1
|
Shafe MO, Gumede NM, Nyakudya TT, Chivandi E. Lycopene: A Potent Antioxidant with Multiple Health Benefits. J Nutr Metab 2024; 2024:6252426. [PMID: 38883868 PMCID: PMC11179732 DOI: 10.1155/2024/6252426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Lycopene is a naturally occurring carotenoid predominantly found in tomatoes and tomato-based products. Like other phytochemicals, it exhibits health beneficial biological activities that can be exploited when it is used as a dietary supplement. In vitro and in vivo, lycopene has been demonstrated to mitigate oxidative stress-induced metabolic dysfunctions and diseases including inflammation, obesity, and diabetes mellitus. Lycopene has been shown to alleviate metabolic diseases that affect the bone, eye, kidney, liver, lungs, heart, and nervous system. This review presents the state of the art regarding lycopene's health benefits and its potential applications in health system delivery. Furthermore, lycopene's protective effects against toxins, safety in its use, and possible toxicity are explored.
Collapse
Affiliation(s)
- Mercy Omoye Shafe
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine and Allied Health Sciences, Bingham University, P.M.B. 005, New Karu, Nasarawa 961002, Nigeria
| | - Nontobeko Myllet Gumede
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Trevor Tapiwa Nyakudya
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
2
|
de Souza ABF, de Matos NA, Castro TDF, Costa GDP, Talvani A, Nagato AC, de Menezes RCA, Bezerra FS. Preventive effects of hesperidin in an experimental model ofs acute lung inflammation. Respir Physiol Neurobiol 2024; 323:104240. [PMID: 38417564 DOI: 10.1016/j.resp.2024.104240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
In this study, we hypothesized that long-term administration of hesperidin can modulate the inflammatory response and oxidative stress in animals submitted to mechanical ventilation (MV). Twenty-five C57BL/6 male mice were divided into 5 groups: control, MV, animals receiving hesperidin in three doses 10, 25 and 50 mg/kg. The animals received the doses of hesperidin for 30 days via orogastric gavage, and at the end of the period the animals were submitted to MV. In animals submitted to MV, increased lymphocyte, neutrophil and monocyte/macrophage cell counts were observed in the blood and airways. Associated to this, MV promoted an increase in inflammatory cytokine levels such as CCL2, IL-12 and TNFα. The daily administration of hesperidin in the three doses prevented the effects caused by MV, which was observed by a lower influx of inflammatory cells into the airways, a reduction in inflammatory markers and less oxidative damage.
Collapse
Affiliation(s)
- Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Akinori Cardozo Nagato
- Immunopathology Laboratory and Experimental Pathology, Reproductive Biology Center (CRB), Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Liu Z, Li J, Chen T, Zhao X, Chen Q, Xiao L, Peng Z, Zhang H. Association between dietary antioxidant levels and chronic obstructive pulmonary disease: a mediation analysis of inflammatory factors. Front Immunol 2024; 14:1310399. [PMID: 38259449 PMCID: PMC10800866 DOI: 10.3389/fimmu.2023.1310399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction The development of chronic obstructive pulmonary disease (COPD) is strongly associated with oxidative stress, but it is unclear whether increasing dietary antioxidant intake reduces the risk of COPD. Therefore, this study assessed the association between antioxidant intake and COPD in US adults aged ≥ 40 years and further examined the correlation using the Composite Dietary Antioxidant Index (CDAI). Methods The study included 8,257 US adults aged ≥ 40 years using data from the National Health and Nutrition Examination Survey (NHANES) for three cycles from 2007-2012. Multivariate logistic regression models were used to calculate the correlation between antioxidant intake and CDAI with COPD. Restricted cubic spline was further used to explore the exposure-response relationship. Mediation analysis was used to explore the role of inflammatory factors in the association between CDAI and COPD. Results This study included 8257 participants (4111 women [weighted, 50.7%]; mean [SD] age, 58.8 [11.2] years). In a multivariable-adjusted model of single antioxidant intake, a linear downward association between carotenoid intake and the incidence of COPD (P for trend = 0.052; Pnon- linear = 0.961). In a multivariable adjusted model for CDAI, this association is similarly present (P for trend = 0.018; Pnon-linear = 0.360). Multiple linear regression modeling showed that leukocytes (P = 0.002), alkaline phosphatase (P< 0.001), and c-reactive protein (P< 0.001) were negatively associated with CDAI levels. Meanwhile, mediation analysis revealed that alkaline phosphatase and c-reactive protein partially influenced the association between CDAI and COPD prevalence, with mediation ratios of 6.4% (P< 0.01) and 4.68% (P = 0.04), respectively. Conclusion The risk of COPD decreased with increased carotenoid intake and CDAI. In addition, CDAI has been found to be strongly associated with inflammatory factors and can reduce the incidence of COPD by mediating inflammatory factors.
Collapse
Affiliation(s)
- Ziyi Liu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Emergency and Difficult Diseases Institute of Central South University, Changsha, China
| | - Jiyuan Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tuotuo Chen
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Emergency and Difficult Diseases Institute of Central South University, Changsha, China
| | - Xue Zhao
- College of Medicine, Hunan Normal University, Changsha, China
| | - Qing Chen
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Emergency and Difficult Diseases Institute of Central South University, Changsha, China
| | - Lihua Xiao
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Emergency and Difficult Diseases Institute of Central South University, Changsha, China
| | - Zhenyu Peng
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Emergency and Difficult Diseases Institute of Central South University, Changsha, China
| | - Hongliang Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Emergency and Difficult Diseases Institute of Central South University, Changsha, China
| |
Collapse
|
4
|
Yang R, Cao Z, Liu X, Xiao M, Li M, Chen Y, Chen L, Sun C, Chu X, Ren Q, Wei W. Inverse correlations between serum carotenoids and respiratory morbidity and mortality: the Third National Health and Nutrition Examination Survey. Br J Nutr 2023; 130:1932-1941. [PMID: 37039482 DOI: 10.1017/s0007114523000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The objective was to evaluate the association between serum carotenoid levels and respiratory morbidity and mortality in a nationally representative sample of US adults. We assessed the association of serum carotenoid levels with respiratory morbidity and mortality using logistic regression and proportional hazards regression models. Meanwhile, a series of confounders were controlled in regression models and restricted cubic spline, which included age, sex, race, marriage, education, income, drinking, smoking, regular exercise, BMI, daily energy intake, vitamin E, vitamin C, fruit intake, vegetable intake, diabetes, hypertension, asthma, emphysema and chronic bronchitis. Compared with participants in the lowest tertiles, participants in the highest tertiles of serum total carotenoids, β-cryptoxanthin and lutein/zeaxanthin levels had a significantly lower prevalence of emphysema (ORtotal carotenoids = 0·61, 95% CI: 0·41-0·89, ORβ-cryptoxanthin = 0·67, 95% CI: 0·49-0·92), chronic bronchitis (ORβ-cryptoxanthin = 0·66, 95% CI: 0·50-0·87) and asthma (Q2: ORlutein/zeaxanthin = 0·78, 95% CI: 0·62-0·97); participants in the highest tertiles of total carotenoids, α-carotene, lutein/zeaxanthin and lycopene had a lower risk of respiratory mortality (hazard ratio (HR)total carotenoids = 0·62, 95% CI: 0·42-0·90, HRα-carotene = 0·54, 95% CI: 0·36-0·82, HRlutein/zeaxanthin = 0·48, 95% CI: 0·33-0·71, HRlycopene = 0·66, 95% CI: 0·45-0·96) than those in the lowest tertiles. Higher serum total carotenoids and β-cryptoxanthin levels is associated with decreased prevalence of emphysema and chronic bronchitis, and higher serum total carotenoids, α-carotene, lutein/zeaxanthin and lycopene levels had a lower mortality of respiratory disease.
Collapse
Affiliation(s)
- Ruiming Yang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Ziteng Cao
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Xin Liu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Mengjie Xiao
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Mengyao Li
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Yunyan Chen
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Luyao Chen
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Xia Chu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
| | - Qiang Ren
- Department of Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, People's Republic of China
- Department of Pharmacology, College of Pharmacy Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
5
|
de Souza ABF, Kozima ET, Castro TDF, de Matos NA, Oliveira M, de Souza DMS, Talvani A, de Menezes RCA, Cangussú SD, Bezerra FS. Chronic Oral Administration of Aluminum Hydroxide Stimulates Systemic Inflammation and Redox Imbalance in BALB/c Mice. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4499407. [PMID: 37854793 PMCID: PMC10581833 DOI: 10.1155/2023/4499407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023]
Abstract
The present study is aimed at investigating the long-term effects of the aluminum hydroxide administration in the small intestine, lung, liver, and kidney of male BALB/c mice. The mice received via orogastric gavage phosphate buffered or 10 mg/kg aluminum hydroxide 3 times a week for 6 months. Administration of aluminum hydroxide decreased hemoglobin, hematocrit, and erythrocyte. In the blood, kidney and liver function markers were evaluated, and long-term administration of aluminum hydroxide led to an increase in AST levels and a decrease in urea levels. The animals exposed to aluminum showed higher lipid and protein oxidation in all the organs analyzed. In relation to the enzymes involved in antioxidant defense, the lungs showed lower superoxide dismutase (SOD) and catalase activity and a lower reduced and oxidized glutathione (GSH/GSSG) ratio. In the liver, aluminum administration led to a decrease in catalase activity and the GSH/GSSG ratio. Lower catalase activity was observed in the small intestine, as well as in the lungs and liver. In addition to alterations in antioxidant defense, increased levels of the chemokine CCL-2 were observed in the lungs, lower levels of IL-10 in the liver and small intestine, and decreased levels of IL-6 in the intestine of the animals that received aluminum hydroxide for 6 months. Long-term exposure to aluminum promoted steatosis in the liver. In the kidneys, mice treated with aluminum presented a decreased glomerular density than in the naive control group. In the small intestine, exposure caused villi shortening. Our results indicate that long-term oral administration of aluminum hydroxide provokes systemic histological damage, inflammation, and redox imbalance.
Collapse
Affiliation(s)
- Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35402-136, Brazil
| | - Erika Tiemi Kozima
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35402-136, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35402-136, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35402-136, Brazil
| | - Michel Oliveira
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35402-136, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35402-136, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35402-136, Brazil
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35402-136, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35402-136, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35402-136, Brazil
| |
Collapse
|
6
|
Rodriguez-Herrera AJ, de Souza ABF, Castro TDF, Machado-Junior PA, Marcano-Gomez EC, Menezes TP, Castro MLDC, Talvani A, Costa DC, Cangussú SD, Bezerra FS. Long-term e-cigarette aerosol exposure causes pulmonary emphysema in adult female and male mice. Regul Toxicol Pharmacol 2023; 142:105412. [PMID: 37247649 DOI: 10.1016/j.yrtph.2023.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
This study aimed to evaluate long-term exposure to conventional cigarette smoke (CC) and electronic cigarette (EC) aerosol in adult male and female C57BL/6 mice. Forty-eight C57BL/6 mice were used, male (n = 24) and female (n = 24), both were divided into three groups: control, CC and EC. The CC and EC groups were exposed to cigarette smoke or electronic cigarette aerosol, respectively, 3 times a day for 60 consecutive days. Afterwards, they were maintained for 60 days without exposure to cigarettes or electronic cigarette aerosol. Both cigarettes promoted an influx of inflammatory cells to the lung in males and females. All animals exposed to CC and EC showed an increase in lipid peroxidation and protein oxidation. There was an increase of IL-6 in males and females exposed to EC. The IL-13 levels were higher in the females exposed to EC and CC. Both sexes exposed to EC and CC presented tissue damage characterized by septal destruction and increased alveolar spaces compared to control. Our results demonstrated that exposure to CC and EC induced pulmonary emphysema in both sexes, and females seem to be more susceptible to EC.
Collapse
Affiliation(s)
- Andrea Jazel Rodriguez-Herrera
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Elena Cecilia Marcano-Gomez
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Maria Laura da Cruz Castro
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
7
|
de Carvalho IM, de Souza ABF, Castro TDF, Machado-Júnior PA, Menezes TP, Dias ADS, Oliveira LAM, Nogueira KDOPC, Talvani A, Cangussú SD, Arízaga GGC, Bezerra FS. Effects of a lycopene-layered double hydroxide composite administration in cells and lungs of adult mice: Effects of a lycopene-layered double hydroxide in cells and mice. Int Immunopharmacol 2023; 121:110454. [PMID: 37301124 DOI: 10.1016/j.intimp.2023.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Lycopene is a natural compound with one of the highest antioxidant activities. Its consumption is associated with lower risks in lung cancer and chronic obstructive pulmonary disease, for example. Experimentally, a murine model demonstrated the ingestion of lycopene, which reduced the damage in lungs caused by cigarette smoke. Since lycopene is highly hydrophobic, its formulations in supplements and preparations for laboratory assays are based on oils, additionally, bioavailavility is low. We developed a lycopene layered double hydroxide (Lyc-LDH) composite, which is capable of transporting lycopene aqueous media. Our objective was to evaluate the cytotoxicity of Lyc-LDH and the intra-cellular production of reactive oxygen species (ROS) in J774A.1 cells. Also, in vivo assays were conducted with 50 male C57BL/6 mice intranasally treated with Lyc-LDH 10 mg/kg (LG10), Lyc-LDH 25 mg/kg (LG25) and Lyc-LDH 50 mg/kg (LG50) during five days compared against a vehicle (VG) and control (CG) group. The blood, bronchoalveolar lavage fluid (BALF) and lung tissue were analyzed. The results revealed that Lyc-LDH composite attenuated intracellular ROS production stimulated with lipopolysacharide. In BALF, the highest doses of Lyc-LDH (LG25 and LG50) promoted influx of macrophages, lymphocytes, neutrophils and eosinophils compared to CG and VG. Also, LG50 increased the levels of IL-6 and IL-13, and promoted the redox imbalance in the pulmonary tissue. On the contrary, low concentrations did not produce significative effects. In conclusion, our results suggest that intranasal administration of high concentrations of Lyc-LDH induces inflammation as well as redox status changes in the lungs of healthy mice, however, results with low concentrations open a promising way to study LDH composites as vehicles for intranasal administration of antioxidant coadjuvants.
Collapse
Affiliation(s)
- Iriane Marques de Carvalho
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Thalles de Feitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Andreia da Silva Dias
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Laser Antônio Machado Oliveira
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Katiane de Oliveira Pinto Coelho Nogueira
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | | | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Crupi P, Faienza MF, Naeem MY, Corbo F, Clodoveo ML, Muraglia M. Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. Antioxidants (Basel) 2023; 12:antiox12051069. [PMID: 37237935 DOI: 10.3390/antiox12051069] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Well-known experimental research demonstrates that oxidative stress is the leading cause of the onset and progression of major human health disorders such as cardiovascular, neurological, metabolic, and cancer diseases. A high concentration of reactive oxygen species (ROS) and nitrogen species leads to damage of proteins, lipids, and DNA associated with susceptibility to chronic human degenerative disorders. Biological and pharmaceutical investigations have recently focused on exploring both oxidative stress and its defense mechanisms to manage health disorders. Therefore, in recent years there has been considerable interest in bioactive food plant compounds as naturally occurring antioxidant sources able to prevent, reverse, and/or reduce susceptibility to chronic disease. To contribute to this research aim, herein, we reviewed the beneficial effects of carotenoids on human health. Carotenoids are bioactive compounds widely existing in natural fruits and vegetables. Increasing research has confirmed that carotenoids have various biological activities, such as antioxidant, anti-tumor, anti-diabetic, anti-aging, and anti-inflammatory activities. This paper presents an overview of the latest research progress on the biochemistry and preventative and therapeutic benefits of carotenoids, particularly lycopene, in promoting human health. This review could be a starting point for improving the research and investigation of carotenoids as possible ingredients of functional health foods and nutraceuticals in the fields of healthy products, cosmetics, medicine, and the chemical industry.
Collapse
Affiliation(s)
- Pasquale Crupi
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, "Aldo Moro", 70124 Bari, Italy
| | - Muhammad Yasir Naeem
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde 51240, Turkey
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Marilena Muraglia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
9
|
Gomes SV, Dias BV, Júnior PAM, Pereira RR, de Souza DMS, Breguez GS, de Lima WG, Magalhães CLDB, Cangussú SD, Talvani A, Queiroz KB, Calsavara AJC, Costa DC. High-fat diet increases mortality and intensifies immunometabolic changes in septic mice. J Nutr Biochem 2023; 116:109315. [PMID: 36921735 DOI: 10.1016/j.jnutbio.2023.109315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Immunometabolic changes in the liver and white adipose tissue (WAT) caused by high-fat (HF) diet intake may worse metabolic adaptation and protection against pathogens in sepsis. We investigate the effect of chronic HF diet (15 weeks) on mortality and immunometabolic responses in female mice after sepsis induced by cecum ligation and perforation (CLP). At week 14, animals were divided into four groups: sham C diet (C-Sh), sepsis C diet (C-Sp), sham HF diet (HF-Sh) and sepsis HF diet (HF-Sp). The surviving animals were euthanised on the 7th day. The HF diet decreased survival rate (58.3% vs 76.2% C-Sp group), increased serum cytokine storm (IL-6 (1.41 ×; vs HF-Sh), IL-1β (1.37 ×; vs C-Sp), TNF (1.34 ×; vs C-Sp and 1.72 ×; vs HF-Sh), IL-17 (1.44 ×; vs HF-Sh), IL-10 (1.55 ×; vs C-Sp and 1.41 ×; HF-Sh), WAT inflammation (IL-6 (8.7 ×; vs C-Sp and 2.4 ×; vs HF-Sh), TNF (5 ×; vs C-Sp and 1.7 ×;vs HF-Sh), IL-17 (1.7 ×; vs C-Sp), IL-10 (7.4 ×; vs C-Sp and 1.3 ×; vs HF-Sh), and modulated lipid metabolism in septic mice. In the HF-Sp group liver's, we observed hepatomegaly, hydropic degeneration, necrosis, an increase in oxidative stress (reduction of CAT activity (-81.7%; vs HF-Sh); increase MDA levels (82.8%; vs HF-Sh), and hepatic IL-6 (1.9 ×; vs HF-Sh), and TNF (1.3 × %;vs HF-Sh) production. Furthermore, we found a decrease in the total number of inflammatory, mononuclear cells, and in the regenerative processes, and binucleated hepatocytes in a HF-Sp group liver's. Our results suggested that the organism under metabolic stress of a HF diet during sepsis may worsen the inflammatory landscape and hepatocellular injury and may harm the liver regenerative process.
Collapse
Affiliation(s)
- Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Bruna Vidal Dias
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Pedro Alves Machado Júnior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Renata Rebeca Pereira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Gustavo Silveira Breguez
- Multiuser Research Laboratory, School of Nutrition, School of Nutrition, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Wanderson Geraldo de Lima
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Laboratory of Biology and Technology of Microorganisms (LBTM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Karina Barbosa Queiroz
- Laboratory of Experimental Nutrition (LABNEx), Department of Food, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Shi YS, Zhao Y, Li XN, Li MZ, Li JL. Xenobiotic-sensing nuclear receptors as targets for phthalates-induced lung injury and antagonism of lycopene. CHEMOSPHERE 2023; 312:137265. [PMID: 36403809 DOI: 10.1016/j.chemosphere.2022.137265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are extensively used in the production of plastics products and have been verified to induce lung injury. Lycopene (LYC) has proved an effective preventive and can be utilized to prevent phthalates-induced toxicity. However, the role of phthalate in pathogenesis of lung injury remain poorly researched, and little work has been devoted whether LYC could alleviate phthalate-induced lung toxicity via modulating nuclear xenobiotic receptors (NXRs) response. Here, di (2-ethylhexyl) phthalate (DEHP) is used as the representative of phthalates for further studies on toxicity of phthalates and the antagonistic role of LYC in phthalates-induced lung injury. We found that DEHP exposure caused alveoli destruction and alveolar epithelial cells type II damage. Mechanistically, DEHP exposure increased nuclear accumulation of aryl hydrocarbon receptor (AHR) and its downstream genes level, including cytochrome P450-dependent monooxygenase (CYP) 1A1 and CYP1B1. Constitutive androstane receptor (CAR) and their downstream gene level, including CYP2E1 are also increased after phthalates exposure. Significantly, LYC supplementation relieves lung injury from DEHP exposure by inhibiting the activation of NXRs. We confirm that NXRs plays a key role in phthalates-induced lung injury. Our study showed that LYC may have a positive role in alleviating the toxicity effects of phthalates, which provides an effective strategy for revising phthalates-induced injury.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
11
|
Dietary Antioxidants and Lung Cancer Risk in Smokers and Non-Smokers. Healthcare (Basel) 2022; 10:healthcare10122501. [PMID: 36554027 PMCID: PMC9778085 DOI: 10.3390/healthcare10122501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Smoking is considered a major risk factor in the development of lung diseases worldwide. Active smoking and secondhand (passive) smoke (SHS) are related to lung cancer (LC) risk. Oxidative stress (OS) and/or lipid peroxidation (LP) induced by cigarette smoke (CS) are found to be involved in the pathogenesis of LC. Meta-analyses and other case-control/prospective cohort studies are inconclusive and have yielded inconsistent results concerning the protective role of dietary vitamins C and E, retinol, and iron intake against LC risk in smokers and/or non-smokers. Furthermore, the role of vitamins and minerals as antioxidants with the potential in protecting LC cells against CS-induced OS in smokers and non-smokers has not been fully elucidated. Thus, this review aims to summarize the available evidence reporting the relationships between dietary antioxidant intake and LC risk in smokers and non-smokers that may be used to provide suggestions for future research.
Collapse
|
12
|
Khongthaw B, Dulta K, Chauhan PK, Kumar V, Ighalo JO. Lycopene: a therapeutic strategy against coronavirus disease 19 (COVID- 19). Inflammopharmacology 2022; 30:1955-1976. [PMID: 36050507 PMCID: PMC9436159 DOI: 10.1007/s10787-022-01061-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Lycopene is a group of phytochemicals found in nature, primarily in fruits and vegetables. Lycopene is thought to protect against a variety of diseases attributed to its antioxidant capabilities. Lycopene has anti-inflammatory, anti-cancer, and immunity-boosting qualities, among other biological and pharmacological benefits. COVID-19 (coronavirus disease 19) is an infectious disease caused by the SARS-CoV-2 virus, which has recently emerged as one of the world's leading causes of death. Patients may be asymptomatic or show signs of respiratory, cytokine release syndrome, gastrointestinal, or even multiple organ failure, all of which can lead to death. In COVID-19, inflammation, and cytokine storm are the key pathogenic mechanisms, according to SARS-CoV-2 infection symptoms. ARDS develops in some vulnerable hosts, which is accompanied by an inflammatory "cytokine syndrome" that causes lung damage. Immunological and inflammatory markers were linked to disease severity in mild and severe COVID-19 cases, implying that inflammatory markers, including IL-6, CRP, ESR, and PCT were significantly linked with COVID-19 severity. Patients with severe illness have reduced levels of several immune subsets, including CD4 + T, NK, and CD8 + cells. As a result, lycopene can be commended for bolstering physiological defenses against COVID-19 infections.
Collapse
Affiliation(s)
- Banlambhabok Khongthaw
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Kumar Chauhan
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India.
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
13
|
Islam F, Muni M, Mitra S, Emran TB, Chandran D, Das R, Rauf A, Safi SZ, Chidambaram K, Dhawan M, Cheon C, Kim B. Recent advances in respiratory diseases: Dietary carotenoids as choice of therapeutics. Biomed Pharmacother 2022; 155:113786. [PMID: 36271564 DOI: 10.1016/j.biopha.2022.113786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
A group of bioactive, isoprenoid pigments known as carotenoids is mostly present in fruits and vegetables. Carotenoids are essential for the prevention of physiological issues, which makes maintaining excellent health easier. They are effective functional ingredients with potent health-promoting properties that are widely present in our food and linked to a decrease in the prevalence of chronic diseases, including respiratory diseases. Respiratory infections are the primary cause of death and life-threatening conditions globally, wreaking havoc on the global health system. People rely on dietary sources of carotenoids to reduce a plethora of respiratory diseases such as chronic obstructive pulmonary disease (COPD), lung cancer, asthma, and so on. Carotenoids have received a lot of interest recently in several parts of the world due to their therapeutic potential in altering the pathogenic pathways underlying inflammatory respiratory diseases, which may improve disease control and have beneficial health benefits. This review aimed to provide a thorough understanding of the therapeutic potential of dietary carotenoids in the treatment of respiratory diseases and to identify possible candidates for novel therapeutic development.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Maniza Muni
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu 642109, India
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana,141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Chunhoo Cheon
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 05254, South Korea.
| |
Collapse
|
14
|
|
15
|
da Silva PF, de Matos NA, Ramos CDO, Castro TDF, Araújo NPDS, de Souza ABF, Costa GDP, Cangussú SD, Talvani A, Nagato AC, Bezerra FS. Acute Outcomes of Cigarette Smoke and Electronic Cigarette Aerosol Inhalation in a Murine Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9938179. [PMID: 36193298 PMCID: PMC9526610 DOI: 10.1155/2022/9938179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Cigarette smoking throughout life causes serious health issues in the lungs. The electronic cigarette (E-Cig) use increased, since it was first introduced in the world. This research work compared the short-term exposure consequences to e-cigarette vapor and cigarette smoke in male mice. Forty-five C57BL/6 mice were randomized into control (C) in an ambient air exposition cigarette smoke (CS) and aerosol electronic cigarette (EC), both were exposed to 120 puffs, 3 times/day during five days. Then, in the experimental protocol, the euthanized mice had their tissues removed for analysis. Our study showed that CS and EC resulted in higher cell influx into the airways, and an increase in macrophage counts in CS (209.25 ± 7.41) and EC (220.32 ± 8.15) when compared to C (108.40 ± 4.49) (p < 0.0001). The CS (1.92 ± 0.23) displayed a higher pulmonary lipid peroxidation as opposed to C (0.93 ± 0.06) and EC (1.23 ± 0.17) (p < 0.05). The EC (282.30 ± 25.68) and CS (368.50 ± 38.05) promoted increased levels of interleukin 17 when compared to C (177.20 ± 10.49) (p < 0.05). The EC developed shifts in lung histoarchitecture, characterized by a higher volume density in the alveolar air space (60.21; 55.00-65.83) related to C (51.25; 18.75-68.75) and CS (50.26; 43.75-62.08) (p =0.002). The EC (185.6 ± 9.01) presented a higher respiratory rate related to CS (133.6 ± 10.2) (p < 0.002). Therefore, our findings demonstrated that the short-term exposure to e-cig promoted more acute inflammation comparing to cigarette smoke in the ventilatory parameters of the animals.
Collapse
Affiliation(s)
- Pamela Félix da Silva
- Experimental Pathophysiology Laboratory (LAFEx), Biological Sciences Department (DECBI), Research Center in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Natália Alves de Matos
- Experimental Pathophysiology Laboratory (LAFEx), Biological Sciences Department (DECBI), Research Center in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Camila de Oliveira Ramos
- Experimental Pathophysiology Laboratory (LAFEx), Biological Sciences Department (DECBI), Research Center in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Thalles de Freitas Castro
- Experimental Pathophysiology Laboratory (LAFEx), Biological Sciences Department (DECBI), Research Center in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Natália Pereira da Silva Araújo
- Experimental Pathophysiology Laboratory (LAFEx), Biological Sciences Department (DECBI), Research Center in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Ana Beatriz Farias de Souza
- Experimental Pathophysiology Laboratory (LAFEx), Biological Sciences Department (DECBI), Research Center in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Guilherme de Paula Costa
- Immunobiology of Inflammation Laboratory (LABIIN), Biological Sciences Department (DECBI), Research Center in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Sílvia Dantas Cangussú
- Experimental Pathophysiology Laboratory (LAFEx), Biological Sciences Department (DECBI), Research Center in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Brazil
| | - André Talvani
- Immunobiology of Inflammation Laboratory (LABIIN), Biological Sciences Department (DECBI), Research Center in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Akinori Cardozo Nagato
- Immunopathology Laboratory and Experimental Pathology, Reproductive Biology Center (CRB), Federal University of Juiz de Fora, Minas Gerais, Brazil
- Department of Physiology, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Frank Silva Bezerra
- Experimental Pathophysiology Laboratory (LAFEx), Biological Sciences Department (DECBI), Research Center in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Brazil
| |
Collapse
|
16
|
Manochkumar J, Singh A, Efferth T, Ramamoorthy S. Untapping the protective role of carotenoids against respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154286. [PMID: 35820304 DOI: 10.1016/j.phymed.2022.154286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent studies revealed a substantial role of carotenoids to treat respiratory diseases. This review aimed to give an updated overview of the investigational evidence on the preventive properties of carotenoids against respiratory diseases both in vitro and in vivo along with their pathophysiology and mechanisms of action. HYPOTHESIS Carotenoids as a potential therapeutic class of bioactive compounds to treat respiratory diseases. RESULTS Carotenoids such as β-carotene, lycopene, crocin, bixin, lutein, and astaxanthin show beneficial effects against chronic lung diseases (e.g., asthma, emphysema, fibrosis, COPD, acute lung injury, and lung cancer). Moreover, in vitro and in vivo studies also supported the preventive role of carotenoids. These carotenoids showed a beneficial role by activation of the NRF2/HO-1 pathway and inhibition of the NF-кB, MAPK, JAK/STAT-3, and PI3K/AKT pathways. Additionally, epidemiological studies also showed that dietary intake of carotenoids lowers the risk of lung diseases. CONCLUSION Carotenoids may be used as drugs or can be given in combination with other drugs to prevent and treat respiratory diseases. Although in vitro and in vivo results are encouraging, further well-conducted randomized clinical trials are required to approve carotenoids as drug candidates.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Anuma Singh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India.
| |
Collapse
|
17
|
Castro TDF, de Matos NA, de Souza ABF, Costa GDP, Perucci LO, Talvani A, Cangussú SD, Chianca-Jr DA, de Menezes RCA, Bezerra FS. Protein restriction during pregnancy affects lung development and promotes oxidative stress and inflammation in C57BL/6 mice offspring. Nutrition 2022; 101:111682. [DOI: 10.1016/j.nut.2022.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
|
18
|
Li LY, Zhang CT, Zhu FY, Zheng G, Liu YF, Liu K, Zhang CH, Zhang H. Potential Natural Small Molecular Compounds for the Treatment of Chronic Obstructive Pulmonary Disease: An Overview. Front Pharmacol 2022; 13:821941. [PMID: 35401201 PMCID: PMC8988065 DOI: 10.3389/fphar.2022.821941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the major diseases threatening human life and health. According to the report released by the World Health Organization (WHO) in 2020, COPD has become the third leading cause of death in the world, featuring a sustainable growth of incidence rate as well as population age. The purpose of this review focuses on the advancement of bioactive natural compounds, such as baicalin, quercetin, resveratrol, and curcumin, which demonstrate promising therapeutic/interventional effects on CODP in vitro and in vivo. Information emphasizing on COPD was systematically collected from several authoritative internet databases including Web of Science, PubMed, Elsevier, Wiley Online Library, and Europe PMC, with a combination of keywords containing “COPD” and “natural small molecular compounds”. The new evidence indicated that these valuable molecules featured unique functions in the treatment of COPD through various biological processes such as anti-inflammatory, anti-oxidant, anti-apoptosis, and anti-airway fibrosis. Moreover, we found that the promising effects of these natural compounds on COPD were mainly achieved through JAK3/STAT3/NF-κB and MAPK inflammatory signaling pathways, Nrf2 oxidative stress signaling pathway, and TGF-β1/Smad 2/3 fibrosis signaling pathway, which referenced to multiple targets like TNF-α, IL-6, IL-8, TIMP-1, MMP, AKT, JAK3, IKK, PI3K, HO-1, MAPK, P38, ERK, etc. Current challenges and future directions in this promising field are also discussed at the end of this review. For the convenience of the readers, this review is divided into ten parts according to the structures of potential natural small molecular compounds. We hope that this review brings a quick look and provides some inspiration for the research of COPD.
Collapse
Affiliation(s)
- Liu-Ying Li
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chuan-Tao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng-Ya Zhu
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Gang Zheng
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Yu-Fei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chen-Hui Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| | - Hong Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| |
Collapse
|
19
|
de Souza ABF, de Matos NA, Castro TDF, Costa GDP, Oliveira LAM, Nogueira KDOPC, Ribeiro IML, Talvani A, Cangussú SD, de Menezes RCA, Bezerra FS. Effects in vitro and in vivo of hesperidin administration in an experimental model of acute lung inflammation. Free Radic Biol Med 2022; 180:253-262. [PMID: 35092853 DOI: 10.1016/j.freeradbiomed.2022.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/31/2022]
Abstract
Mechanical ventilation (MV) is a tool used in critical patient care. However, it can trigger inflammatory and oxidative processes capable of causing or aggravating lung injuries, which is known as ventilator-induced lung injury (VILI). Hesperidin is a flavonoid with antioxidant and anti-inflammatory properties in various diseases. The role of hesperidin in the process triggered by MV is poorly studied. Thus, we hypothesize hesperidin could protect the lung of mice submitted to mechanical ventilation. For that, we evaluated cell viability and reactive oxygen species (ROS) formation in macrophages using different hesperidin concentrations. We observed hesperidin did not reduce cell viability, however; it attenuated the production of intracellular ROS in cells stimulated with lipopolysaccharide (LPS). We further evaluated the effects of hesperidin in vivo in animals submitted to MV. In the bronchoalveolar lavage fluid, there were higher levels of macrophage, lymphocyte and neutrophil counts in animals submitted to MV, indicating an inflammatory process. In the lung tissue, MV induced oxidative damage and increased myeloperoxidase activity, though the antioxidant enzyme activity decreased. MV also induced the production of the inflammatory mediators CCL-2, TNF-α and IL-12. Pretreatment with hesperidin resulted in less recruitment of inflammatory cells to the airways and less oxidative damage. Also, it reduced the formation of CCL-2 and IL-12. Our results show pretreatment with hesperidin can protect the lungs of mice submitted to mechanical ventilation by modulating the inflammatory response and redox imbalance and may act to prevent MV injury.
Collapse
Affiliation(s)
- Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Laser Antônio Machado Oliveira
- Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Katiane de Oliveira Pinto Coelho Nogueira
- Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Iara Mariana Léllis Ribeiro
- Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
20
|
Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11020232. [PMID: 35204115 PMCID: PMC8868303 DOI: 10.3390/antiox11020232] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Lycopene is a bioactive red pigment found in plants, especially in red fruits and vegetables, including tomato, pink guava, papaya, pink grapefruit, and watermelon. Several research reports have advocated its positive impact on human health and physiology. For humans, lycopene is an essential substance obtained from dietary sources to fulfil the body requirements. The production of reactive oxygen species (ROS) causing oxidative stress and downstream complications include one of the major health concerns worldwide. In recent years, oxidative stress and its counter strategies have attracted biomedical research in order to manage the emerging health issues. Lycopene has been reported to directly interact with ROS, which can help to prevent chronic diseases, including diabetes and neurodegenerative and cardiovascular diseases. In this context, the present review article was written to provide an accumulative account of protective and ameliorative effects of lycopene on coronary artery disease (CAD) and hypertension, which are the leading causes of death worldwide. Lycopene is a potent antioxidant that fights ROS and, subsequently, complications. It reduces blood pressure via inhibiting the angiotensin-converting enzyme and regulating nitrous oxide bioavailability. It plays an important role in lowering of LDL (low-density lipoproteins) and improving HDL (high-density lipoproteins) levels to minimize atherosclerosis, which protects the onset of coronary artery disease and hypertension. Various studies have advocated that lycopene exhibited a combating competence in the treatment of these diseases. Owing to all the antioxidant, anti-diabetic, and anti-hypertensive properties, lycopene provides a potential nutraceutical with a protective and curing ability against coronary artery disease and hypertension.
Collapse
|
21
|
Araújo NPDS, de Matos NA, Oliveira M, de Souza ABF, Castro TDF, Machado-Júnior PA, de Souza DMS, Talvani A, Cangussú SD, de Menezes RCA, Bezerra FS. Quercetin Improves Pulmonary Function and Prevents Emphysema Caused by Exposure to Cigarette Smoke in Male Mice. Antioxidants (Basel) 2022; 11:antiox11020181. [PMID: 35204064 PMCID: PMC8868486 DOI: 10.3390/antiox11020181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the major cause of morbidity and mortality worldwide, and cigarette smoke is a key factor in the development of COPD. Thus, the development of effective therapies to prevent the advancement of COPD has become increasingly essential. We hypothesized that quercetin protects lungs in mice exposed to long-term cigarette smoke. Thirty-five C57BL/6 mice were exposed to cigarette smoke (12 cigarettes per day) for 60 days and pretreated with 10 mg/kg/day of quercetin via orogastric gavage. After the experimental protocol, the animals were euthanized and samples were collected for histopathological, antioxidant defense, oxidative stress and inflammatory analysis. The animals exposed to cigarette smoke showed an increase in respiratory rate and hematological parameters, cell influx into the airways, oxidative damage and inflammatory mediators, besides presenting with alterations in the pulmonary histoarchitecture. The animals receiving 10 mg/kg/day of quercetin that were exposed to cigarette smoke presented a reduction in cellular influx, less oxidative damage, reduction in cytokine levels, improvement in the histological pattern and improvement in pulmonary emphysema compared to the group that was only exposed to cigarette smoke. These results suggest that quercetin may be an agent in preventing pulmonary emphysema induced by cigarette smoke.
Collapse
Affiliation(s)
- Natália Pereira da Silva Araújo
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Michel Oliveira
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil;
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
- Correspondence:
| |
Collapse
|
22
|
Rocha DFA, Machado-Junior PA, Souza ABF, Castro TDF, Costa GDP, Talvani A, Bezerra FS, Cangussú SD. Lycopene Ameliorates Liver Inflammation and Redox Status in Mice Exposed to Long-Term Cigarette Smoke. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7101313. [PMID: 34869769 PMCID: PMC8639233 DOI: 10.1155/2021/7101313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/09/2021] [Indexed: 01/11/2023]
Abstract
Cigarette smoke (CS) is the major cause of preventable death worldwide, and it can also cause damage to extrapulmonary organs, such as the liver, mainly due the generation of reactive oxygen species (ROS). The liver is an essential organ for human survival since it is mainly responsible for the body metabolism and among other things and it is the place where many endogenous and exogenous substances undergo biological transformation. Lycopene is a nonprovitamin A carotenoid found in red fruits and vegetables, and its role as a potent antioxidant is well known. In this study, we hypothesized that lycopene could protect mouse liver against long-term CS exposure. Thirty C57BL/6 mice were exposed to twelve cigarette smoke (12 cigarettes per day) for 60 days and pretreated with 25 mg/kg/day or 50 mg/kg/day of lycopene via orogastric gavage. After euthanasia, the hepatic tissue was collected for histopathological, antioxidant defense, oxidative stress, inflammatory, and collagen deposition analysis. Our analysis demonstrated that lycopene results in a suitable outcome to ameliorate the pathological changes, inflammatory and antioxidant profile in a mouse model of long-term CS exposure, and collagen accumulation in the hepatic extracellular matrix. This study demonstrates for the first time that supplementation of lycopene can be a possible pharmacological tool for the treatment of hepatic damage caused by exposure to long-term CS.
Collapse
Affiliation(s)
- Daniela Fonseca Abdo Rocha
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Ana Beatriz Farias Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| |
Collapse
|
23
|
Different Tidal Volumes May Jeopardize Pulmonary Redox and Inflammatory Status in Healthy Rats Undergoing Mechanical Ventilation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5196896. [PMID: 34745417 PMCID: PMC8570858 DOI: 10.1155/2021/5196896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
Mechanical ventilation (MV) is essential for the treatment of critical patients since it may provide a desired gas exchange. However, MV itself can trigger ventilator-associated lung injury in patients. We hypothesized that the mechanisms of lung injury through redox imbalance might also be associated with pulmonary inflammatory status, which has not been so far described. We tested it by delivering different tidal volumes to normal lungs undergoing MV. Healthy Wistar rats were divided into spontaneously breathing animals (control group, CG), and rats were submitted to MV (controlled ventilation mode) with tidal volumes of 4 mL/kg (MVG4), 8 mL/kg (MVG8), or 12 mL/kg (MVG12), zero end-expiratory pressure (ZEEP), and normoxia (FiO2 = 21%) for 1 hour. After ventilation and euthanasia, arterial blood, bronchoalveolar lavage fluid (BALF), and lungs were collected for subsequent analysis. MVG12 presented lower PaCO2 and bicarbonate content in the arterial blood than CG, MVG4, and MVG8. Neutrophil influx in BALF and MPO activity in lung tissue homogenate were significantly higher in MVG12 than in CG. The levels of CCL5, TNF-α, IL-1, and IL-6 in lung tissue homogenate were higher in MVG12 than in CG and MVG4. In the lung parenchyma, the lipid peroxidation was more important in MVG12 than in CG, MVG4, and MVG8, while there was more protein oxidation in MVG12 than in CG and MVG4. The stereological analysis confirmed the histological pulmonary changes in MVG12. The association of controlled mode ventilation and high tidal volume, without PEEP and normoxia, impaired pulmonary histoarchitecture and triggered redox imbalance and lung inflammation in healthy adult rats.
Collapse
|
24
|
Rodrigues SDO, da Cunha CMC, Soares GMV, Silva PL, Silva AR, Gonçalves-de-Albuquerque CF. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2021; 14:979. [PMID: 34681202 PMCID: PMC8539950 DOI: 10.3390/ph14100979] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading global causes of morbidity and mortality. A hallmark of COPD is progressive airflow obstruction primarily caused by cigarette smoke (CS). CS exposure causes an imbalance favoring pro- over antioxidants (oxidative stress), leading to transcription factor activation and increased expression of inflammatory mediators and proteases. Different cell types, including macrophages, epithelial cells, neutrophils, and T lymphocytes, contribute to COPD pathophysiology. Alteration in cell functions results in the generation of an oxidative and inflammatory microenvironment, which contributes to disease progression. Current treatments include inhaled corticosteroids and bronchodilator therapy. However, these therapies do not effectively halt disease progression. Due to the complexity of its pathophysiology, and the risk of exacerbating symptoms with existing therapies, other specific and effective treatment options are required. Therapies directly or indirectly targeting the oxidative imbalance may be promising alternatives. This review briefly discusses COPD pathophysiology, and provides an update on the development and clinical testing of novel COPD treatments.
Collapse
Affiliation(s)
- Sarah de Oliveira Rodrigues
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
| | - Carolina Medina Coeli da Cunha
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Giovanna Martins Valladão Soares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Carlos Chagas Filho, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20210-010, Brazil
| |
Collapse
|
25
|
Almeida MR, Horta JGÁ, de Matos NA, de Souza ABF, Castro TDF, Cândido LDS, Andrade MC, Cangussú SD, Costa GDP, Talvani A, Bezerra FS. The effects of different ventilatory modes in female adult rats submitted to mechanical ventilation. Respir Physiol Neurobiol 2020; 284:103583. [PMID: 33202295 DOI: 10.1016/j.resp.2020.103583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
This study aimed to analyze the effects of volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) modes in female Wistar rats. 18 Wistar female adult rats were divided into three groups: control (CG), pressure-controlled ventilation (PCVG), and volume-controlled ventilation (VCVG). PCVG and VCVG were submitted to MV for one hour with a tidal volume (TV) of 8 mL/Kg, respiratory rate of 80 breaths/min, and positive end-expiratory pressure of 0 cmH2O. At the end of the experiment, all animals were euthanized. The neutrophils and lymphocytes influx to lung were higher in VCVG and PCVG compared to CG. The activities of superoxide dismutase, catalase and myeloperoxidase were higher in PCVG compared to CG. There was an increase in lipid peroxidation and protein oxidation in PCVG compared to CG. The levels of CCL3 and CCL5 were higher in PCVG compared to CG. In conclusions, the PCV mode promoted structural changes in the lung parenchyma, redox imbalance and inflammation in healthy adult female rats submitted to MV.
Collapse
Affiliation(s)
- Matheus Rocha Almeida
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Jacques Gabriel Álvares Horta
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil; Department of Clinical Medicine/Pediatrics, School of Medicine, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Leandro da Silva Cândido
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Mônica Campos Andrade
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Brazil.
| |
Collapse
|
26
|
Protective Effects of Quercetin on Livers from Mice Exposed to Long-Term Cigarette Smoke. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2196207. [PMID: 33282940 PMCID: PMC7685793 DOI: 10.1155/2020/2196207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/24/2023]
Abstract
Cigarette smoke is highly toxic, and it can promote increased production of reactive species and inflammatory response and leads to liver diseases. Quercetin is a flavonoid that displays antioxidant and anti-inflammatory activities in liver diseases. This study aimed at evaluating the protective effects of quercetin on livers from mice exposed to long-term cigarette smoke exposure. Male C57BL/6 mice were divided into five groups: control (CG), vehicle (VG), quercetin (QG), cigarette smoke (CSG), quercetin, and cigarette smoke (QCSG). CSG and QCSG were exposed to cigarette smoke for sixty consecutive days; at the end of the exposures, all animals were euthanized. Mice that received quercetin daily and were exposed to cigarette smoke showed a reduced influx of inflammatory cells, oxidative stress, inflammatory reaction, and histopathological changes in the liver, compared to CSG. These results suggest that quercetin may be an effective adjuvant for treating damage to the liver due to cigarette smoke exposure.
Collapse
|
27
|
Lycopene Protects against Smoking-Induced Lung Cancer by Inducing Base Excision Repair. Antioxidants (Basel) 2020; 9:antiox9070643. [PMID: 32708354 PMCID: PMC7402151 DOI: 10.3390/antiox9070643] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Oxidative stress plays a critical role in lung cancer progression. Carotenoids are efficient antioxidants. The objective of this study was to explore the efficacy of all-trans retinoic acid (ATRA) and carotenoids in cigarette smoke-induced oxidative stress within A549 human lung cancer epithelial cells. Methods: A549 cells were pretreated with 1-nM, 10-nM, 100-nM, 1-μM and 10-μM ATRA, β-carotene (BC) and lycopene for 24 h, followed by exposure to cigarette smoke using a smoking chamber. Results: The OxyBlot analysis showed that smoking significantly increased oxidative stress, which was inhibited by lycopene at 1 nM and 10 nM (p < 0.05). In the cells exposed to smoke, lycopene increased 8-oxoguanine DNA glycosylase (OGG1) expression at 1 nM, 10 nM, 100 nM, and 1 μM (p < 0.05), but not at 10 μM. Lycopene at lower doses also improved Nei like DNA glycosylases (NEIL1, NEIL2, NEIL3), and connexin-43 (Cx43) protein levels (p < 0.05). Interestingly, lycopene at lower concentrations promoted OGG1 expression within the cells exposed to smoke to an even greater extent than the cells not exposed to smoke (p < 0.01). This may be attributed to the increased SR-B1 mRNA levels with cigarette smoke exposure (p < 0.05). Conclusions: Lycopene treatment at a lower dosage could inhibit smoke-induced oxidative stress and promote genome stability. These novel findings will shed light on the molecular mechanism of lycopene action against lung cancer.
Collapse
|
28
|
da Silva ACL, de Matos NA, de Souza ABF, Castro TDF, Cândido LDS, Oliveira MADGS, Costa GDP, Talvani A, Cangussú SD, Bezerra FS. Sigh maneuver protects healthy lungs during mechanical ventilation in adult Wistar rats. Exp Biol Med (Maywood) 2020; 245:1404-1413. [PMID: 32640895 DOI: 10.1177/1535370220940995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanical ventilation (MV) is a tool used for the treatment of patients with acute or chronic respiratory failure. However, MV is a non-physiological resource, and it can cause metabolic disorders such as release of pro-inflammatory cytokines and production of reactive oxygen species. In clinical setting, maneuvers such as sigh, are used to protect the lungs. Thus, this study aimed to evaluate the effects of sigh on oxidative stress and lung inflammation in healthy adult Wistar rats submitted to MV. Male Wistar rats were divided into four groups: control (CG), mechanical ventilation (MVG), MV set at 20 sighs/h (MVG20), and MV set at 40 sighs/h (MVG40). The MVG, MVG20, and MVG40 were submitted to MV for 1 h. After the protocol, all animals were euthanized and the blood, bronchoalveolar lavage fluid, and lungs were collected for subsequent analysis. In the arterial blood, MVG40 presented higher partial pressure of oxygen and lower partial pressure of carbon dioxide compared to control. The levels of bicarbonate in MVG20 were lower compared to CG. The neutrophil influx in bronchoalveolar lavage fluid was higher in the MVG compared to CG and MVG40. In the lung parenchyma, the lipid peroxidation was higher in MVG compared to CG, MVG20, and MVG40. Superoxide dismutase and catalase activity were higher in MVG compared to CG, MVG20, and MVG40. The levels of IL-1, IL-6, and TNF in the lung homogenate were higher in MVG compared to CG, MVG20, and MVG40. The use of sigh plays a protective role as it reduced redox imbalance and pulmonary inflammation caused by MV.
Collapse
Affiliation(s)
- Andréa Cristiane Lopes da Silva
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Leandro da Silva Cândido
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Michel Angelo das Graças Silva Oliveira
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| |
Collapse
|
29
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
30
|
Mustra Rakic J, Wang XD. Role of lycopene in smoke-promoted chronic obstructive pulmonary disease and lung carcinogenesis. Arch Biochem Biophys 2020; 689:108439. [PMID: 32504553 DOI: 10.1016/j.abb.2020.108439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are a major cause of morbidity and mortality worldwide, with cigarette smoking being the single most important risk factor for both. Emerging evidence indicates alterations in reverse cholesterol transport-mediated removal of excess cholesterol from lung, and intracellular cholesterol overload to be involved in smoke-promoted COPD and lung cancer development. Since there are currently few effective treatments for COPD and lung cancer, it is important to identify food-derived, biologically active compounds, which can protect against COPD and lung cancer development. High intake of the carotenoid lycopene, as one of phytochemicals, is associated with a decreased risk of chronic lung lesions. This review article summarizes and discusses epidemiologic evidence, in vitro and in vivo studies regarding the prevention of smoke-promoted COPD and lung carcinogenesis through dietary lycopene as an effective intervention strategy. We focus on the recent research implying that lycopene preventive effect is through targeting the main genes involved in reverse cholesterol transport. This review also indicates gaps in knowledge about the function of lycopene against COPD and lung cancer, offering directions for further research.
Collapse
Affiliation(s)
- Jelena Mustra Rakic
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
31
|
Wang X, Jiang Q, Li H, Chen DDY. Rapid determination of chemical composition in the particulate matter of cigarette mainstream smoke. Talanta 2020; 217:121060. [PMID: 32498828 DOI: 10.1016/j.talanta.2020.121060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022]
Abstract
Particulate matter from mainstream smoke (MSS) is significantly hazardous when inhaled into the human body. An ambient ionization mass spectrometric method, direct analysis in real time mass spectrometry (DART-MS), was applied to rapidly and simultaneously measure multiple particulate components in MSS. A variety of compounds were obtained in seconds, where different types of cigarettes and different solvent extracts generated distinct chemical constituents as validated by principle component analysis. Chemical formula assignment and compound identification were based on accurate m/z values with mass errors <10 ppm. Quantitation of nicotine was achieved using an isotope internal standard with DART-MS. Method validation with chromatographic-MS analysis further proved the advantages of DART-MS with respect to analysis speed and operational simplicity for the direct evaluation of complex samples. DART-MS is feasible for the rapid acquisition of cigarette fingerprints for quality control as well as for quantitative assessment of carcinogens for harm reduction.
Collapse
Affiliation(s)
- Xinxin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - David D Y Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
32
|
Oral formulation angiotensin-(1-7) therapy attenuates pulmonary and systemic damage in mice with emphysema induced by elastase. Immunobiology 2020; 225:151893. [DOI: 10.1016/j.imbio.2019.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023]
|
33
|
Kozima ET, Souza ABFD, Castro TDF, Matos NAD, Philips NE, Costa GDP, Talvani A, Cangussú SD, Bezerra FS. Aluminum hydroxide nebulization-induced redox imbalance and acute lung inflammation in mice. Exp Lung Res 2020; 46:64-74. [PMID: 32067522 DOI: 10.1080/01902148.2020.1728595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: Aluminum is the third most abundant metal in the earth's crust and is widely used in industry. Chronic contact with aluminum results in a reduction in the activity of electron transport chain complexes, leading to excessive production of reactive oxygen species (ROS) and oxidative stress. This study aimed to evaluate the effects of short-term exposure of aluminum hydroxide on oxidative stress and pulmonary inflammatory response.Materials and methods: Male BALB/c mice were divided into three groups: control group (CG); phosphate buffered saline group (PBSG) and aluminum hydroxide group (AHG). CG was exposed to ambient air, while PBSG and AHG were exposed to PBS or aluminum hydroxide solutions via nebulization, three times per day for five consecutive days. Twenty-four hours after the last exposure, all animals were euthanized for subsequent analysis.Results: Exposure to aluminum hydroxide in the blood resulted in lower platelet levels, higher neutrophils, and lower monocytes compared to CG and PBSG. Aluminum hydroxide promoted the recruitment of inflammatory cells to the lung. Macrophage, neutrophil and lymphocyte counts were higher in AHG compared to CG and PBSG. Protein oxidation and superoxide dismutase activity were higher, while catalase activity and reduced and oxidizes glutathione ratio in AHG were lower compared to CG and PBSG. Furthermore, there was an increase in the inflammatory markers CCL2 and IFN-γ in AHG compared to CG and PBSG.Conclusion: In conclusion, short-term nebulization with aluminum hydroxide induces the influx of inflammatory cells and oxidative stress in adult BALB/c mice.
Collapse
Affiliation(s)
- Erika Tiemi Kozima
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Nicole Elizabeth Philips
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael´s Hospital, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael´s Hospital, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Sousa Carvalho GF, Marques LK, Sousa HG, Silva LR, Leão Ferreira DC, Pires de Moura do Amaral F, Martins Maia Filho AL, Figueredo-Silva J, Alves WDS, Oliveira MDDAD, Soares da Costa Júnior J, Cardoso Costa Junior FL, Ramos RM, Rai M, Uchôa VT. Phytochemical study, molecular docking, genotoxicity and therapeutic efficacy of the aqueous extract of the stem bark of Ximenia americana L. in the treatment of experimental COPD in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112259. [PMID: 31577938 DOI: 10.1016/j.jep.2019.112259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ximenia americana L. is popularly known as yellow plum, brave plum or tallow wood. All the parts of this plant are used in popular medicine. Its reddish and smooth bark are used to treat skin infections, inflammation of the mucous membranes and in the wound healing process. OBJECTIVE Verification of phytochemical profile, the molecular interaction between flavonoid, (-) epi-catechin and 5-LOX enzyme, by means of in silico study, the genotoxic effect and to investigate the pharmacological action of the aqueous extract of the stem bark of X. americana in pulmonary alterations caused by experimental COPD in Rattus norvegicus. MATERIALS AND METHODS The identification of secondary metabolites was carried out by TLC and HPLC chromatographic methods, molecular anchoring tests were applied to analyze the interaction of flavonoid present in the extract with the enzyme involved in pulmonary inflammation process and the genotoxic effect was assessed by comet assay and micronucleus test. For induction of COPD, male rats were distributed in seven groups. The control group was exposed only to ambient air and six were subjected to passive smoke inhalations for 20 min/day for 60 days. One of the groups exposed to cigarette smoke did not receive treatment. The others were treated by inhalation with beclomethasone dipropionate (400 mcg/kg) and aqueous and lyophilized extracts of X. americana (500 mg/kg) separately or in combination for a period of 15 days. The structural and inflammatory pulmonary alterations were evaluated by histological examination. Additional morphometric analyses were performed, including the alveolar diameter and the thickness of the right ventricle wall. RESULTS The results showed that the aqueous extract of the bark of X. americana possesses (-) epi -catechin, in silico studies with 5-LOX indicate that the EpiC ligand showed better affinity parameters than the AracA ligand, which is in accordance with the results obtained in vivo studies. Genotoxity was not observed at the dose tested and the extract was able to stagnate the alveolar enlargement caused by the destruction of the interalveolar septa, attenuation of mucus production and decrease the presence of collagen fibers in the bronchi of animals submitted to cigarette smoke. CONCLUSION Altogether, the results proved that the aqueous extract of X. americana presents itself as a new option of therapeutic approach in the treatment of COPD.
Collapse
Affiliation(s)
| | | | | | - Laryssa Roque Silva
- Nucleus of Research in Biotechnology - State University of Piaui, Teresina, PI, CEP 64003-120, Brazil
| | | | | | | | - José Figueredo-Silva
- Nucleus of Research in Biotechnology - State University of Piaui, Teresina, PI, CEP 64003-120, Brazil
| | | | | | | | | | - Ricardo Martins Ramos
- Research Laboratory in Information Systems, Federal Institute of Piaui, Teresina, PI, CEP-64000-040, Brazil
| | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, 444 602, Maharashtra State, India
| | | |
Collapse
|
35
|
Cui Q, Ma F, Tao J, Jiang M, Bai G, Luo G. Efficacy evaluation of Qingyan formulation in a smoking environment and screening of anti-inflammatory compounds. Biomed Pharmacother 2019; 118:109315. [PMID: 31545256 DOI: 10.1016/j.biopha.2019.109315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Qingyan formulation (QF) is a common preparation that is often used to control inflammation in the haze environment. However, the efficacy and effective constituents of QF are still uncertain and difficult to identify. This paper aims to evaluate the efficacy by simulating a haze environment and determine its anti-inflammatory compounds by UPLC/Q-TOF-MS/MS combing with bioactivity screening. The therapeutic effect of QF in the simulated haze environment was confirmed from the aspects of lung histomorphology and inflammatory factor expression levels. QF showed strong anti-inflammatory activity with the minimum effective concentration reaching 1.5 g/kg. Potential anti-inflammatory components were screened by the NF-κB activity assay system and simultaneously identified based on mass spectral data. Then, the potential active compounds were verified by molecular biological methods, the minimum effective concentration can reach 0.1 mg/L. Six structural types of NF-κB inhibitors (phenolic acid, scopolamine, hydroxycinnamic acid, flavonoid, dihydroflavone and steroid) were identified. Further cytokine assays confirmed their potential anti-inflammatory effects of NF-κB inhibitors. This strategy clearly demonstrates that QF has a significant therapeutic effect on respiratory diseases caused by haze, so it is necessary to promote its commercialization and wider application.
Collapse
Affiliation(s)
- Qingxin Cui
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Fang Ma
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Jin Tao
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Min Jiang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Gang Bai
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Guoan Luo
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Mustra Rakic J, Liu C, Veeramachaneni S, Wu D, Paul L, Chen CYO, Ausman LM, Wang XD. Lycopene Inhibits Smoke-Induced Chronic Obstructive Pulmonary Disease and Lung Carcinogenesis by Modulating Reverse Cholesterol Transport in Ferrets. Cancer Prev Res (Phila) 2019; 12:421-432. [PMID: 31177203 DOI: 10.1158/1940-6207.capr-19-0063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer share the same etiologic factor, cigarette smoking. Higher consumption of dietary lycopene has been associated with lower risks of COPD and lung cancer in smokers. We investigated whether lycopene feeding protects against COPD and lung cancer in ferrets, a nonrodent model that closely mimics cigarette smoke (CS)-induced chronic bronchitis, emphysema, and lung tumorigenesis in human. We also explored whether the protective effect of lycopene is associated with restoring reverse cholesterol transport (RCT), a key driver in persistent inflammation with CS exposure. Ferrets (4 groups, n = 12-16/group) were exposed to a combination of tobacco carcinogen (NNK) and CS with or without consuming lycopene at low and high doses (equivalent to ∼30 and ∼90 mg lycopene/day in human, respectively) for 22 weeks. Results showed that dietary lycopene at a high dose significantly inhibited NNK/CS-induced chronic bronchitis, emphysema, and preneoplastic lesions, including squamous metaplasia and atypical adenomatous hyperplasia, as compared with the NNK/CS alone (P < 0.05). Lycopene feeding also tended to decrease the lung neoplastic lesions. Furthermore, lycopene feeding significantly inhibited NNK/CS-induced accumulation of total cholesterol, and increased mRNA expression of critical genes related to the RCT (PPARα, LXRα, and ATP-binding cassette transporters ABCA1 and ABCG1) in the lungs, which were downregulated by the NNK/CS exposure. The present study has provided the first evidence linking a protective role of dietary lycopene against COPD and preneoplastic lesions to RCT-mediated cholesterol accumulation in lungs.
Collapse
Affiliation(s)
- Jelena Mustra Rakic
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts.,Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Chun Liu
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts
| | - Sudipta Veeramachaneni
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts
| | - Dayong Wu
- Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts.,Nutritional Immunology Lab, JM USDA-HNRCA at Tufts University, Boston, Massachusetts
| | - Ligi Paul
- Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - C-Y Oliver Chen
- Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Lynne M Ausman
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts.,Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts. .,Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| |
Collapse
|