1
|
Kosmala M, Milala J, Karlińska E. Polysaccharide Composition of Dietary Fiber During Raspberry and Blackberry Juice Production. Molecules 2025; 30:2098. [PMID: 40430271 PMCID: PMC12113753 DOI: 10.3390/molecules30102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Fiber is one of the most important ingredients of fruit that has an influence on the gastrointestinal tract and biochemical parameters of blood. Fiber has texturizing functions in food processing. The fiber's properties (water-binding capacity, swelling, and oil-holding capacity) and polysaccharide composition obtained from raspberry and blackberry fruit, juice, and pomace, divided into seed and seedless fractions, were determined. The seedless fraction contains more hemicelluloses and homogalacturonan with higher water-binding capacities, swelling, and oil-holding capacities, and the seeds contain more cellulose, and their physical abilities are much lower. Water-binding capacities were from 2.7 to 14.9 g/g, swelling from 3.3 to 11.1 mL/g, and oil-holding capacities from 8.0 to 16.5 g/g. The sequential extraction of fruit fiber showed that the main fraction was the Residue, followed by the weak alkali extractable pectin (DASP) and the hemicellulose (CASP). Water-extractable pectin (WSP) and chelating-agent extractable pectin (ChSP) both constituted 8-9% of AIS each. In the pomace, the main fraction was the Residue (40% AIS), followed by CASP (16% AIS), DASP and ChSP (6-7% AIS), and WSP and WR (3% AIS). While seeds are composed mostly of Residue (52-57% AIS vs. 24-36% AIS in seedless), the seedless part shares of CASP hemicelluloses were higher (24-28% AIS vs. 12-15% in seeds). In the seedless part, there was also more water-soluble pectin (WSP) (4-5% vs. 2-3% in seeds). Seedless fraction is rich in hemicellulose and has higher water-binding properties and oil-holding capacities compared to seeds, and that is why it could be a source of functional berry polysaccharides.
Collapse
Affiliation(s)
- Monika Kosmala
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego Street 2/22, 90-537 Lodz, Poland; (J.M.); (E.K.)
| | | | | |
Collapse
|
2
|
Cortés-Martín A, Iglesias-Aguirre CE, Marín A, Romo-Vaquero M, Vallejo F, Espín JC, Victoria Selma M. Urolithin A production drives the effects of pomegranate on the gut microbial metabolism of bile acids and cholesterol in mild dyslipidaemic overweight and obese individuals. Food Funct 2024; 15:2422-2432. [PMID: 38329279 DOI: 10.1039/d3fo05014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The metabolism of (poly)phenols and some host metabolites, including bile acids (BAs) and cholesterol, varies among individuals depending on their gut microbiota. The gut microbial metabolism of ellagitannins (ETs) and ellagic acid (EA) produces urolithins (Uros), yielding three metabotypes with quantitative and qualitative differences based on dissimilar Uro-producing profiles (UM-A, UM-B, and UM-0, i.e., non-producers). Previous animal studies demonstrated that polyphenols impact BAs and cholesterol microbial metabolism, but data on their effects in humans and data regarding the inter-individual variability of these metabolic conversions are scant. We evaluated whether UMs, as distinctive functional gut-microbiome signatures, could determine the potential effect of a pomegranate extract (PE) rich in ET-EA on the metabolism of BAs and cholesterol in mild dyslipidaemic overweight-obese individuals, with possible consequences on host-lipid homeostasis and gut health. At the baseline, UM-B presented the highest levels of faecal total and secondary BAs and coprostanol, suggesting that the lipid absorption capacity and gut cytotoxic risk could be augmented in UM-B. PE intake significantly reduced faecal coprostanol and BA production, especially secondary BAs, and modulated the gut microbiome, reducing the gut cytotoxic risk, especially in UM-B individuals. The lowering of faecal microbial coprostanol and BAs and some BA-metabolising bacteria was quantitatively correlated with Uro concentrations, mainly faecal Uro-A. This suggests that PE consumption could exert cardiovascular and gut protection through Uro-A production as a direct driver of the effects and indirectly by reducing the Coriobacteriaceae family and BA pool, known factors involved in the gut absorption of lipids.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
- APC Microbiome Ireland & School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Carlos E Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| | - Alicia Marín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| | - María Romo-Vaquero
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| | - Fernando Vallejo
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| |
Collapse
|
3
|
Madsen S, Bak SY, Yde CC, Jensen HM, Knudsen TA, Bæch-Laursen C, Holst JJ, Laustsen C, Hedemann MS. Unravelling Effects of Rosemary ( Rosmarinus officinalis L.) Extract on Hepatic Fat Accumulation and Plasma Lipid Profile in Rats Fed a High-Fat Western-Style Diet. Metabolites 2023; 13:974. [PMID: 37755254 PMCID: PMC10534343 DOI: 10.3390/metabo13090974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
The objective of the study was to investigate the preventive effect on obesity-related conditions of rosemary (Rosmarinus officinalis L.) extract (RE) in young, healthy rats fed a high-fat Western-style diet to complement the existing knowledge gap concerning the anti-obesity effects of RE in vivo. Sprague Dawley rats (71.3 ± 0.46 g) were fed a high-fat Western-style diet (WD) or WD containing either 1 g/kg feed or 4 g/kg feed RE for six weeks. A group fed standard chow served as a negative control. The treatments did not affect body weight; however, the liver fat percentage was reduced in rats fed RE, and NMR analyses of liver tissue indicated that total cholesterol and triglycerides in the liver were reduced. In plasma, HDL cholesterol was increased while triglycerides were decreased. Rats fed high RE had significantly increased fasting plasma concentrations of Glucagon-like peptide-1 (GLP-1). Proteomics analyses of liver tissue showed that RE increased enzymes involved in fatty acid oxidation, possibly associated with the higher fasting GLP-1 levels, which may explain the improvement of the overall lipid profile and hepatic fat accumulation. Furthermore, high levels of succinic acid in the cecal content of RE-treated animals suggested a modulation of the microbiota composition. In conclusion, our results suggest that RE may alleviate the effects of consuming a high-fat diet through increased GLP-1 secretion and changes in microbiota composition.
Collapse
Affiliation(s)
- Sidsel Madsen
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Steffen Yde Bak
- IFF—Nutrition Biosciences Aps, Edwin Rahrs Vej 38, DK-8220 Brabrand, Denmark; (S.Y.B.); (C.C.Y.); (H.M.J.); (T.A.K.)
| | - Christian Clement Yde
- IFF—Nutrition Biosciences Aps, Edwin Rahrs Vej 38, DK-8220 Brabrand, Denmark; (S.Y.B.); (C.C.Y.); (H.M.J.); (T.A.K.)
| | - Henrik Max Jensen
- IFF—Nutrition Biosciences Aps, Edwin Rahrs Vej 38, DK-8220 Brabrand, Denmark; (S.Y.B.); (C.C.Y.); (H.M.J.); (T.A.K.)
| | - Tine Ahrendt Knudsen
- IFF—Nutrition Biosciences Aps, Edwin Rahrs Vej 38, DK-8220 Brabrand, Denmark; (S.Y.B.); (C.C.Y.); (H.M.J.); (T.A.K.)
| | - Cecilie Bæch-Laursen
- Department of Biomedical Sciences and Novo Nordisk Foundation, Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.B.-L.); (J.J.H.)
| | - Jens Juul Holst
- Department of Biomedical Sciences and Novo Nordisk Foundation, Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.B.-L.); (J.J.H.)
| | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
| | - Mette Skou Hedemann
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| |
Collapse
|
4
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
5
|
Wang X, Qi Y, Zheng H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants (Basel) 2022; 11:antiox11061212. [PMID: 35740109 PMCID: PMC9220293 DOI: 10.3390/antiox11061212] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, which are probably the most important secondary metabolites produced by plants, have attracted tremendous attention due to their health-promoting effects, including their antioxidant, anti-inflammatory, antibacterial, anti-adipogenic, and neuro-protective activities, as well as health properties. However, due to their complicated structures and high molecular weights, a large proportion of dietary polyphenols remain unabsorbed along the gastrointestinal tract, while in the large intestine they are biotransformed into bioactive, low-molecular-weight phenolic metabolites through the residing gut microbiota. Dietary polyphenols can modulate the composition of intestinal microbes, and in turn, gut microbes catabolize polyphenols to release bioactive metabolites. To better investigate the health benefits of dietary polyphenols, this review provides a summary of their modulation through in vitro and in vivo evidence (animal models and humans), as well as their possible actions through intestinal barrier function and gut microbes. This review aims to provide a basis for better understanding the relationship between dietary polyphenols, gut microbiota, and host health.
Collapse
|
6
|
Wang H, He S, Sun Z, Wang R, Zou X, Lu F. Targeted Profiling of Rodent Unconjugated Bile Acids by GC-MS to Reveal the Influence of High-Fat Diet. Biomed Chromatogr 2022; 36:e5428. [PMID: 35708903 DOI: 10.1002/bmc.5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
Unconjugated bile acids (BAs) have gained more attention than conjugated BAs in the association studies among diet, gut microbiota and diseases. Gas chromatography-mass spectrometry (GC-MS) is probably a good choice for specialized analysis of unconjugated BAs due to high separation capacity and identification convenience. However, few reports have focused on the rodent unconjugated BAs by GC-MS, and the main library for identification has not included rodent-specific BAs. We developed a GC-MS method for targeted profiling of eight main unconjugated BAs in rodent models, which showed excellent performance on sensitivity, reproducibility and accuracy. Quantitative reproducibility in terms of relative standard deviation (RSD) was in the range of 2.05%-2.91%, with detection limits of 3-55 ng/mL, quantitation limits of 9-182 ng/mL and the recovery rate of 72%-115%. All the calibration curves displayed good linearity with correlation coefficient values (R2 ) more than 0.99. Using the established method, the influence of high-fat diet on the metabolism of unconjugated BAs were revealed. Significant increasing of fecal unconjugated BAs induced by high-fat diet, would be a potential risk to gut inflammation and cancer. The study provides a convenient and targeted GC-MS method for specialized profiling of rodent unconjugated BAs in physiological and pathological studies.
Collapse
Affiliation(s)
- Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Shi He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Zepeng Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Ruijia Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xiaotong Zou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
7
|
Bauza-Kaszewska J, Żary-Sikorska E, Gugolek A, Ligocka A, Kosmala M, Karlińska E, Fotschki B, Juśkiewicz J. Synergistic Antimicrobial Effect of Raspberry (Rubus idaeus L., Rosaceae) Preparations and Probiotic Bacteria on Enteric Pathogens. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/132897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Zhao A, Zhang L, Zhang X, Edirisinghe I, Burton-Freeman BM, Sandhu AK. Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma. Metabolites 2021; 11:99. [PMID: 33578858 PMCID: PMC7916557 DOI: 10.3390/metabo11020099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Primary bile acids (BAs) and their gut microbial metabolites have a role in regulating human health. Comprehensive characterization of BAs species in human biological samples will aid in understanding the interaction between diet, gut microbiota, and bile acid metabolism. Therefore, we developed a qualitative method using ultra-high performance liquid chromatography (UHPLC) coupled with a quadrupole time-of-flight (Q-TOF) to identify BAs in human plasma, feces, and urine samples. A quantitative method was developed using UHPLC coupled with triple quadrupole (QQQ) and applied to a previous clinical trial conducted by our group to understand the bile acid metabolism in overweight/obese middle-aged adults (n = 34) after four weeks strawberry vs. control intervention. The qualitative study tentatively identified a total of 81 BAs in human biological samples. Several BA glucuronide-conjugates were characterized for the first time in human plasma and/or urine samples. The four-week strawberry intervention significantly reduced plasma concentrations of individual secondary BAs, deoxycholic acid, lithocholic acid and their glycine conjugates, as well as glycoursodeoxycholic acid compared to control (p < 0.05); total glucuronide-, total oxidized-, total dehydroxyl-, total secondary, and total plasma BAs were also lowered compared to control (p < 0.05). The reduced secondary BAs concentrations suggest that regular strawberry intake modulates the microbial metabolism of BAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Amandeep K. Sandhu
- Department of Food Science and Nutrition and Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA; (A.Z.); (L.Z.); (X.Z.); (I.E.); (B.M.B.-F.)
| |
Collapse
|
9
|
Protective Effects of a Strawberry Ellagitannin-Rich Extract against Pro-Oxidative and Pro-Inflammatory Dysfunctions Induced by a High-Fat Diet in a Rat Model. Molecules 2020; 25:molecules25245874. [PMID: 33322602 PMCID: PMC7763312 DOI: 10.3390/molecules25245874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Due to the demonstrated intestinal microbial transformation of strawberry ellagitannins (ET) into bioactive metabolites, in the current study on rats, we hypothesised that the dietary addition of a strawberry ET-rich extract (S-ET) to a high-fat diet (HFD) would attenuate disturbances in the redox and lipid status as well as in the inflammatory response. We randomly distributed 48 Wistar rats into six groups and used two-way analysis of variance (ANOVA) to assess the effects of two main factors—diet type (standard and high-fat) and ET dosage (without, low, and 3× higher)—applied to rats for 4 weeks. In relation to the hypothesis, irrespective of the dosage, the dietary application of ET resulted in the desired attenuating effects in rats fed a HFD as manifested by decreased body weight gain, relative mass of the epididymal pad, hepatic fat, oxidized glutathione (GSSG), triglycerides (TG), total cholesterol (TC), and thiobarbituric acid-reactive substances (TBARS) concentrations as well as desired modifications in the blood plasma parameters. These beneficial changes were enhanced by the high dietary addition of ET, which was associated with considerably higher concentrations of ET metabolites in the urine and plasma of rats. The results indicated that S-ET could be effectively used for the prevention and treatment of metabolic disturbances associated with obesity, dyslipidaemia, redox status imbalance, and inflammation.
Collapse
|
10
|
Mu J, Zhang J, Zhou X, Zalan Z, Hegyi F, Takács K, Ibrahim A, Awad S, Wu Y, Zhao X, Du M. Effect of Lactobacillus plantarum KFY02 isolated from naturally fermented yogurt on the weight loss in mice with high-fat diet-induced obesity via PPAR-α/γ signaling pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Deng J, Guo W, Guo J, Li Y, Zhou W, Lv W, Li L, Liu B, Xia G, Ni L, Rao P, Lv X. Regulatory effects of a Grifola frondosa extract rich in pseudobaptigenin and cyanidin-3-O-xylosylrutinoside on glycolipid metabolism and the gut microbiota in high-fat diet-fed rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
Naumann S, Haller D, Eisner P, Schweiggert-Weisz U. Mechanisms of Interactions between Bile Acids and Plant Compounds-A Review. Int J Mol Sci 2020; 21:E6495. [PMID: 32899482 PMCID: PMC7555273 DOI: 10.3390/ijms21186495] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Plant compounds are described to interact with bile acids during small intestinal digestion. This review will summarise mechanisms of interaction between bile acids and plant compounds, challenges in in vivo and in vitro analyses, and possible consequences on health. The main mechanisms of interaction assume that increased viscosity during digestion results in reduced micellar mobility of bile acids, or that bile acids and plant compounds are associated or complexed at the molecular level. Increasing viscosity during digestion due to specific dietary fibres is considered a central reason for bile acid retention. Furthermore, hydrophobic interactions are proposed to contribute to bile acid retention in the small intestine. Although frequently hypothesised, no mechanism of permanent binding of bile acids by dietary fibres or indigestible protein fractions has yet been demonstrated. Otherwise, various polyphenolic structures were recently associated with reduced micellar solubility and modification of steroid and bile acid excretion but underlying molecular mechanisms of interaction are not yet fully understood. Therefore, future research activities need to consider the complex composition and cell-wall structures as influenced by processing when investigating bile acid interactions. Furthermore, influences of bile acid interactions on gut microbiota need to be addressed to clarify their role in bile acid metabolism.
Collapse
Affiliation(s)
- Susanne Naumann
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
| | - Dirk Haller
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Chair of Nutrition and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Peter Eisner
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
- Steinbeis-Hochschule, Faculty of Technology and Engineering, George-Bähr-Straße 20, 01069 Dresden, Germany
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
| |
Collapse
|
13
|
Majewski M, Kucharczyk E, Kaliszan R, Markuszewski M, Fotschki B, Juśkiewicz J, Borkowska-Sztachańska M, Ognik K. The Characterization of Ground Raspberry Seeds and the Physiological Response to Supplementation in Hypertensive and Normotensive Rats. Nutrients 2020; 12:E1630. [PMID: 32492905 PMCID: PMC7352221 DOI: 10.3390/nu12061630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to evaluate the protective role of ground raspberry seeds (RBS) as a source of polyphenols and essential fatty acids on blood plasma enzymatic antioxidant status, lipid profile, and endothelium-intact vasodilation during physiological and pathological conditions. Young normotensive Wistar-Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) at ten weeks of age were fed with either a control diet or were supplemented with added 7% RBS for six weeks (n = 6). The main component of RBS was dietary fiber (64%) and the main polyphenols were ellagitannins (1.2%) and flavan-3-ols (0.45%). Irrespective of the rat model, ground RBS decreased liver enzyme aspartate aminotransferase (0.9-fold) and hydrogen peroxide scavenging capacity (Catalase, 0.9-fold). In supplemented SHRs, preincubation with inducible nitric oxide synthase (iNOS) inhibitor 1400W, nonselective cyclooxygenase (COX) inhibitor indomethacin, selective COX-2 inhibitor NS-398, prostacyclin (PGI2) synthesis inhibitor tranylcypromine (TCP), thromboxane receptor (TP) antagonist SQ-29548, thromboxane synthesis inhibitor furegrelate, and 20-HETE synthesis inhibitor HET0016 induced the same relaxant response to acetylcholine as in the nonsupplemented control group. In supplemented WKYs, atherogenic index was decreased (0.8-fold), while iNOS and COX-2-derived PGI2 increased acetylcholine-induced vasodilation. These effects of ground RBS may constitute a potential mechanism for preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland;
| | - Ewa Kucharczyk
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland;
| | - Roman Kaliszan
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (R.K.); (M.M.)
| | - Michał Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (R.K.); (M.M.)
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland; (B.F.); (J.J.)
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland; (B.F.); (J.J.)
| | | | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland;
| |
Collapse
|
14
|
Herrero-Encinas J, Blanch M, Pastor JJ, Mereu A, Ipharraguerre IR, Menoyo D. Effects of a bioactive olive pomace extract from Olea europaea on growth performance, gut function, and intestinal microbiota in broiler chickens. Poult Sci 2020; 99:2-10. [PMID: 32416802 PMCID: PMC7587805 DOI: 10.3382/ps/pez467] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/30/2019] [Indexed: 01/14/2023] Open
Abstract
The present study aims to investigate the effects of supplementing broiler diets with a bioactive olive pomace extract (OE) from Olea europaea on growth performance, digestibility, gut microbiota, bile acid composition, and immune response. To this end, three hundred and six 1-day-old broiler chickens (Ross 308) were housed in floor pens (6 pens/treatment, with 17 birds/pen). Animals were fed with a standard non-medicated starter diet for 21 D, and from 22 to 42 D of age with their respective experimental diet: a negative control with no additives (Control), a positive control with 100 ppm of monensin (Monensin) and the basal diet supplemented with 750 ppm of an OE (Lucta S.A., Spain). Feed intake and growth rate were monitored weekly throughout the trial. From 21 to 42 D of age, no significant differences in feed intake were observed among dietary treatments; however, lower average daily gain and higher feed conversion ratio (P < 0.05) was observed in birds fed the Control compared to Monensin and OE groups. Performance of birds fed OE or Monensin was similar throughout the trial. The apparent ileal digestibility of crude protein was higher in birds fed Monensin than Control treatment (P < 0.05). No significant changes on bacterial composition at a family level were observed in the caeca of birds fed the experimental diets. Moreover, no significant differences on plasma and intestinal bile acid composition were observed among treatments. Birds fed the OE showed a significant decrease of IL-8 expression in the ileum (P < 0.05). Additionally, the expression of TGF-β4, and Bu-1 was significantly upregulated (P < 0.01) in broilers fed the OE and Monensin diets compared to those fed the Control. In conclusion, the inclusion of 750 ppm of a bioactive olive pomace extract from Olea europaea in broiler chicken diets improved animal growth likely as result of its anti-inflammatory properties.
Collapse
Affiliation(s)
- J Herrero-Encinas
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, ETS Ingeniería Agronómica Alimentaria y de Biosistemas, 28040 Madrid, Barcelona, Spain
| | - M Blanch
- Lucta S.A., Innovation Division, UAB Research Park, Edifici Eureka, 08193 Bellaterra, Barcelona, Spain
| | - J J Pastor
- Lucta S.A., Innovation Division, UAB Research Park, Edifici Eureka, 08193 Bellaterra, Barcelona, Spain
| | - A Mereu
- Lucta S.A., Innovation Division, UAB Research Park, Edifici Eureka, 08193 Bellaterra, Barcelona, Spain
| | - I R Ipharraguerre
- Lucta S.A., Innovation Division, UAB Research Park, Edifici Eureka, 08193 Bellaterra, Barcelona, Spain
| | - D Menoyo
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, ETS Ingeniería Agronómica Alimentaria y de Biosistemas, 28040 Madrid, Barcelona, Spain.
| |
Collapse
|
15
|
Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 2019; 11:nu11112588. [PMID: 31661763 PMCID: PMC6893479 DOI: 10.3390/nu11112588] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, the main contributor to coronary heart disease, is characterised by an accumulation of lipids such as cholesterol in the arterial wall. Reverse cholesterol transport (RCT) reduces cholesterol via its conversion into bile acids (BAs). During RCT in non-hepatic peripheral tissues, cholesterol is transferred to high-density lipoprotein (HDL) particles and returned to the liver for conversion into BAs predominantly via the rate-limiting enzyme, cholesterol 7 α-hydroxylase (CYP7A1). Numerous reports have described that polyphenol induced increases in BA excretion and corresponding reductions in total and LDL cholesterol in animal and in-vitro studies, but the process whereby this occurs has not been extensively reviewed. There are three main mechanisms by which BA excretion can be augmented: (1) increased expression of CYP7A1; (2) reduced expression of intestinal BA transporters; and (3) changes in the gut microbiota. Here we summarise the BA metabolic pathways focusing on CYP7A1, how its gene is regulated via transcription factors, diurnal rhythms, and microRNAs. Importantly, we will address the following questions: (1) Can polyphenols enhance BA secretion by modulating the CYP7A1 biosynthetic pathway? (2) Can polyphenols alter the BA pool via changes in the gut microbiota? (3) Which polyphenols are the most promising candidates for future research? We conclude that while in rodents some polyphenols induce CYP7A1 expression predominantly by the LXRα pathway, in human cells, this may occur through FXR, NF-KB, and ERK signalling. Additionally, gut microbiota is important for the de-conjugation and excretion of BAs. Puerarin, resveratrol, and quercetin are promising candidates for further research in this area.
Collapse
|
16
|
Ulaszewska MM, Mancini A, Garcia-Aloy M, Del Bubba M, Tuohy KM, Vrhovsek U. Isotopic dilution method for bile acid profiling reveals new sulfate glycine-conjugated dihydroxy bile acids and glucuronide bile acids in serum. J Pharm Biomed Anal 2019; 173:1-17. [PMID: 31100508 DOI: 10.1016/j.jpba.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
Abstract
An ultrahigh performance liquid chromatography tandem mass spectrometry method (UHPLC-MS/MS) was developed for the determination of 41 target and 8 additional bile acids isomers (BAs) in biological fluids. BAs were analysed by solid-phase extraction on 50 μL biofluid-aliquots, followed by a properly optimised 27 min-chromatographic run. The method provided high sensitivity (limits of detection 0.0002-0.03 μM, limits of quantitation 0.0007-0.11 μM), linearity (R2>0.99) and precision (relative standard deviations ≤16%). A strategy of scheduled/ unscheduled injections of real samples together with neutral loss (80 Da and 176 Da) scans allowed us to find additional bile acid isomers not a priori included in the method, while high resolution full scan and MS/MS fragmentation analysis confirmed their structural adherence to the bile acid family. Moreover this is the first study quantifying four sulfate glycine conjugated-dihydroxy bile acid isomers, independently of the diet and postprandial time. Application to a dietary intervention kinetic study confirmed the existence of possible metabotypes amongst the study population (n = 20). A trend differentiating males from females was observed suggesting that serum samples from women contained smaller amounts of certain bile acids.
Collapse
Affiliation(s)
- Maria M Ulaszewska
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, Trento, Italy.
| | - Andrea Mancini
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, Trento, Italy
| | - Mar Garcia-Aloy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, Trento, Italy
| | - Massimo Del Bubba
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Kieran Micheal Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, Trento, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, Trento, Italy
| |
Collapse
|
17
|
Fotschki B, Juśkiewicz J, Jurgoński A, Kosmala M, Milala J, Zduńczyk Z, Markowski J. Grinding levels of raspberry pomace affect intestinal microbial activity, lipid and glucose metabolism in Wistar rats. Food Res Int 2019; 120:399-406. [PMID: 31000255 DOI: 10.1016/j.foodres.2019.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 02/01/2019] [Accepted: 03/07/2019] [Indexed: 01/23/2023]
Abstract
This study presents the effect of raspberry pomace and its grinding level on microbial activity in the gastrointestinal tract as well as on the parameters involved in the regulation of lipid and glucose metabolism in Wistar rats. The nutritional experiment was performed using 24 male Wistar rats, which were divided into 3 groups of 8 animals each. The animals were fed a standard diet (C) or a modified diet containing 7% raspberry pomace subjected to standard (SG) or fine (FG) grinding. Finer grinding increased the concentration of polyphenols and altered the composition of the dietary fibre, thereby affecting the intestinal microbial activity and related mechanisms that regulate systemic parameters. The FG diet considerably increased the level of total ellagitannin metabolites in the colon (23.56 μg/g for SG and 79.54 μg/g for FG) and plasma (0.029 μg/mL for SG and 0.041 μg/mL for FG) and reduced β-glucuronidase and α-glucosidase activity (19.2 and 19.7 for SG and 13.3 and 8.7 μmol/h/g for FG, respectively) and short-chain fatty acid production (55.84 μmol/g for SG and 48.60 μmol/g for FG) in the caecum. Compared to the SG, the FG diet improved the antioxidant capacity of water-soluble substances in plasma (4.34 μg/mL for SG and 4.92 μg/mL for FG). Both diets with raspberry pomaces increased the plasma HDL cholesterol (0.48 mmol/L for C, 0.56 mmol/L for SG, 0.57 mmol/L for FG) and decreased the atherogenic index (AI = (TC-HDL)/HDL: 2.57 for C, 1.98 for SG, 2.00 for FG). The FG diet resulted in the lowest plasma glucose level (10.8 mmol/L for C, 8.2 mmol/L for SG, 7.3 mmol/L for FG). In conclusion, both diets with raspberry pomaces modulated intestinal microbial activity and related systemic parameters; however, FG pomace exhibited greater inhibitory effects than SG pomace in the lower gut environment and glucose metabolism.
Collapse
Affiliation(s)
- Bartosz Fotschki
- Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland
| | - Adam Jurgoński
- Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland
| | - Monika Kosmala
- Institute of Food Technology and Analysis, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Joanna Milala
- Institute of Food Technology and Analysis, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Zenon Zduńczyk
- Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jarosław Markowski
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| |
Collapse
|
18
|
Pan F, Chen Y, He JZ, Long L, Chen Y, Luo HJ, Xu YW, Pang XX, Yang Q, Wang JJ, Xu XE, Wang SH, Li EM, Xu LY. Dietary riboflavin deficiency promotes N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in rats by inducing chronic inflammation. Am J Cancer Res 2019; 9:2469-2481. [PMID: 31815047 PMCID: PMC6895446 DOI: pmid/31815047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/18/2019] [Indexed: 02/05/2023] Open
Abstract
Epidemiological studies in high-incidence areas of esophageal cancer in China suggest that environmental carcinogen N-nitrosomethylbenzylamine (NMBA) and riboflavin (RBF) deficiency may be the main risk factors for esophageal cancer. However, it is not clear that the combination induces cancer. Here, experiment (Exp) 1 evaluated the effects of NMBA and RBF deficiency individually or in combination on esophageal tumorigenesis. Male F344 rats were randomly assigned to 4 groups into a 2 (no NMBA vs. NMBA) × 2 (normal RBF vs. RBF-deficient) factorial design, including normal RBF (6 mg/kg, R6), RBF-deficient (0 mg/kg, R0), normal RBF combined with NMBA (R6N), and RBF-deficient combined with NMBA (R0N) groups. The Exp 2 explored the effects of RBF deficiency at different doses combined with NMBA (0.6 mg/kg, R0.6N; 0.06 mg/kg, R0.06N) on esophageal tumorigenesis. Results showed that R0N enhanced the incidence of esophageal intraepithelial neoplasia (EIN, 53.3%, P = 0.06), including carcinoma in situ, whereas R6N mainly induced the occurrence of esophageal benign hyperplasia (38.9%) and EIN (16.7%). RBF deficiency promotes EIN in a dose-dependent manner, and R0.06N significantly increases the incidence of EIN (57.9%, P < 0.05). Gene expression profiling demonstrated that inflammatory cytokines were highly expressed in R0N EIN tissues, whereas R6N EIN tissues had a proliferation and differentiation gene signature (fold-change > 1.5). Furthermore, RBF deficiency aggravated oxidative DNA damage (8-OHdG) and double-strand breaks (γH2AX) (P < 0.05). Our results suggest that RBF deficiency causes chronic inflammation-associated genomic instability contributes to NMBA-induced esophageal tumorigenesis.
Collapse
Affiliation(s)
- Feng Pan
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Department of Biochemistry and Molecular Biology, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| | - Ye Chen
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Institute of Oncologic Pathology, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| | - Jian-Zhong He
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Institute of Oncologic Pathology, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| | - Lin Long
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Department of Biochemistry and Molecular Biology, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| | - Yang Chen
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Department of Biochemistry and Molecular Biology, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| | - Hong-Jun Luo
- Bioanalytical Laboratory, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| | - Yi-Wei Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Xiao-Xiao Pang
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Institute of Oncologic Pathology, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| | - Qian Yang
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Institute of Oncologic Pathology, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| | - Juan-Juan Wang
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Institute of Oncologic Pathology, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| | - Xiu-E Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Institute of Oncologic Pathology, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| | - Shao-Hong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou 515041, Guangdong, China
| | - En-Min Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Department of Biochemistry and Molecular Biology, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou UniversityShantou 515041, Guangdong, China
- Institute of Oncologic Pathology, Medical College of Shantou UniversityShantou 515041, Guangdong, China
| |
Collapse
|
19
|
Comparative Effects of Native and Defatted Flaxseeds on Intestinal Enzyme Activity and Lipid Metabolism in Rats Fed a High-Fat Diet Containing Cholic Acid. Nutrients 2018; 10:nu10091181. [PMID: 30154372 PMCID: PMC6163602 DOI: 10.3390/nu10091181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022] Open
Abstract
We hypothesize that defatting is an important factor that can determine the beneficial effects of flaxseeds on rats with diet-induced disorders. The experiment lasts 8 weeks and is conducted on Wistar rats allocated to four groups as follows: a control group fed with a standard diet; a high-fat (HF) group fed with a diet containing 21% fat and 0.1% cholic acid as a stimulator of lipid absorption; an HF group fed a diet supplemented with 1% native flaxseeds; and an HF group fed a diet supplemented with 1% defatted flaxseeds. In the HF group, several unfavourable changes in the gut and lipid metabolism are observed. Supplementation of the HF diet with native flaxseeds prevent an increase in colonic β-glucuronidase activity, whereas dietary defatted flaxseeds increase mucosal disaccharidase activities in the small intestine (sucrose, maltase and lactase). Regardless of the form of supplementation, dietary flaxseeds increase bacterial glycolytic activity in the distal intestine and decrease hepatic fat, especially triglyceride, accumulation. Both flaxseed forms decrease lipid peroxidation in the kidneys and increase the blood HDL cholesterol concentration with the native form being more efficient in the former and the defatted form being more efficient in the latter. The lipid-modulating effects of defatted flaxseeds are associated with reduced hepatic expression of peroxisome proliferator-activated receptor α, which is not the case in terms of native flaxseeds. Dietary supplementation with a relatively small amount of flaxseeds can exert beneficial effects on gut functions and lipid metabolism in rats, and these effects are affected by defatting to some extent.
Collapse
|
20
|
Fotschki B, Laparra JM, Sójka M. Raspberry Polyphenolic Extract Regulates Obesogenic Signals in Hepatocytes. Molecules 2018; 23:molecules23092103. [PMID: 30134638 PMCID: PMC6225237 DOI: 10.3390/molecules23092103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/18/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of this in vitro study was to examine the effect of raspberry polyphenolic extract on the immune-metabolic molecular mechanisms activated by obesity-related signals in hepatocytes (HB-8965®). Alterations in endosomal/lysosomal activity (neutral red uptake assay, NR), the expression of selected genes involved with lipid oxidation, and metabolism and inflammation processes in the liver were studied. Hepatocytes were treated with plasma collected from Wistar rats that were fed a high-fat diet (HF), raspberry polyphenolic extract (PP), serine-type protease inhibitors as an agonist of TLR4 (TD) or a combination of PP with HF or TD treatments. The PP added to the experimental treatments modulated hepatic immune-metabolic mechanisms through the upregulation of STAT1, ANGPTL4, and CD44, as well as considerably reducing the NR uptake and downregulation of COX-2 and the multifunctional protein AhR. The kinetic analysis of AhR expression revealed that HF-related molecular mechanisms activated AhR mRNA expression earlier than PP initiated the regulatory effect. In conclusion, PP might be considered a valuable dietary agent that regulates obesity-related signals in hepatocytes. Moreover, taking AhR kinetic behavior into consideration, it can be assumed that PP might modulate the severity of the HF-induced downstream metabolic signaling of AhR.
Collapse
Affiliation(s)
- Bartosz Fotschki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| | - José Moisés Laparra
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA-Food), Ctra. de Canto Blanco 8, 28049 Madrid, Spain.
| | - Michał Sójka
- Institute of Food Technology and Analysis, Technical University of Łódź, 90-924 Łódź, Poland.
| |
Collapse
|