1
|
Coletti C, Naaktgeboren R, Tourais J, Van De Steeg-Henzen C, Weingärtner S. Generalized inhomogeneity-resilient relaxation along a fictitious field (girRAFF) for improved robustness in rotating frame relaxometry at 3T. Magn Reson Med 2024; 92:2373-2391. [PMID: 39046914 DOI: 10.1002/mrm.30219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE To optimize Relaxation along a Fictitious Field (RAFF) pulses for rotating frame relaxometry with improved robustness in the presence ofB 0 $$ {\mathrm{B}}_0 $$ andB 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneities. METHODS The resilience of RAFF pulses againstB 0 $$ {\mathrm{B}}_0 $$ andB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities was studied using Bloch simulations. A parameterized extension of the RAFF formulation was introduced and used to derive a generalized inhomogeneity-resilient RAFF (girRAFF) pulse. RAFF and girRAFF preparation efficiency, defined as the ratio of the longitudinal magnetization before and after the preparation (M z ( T p ) / M 0 $$ {M}_z\left({T}_p\right)/{M}_0 $$ ), were simulated and validated in phantom experiments.T RAFF $$ {T}_{\mathrm{RAFF}} $$ andT girRAFF $$ {T}_{\mathrm{girRAFF}} $$ parametric maps were acquired at 3T in phantom, the calf muscle, and the knee cartilage of healthy subjects. The relaxation time maps were analyzed for resilience against artificially induced field inhomogeneities and assessed in terms of in vivo reproducibility. RESULTS Optimized girRAFF preparations yielded improved preparation efficiency (0.95/0.91 simulations/phantom) with respect to RAFF (0.36/0.67 simulations/phantom).T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ preparations showed in phantom/calf 6.0/4.8 times higher resilience toB 0 $$ {\mathrm{B}}_0 $$ inhomogeneities than RAFF, and a 4.7/5.3 improved resilience toB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities. In the knee cartilage,T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ (53± $$ \pm $$ 14 ms) was higher thanT RAFF $$ {T}_{\mathrm{RAFF}} $$ (42± $$ \pm $$ 11 ms). Moreover, girRAFF preparations yielded 7.6/4.9 times improved reproducibility acrossB 0 $$ {\mathrm{B}}_0 $$ /B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneity conditions, 1.9 times better reproducibility across subjects and 1.2 times across slices compared with RAFF. Dixon-based fat suppression led to a further 15-fold improvement in the robustness of girRAFF to inhomogeneities. CONCLUSIONS RAFF pulses display residual sensitivity to off-resonance and pronounced sensitivity toB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities. Optimized girRAFF pulses provide increased robustness and may be an appealing alternative for applications where resilience against field inhomogeneities is required.
Collapse
Affiliation(s)
- Chiara Coletti
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Roeland Naaktgeboren
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Joao Tourais
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | | | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- HollandPTC, Delft, The Netherlands
| |
Collapse
|
2
|
Casula V, Kajabi AW. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. MAGMA (NEW YORK, N.Y.) 2024; 37:949-967. [PMID: 38904746 PMCID: PMC11582218 DOI: 10.1007/s10334-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Osteoarthritis (OA) is a disabling chronic disease involving the gradual degradation of joint structures causing pain and dysfunction. Magnetic resonance imaging (MRI) has been widely used as a non-invasive tool for assessing OA-related changes. While anatomical MRI is limited to the morphological assessment of the joint structures, quantitative MRI (qMRI) allows for the measurement of biophysical properties of the tissues at the molecular level. Quantitative MRI techniques have been employed to characterize tissues' structural integrity, biochemical content, and mechanical properties. Their applications extend to studying degenerative alterations, early OA detection, and evaluating therapeutic intervention. This article is a review of qMRI techniques for musculoskeletal tissue evaluation, with a particular emphasis on articular cartilage. The goal is to describe the underlying mechanism and primary limitations of the qMRI parameters, their association with the tissue physiological properties and their potential in detecting tissue degeneration leading to the development of OA with a primary focus on basic and preclinical research studies. Additionally, the review highlights some clinical applications of qMRI, discussing the role of texture-based radiomics and machine learning in advancing OA research.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Abdul Wahed Kajabi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Tourais J, Ploem T, van Zadelhoff TA, van de Steeg-Henzen C, Oei EHG, Weingartner S. Rapid Whole-Knee Quantification of Cartilage Using T 1, T 2*, and T RAFF2 Mapping With Magnetic Resonance Fingerprinting. IEEE Trans Biomed Eng 2023; 70:3197-3205. [PMID: 37227911 DOI: 10.1109/tbme.2023.3280115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Quantitative Magnetic Resonance Imaging (MRI) holds great promise for the early detection of cartilage deterioration. Here, a Magnetic Resonance Fingerprinting (MRF) framework is proposed for comprehensive and rapid quantification of T1, T2*, and TRAFF2 with whole-knee coverage. METHODS A MRF framework was developed to achieve quantification of Relaxation Along a Fictitious Field in the 2nd rotating frame of reference ( TRAFF2) along with T1 and T2*. The proposed sequence acquires 65 measurements of 25 high-resolution slices, interleaved with 7 inversion pulses and 40 RAFF2 trains, for whole-knee quantification in a total acquisition time of 3:25 min. Comparison with reference T1, T2*, and TRAFF2 methods was performed in phantom and in seven healthy subjects at 3 T. Repeatability (test-retest) with and without repositioning was also assessed. RESULTS Phantom measurements resulted in good agreement between MRF and the reference with mean biases of -54, 2, and 5 ms for T1, T2*, and TRAFF2, respectively. Complete characterization of the whole-knee cartilage was achieved for all subjects, and, for the femoral and tibial compartments, a good agreement between MRF and reference measurements was obtained. Across all subjects, the proposed MRF method yielded acceptable repeatability without repositioning ( R2 ≥ 0.94) and with repositioning ( R2 ≥ 0.57) for T1, T2*, and TRAFF2. SIGNIFICANCE The short scan time combined with the whole-knee coverage makes the proposed MRF framework a promising candidate for the early assessment of cartilage degeneration with quantitative MRI, but further research may be warranted to improve repeatability after repositioning and assess clinical value in patients.
Collapse
|
4
|
Tolkkinen K, Mailhiot SE, Selent A, Mankinen O, Henschel H, Nieminen MT, Hanni M, Kantola AM, Liimatainen T, Telkki VV. SPICY: a method for single scan rotating frame relaxometry. Phys Chem Chem Phys 2023; 25:13164-13169. [PMID: 37129427 PMCID: PMC10171246 DOI: 10.1039/d2cp05988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
T 1ρ is an NMR relaxation mode that is sensitive to low frequency molecular motions, making it an especially valuable tool in biomolecular research. Here, we introduce a new method, SPICY, for measuring T1ρ relaxation times. In contrast to conventional T1ρ experiments, in which the sequence is repeated many times to determine the T1ρ time, the SPICY sequence allows determination of T1ρ within a single scan, shortening the experiment time remarkably. We demonstrate the method using 1H T1ρ relaxation dispersion experiments. Additionally, we combine the sequence with spatial encoding to produce 1D images in a single scan. We show that T1ρ relaxation times obtained using the single scan approach are in good agreement with those obtained using the traditional experiments.
Collapse
Affiliation(s)
| | | | - Anne Selent
- NMR Research Unit, University of Oulu, Oulu, Finland.
| | - Otto Mankinen
- NMR Research Unit, University of Oulu, Oulu, Finland.
| | - Henning Henschel
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Miika T Nieminen
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Matti Hanni
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Anu M Kantola
- NMR Research Unit, University of Oulu, Oulu, Finland.
| | - Timo Liimatainen
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | | |
Collapse
|
5
|
Mirmojarabian SA, Kajabi AW, Ketola JHJ, Nykänen O, Liimatainen T, Nieminen MT, Nissi MJ, Casula V. Machine Learning Prediction of Collagen Fiber Orientation and Proteoglycan Content From Multiparametric Quantitative MRI in Articular Cartilage. J Magn Reson Imaging 2023; 57:1056-1068. [PMID: 35861162 DOI: 10.1002/jmri.28353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Machine learning models trained with multiparametric quantitative MRIs (qMRIs) have the potential to provide valuable information about the structural composition of articular cartilage. PURPOSE To study the performance and feasibility of machine learning models combined with qMRIs for noninvasive assessment of collagen fiber orientation and proteoglycan content. STUDY TYPE Retrospective, animal model. ANIMAL MODEL An open-source single slice MRI dataset obtained from 20 samples of 10 Shetland ponies (seven with surgically induced cartilage lesions followed by treatment and three healthy controls) yielded to 1600 data points, including 10% for test and 90% for train validation. FIELD STRENGTH/SEQUENCE A 9.4 T MRI scanner/qMRI sequences: T1 , T2 , adiabatic T1ρ and T2ρ , continuous-wave T1ρ and relaxation along a fictitious field (TRAFF ) maps. ASSESSMENT Five machine learning regression models were developed: random forest (RF), support vector regression (SVR), gradient boosting (GB), multilayer perceptron (MLP), and Gaussian process regression (GPR). A nested cross-validation was used for performance evaluation. For reference, proteoglycan content and collagen fiber orientation were determined by quantitative histology from digital densitometry (DD) and polarized light microscopy (PLM), respectively. STATISTICAL TESTS Normality was tested using Shapiro-Wilk test, and association between predicted and measured values was evaluated using Spearman's Rho test. A P-value of 0.05 was considered as the limit of statistical significance. RESULTS Four out of the five models (RF, GB, MLP, and GPR) yielded high accuracy (R2 = 0.68-0.75 for PLM and 0.62-0.66 for DD), and strong significant correlations between the reference measurements and predicted cartilage matrix properties (Spearman's Rho = 0.72-0.88 for PLM and 0.61-0.83 for DD). GPR algorithm had the highest accuracy (R2 = 0.75 and 0.66) and lowest prediction-error (root mean squared [RMSE] = 1.34 and 2.55) for PLM and DD, respectively. DATA CONCLUSION Multiparametric qMRIs in combination with regression models can determine cartilage compositional and structural features, with higher accuracy for collagen fiber orientation than proteoglycan content. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
| | - Abdul Wahed Kajabi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, US
| | - Juuso H J Ketola
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Olli Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo Liimatainen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mikko J Nissi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Victor Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
6
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
7
|
Wu M, Ma YJ, Liu M, Xue Y, Gong L, Wei Z, Jerban S, Jang H, Chang DG, Chang EY, Ma L, Du J. Quantitative assessment of articular cartilage degeneration using 3D ultrashort echo time cones adiabatic T 1ρ (3D UTE-Cones-AdiabT 1ρ) imaging. Eur Radiol 2022; 32:6178-6186. [PMID: 35357540 PMCID: PMC9388581 DOI: 10.1007/s00330-022-08722-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To evaluate articular cartilage degeneration using quantitative three-dimensional ultrashort-echo-time cones adiabatic-T1ρ (3D UTE-Cones-AdiabT1ρ) imaging. METHODS Sixty-six human subjects were recruited for this study. Kellgren-Lawrence (KL) grade and Whole-Organ Magnetic-Resonance-Imaging Score (WORMS) were evaluated by two musculoskeletal radiologists. The human subjects were categorized into three groups, namely normal controls (KL0), doubtful-minimal osteoarthritis (OA) (KL1-2), and moderate-severe OA (KL3-4). WORMS were regrouped to encompass the extent of lesions and the depth of lesions. The UTE-Cones-AdiabT1ρ values were obtained using 3D UTE-Cones data acquisitions preceded by seven paired adiabatic full passage pulses that corresponded to seven spin-locking times (TSLs) of 0, 12, 24, 36, 48, 72, and 96 ms. The performance of the UTE-Cones-AdiabT1ρ technique in evaluating the degeneration of knee cartilage was assessed via the ANOVA comparisons with subregional analysis and Spearman's correlation coefficient as well as the receiver-operating-characteristic (ROC) curve. RESULTS UTE-Cones-AdiabT1ρ showed significant positive correlations with KL grade (r = 0.15, p < 0.05) and WORMS (r = 0.57, p < 0.05). Higher UTE-Cones-AdiabT1ρ values were observed in both larger and deeper lesions in the cartilage. The differences in UTE-Cones-AdiabT1ρ values among different extent and depth groups of cartilage lesions were all statistically significant (p < 0.05). Subregional analyses showed that the correlations between UTE-Cones-AdiabT1ρ and WORMS varied with the location of cartilage. The AUC value of UTE-Cones-AdiabT1ρ for mild cartilage degeneration (WORMS=1) was 0.8. The diagnostic threshold value of UTE-Cones-AdiabT1ρ for mild cartilage degeneration was 39.4 ms with 80.8% sensitivity. CONCLUSIONS The 3D UTE-Cones-AdiabT1ρ sequence can be useful in quantitative evaluation of articular cartilage degeneration. KEY POINTS • The 3D UTE-Cones-AdiabT1ρ sequence can distinguish mild cartilage degeneration from normal cartilage with a diagnostic threshold value of 39.4 ms for mild cartilage degeneration with 80.8% sensitivity. • Higher UTE-Cones-AdiabT1ρ values were observed in both larger and deeper lesions in the articular cartilage. • UTE-Cones-AdiabT1ρ is a promising biomarker for quantitative evaluation of early cartilage degeneration.
Collapse
Affiliation(s)
- Mei Wu
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Mouyuan Liu
- Imaging Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yanping Xue
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Lillian Gong
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Zhao Wei
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Douglas G Chang
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Liheng Ma
- Imaging Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiang Du
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA.
| |
Collapse
|
8
|
Hu Y, Wu Q, Qiao Y, Zhang P, Dai W, Tao H, Chen S. Disturbances in Metabolic Pathways and the Identification of a Potential Biomarker Panel for Early Cartilage Degeneration in a Rabbit Anterior Cruciate Ligament Transection Model. Cartilage 2021; 13:1376S-1387S. [PMID: 32441117 PMCID: PMC8804857 DOI: 10.1177/1947603520921434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study aimed to assess the association between synovial fluid (SF) metabolites and magnetic resonance imaging (MRI) measurements of cartilage biochemical composition to identify potential SF biomarkers for detecting the early onset of cartilage degeneration in a rabbit model. METHODS Both knees of 12 New Zealand White rabbits were used. The anterior cruciate ligament transection (ACLT) model was performed on right knees, and the sham surgery on left knees. MRI UTE-T2* scanning and SF sample collection were performed on ACLT knees at 4 and 8 weeks postsurgery and on sham surgery knees at 4 weeks postsurgery. Ultra-performance liquid chromatography-mass spectrometry and multivariate statistical analysis were used to distinguish samples in three groups. Pathway and receiver operating characteristic analyses were utilized to identify potential metabolite biomarkers. RESULTS There were 12 knees in sham surgery models, 11 in ACLT models at 4 weeks postsurgery, and 10 in ACLT models at 8 weeks postsurgery. UTE-T2* values for the lateral tibia cartilage showed significant decreases over the study period. Levels of 103 identified metabolites in SF were markedly different among three groups. Furthermore, 24 metabolites were inversely correlated with UTE-T2* values of the lateral tibia cartilage, while hippuric acid was positively correlated with UTE-T2* values of the lateral tibia cartilage. Among 25 potential markers, N1-acetylspermidine, 2-amino-1,3,4-octadecanetriol, l-phenylalanine, 5-hydroxy-l-tryptophan, and l-tryptophan were identified as potential biomarkers with high area under the curve values and Pearson correlation coefficients. CONCLUSION Five differential metabolites in SF were found as potential biomarkers for the early detection of cartilage degeneration in the rabbit ACLT model.
Collapse
Affiliation(s)
- Yiwen Hu
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai, China
| | - Yang Qiao
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai, China
| | - Hongyue Tao
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Chen
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Human Umbilical Mesenchymal Stromal Cells Mixed with Hyaluronan Transplantation Decreased Cartilage Destruction in a Rabbit Osteoarthritis Model. Stem Cells Int 2021; 2021:2989054. [PMID: 34721588 PMCID: PMC8553511 DOI: 10.1155/2021/2989054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Osteoarthritis (OA), the most common type of arthritis, causes pain in joints and disability. Due to the absence of ideal effective medication, stem cell transplantation emerges as a new hope for OA therapy. This study is aimed at evaluating the capability of human umbilical cord mesenchymal stromal cells (HUCMSCs) mixed with hyaluronan (HA) to treat osteoarthritis in a rabbit model. Differentiation capability of HUCMSCs, magnetic resonance image examination, and immunohistochemistry of the cartilage after transplantation of HUCMSCs mixed with HA in a rabbit OA model were explored. HUCMSCs exhibited typical mesenchymal stromal cell (MSC) characteristics, including spindle-shaped morphology, surface marker expressions (positive for human leukocyte antigen- (HLA-) ABC, CD44, CD73, CD90, and CD105; negative for HLA-DR, CD34, and CD45), and trilineage differentiation (chondrogenesis, adipogenesis, and osteogenesis). The gene expression of SOX9, type II collagen, and aggrecan in the HUCMSC-derived chondrocytes mixed with HA was increased after in vitro chondrogenesis compared with HUCMSCs. A gross and histological significant improvement in hyaline cartilage destruction after HUCMSCs mixed with HA was noted in the animal model compared to the OA knees. The International Cartilage Repair Society histological score and Safranin O staining were significantly higher for the treated knees than the control knees (p < 0.05). Moreover, the expression of MMP13 was significantly decreased in the treated knees than in the OA knees. In conclusion, HUCMSCs mixed with HA in vitro and in vivo might attenuate the cartilage destruction in osteoarthritis. Our study provided evidence for future clinical trials.
Collapse
|
10
|
Hänninen NE, Nykänen O, Prakash M, Hanni M, Nieminen MT, Nissi MJ. Orientation anisotropy of quantitative MRI parameters in degenerated human articular cartilage. J Orthop Res 2021; 39:861-870. [PMID: 32543737 DOI: 10.1002/jor.24778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/08/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Quantitative magnetic resonance (MR) relaxation parameters demonstrate varying sensitivity to the orientation of the ordered tissues in the magnetic field. In this study, the orientation dependence of multiple relaxation parameters was assessed in cadaveric human cartilage with varying degree of natural degeneration, and compared with biomechanical testing, histological scoring, and quantitative histology. Twelve patellar cartilage samples were imaged at 9.4 T MRI with multiple relaxation parameters, including T1 , T2 , CW - T1ρ , and adiabatic T1ρ , at three different orientations with respect to the main magnetic field. Anisotropy of the relaxation parameters was quantified, and the results were compared with the reference measurements and between samples of different histological Osteoarthritis Research Society International (OARSI) grades. T2 and CW - T1ρ at 400 Hz spin-lock demonstrated the clearest anisotropy patterns. Radial zone anisotropy for T2 was significantly higher for samples with OARSI grade 2 than for grade 4. The proteoglycan content (measured as optical density) correlated with the radial zone MRI orientation anisotropy for T2 (r = 0.818) and CW - T1ρ with 400 Hz spin-lock (r = 0.650). Orientation anisotropy of MRI parameters altered with progressing cartilage degeneration. This is associated with differences in the integrity of the collagen fiber network, but it also seems to be related to the proteoglycan content of the cartilage. Samples with advanced OA had great variation in all biomechanical and histological properties and exhibited more variation in MRI orientation anisotropy than the less degenerated samples. Understanding the background of relaxation anisotropy on a molecular level would help to develop new MRI contrasts and improve the application of previously established quantitative relaxation contrasts.
Collapse
Affiliation(s)
- Nina Elina Hänninen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Olli Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mithilesh Prakash
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Matti Hanni
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Miika Tapio Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Mikko Johannes Nissi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
11
|
Kajabi AW, Casula V, Sarin JK, Ketola JH, Nykänen O, te Moller NCR, Mancini IAD, Visser J, Brommer H, René van Weeren P, Malda J, Töyräs J, Nieminen MT, Nissi MJ. Evaluation of articular cartilage with quantitative MRI in an equine model of post-traumatic osteoarthritis. J Orthop Res 2021; 39:63-73. [PMID: 32543748 PMCID: PMC7818146 DOI: 10.1002/jor.24780] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/19/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Chondral lesions lead to degenerative changes in the surrounding cartilage tissue, increasing the risk of developing post-traumatic osteoarthritis (PTOA). This study aimed to investigate the feasibility of quantitative magnetic resonance imaging (qMRI) for evaluation of articular cartilage in PTOA. Articular explants containing surgically induced and repaired chondral lesions were obtained from the stifle joints of seven Shetland ponies (14 samples). Three age-matched nonoperated ponies served as controls (six samples). The samples were imaged at 9.4 T. The measured qMRI parameters included T1 , T2 , continuous-wave T1ρ (CWT1ρ ), adiabatic T1ρ (AdT1ρ ), and T2ρ (AdT2ρ ) and relaxation along a fictitious field (TRAFF ). For reference, cartilage equilibrium and dynamic moduli, proteoglycan content and collagen fiber orientation were determined. Mean values and profiles from full-thickness cartilage regions of interest, at increasing distances from the lesions, were used to compare experimental against control and to correlate qMRI with the references. Significant alterations were detected by qMRI parameters, including prolonged T1 , CWT1ρ , and AdT1ρ in the regions adjacent to the lesions. The changes were confirmed by the reference methods. CWT1ρ was more strongly associated with the reference measurements and prolonged in the affected regions at lower spin-locking amplitudes. Moderate to strong correlations were found between all qMRI parameters and the reference parameters (ρ = -0.531 to -0.757). T1 , low spin-lock amplitude CWT1ρ , and AdT1ρ were most responsive to changes in visually intact cartilage adjacent to the lesions. In the context of PTOA, these findings highlight the potential of T1 , CWT1ρ , and AdT1ρ in evaluation of compositional and structural changes in cartilage.
Collapse
Affiliation(s)
- Abdul Wahed Kajabi
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Medical Research Center OuluUniversity of Oulu and Oulu University HospitalOuluFinland
| | - Victor Casula
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Medical Research Center OuluUniversity of Oulu and Oulu University HospitalOuluFinland
| | - Jaakko K. Sarin
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | - Juuso H. Ketola
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland
| | - Olli Nykänen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Nikae C. R. te Moller
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Irina A. D. Mancini
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Jetze Visser
- Department of OrthopaedicsUniversity Medical Center Utrechtthe Netherlands
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands,Department of OrthopaedicsUniversity Medical Center Utrechtthe Netherlands
| | - Juha Töyräs
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland,School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| | - Miika T. Nieminen
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Medical Research Center OuluUniversity of Oulu and Oulu University HospitalOuluFinland,Department of Diagnostic RadiologyOulu University HospitalOuluFinland
| | - Mikko J. Nissi
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland,Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
12
|
Kajabi AW, Casula V, Ojanen S, Finnilä MA, Herzog W, Saarakkala S, Korhonen RK, Nissi MJ, Nieminen MT. Multiparametric MR imaging reveals early cartilage degeneration at 2 and 8 weeks after ACL transection in a rabbit model. J Orthop Res 2020; 38:1974-1986. [PMID: 32129515 DOI: 10.1002/jor.24644] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/20/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
In this study, the rabbit model with anterior cruciate ligament transection (ACLT) was used to investigate early degenerative changes in cartilage using multiparametric quantitative magnetic resonance imaging (qMRI). ACLT was surgically induced in the knees of skeletally mature New Zealand White rabbits (n = 14). ACL transected and contralateral knee compartments-medial femur, lateral femur, medial tibia, and lateral tibia-were harvested 2 (n = 8) and 8 weeks (n = 6) postsurgery. Twelve age-matched nonoperated rabbits served as control. qMRI was conducted at 9.4 T and included relaxation times T1 , T2 , continuous-wave T1ρ (CWT1ρ ), adiabatic T1ρ (AdT1ρ ), adiabatic T2ρ (AdT2ρ ), and relaxation along a fictitious field (TRAFF ). For reference, quantitative histology and biomechanical measurements were carried out. Posttraumatic changes were primarily noted in the superficial half of the cartilage. Prolonged T1 , T2 , CWT1ρ , and AdT1ρ were observed in the lateral femur 2 and 8 weeks post-ACLT, compared with the corresponding control and contralateral groups (P < .05). Collagen orientation was significantly altered in the lateral femur at 2 weeks post-ACLT compared with the corresponding control group. In the medial femur, all the studied relaxation time parameters, except TRAFF , were increased 8 weeks post-ACLT, as compared with the corresponding contralateral and control groups (P < .05). Similarly, significant proteoglycan loss was observed in the medial femur at 8 weeks following surgery (P < .05). Multiparametric MRI demonstrated early degenerative changes primarily in the superficial cartilage with T1 , T2 , CWT1ρ , and AdT1ρ sensitive to cartilage changes at 2 weeks after surgery.
Collapse
Affiliation(s)
- Abdul Wahed Kajabi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Victor Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Simo Ojanen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko J Nissi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
13
|
Wu M, Ma Y, Wan L, Jerban S, Jang H, Chang EY, Du J. Magic angle effect on adiabatic T 1ρ imaging of the Achilles tendon using 3D ultrashort echo time cones trajectory. NMR IN BIOMEDICINE 2020; 33:e4322. [PMID: 32431025 PMCID: PMC7393640 DOI: 10.1002/nbm.4322] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 05/16/2023]
Abstract
The protons in collagen-rich musculoskeletal (MSK) tissues such as the Achilles tendon are subject to strong dipolar interactions which are modulated by the term (3cos2 θ-1) where θ is the angle between the fiber orientation and the static magnetic field B0 . The purpose of this study was to investigate the magic angle effect in three-dimensional ultrashort echo time Cones Adiabatic T1ρ (3D UTE Cones-AdiabT1ρ ) imaging of the Achilles tendon using a clinical 3 T scanner. The magic angle effect was investigated by Cones-AdiabT1ρ imaging of five cadaveric human Achilles tendon samples at five angular orientations ranging from 0° to 90° relative to the B0 field. Conventional Cones continuous wave T1ρ (Cones-CW-T1ρ ) and Cones T2 * (Cones-T2 *) sequences were also applied for comparison. On average, Cones-AdiabT1ρ increased 3.6-fold from 13.6 ± 1.5 ms at 0° to 48.4 ± 5.4 ms at 55°, Cones-CW-T1ρ increased 6.1-fold from 7.0 ± 1.1 ms at 0° to 42.6 ± 5.2 ms at 55°, and Cones-T2* increased 12.3-fold from 2.9 ± 0.5 ms at 0° to 35.8 ± 6.4 ms at 55°. Although Cones-AdiabT1ρ is still subject to significant angular dependence, it shows a much-reduced magic angle effect compared to Cones-CW-T1ρ and Cones-T2 *, and may be used as a novel and potentially more effective approach for quantitative evaluation of the Achilles tendon and other MSK tissues.
Collapse
Affiliation(s)
- Mei Wu
- Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Radiology, University of California, San Diego, CA, US
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, US
| | - Lidi Wan
- Department of Radiology, University of California, San Diego, CA, US
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, US
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, US
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA, US
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, US
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, US
| |
Collapse
|
14
|
Wu M, Ma YJ, Kasibhatla A, Chen M, Jang H, Jerban S, Chang EY, Du J. Convincing evidence for magic angle less-sensitive quantitative T 1ρ imaging of articular cartilage using the 3D ultrashort echo time cones adiabatic T 1ρ (3D UTE cones-AdiabT 1ρ ) sequence. Magn Reson Med 2020; 84:2551-2560. [PMID: 32419199 DOI: 10.1002/mrm.28317] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/27/2023]
Abstract
PURPOSE To investigate the magic angle effect in three-dimensional ultrashort echo time Cones Adiabatic T1ρ (3D UTE Cones-AdiabT1ρ ) imaging of articular cartilage at 3T. METHODS The magic angle effect was investigated by repeated 3D UTE Cones-AdiabT1ρ imaging of eight human patellar samples at five angular orientations ranging from 0° to 90° relative to the B0 field. Cones continuous wave T1ρ (Cones-CW-T1ρ ) and Cones- T 2 ∗ sequences were also applied for comparison. Cones-AdiabT1ρ , Cones-CW-T1ρ and Cones- T 2 ∗ values were measured for four regions of interest (ROIs) (10% superficial layer, 60% transitional layer, 30% radial layer, and a global ROI) for each sample at each orientation to evaluate their angular dependence. RESULTS 3D UTE Cones-AdiabT1ρ values increased from the radial layer to the superficial layer for all angular orientations. The superficial layer showed the least angular dependence (around 4.4%), while the radial layer showed the strongest angular dependence (around 34.4%). Cones-AdiabT1ρ values showed much reduced magic angle effect compared to Cones-CW-T1ρ and Cones- T 2 ∗ values for all four ROIs. On average over eight patellae, Cones-AdiabT1ρ values increased by 27.2% (4.4% for superficial, 23.8% for transitional, and 34.4% for radial layers), Cones-CW-T1ρ values increased by 76.9% (11.3% for superficial, 59.1% for transitional, and 117.8% for radial layers), and Cones- T 2 ∗ values increased by 237.5% (87.9% for superficial, 262.9% for transitional, and 327.3% for radial layers) near the magic angle. CONCLUSIONS The 3D UTE Cones-AdiabT1ρ sequence is less sensitive to the magic angle effect in the evaluation of articular cartilage compared to Cones- T 2 ∗ and Cones-CW-T1ρ .
Collapse
Affiliation(s)
- Mei Wu
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Akhil Kasibhatla
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Mingxin Chen
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, San Diego, California, USA.,Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
15
|
Nykänen O, Sarin JK, Ketola JH, Leskinen H, Te Moller NCR, Tiitu V, Mancini IAD, Visser J, Brommer H, van Weeren PR, Malda J, Töyräs J, Nissi MJ. T2* and quantitative susceptibility mapping in an equine model of post-traumatic osteoarthritis: assessment of mechanical and structural properties of articular cartilage. Osteoarthritis Cartilage 2019; 27:1481-1490. [PMID: 31276818 DOI: 10.1016/j.joca.2019.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the potential of quantitative susceptibility mapping (QSM) and T2* relaxation time mapping to determine mechanical and structural properties of articular cartilage via univariate and multivariate analysis. METHODS Samples were obtained from a cartilage repair study, in which surgically induced full-thickness chondral defects in the stifle joints of seven Shetland ponies caused post-traumatic osteoarthritis (14 samples). Control samples were collected from non-operated joints of three animals (6 samples). Magnetic resonance imaging (MRI) was performed at 9.4 T, using a 3-D multi-echo gradient echo sequence. Biomechanical testing, digital densitometry (DD) and polarized light microscopy (PLM) were utilized as reference methods. To compare MRI parameters with reference parameters (equilibrium and dynamic moduli, proteoglycan content, collagen fiber angle and -anisotropy), depth-wise profiles of MRI parameters were acquired at the biomechanical testing locations. Partial least squares regression (PLSR) and Spearman's rank correlation were utilized in data analysis. RESULTS PLSR indicated a moderate-to-strong correlation (ρ = 0.49-0.66) and a moderate correlation (ρ = 0.41-0.55) between the reference values and T2* relaxation time and QSM profiles, respectively (excluding superficial-only results). PLSR correlations were noticeably higher than direct correlations between bulk MRI and reference parameters. 3-D parametric surface maps revealed spatial variations in the MRI parameters between experimental and control groups. CONCLUSION Quantitative parameters from 3-D multi-echo gradient echo MRI can be utilized to predict the properties of articular cartilage. With PLSR, especially the T2* relaxation time profile appeared to correlate with the properties of cartilage. Furthermore, the results suggest that degeneration affects the QSM-contrast in the cartilage. However, this change in contrast is not easy to quantify.
Collapse
Affiliation(s)
- O Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - J K Sarin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - J H Ketola
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| | - H Leskinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - N C R Te Moller
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - V Tiitu
- Institute of Biomedicine, Anatomy, University of Eastern Finland, Kuopio, Finland.
| | - I A D Mancini
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - J Visser
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - H Brommer
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - P R van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - J Malda
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - J Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - M J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| |
Collapse
|
16
|
Alternations of Metabolic Profiles in Synovial Fluids and the Correlation with T2 Relaxation Times of Cartilage and Meniscus-A Study on Anterior Cruciate Ligament- (ACL-) Injured Rabbit Knees at Early Stage. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8491301. [PMID: 31467914 PMCID: PMC6699263 DOI: 10.1155/2019/8491301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/05/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022]
Abstract
Objectives To examine the metabolic profiles alterations of synovial fluids from anterior cruciate ligament- (ACL-) injured rabbit knees at early stage and analyze the correlation with T2 relaxation times of cartilage and meniscus. Methods The right knees of 15 rabbits were selected for the construction of ACL injury models, whereas the contralateral knees served as control group. After 4 weeks, both knees were examined by MRI with quantitative T2 mapping sequence, and the T2 relaxation times of cartilage and meniscus were measured. Then, the synovial fluids were obtained from both knee capsules and performed liquid chromatography-mass spectrometry analysis (LC-MS). Results The T2 relaxation times of cartilage and meniscus in ACL-injured knees were significantly higher than those in control knees (Cartilage: 41.52 ± 2.98 ms vs 36.02 ± 2.71 ms, P < 0.001; Meniscus: 33.35 ± 3.57 ms vs 27.27 ± 2.10 ms, P < 0.001). Twenty-eight differential metabolites were identified based on a total of 1569 detected signatures between ACL-injured knees and control knees. These differential metabolites primarily implied perturbations in the fluxes of lipids and steroid-based compounds. The Linear regression analysis demonstrated satisfactory correlations between glycerophospholipid metabolism and T2 relaxation times of both cartilage and meniscus in ACL-injured knees (R2 = 0.8204 and 0.8197, respectively). Conclusion ACL injury of rabbit knees resulted in elevated T2 relaxation times of cartilage and meniscus and perturbed metabolism of various lipids and steroids in synovial fluids, particularly glycerophospholipids. Glycerophospholipid metabolism related compounds could serve as potential biomarkers for early degenerative changes of cartilage and meniscus after ACL injury.
Collapse
|
17
|
Mustonen AM, Käkelä R, Finnilä MAJ, Sawatsky A, Korhonen RK, Saarakkala S, Herzog W, Paakkonen T, Nieminen P. Anterior cruciate ligament transection alters the n-3/n-6 fatty acid balance in the lapine infrapatellar fat pad. Lipids Health Dis 2019; 18:67. [PMID: 30885225 PMCID: PMC6421636 DOI: 10.1186/s12944-019-1008-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/06/2019] [Indexed: 02/08/2023] Open
Abstract
Background The infrapatellar fat pad (IFP) of the knee joint has received lots of attention recently due to its emerging role in the pathogenesis of osteoarthritis (OA), where it displays an inflammatory phenotype. The aim of the present study was to examine the infrapatellar fatty acid (FA) composition in a rabbit (Oryctolagus cuniculus) model of early OA created by anterior cruciate ligament transection (ACLT). Methods OA was induced randomly in the left or right knee joint of skeletally mature New Zealand White rabbits by ACLT, while the contralateral knee was left intact. A separate group of unoperated rabbits served as controls. The IFP of the ACLT, contralateral, and control knees were harvested following euthanasia 2 or 8 weeks post-ACLT and their FA composition was determined with gas chromatography–mass spectrometry. Results The n-3/n-6 polyunsaturated FA (PUFA) ratio shifted in a pro-inflammatory direction after ACLT, already observed 2 weeks after the operation (0.20 ± 0.008 vs. 0.18 ± 0.009). At 8 weeks, the FA profile of the ACLT group was characterized with increased percentages of 20:4n-6 (0.44 ± 0.064 vs. 0.98 ± 0.339 mol-%) and 22:6n-3 (0.03 ± 0.014 vs. 0.07 ± 0.015 mol-%) and with decreased monounsaturated FA (MUFA) sums (37.19 ± 1.586 vs. 33.20 ± 1.068 mol-%) and n-3/n-6 PUFA ratios (0.20 ± 0.008 vs. 0.17 ± 0.008). The FA signature of the contralateral knees resembled that of the unoperated controls in most aspects, but had increased proportions of total n-3 PUFA and reduced MUFA sums. Conclusions These findings provide novel information on the effects of early OA on the infrapatellar FA profile in the rabbit ACLT model. The reduction in the n-3/n-6 PUFA ratio of the IFP is in concordance with the inflammation and cartilage degradation in early OA and could contribute to disease pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12944-019-1008-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine/Anatomy, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland. .,Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu, Finland.
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Mikko A J Finnilä
- Department of Applied Physics, Faculty of Science and Forestry, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Andrew Sawatsky
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Rami K Korhonen
- Department of Applied Physics, Faculty of Science and Forestry, University of Eastern Finland, Kuopio, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Tommi Paakkonen
- Institute of Biomedicine/Anatomy, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petteri Nieminen
- Institute of Biomedicine/Anatomy, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
18
|
Kajabi AW, Casula V, Nissi MJ, Peuna A, Podlipská J, Lammentausta E, Saarakkala S, Guermazi A, Nieminen MT. Assessment of meniscus with adiabatic T 1ρ and T 2ρ relaxation time in asymptomatic subjects and patients with mild osteoarthritis: a feasibility study. Osteoarthritis Cartilage 2018; 26:580-587. [PMID: 29269326 DOI: 10.1016/j.joca.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/23/2017] [Accepted: 12/08/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the ability of magnetic resonance imaging (MRI) adiabatic relaxation times in the rotating frame (adiabatic T1ρ and T2ρ) to detect structural alterations in meniscus tissue of mild OA patients and asymptomatic volunteers. METHOD MR images of 24 subjects (age range: 50-67 years, 12 male), including 12 patients with mild osteoarthritis (OA) (Kellgren-Lawrence (KL) = 1, 2) and 12 asymptomatic volunteers, were acquired using a 3 T clinical MRI system. Morphological assessment was performed using semiquantitative MRI OA Knee Score (MOAKS). Adiabatic T1ρ and T2ρ (AdT1ρ, AdT2ρ) relaxation time maps were calculated in regions of interest (ROIs) containing medial and lateral horns of menisci. The median relaxation time values of the ROIs were compared between subjects classified based on radiographic findings and MOAKS evaluations. RESULTS MOAKS assessment of patients and volunteers indicated the presence of meniscal and cartilage lesions in both groups. For the combined cohort group, prolonged AdT1ρ was observed in the posterior horn of the medial meniscus (PHMED) in subjects with MOAKS meniscal tear (P < 0.05). AdT2ρ was statistically significantly longer in PHMED of subjects with MOAKS full-thickness cartilage loss (P < 0.05). After adjusting for multiple comparisons, differences in medians of observed AdT1ρ and AdT2ρ values between mild OA patients and asymptomatic volunteers did not reach statistical significance. CONCLUSION AdT1ρ and AdT2ρ measurements have the potential to identify changes in structural composition of meniscus tissue associated with meniscal tear and cartilage loss in a cohort group of mild OA patients and asymptomatic volunteers.
Collapse
Affiliation(s)
- A W Kajabi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | - V Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | - M J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - A Peuna
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - J Podlipská
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Infotech Oulu, University of Oulu, Oulu, Finland.
| | - E Lammentausta
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - A Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA.
| | - M T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
19
|
Jeong DH, Ullah HMA, Goo MJ, Ghim SG, Hong IH, Kim AY, Jeon SM, Choi MS, Elfadl AK, Chung MJ, Lee EJ, Kim YD, Kim JH, Kim SY, Jeong KS. Effects of oral glucosamine hydrochloride and mucopolysaccharide protein in a rabbit model of osteoarthritis. Int J Rheum Dis 2017; 21:620-628. [PMID: 29205898 DOI: 10.1111/1756-185x.13239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM The aim was to study whether oral glucosamine hydrochloride (GlcN.HCl) or mucopolysaccharide protein (MucoP) has a structure-modifying effect on an anterior cruciate ligament transection (ACLT) rabbit model of osteoarthritis (OA). METHODS OA was surgically induced in the right knees of rabbits by transection of the ACLT. The left knees served as a sham-operated control. The animals were divided into four groups (n = 6 each): negative control (phosphate buffered saline, orally), positive control (oral celecoxib 10 mg/kg body weight/day), GlcN.HCl (oral 100 mg/kg/day) and MucoP (oral 100 mg/kg/day). Experimental animals were sacrificed after 8 weeks of treatment and the distal femur was removed for macroscopic examination, histological assessment, and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay of the OA rabbits. RESULTS On gross morphology, severe lesions were observed in articular cartilage in the negative control group. In the GlcN.HCl and MucoP treatment groups, fibrillations and cartilaginous lesions were significantly (P < 0.05) decreased compared to the negative control group. In particular, degenerative changes in cartilage and chondrocyte cellularity were significantly reduced (P < 0.05) in the positive control (celecoxib) group, GlcN.HCl treatment group and MucoP treatment group compared with the negative control group. TUNEL assay showed that apoptotic chondrocytes were significantly suppressed in the celecoxib group. Similar significant (P < 0.05) results were seen in the GlcN.HCl group and MucoP group but apoptosis of chondrocytes were high in the negative control group. CONCLUSION These data suggest that the protective effects of GlcN.HCl and MucoP may play a useful role in the clinical treatment of OA.
Collapse
Affiliation(s)
- Da-Hee Jeong
- Department of Pathology, Kyungpook National University, Daegu, Korea
| | - H M Arif Ullah
- Department of Pathology, Kyungpook National University, Daegu, Korea
| | - Moon-Jung Goo
- Department of Pathology, Kyungpook National University, Daegu, Korea
| | - Soong-Gu Ghim
- Department of Pathology, Kyungpook National University, Daegu, Korea
| | - Il-Hwa Hong
- Department of Pathology, Kyungpook National University, Daegu, Korea
| | - Ah-Young Kim
- Department of Pathology, Kyungpook National University, Daegu, Korea
| | - Sun-Min Jeon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
| | - Ahmed K Elfadl
- Department of Pathology, Kyungpook National University, Daegu, Korea
| | - Myung-Jin Chung
- Department of Pathology, Kyungpook National University, Daegu, Korea
| | - Eun-Joo Lee
- Department of Pathology, Kyungpook National University, Daegu, Korea
| | - Yong D Kim
- Department of Pathology, Kyungpook National University, Daegu, Korea
| | - Jun-Hyung Kim
- Department of Orthopedic Surgery, Kyungpook National University, Daegu, Korea
| | - Shin-Yoon Kim
- Department of Orthopedic Surgery, Kyungpook National University, Daegu, Korea
| | - Kyu-Shik Jeong
- Department of Pathology, Kyungpook National University, Daegu, Korea
| |
Collapse
|
20
|
Magic angle effect plays a major role in both T1rho and T2 relaxation in articular cartilage. Osteoarthritis Cartilage 2017; 25:2022-2030. [PMID: 28161394 PMCID: PMC5732002 DOI: 10.1016/j.joca.2017.01.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the effect of sample orientation on T1rho and T2 values of articular cartilage in histologically confirmed normal and abnormal regions using a whole-body 3T scanner. MATERIALS AND METHODS Eight human cadaveric patellae were evaluated using a 2D CPMG sequence for T2 measurement as well as a 2D spin-locking prepared spiral sequence and a 3D magnetization-prepared angle-modulated partitioned-k-space spoiled gradient echo snapshots (3D MAPSS) sequence for T1rho measurement. Each sample was imaged at six angles from 0° to 100° relative to the B0 field. T2 and T1rho values were measured for three regions (medial, apex and lateral) with three layers (10% superficial, 60% middle, 30% deep). Multiple histopathologically confirmed normal and abnormal regions were used to evaluate the angular dependence of T2 and T1rho relaxation in articular cartilage. RESULTS Our study demonstrated a strong magic angle effect for T1rho and T2 relaxation in articular cartilage, especially in the deeper layers of cartilage. On average, T2 values were increased by 231.8% (72.2% for superficial, 237.6% for middle, and 187.9% for deep layers) while T1rho values were increased by 92% (31.7% for superficial, 69% for middle, and 140% for deep layers) near the magic angle. Both normal and abnormal cartilage showed similar T1rho and T2 magic angle effect. CONCLUSIONS Changes in T1rho and T2 values due to the magic angle effect can be several times more than that caused by degeneration, and this may significantly complicate the clinical application of T1rho and T2 as an early surrogate marker for degeneration.
Collapse
|
21
|
Hänninen N, Rautiainen J, Rieppo L, Saarakkala S, Nissi MJ. Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue. Sci Rep 2017; 7:9606. [PMID: 28852032 PMCID: PMC5574987 DOI: 10.1038/s41598-017-10053-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 12/04/2022] Open
Abstract
In highly organized tissues, such as cartilage, tendons and white matter, several quantitative MRI parameters exhibit dependence on the orientation of the tissue constituents with respect to the main imaging magnetic field (B0). In this study, we investigated the dependence of multiple relaxation parameters on the orientation of articular cartilage specimens in the B0. Bovine patellar cartilage-bone samples (n = 4) were investigated ex vivo at 9.4 Tesla at seven different orientations, and the MRI results were compared with polarized light microscopy findings on specimen structure. Dependences of T2 and continuous wave (CW)-T1ρ relaxation times on cartilage orientation were confirmed. T2 (and T2*) had the highest sensitivity to orientation, followed by TRAFF2 and adiabatic T2ρ. The highest dependence was seen in the highly organized deep cartilage and the smallest in the least organized transitional layer. Increasing spin-lock amplitude decreased the orientation dependence of CW-T1ρ. T1 was found practically orientation-independent and was closely followed by adiabatic T1ρ. The results suggest that T1 and adiabatic T1ρ should be preferred for orientation-independent quantitative assessment of organized tissues such as articular cartilage. On the other hand, based on the literature, parameters with higher orientation anisotropy appear to be more sensitive to degenerative changes in cartilage.
Collapse
Affiliation(s)
- Nina Hänninen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, POB 5000, FI-90014, Oulu, Finland
| | - Jari Rautiainen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Lassi Rieppo
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, POB 5000, FI-90014, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, POB 5000, FI-90014, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Mikko Johannes Nissi
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
22
|
Rieger R, Boulocher C, Kaderli S, Hoc T. Chitosan in viscosupplementation: in vivo effect on rabbit subchondral bone. BMC Musculoskelet Disord 2017; 18:350. [PMID: 28810851 PMCID: PMC5557071 DOI: 10.1186/s12891-017-1700-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022] Open
Abstract
Background To investigate the effect of intra-articular injection of Chitosan (Cs) added to hyaluronic acid (HA) on subchondral bone during osteoarthritis (OA), microarchitectural parameters and mineral density were measured in a rabbit model of early OA. A novel hybrid hydrogel adding reacetylated Cs of fungal origin to HA was compared to high molecular weight HA commercial formulation. Method Eighteen rabbits underwent unilateral anterior cruciate ligament transection (ACLT) and were divided into three groups (Saline-group, HA-group and Hybrid-group) depending on the intra-articular injection compound. Eight contralateral knees were used as non-operated controls (Contralateral-group). Micro-computed tomography was performed six weeks post-ACLT to study subchondral bone microarchitectural parameters and mineral density at an early stage of OA development. Results Cartilage thickness mean value was reduced only in Saline-group compared to Contralateral-group. When the Hybrid-group was compared to Saline-group, subchondral bone microarchitectural parameters (trabecular thickness and trabecular bone volume fraction) were significantly changed; subchondral bone plate and trabecular bone mineral densities (bone mineral density and tissue mineral density) were reduced. When the Hybrid-group was compared to HA-group, subchondral bone microarchitectural parameters (subchondral plate thickness and trabecular thickness) and trabecular bone mineral densities (bone mineral density and tissue mineral density) were significantly decreased. Conclusion Conclusion: Compared to HA alone, the novel hybrid hydrogel, constituted of Cs added to HA, enhanced microarchitectural parameters and mineral density changes, leading to subchondral bone loss in a rabbit model of early experimental OA.
Collapse
Affiliation(s)
- R Rieger
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole Centrale de Lyon, 36 av. Guy de Collongue, 69134, Ecully Cedex, France.
| | - C Boulocher
- VetAgro Sup, University of Lyon, Veterinary Campus of VetAgro Sup, 69280, Marcy l'Etoile, France
| | - S Kaderli
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - T Hoc
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole Centrale de Lyon, 36 av. Guy de Collongue, 69134, Ecully Cedex, France
| |
Collapse
|
23
|
Associations of three-dimensional T1 rho MR mapping and three-dimensional T2 mapping with macroscopic and histologic grading as a biomarker for early articular degeneration of knee cartilage. Clin Rheumatol 2017; 36:2109-2119. [DOI: 10.1007/s10067-017-3645-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
|
24
|
Casula V, Nissi MJ, Podlipská J, Haapea M, Koski JM, Saarakkala S, Guermazi A, Lammentausta E, Nieminen MT. Elevated adiabatic T 1ρ and T 2ρ in articular cartilage are associated with cartilage and bone lesions in early osteoarthritis: A preliminary study. J Magn Reson Imaging 2017; 46:678-689. [PMID: 28117922 DOI: 10.1002/jmri.25616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To evaluate adiabatic T1ρ and T2ρ of articular cartilage in symptomatic osteoarthritis (OA) patients and asymptomatic volunteers, and to determine their association with magnetic resonance imaging (MRI)-based structural abnormalities in cartilage and bone. MATERIALS AND METHODS A total of 24 subjects (age range: 50-68 years; 12 female) were enrolled, including 12 early OA patients and 12 volunteers with normal joint function. Patients and volunteers underwent 3T MRI. T2 , adiabatic T1ρ , and T2ρ relaxation times of knee articular cartilage were measured. Proton density (PD)- and T1 -weighted MR image series were also obtained and separately evaluated for morphological changes using the MRI OA Knee Scoring (MOAKS) system. Comparisons using the Mann-Whitney nonparametric test were performed after dividing the study participants according to physical symptoms as determined by Western Ontario and McMaster Universities (WOMAC) score or presence of cartilage lesions, bone marrow lesions, or osteophytes. RESULTS Elevated adiabatic T1ρ and T2ρ relaxation times of articular cartilage were associated with cartilage loss (P = 0.024-0.047), physical symptoms (0.0068-0.035), and osteophytes (0.0039-0.027). Elevated adiabatic T1ρ was also associated with bone marrow lesions (0.033). CONCLUSION Preliminary data suggest that elevated adiabatic T1ρ and T2ρ of cartilage are associated with morphological abnormalities of cartilage and bone, and thus may be applicable for in vivo OA research and diagnostics. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:678-689.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Jana Podlipská
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Infotech Oulu, University of Oulu, Oulu, Finland
| | - Marianne Haapea
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Juhani M Koski
- Department of Internal Medicine, Mikkeli Central Hospital, Mikkeli, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Ali Guermazi
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
25
|
Ma YJ, Shao H, Du J, Chang EY. Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties. NMR IN BIOMEDICINE 2016; 29:1546-1552. [PMID: 27599046 PMCID: PMC5069073 DOI: 10.1002/nbm.3609] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/09/2016] [Accepted: 07/26/2016] [Indexed: 05/24/2023]
Abstract
MRI biomarkers such as T2 , T2 * and T1rho have been widely used, but are confounded by the magic angle effect. The purpose of this study is to investigate the use of the two-dimensional ultrashort echo time magnetization transfer (UTE-MT) sequence for potential magic angle independent MR biomarkers. Magnetization transfer was investigated in cadaveric Achilles tendon samples using the UTE-MT sequence at five MT powers and five frequency offsets ranging from 2 to 50 kHz. The protocol was applied at five sample orientations ranging from 0 to 90° relative to the B0 field. The results were analyzed with a two-pool quantitative MT model. Multiple TE data were also acquired and mono-exponential T2 * was calculated for each orientation. Macromolecular proton fractions and exchange rates derived from UTE-MT modeling did not appreciably change between the various orientations, whereas the T2 * relaxation time demonstrated up to a sixfold increase from 0° to 55°. The UTE-MT technique with two-pool modeling shows promise as a clinically compatible technique that is resistant to the magic angle effect. This method provides information on the macromolecular proton pool that cannot be directly obtained by other methods, including regular UTE techniques.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California, San Diego, California, USA
| | - Hongda Shao
- Department of Radiology, University of California, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California, USA.
- Radiology Service, VA San Diego Healthcare System, San Diego, California, USA.
| |
Collapse
|
26
|
Rautiainen J, Nieminen MT, Salo EN, Kokkonen HT, Mangia S, Michaeli S, Gröhn O, Jurvelin JS, Töyräs J, Nissi MJ. Effect of collagen cross-linking on quantitative MRI parameters of articular cartilage. Osteoarthritis Cartilage 2016; 24:1656-64. [PMID: 27143363 DOI: 10.1016/j.joca.2016.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 03/31/2016] [Accepted: 04/23/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the sensitivity of quantitative magnetic resonance imaging (MRI) parameters to increase of collagen cross-linking in articular cartilage, a factor possibly contributing to the aging-related development of osteoarthritis (OA). The issue has not been widely studied although collagen cross-links may significantly affect the evaluation of cartilage imaging outcome. DESIGN Osteochondral samples (n = 14) were prepared from seven bovine patellae. To induce cross-linking, seven samples were incubated in threose while the other seven served as non-treated controls. The specimens were scanned at 9.4 T for T1, T1Gd (dGEMRIC), T2, adiabatic and continuous wave (CW) T1ρ, adiabatic T2ρ and T1sat relaxation times. Specimens from adjacent tissue were identically treated and used for reference to determine biomechanical properties, collagen, proteoglycan and cross-link contents, fixed charge density (FCD), collagen fibril anisotropy and water concentration of cartilage. RESULTS In the threose-treated sample group, cross-links (pentosidine, lysyl pyridinoline (LP)), FCD and equilibrium modulus were significantly (P < 0.05) higher as compared to the non-treated group. Threose treatment resulted in significantly greater T1Gd relaxation time constant (+26%, P < 0.05), although proteoglycan content was not altered. Adiabatic and CW-T1ρ were also significantly increased (+16%, +28%, P < 0.05) while pre-contrast T1 was significantly decreased (-10%, P < 0.05) in the threose group. T2, T2ρ and T1sat did not change significantly. CONCLUSION Threose treatment induced collagen cross-linking and changes in the properties of articular cartilage, which were detected by T1, T1Gd and T1ρ relaxation time constants. Cross-linking should be considered especially when interpreting the outcome of contrast-enhanced MRI in aging populations.
Collapse
Affiliation(s)
- J Rautiainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| | - M T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - E-N Salo
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - H T Kokkonen
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - S Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - S Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - O Gröhn
- Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - J S Jurvelin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - J Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - M J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
27
|
Ho LC, Sigal IA, Jan NJ, Yang X, van der Merwe Y, Yu Y, Chau Y, Leung CK, Conner IP, Jin T, Wu EX, Kim SG, Wollstein G, Schuman JS, Chan KC. Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation. Sci Rep 2016; 6:32080. [PMID: 27561353 PMCID: PMC5000015 DOI: 10.1038/srep32080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The microstructural organization and composition of the corneoscleral shell (CSS) determine the biomechanical behavior of the eye, and are important in diseases such as glaucoma and myopia. However, limited techniques can assess these properties globally, non-invasively and quantitatively. In this study, we hypothesized that multi-modal magnetic resonance imaging (MRI) can reveal the effects of biomechanical or biochemical modulation on CSS. Upon intraocular pressure (IOP) elevation, CSS appeared hyperintense in both freshly prepared ovine eyes and living rat eyes using T2-weighted MRI. Quantitatively, transverse relaxation time (T2) of CSS increased non-linearly with IOP at 0-40 mmHg and remained longer than unloaded tissues after being unpressurized. IOP loading also increased fractional anisotropy of CSS in diffusion tensor MRI without apparent change in magnetization transfer MRI, suggestive of straightening of microstructural fibers without modification of macromolecular contents. Lastly, treatments with increasing glyceraldehyde (mimicking crosslinking conditions) and chondroitinase-ABC concentrations (mimicking glycosaminoglycan depletion) decreased diffusivities and increased magnetization transfer in cornea, whereas glyceraldehyde also increased magnetization transfer in sclera. In summary, we demonstrated the changing profiles of MRI contrast mechanisms resulting from biomechanical or biochemical modulation of the eye non-invasively. Multi-modal MRI may help evaluate the pathophysiological mechanisms in CSS and the efficacy of corneoscleral treatments.
Collapse
Affiliation(s)
- Leon C. Ho
- NeuroImaging Laboratory , University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Ian A. Sigal
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ning-Jiun Jan
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoling Yang
- NeuroImaging Laboratory , University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yolandi van der Merwe
- NeuroImaging Laboratory , University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yu Yu
- Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Christopher K. Leung
- University Eye Center, Hong Kong Eye Hospital, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ian P. Conner
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tao Jin
- NeuroImaging Laboratory , University of Pittsburgh, Pittsburgh, PA, USA
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Seong-Gi Kim
- NeuroImaging Laboratory , University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Gadi Wollstein
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joel S. Schuman
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C. Chan
- NeuroImaging Laboratory , University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Nissi MJ MJ, Salo EN, Tiitu V, Liimatainen T, Michaeli S, Mangia S, Ellermann J, Nieminen MT. Multi-parametric MRI characterization of enzymatically degraded articular cartilage. J Orthop Res 2016; 34:1111-20. [PMID: 26662555 PMCID: PMC4903086 DOI: 10.1002/jor.23127] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023]
Abstract
Several laboratory and rotating frame quantitative MRI parameters were evaluated and compared for detection of changes in articular cartilage following selective enzymatic digestion. Bovine osteochondral specimens were subjected to 44 h incubation in control medium or in collagenase or chondroitinase ABC to induce superficial collagen or proteoglycan (glycosaminoglycan) alterations. The samples were scanned at 9.4 T for T1 , T1 Gd (dGEMRIC), T2 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , TRAFF2 , and T1 sat relaxation times and for magnetization transfer ratio (MTR). For reference, glycosaminoglycan content, collagen fibril orientation and biomechanical properties were determined. Changes primarily in the superficial cartilage were noted after enzymatic degradation. Most of the studied parameters were sensitive to the destruction of collagen network, whereas glycosaminoglycan depletion was detected only by native T1 and T1 Gd relaxation time constants throughout the tissue and by MTR superficially. T1 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat correlated significantly with the biomechanical properties while T1 Gd correlated with glycosaminoglycan staining. The findings indicated that most of the studied MRI parameters were sensitive to both glycosaminoglycan content and collagen network integrity, with changes due to enzymatic treatment detected primarily in the superficial tissue. Strong correlation of T1 , adiabatic T1ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat with the altered biomechanical properties, reflects that these parameters were sensitive to critical functional properties of cartilage. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1111-1120, 2016.
Collapse
Affiliation(s)
- Mikko J. Nissi MJ
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland,Corresponding author: Mikko J. Nissi, Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland, Telephone number: +358-50-5955517, Fax number: +358-17-162585
| | - Elli-Noora Salo
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Virpi Tiitu
- Institute of Biomedicine, Anatomy, University of Eastern Finland, Kuopio, Finland
| | - Timo Liimatainen
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland,Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Silvia Mangia
- CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Jutta Ellermann
- CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Miika T. Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
29
|
Zhang J, Nissi MJ, Idiyatullin D, Michaeli S, Garwood M, Ellermann J. Capturing fast relaxing spins with SWIFT adiabatic rotating frame spin-lattice relaxation (T1ρ) mapping. NMR IN BIOMEDICINE 2016; 29:420-30. [PMID: 26811973 PMCID: PMC4805510 DOI: 10.1002/nbm.3474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 05/18/2023]
Abstract
Rotating frame spin-lattice relaxation, with the characteristic time constant T1ρ, provides a means to access motion-restricted (slow) spin dynamics in MRI. As a result of their restricted motion, these spins are sometimes characterized by a short transverse relaxation time constant T2 and thus can be difficult to detect directly with conventional image acquisition techniques. Here, we introduce an approach for three-dimensional adiabatic T1ρ mapping based on a magnetization-prepared sweep imaging with Fourier transformation (MP-SWIFT) sequence, which captures signal from almost all water spin populations, including the extremely fast relaxing pool. A semi-analytical procedure for T1ρ mapping is described. Experiments on phantoms and musculoskeletal tissue specimens (tendon, articular and epiphyseal cartilages) were performed at 9.4 T for both the MP-SWIFT and fast spin echo (FSE) read outs. In the phantom with liquids having fast molecular tumbling and a single-valued T1ρ time constant, the measured T1ρ values obtained with MP-SWIFT and FSE were similar. Conversely, in normal musculoskeletal tissues, T1ρ values measured with MP-SWIFT were much shorter than the values obtained with FSE. Studies of biological tissue specimens demonstrated that T1ρ-weighted SWIFT provides higher contrast between normal and diseased tissues relative to conventional acquisitions. Adiabatic T1ρ mapping with SWIFT readout captures contributions from the otherwise undetected fast relaxing spins, allowing more informative T1ρ measurements of normal and diseased states.
Collapse
Affiliation(s)
- J Zhang
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - M J Nissi
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - D Idiyatullin
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - S Michaeli
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - M Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - J Ellermann
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
30
|
Casula V, Autio J, Nissi MJ, Auerbach EJ, Ellermann J, Lammentausta E, Nieminen MT. Validation and optimization of adiabatic T 1ρ and T 2ρ for quantitative imaging of articular cartilage at 3 T. Magn Reson Med 2016; 77:1265-1275. [PMID: 26946182 DOI: 10.1002/mrm.26183] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of the present work was to validate and optimize adiabatic T1ρ and T2ρ mapping for in vivo measurements of articular cartilage at 3 Tesla (T). METHODS Phantom and in vivo experiments were systematically performed on a 3T clinical system to evaluate the sequences using hyperbolic secant HS1 and HS4 pulses. R1ρ and R2ρ relaxation rates were studied as a function of agarose and chondroitin sulfate concentration and pulse duration. Optimal in vivo protocol was determined by imaging the articular cartilage of two volunteers and varying the sequence parameters, and successively applied in eight additional subjects. Reproducibility was assessed in phantoms and in vivo. RESULTS Relaxation rates depended on agarose and chondroitin sulfate concentration. The sequences were able to generate relaxation time maps with pulse lengths of 8 and 6 ms for HS1 and HS4, respectively. In vivo findings were in good agreement with the phantoms. The implemented adiabatic T1ρ and T2ρ sequences demonstrated regional variation in relaxation time maps of femorotibial cartilage. Reproducibility in phantoms and in vivo was good to excellent for both adiabatic T1ρ and T2ρ . CONCLUSIONS The findings indicate that sequences are suitable for quantitative in vivo assessment of articular cartilage at 3 T. Magn Reson Med 77:1265-1275, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Joonas Autio
- Center for Life Science and Technologies, RIKEN, Kobe, Japan
| | - Mikko J Nissi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | | | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
31
|
Multiparametric MRI of Epiphyseal Cartilage Necrosis (Osteochondrosis) with Histological Validation in a Goat Model. PLoS One 2015; 10:e0140400. [PMID: 26473611 PMCID: PMC4608749 DOI: 10.1371/journal.pone.0140400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/24/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To evaluate multiple MRI parameters in a surgical model of osteochondrosis (OC) in goats. METHODS Focal ischemic lesions of two different sizes were induced in the epiphyseal cartilage of the medial femoral condyles of goats at 4 days of age by surgical transection of cartilage canal blood vessels. Goats were euthanized and specimens harvested 3, 4, 5, 6, 9 and 10 weeks post-op. Ex vivo MRI scans were conducted at 9.4 Tesla for mapping the T1, T2, T1ρ, adiabatic T1ρ and TRAFF relaxation times of articular cartilage, unaffected epiphyseal cartilage, and epiphyseal cartilage within the area of the induced lesion. After MRI scans, safranin O staining was conducted to validate areas of ischemic necrosis induced in the medial femoral condyles of six goats, and to allow comparison of MRI findings with the semi-quantitative proteoglycan assessment in corresponding safranin O-stained histological sections. RESULTS All relaxation time constants differentiated normal epiphyseal cartilage from lesions of ischemic cartilage necrosis, and the histological staining results confirmed the proteoglycan (PG) loss in the areas of ischemia. In the scanned specimens, all of the measured relaxation time constants were higher in the articular than in the normal epiphyseal cartilage, consistently allowing differentiation between these two tissues. CONCLUSIONS Multiparametric MRI provided a sensitive approach to discriminate between necrotic and viable epiphyseal cartilage and between articular and epiphyseal cartilage, which may be useful for diagnosing and monitoring OC lesions and, potentially, for assessing effectiveness of treatment interventions.
Collapse
|
32
|
Abstract
The spin-lattice relaxation time constant in rotating frame (T1rho) is useful for assessment of the properties of macromolecular environment inside tissue. Quantification of T1rho is found promising in various clinical applications. However, T1rho imaging is prone to image artifacts and quantification errors, which remains one of the greatest challenges to adopt this technique in routine clinical practice. The conventional continuous wave spin-lock is susceptible to B1 radiofrequency (RF) and B0 field inhomogeneity, which appears as banding artifacts in acquired images. A number of methods have been reported to modify T1rho prep RF pulse cluster to mitigate this effect. Adiabatic RF pulse can also be used for spin-lock with insensitivity to both B1 RF and B0 field inhomogeneity. Another source of quantification error in T1rho imaging is signal evolution during imaging data acquisition. Care is needed to affirm such error does not take place when specific pulse sequence is used for imaging data acquisition. Another source of T1rho quantification error is insufficient signal-to-noise ratio (SNR), which is common among various quantitative imaging approaches. Measurement of T1rho within an ROI can mitigate this issue, but at the cost of reduced resolution. Noise-corrected methods are reported to address this issue in pixel-wise quantification. For certain tissue type, T1rho quantification can be confounded by magic angle effect and the presence of multiple tissue components. Review of these confounding factors from inherent tissue properties is not included in this article.
Collapse
Affiliation(s)
- Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| |
Collapse
|
33
|
Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling. Apoptosis 2015; 20:1187-99. [DOI: 10.1007/s10495-015-1152-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate ligament transection. Osteoarthritis Cartilage 2015; 23:414-22. [PMID: 25479166 DOI: 10.1016/j.joca.2014.11.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To quantify early osteoarthritic-like changes in the structure and volume of subchondral bone plate and trabecular bone and properties of articular cartilage in a rabbit model of osteoarthritis (OA) induced by anterior cruciate ligament transection (ACLT). METHODS Left knee joints from eight skeletally mature New Zealand white rabbits underwent ACLT surgery, while the contralateral (CTRL) right knee joints were left unoperated. Femoral condyles were harvested 4 weeks after ACLT. Micro-computed tomography imaging was applied to evaluate the structural properties of subchondral bone plate and trabecular bone. Additionally, biomechanical properties, structure and composition of articular cartilage were assessed. RESULTS As a result of ACLT, significant thinning of the subchondral bone plate (P < 0.05) was accompanied by significantly reduced trabecular bone volume fraction and trabecular thickness in the medial femoral condyle compartment (P < 0.05), while no changes were observed in the lateral compartment. In both lateral and medial femoral condyles, the equilibrium modulus and superficial zone proteoglycan (PG) content were significantly lower in ACLT than CTRL joint cartilage (P < 0.05). Significant alterations in the collagen orientation angle extended substantially deeper into cartilage from the ACLT joints in the lateral femoral condyle relative to the medial condyle compartment (P < 0.05). CONCLUSIONS In this model of early OA, significant changes in volume and microstructure of subchondral bone plate and trabecular bone were detected only in the femoral medial condyle, while alterations in articular cartilage properties were more severe in the lateral compartment. The former finding may be associated with reduced joint loading in the medial compartment due to ACLT, while the latter finding reflects early osteoarthritic changes in the lateral compartment.
Collapse
|
35
|
Rautiainen J, Nissi MJ, Salo EN, Tiitu V, Finnilä MAJ, Aho OM, Saarakkala S, Lehenkari P, Ellermann J, Nieminen MT. Multiparametric MRI assessment of human articular cartilage degeneration: Correlation with quantitative histology and mechanical properties. Magn Reson Med 2014; 74:249-259. [PMID: 25104181 DOI: 10.1002/mrm.25401] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/23/2014] [Accepted: 07/17/2014] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the sensitivity of quantitative MRI techniques (T1 , T1,Gd , T2 , continous wave (CW) T1ρ dispersion, adiabatic T1ρ , adiabatic T2ρ , RAFF and inversion-prepared magnetization transfer (MT)) for assessment of human articular cartilage with varying degrees of natural degeneration. METHODS Osteochondral samples (n = 14) were obtained from the tibial plateaus of patients undergoing total knee replacement. MRI of the specimens was performed at 9.4T and the relaxation time maps were evaluated in the cartilage zones. For reference, quantitative histology, OARSI grading and biomechanical measurements were performed and correlated with MRI findings. RESULTS All MRI parameters, except T1,Gd , showed statistically significant differences in tangential and full-thickness regions of interest (ROIs) between early and advanced osteoarthritis (OA) groups, as classified by OARSI grading. CW-T1ρ showed significant dispersion in all ROIs and featured classical laminar structure of cartilage with spin-lock powers below 1000 Hz. Adiabatic T1ρ , T2ρ , CW-T1ρ, MT, and RAFF correlated strongly with OARSI grade and biomechanical parameters. CONCLUSION MRI parameters were able to differentiate between early and advanced OA. Furthermore, rotating frame methods, namely adiabatic T1ρ , adiabatic T2ρ , CW-T1ρ , and RAFF, as well as MT experiment correlated strongly with biomechanical parameters and OARSI grade, suggesting high sensitivity of the parameters for cartilage degeneration. Magn Reson Med 74:249-259, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jari Rautiainen
- Department of Diagnostic Radiology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Center for Magnetic Resonance Research, Departments of Radiology and Orthopaedic Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elli-Noora Salo
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Virpi Tiitu
- Institute of Biomedicine, Anatomy, University of Eastern Finland, Kuopio, Finland
| | | | - Olli-Matti Aho
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | - Simo Saarakkala
- Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Department of Medical Technology, University of Oulu, Oulu, Finland
| | - Petri Lehenkari
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, Departments of Radiology and Orthopaedic Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miika T Nieminen
- Department of Diagnostic Radiology, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|