimed to summarize the current evidence on the effects of olive and its derivatives, on osteoarthritis and chondrocytes. The literature on animal and human studies has demonstrated a beneficial effect of olive and its derivatives on the progression of osteoarthritis. In vitro studies have suggested that the augmentation of autophagy (though sirtuin-1) and suppression of inflammation by olive polyphenols could contribute to the chondroprotective effects of olive polyphenols. More research and well-planned clinical trials are required to justify the use of olive-based treatment in osteoarthritis.
Collapse
|
33
|
Lewis JD, Abreu MT. Diet as a Trigger or Therapy for Inflammatory Bowel Diseases. Gastroenterology 2017; 152:398-414.e6. [PMID: 27793606 DOI: 10.1053/j.gastro.2016.10.019] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
The most common question asked by patients with inflammatory bowel disease (IBD) is, "Doctor, what should I eat?" Findings from epidemiology studies have indicated that diets high in animal fat and low in fruits and vegetables are the most common pattern associated with an increased risk of IBD. Low levels of vitamin D also appear to be a risk factor for IBD. In murine models, diets high in fat, especially saturated animal fats, also increase inflammation, whereas supplementation with omega 3 long-chain fatty acids protect against intestinal inflammation. Unfortunately, omega 3 supplements have not been shown to decrease the risk of relapse in patients with Crohn's disease. Dietary intervention studies have shown that enteral therapy, with defined formula diets, helps children with Crohn's disease and reduces inflammation and dysbiosis. Although fiber supplements have not been shown definitively to benefit patients with IBD, soluble fiber is the best way to generate short-chain fatty acids such as butyrate, which has anti-inflammatory effects. Addition of vitamin D and curcumin has been shown to increase the efficacy of IBD therapy. There is compelling evidence from animal models that emulsifiers in processed foods increase risk for IBD. We discuss current knowledge about popular diets, including the specific carbohydrate diet and diet low in fermentable oligo-, di-, and monosaccharides and polyols. We present findings from clinical and basic science studies to help gastroenterologists navigate diet as it relates to the management of IBD.
Collapse
Affiliation(s)
- James D Lewis
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Maria T Abreu
- Crohn's and Colitis Center, Department of Medicine, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
34
|
Complexation of hydroxytyrosol and 3,4-dihydroxyphenylglycol with pectin and their potential use for colon targeting. Carbohydr Polym 2017; 163:292-300. [PMID: 28267509 DOI: 10.1016/j.carbpol.2017.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022]
Abstract
Hydroxytyrosol (HT) and 3,4-dihydroxyphenylglycol (DHPG) are two phenolic antioxidants naturally found in olive fruit with anti-inflammatory properties. This study explored the interaction of pectin with HT and DHPG via their encapsulation into pectinate beads. Purification by size exclusion chromatography, changes in the fluorescence spectrum of the HT and pectin, and MALDI TOF-TOF analysis suggested the existence of the phenol-pectin complexes. The entrapment efficiency, swelling properties, and in vitro release of HT and DHPG of the beads were studied. The results show that the beads can entrap the water soluble compounds HT and DHPG in sufficient amounts to reach the colon. The beads consisted of an important amount of pectin-bound HT or DHPG after two hours at gastric pH. This study highlights the potential use of HT-and DHPG-loaded pectinate gel beads for the colon-targeted delivery of these bioactive compounds to help prevent or relieve chronic inflammatory bowel disease.
Collapse
|
35
|
Inflammatory Bowel Diseases. GASTROINTESTINAL TISSUE 2017. [DOI: 10.1016/b978-0-12-805377-5.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Martin DA, Bolling BW. A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases. Food Funct 2016; 6:1773-86. [PMID: 25986932 DOI: 10.1039/c5fo00202h] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Crohn's disease and ulcerative colitis presently have no cure and are treated with anti-inflammatory drugs or monoclonal antibodies targeting pro-inflammatory cytokines. A variety of rodent models have been used to model chronic and acute colitis. Dietary polyphenols in foods and botanicals are of considerable interest for prevention and treatment of colitis. Many dietary polyphenols have been utilized for prevention of colitis in rodent models. Berries, green tea polyphenols, curcumin, and stilbenes have been the most extensively tested polyphenols in rodent models of colitis. The majority of polyphenols tested have inhibited colitis in rodents, but increasing doses of EGCG and green tea, isoflavones, flaxseed, and α-mangostin have exacerbated colitis. Few studies have examined combination of polyphenols or other bioactives for inhibition of colitis. Translating polyphenol doses used in rodent models of colitis to human equivalent doses reveals that supplemental doses are most likely required to inhibit colitis from a single polyphenol treatment. The ability to translate polyphenol treatments in rodent models is likely to be limited by species differences in xenobiotic metabolism and microbiota. Given these limitations, data from polyphenols in rodent models suggests merit for pursuing additional clinical studies for prevention of colitis.
Collapse
Affiliation(s)
- Derek A Martin
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Dr, Madison, WI 53706, USA.
| | | |
Collapse
|
37
|
Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol 2015; 6:617-639. [PMID: 26520808 PMCID: PMC4637335 DOI: 10.1016/j.redox.2015.10.006] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) is considered as one of the etiologic factors involved in several signals and symptoms of inflammatory bowel diseases (IBD) that include diarrhea, toxic megacolon and abdominal pain. This systematic review discusses approaches, challenges and perspectives into the use of nontraditional antioxidant therapy on IBD, including natural and synthetic compounds in both human and animal models. One hundred and thirty four papers were identified, of which only four were evaluated in humans. Some of the challenges identified in this review can shed light on this fact: lack of standardization of OS biomarkers, absence of safety data and clinical trials for the chemicals and biological molecules, as well as the fact that most of the compounds were not repeatedly tested in several situations, including acute and chronic colitis. This review hopes to stimulate researchers to become more involved in this fruitful area, to warrant investigation of novel, alternative and efficacious antioxidant-based therapies. Major biomarkers used for evaluation of antioxidant therapy were MPO, TBARS/MDA and glutathione levels. Challenges were identified for the yet poor use of antioxidant therapy in IBD. This review stimulates the investigation of alternative and efficacious antioxidant therapies.
Collapse
|
38
|
Abstract
BACKGROUND Colorectal cancer is the most severe complication in inflammatory bowel disease. This study aimed to investigate the effects of the probiotic VSL#3 when administered as either preventive or concurrent treatment in the progression from chronic colitis to colon cancer. METHODS Mice were exposed to 5, 10, and 15 cycles of dextran sulfate sodium (DSS); each cycle consisted of 0.7% DSS for 1 week followed by distilled water for 10 days. VSL#3 was administered either from 2 weeks before the colitis induction or from the first day of the colitis until being killed. After each period, macroscopic and histological studies, as well as analysis of inflammatory and tumor biomarkers, were performed. RESULTS Prophylactic or concurrent VSL#3 administration attenuated the disease activity index score and colon inflammation after 5, 10, and 15 cycles of DSS, as well as reduced the histological alterations and the incidence of colonic dysplastic lesions at the 3 periods studied. None of the animals receiving VSL#3 as a concurrent treatment developed carcinoma, which is in contrast to 5% and 20% of the mice following preventive VSL#3 administration, developing carcinoma at the 10th and the 15th cycles of DSS, respectively. In addition, the probiotic reduced the proliferating cell nuclear antigen labeling index, tumor necrosis factor alpha, interleukin-1β, interleukin-6 production, cyclooxygenase-2 expression, and increased interleukin-10 levels in colon tissue at the 3 periods assayed. CONCLUSIONS VSL#3 administration reduced chronic inflammation and prevented or delayed the development of dysplasia and carcinoma in a mouse model of chronic colitis-associated cancer.
Collapse
|
39
|
Lee D, Albenberg L, Compher C, Baldassano R, Piccoli D, Lewis JD, Wu GD. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology 2015; 148:1087-106. [PMID: 25597840 PMCID: PMC4409494 DOI: 10.1053/j.gastro.2015.01.007] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
Some of the most common symptoms of the inflammatory bowel diseases (IBD, which include ulcerative colitis and Crohn's disease) are abdominal pain, diarrhea, and weight loss. It is therefore not surprising that clinicians and patients have wondered whether dietary patterns influence the onset or course of IBD. The question of what to eat is among the most commonly asked by patients, and among the most difficult to answer for clinicians. There are substantial variations in dietary behaviors of patients and recommendations for them, although clinicians do not routinely endorse specific diets for patients with IBD. Dietary clinical trials have been limited by their inability to include a placebo control, contamination of study groups, and inclusion of patients receiving medical therapies. Additional challenges include accuracy of information on dietary intake, complex interactions between foods consumed, and differences in food metabolism among individuals. We review the roles of diet in the etiology and management of IBD based on plausible mechanisms and clinical evidence. Researchers have learned much about the effects of diet on the mucosal immune system, epithelial function, and the intestinal microbiome; these findings could have significant practical implications. Controlled studies of patients receiving enteral nutrition and observations made from patients on exclusion diets have shown that components of whole foods can have deleterious effects for patients with IBD. Additionally, studies in animal models suggested that certain nutrients can reduce intestinal inflammation. In the future, engineered diets that restrict deleterious components but supplement beneficial nutrients could be used to modify the luminal intestinal environment of patients with IBD; these might be used alone or in combination with immunosuppressive agents, or as salvage therapy for patients who do not respond or lose responsiveness to medical therapies. Stricter diets might be required to induce remission, and more sustainable exclusion diets could be used to maintain long-term remission.
Collapse
Affiliation(s)
| | | | | | | | | | - James D. Lewis
- Co-Corresponding authors: James D. Lewis, Professor of Medicine and Epidemiology, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 720 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, Office: (215) 573-5137, Fax: (215) 573-0813, ; Gary D. Wu, Professor of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Suite 915, Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, Office: (215) 898-0158, Fax: (215) 573-2024,
| | - Gary D. Wu
- Co-Corresponding authors: James D. Lewis, Professor of Medicine and Epidemiology, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 720 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, Office: (215) 573-5137, Fax: (215) 573-0813, ; Gary D. Wu, Professor of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Suite 915, Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, Office: (215) 898-0158, Fax: (215) 573-2024,
| |
Collapse
|
40
|
Muto E, Dell'Agli M, Sangiovanni E, Mitro N, Fumagalli M, Crestani M, De Fabiani E, Caruso D. Olive oil phenolic extract regulates interleukin-8 expression by transcriptional and posttranscriptional mechanisms in Caco-2 cells. Mol Nutr Food Res 2015; 59:1217-21. [PMID: 25708117 DOI: 10.1002/mnfr.201400800] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/22/2014] [Accepted: 02/11/2015] [Indexed: 01/15/2023]
Abstract
In this study, we investigated the ability of a phenolic extract from extra virgin olive oil (OPE) to modulate the inflammatory response in intestinal epithelial cells. Undifferentiated and differentiated Caco-2 cells were challenged with LPS (50 μg/mL) or IL-1β (5 ng/mL) to mimic the early and intermediate phase of intestinal inflammation, respectively. The effects of OPE on nuclear factor-κB-driven transcription and IL-8 promoter activity were evaluated in transfection assays, coupled to p65 nuclear translocation. Modulation of IL-8 mRNA levels by OPE was measured by quantitative RT-PCR while effects on protein levels by ELISA. Specific mitogen activated protein kinases inhibitors were used to investigate mRNA stability and the involvement of related signaling pathways. OPE prevented IL-8 expression and secretion in LPS-treated Caco-2 cells. In the presence of IL-1β OPE exhibited opposing effects on IL-8 gene transcription and mRNA/protein levels. While in IL-1β-treated cells IL-8 promoter activity was inhibited by treatment with OPE, IL-8 mRNA stability was strongly enhanced, leading to increased protein expression. Inhibitors of p38 and extracellular signal-regulated kinases partly prevented OPE effect on IL-8 mRNA levels. Intestinal epithelial cells represent a direct target of the action of olive oil phenols where they regulate IL-8 expression by transcriptional and posttranscriptional mechanisms.
Collapse
Affiliation(s)
- Eri Muto
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marco Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maurizio Crestani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Emma De Fabiani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
41
|
Somani SJ, Modi KP, Majumdar AS, Sadarani BN. Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother Res 2015; 29:339-50. [PMID: 25572840 DOI: 10.1002/ptr.5271] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/06/2014] [Accepted: 11/24/2014] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with unclear etiology, namely ulcerative colitis and Crohn's disease. Various drug therapies including aminosalicylates and immunomodulators have been approved for use; they have shown to produce diverse side effects. To overcome these limitations of the current therapeutics for IBD, extensive research is underway to identify drugs that are effective and free of undesirable side effects. Recently, various naturally occurring phytochemicals that cover a wide range of chemical entities such as polyphenols, terpeniods, flavonoids, and alkaloids have received attention as alternative candidates for IBD therapy. These phytochemicals act by modulating the immune response, various transcription factors, or reduce cytokine secretion. This review summarizes the findings of recent studies on phytochemicals as therapeutic agents in the management of IBD.
Collapse
Affiliation(s)
- Sahil J Somani
- Department of Pharmacology, School of Pharmacy, RK University, Rajkot, India
| | | | | | | |
Collapse
|