1
|
Shi W, Xu C, Xu Q, Zhang H, Li Z, Li H. Polyunsaturated fatty acids may not be helpful for people with osteoarthritis: a two-sample Mendelian randomization analysis. Sci Rep 2025; 15:6065. [PMID: 39971969 PMCID: PMC11840048 DOI: 10.1038/s41598-024-84506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/24/2024] [Indexed: 02/21/2025] Open
Abstract
In recent years, researchers have examined the use of polyunsaturated fatty acids (PUFA) or a low omega-6/3 ratio to protect the knee joint. The current study is based on genome-wide association study (GWAS) analysis and uses the Mendelian randomization (MR) method to evaluate the effect of total PUFA, omega-3, omega-6, and omega-6/3 ratios on osteoarthritis (OA). First, we downloaded the latest PUFA and OA GWAS data. The PUFA data were divided into four groups: total PUFA, omega-3, omega-6, and omega-6/3 ratios. The OA data were split into nine groups: hip OA (total, males, and females), knee OA (total, males, and females), and hand OA (total, males, and females). Then, qualified SNPs were selected as instrumental variables. Inverse variance weighting (IVW), weighted median, and the MR‒Egger method were used for MR analysis. Finally, MR‒Egger, MR-Presso, and Cochran's Q statistical methods were used to evaluate the heterogeneity and pleiotropy. Thirty-six IVW results showed that total PUFA, omega-3, omega-6, and omega-6/3 ratios did not significantly increase or decrease the risk of knee, hip, and hand OA. The IVW results of the effect of PUFA on OA (male and female) were as follows: total PUFA-knee OA (OR: 0.97, 95% CI: 0.92-1.02, P = 0.283); total PUFA-hip OA (OR: 1.01, 95% CI: 0.93-1.08, P = 0.806); total PUFA-hand OA (OR: 0.99, 95% CI: 0.91-1.07, P = 0.896). There was no obvious horizontal polytropy in all the analyses, and there was heterogeneity in some analyses. Our study does not indicate that total PUFA, mega-3, and low omega-6/3 ratios are helpful for people with OA, nor does it indicate that omega-6 increases the risk of OA. The dietary management of PUFA in OA patients needs to be performed cautiously.
Collapse
Affiliation(s)
- Wei Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunlei Xu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qian Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huafeng Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Zhijun Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Hui Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Tang R, Harasymowicz NS, Wu CL, Choi YR, Lenz K, Oswald SJ, Guilak F. Gene therapy for fat-1 prevents obesity-induced metabolic dysfunction, cellular senescence, and osteoarthritis. Proc Natl Acad Sci U S A 2024; 121:e2402954121. [PMID: 39401356 PMCID: PMC11513907 DOI: 10.1073/pnas.2402954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
Obesity is one of the primary risk factors for osteoarthritis (OA), acting through cross talk among altered biomechanics, metabolism, adipokines, and dietary free fatty acid (FA) composition. Obesity and aging have been linked to cellular senescence in various tissues, resulting in increased local and systemic inflammation and immune dysfunction. We hypothesized that obesity and joint injury lead to cellular senescence that is typically associated with increased OA severity or with aging and that the ratio of omega-6 (ω-6) to omega-3 (ω-3) FAs regulates these pathologic effects. Mice were placed on an ω-6-rich high-fat diet or a lean control diet and underwent destabilization of the medial meniscus to induce OA. Obesity and joint injury significantly increased cellular senescence in subcutaneous and visceral fat as well as joint tissues such as synovium and cartilage. Using adeno-associated virus (AAV) gene therapy for fat-1, a fatty acid desaturase that converts ω-6 to ω-3 FAs, decreasing the serum ω-6:ω-3 FA ratio had a strong senomorphic and therapeutic effect, mitigating metabolic dysfunction, cellular senescence, and joint degeneration. In vitro coculture of bone marrow-derived macrophages and chondrocytes from control and AAV8-fat1-treated mice were used to examine the roles of various FA mediators in regulating chondrocyte senescence. Our results suggest that obesity and joint injury result in a premature "aging" of the joint as measured by senescence markers, and these changes can be ameliorated by altering FA composition using fat-1 gene therapy. These findings support the potential for fat-1 gene therapy to treat obesity- and/or injury-induced OA clinically.
Collapse
Affiliation(s)
- Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
| | - Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul03722, South Korea
| | - Kristin Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Sara J. Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| |
Collapse
|
3
|
Zhang C, Lin Y, Li H, Hu H, Chen Y, Huang Y, Huang Z, Fang X, Zhang W, Lin Y. Fatty acid binding protein 4 (FABP4) induces chondrocyte degeneration via activation of the NF-κb signaling pathway. FASEB J 2024; 38:e23347. [PMID: 38095503 DOI: 10.1096/fj.202301882r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
The pathogenesis of osteoarthritis (OA) is still unclear. Fatty acid binding protein 4 (FABP4), a novel adipokine, has been found to play a role in OA. This study aimed to explore the role of NF-κB in FABP4-induced OA. In the in vivo study, four pairs of 12-week-old male FABP4 knockout (KO) and wild-type (WT) mice were included. The activation of NF-κB was assessed. In parallel, 24 6-week-old male C57/Bl6 mice were fed a high-fat diet (HFD) and randomly allocated to four groups: daily oral gavage with (1) PBS solution; (2) QNZ (NF-κB-specific inhibitor, 1 mg/kg/d); (3) BMS309403 (FABP4-specific inhibitor, 30 mg/kg/d); and (4) BMS309403 (30 mg/kg/d) + QNZ (1 mg/kg/d). The diet and treatment were sustained for 4 months. The knee joints were obtained to assess cartilage degradation, NF-κB activation, and subchondral bone sclerosis. In the in vitro study, a mouse chondrogenic cell line (ATDC5) was cultured. FABP4 was supplemented to stimulate chondrocytes, and the activation of NF-κB was investigated. In parallel, QNZ and NF-κB-specific siRNA were used to inhibit NF-κB. In vivo, the FABP4 WT mice had more significant NF-κB activation than the KO mice. Dual inhibition of FABP4 and NF-κB alleviated knee OA in mice. FABP4 has no significant effect on the activation of the JNK signaling pathway. In vitro, FABP4 directly activated NF-κB in chondrocytes. The use of QNZ and NF-κB-siRNA significantly alleviated the expression of catabolic markers of chondrocytes induced by FABP4. FABP4 induces chondrocyte degeneration by activating the NF-κB pathway.
Collapse
Affiliation(s)
- Chaofan Zhang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yiming Lin
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hongyan Li
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hongxin Hu
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Yongfa Chen
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Pediatric Orthopaedic Surgery, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Huang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zida Huang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xinyu Fang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yunzhi Lin
- Department of Stomatology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Targeting the Inflammatory Hallmarks of Obesity-Associated Osteoarthritis: Towards Nutraceutical-Oriented Preventive and Complementary Therapeutic Strategies Based on n-3 Polyunsaturated Fatty Acids. Int J Mol Sci 2023; 24:ijms24119340. [PMID: 37298291 DOI: 10.3390/ijms24119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity (Ob), which has dramatically increased in the last decade, is one of the main risk factors that contribute to the incidence and progression of osteoarthritis (OA). Targeting the characteristics of obesity-associated osteoarthritis (ObOA) may offer new chances for precision medicine strategies in this patient cohort. First, this review outlines how the medical perspective of ObOA has shifted from a focus on biomechanics to the significant contribution of inflammation, mainly mediated by changes in the adipose tissue metabolism through the release of adipokines and the modification of fatty acid (FA) compositions in joint tissues. Preclinical and clinical studies on n-3 polyunsaturated FAs (PUFAs) are critically reviewed to outline the strengths and weaknesses of n-3 PUFAs' role in alleviating inflammatory, catabolic and painful processes. Emphasis is placed on potential preventive and therapeutic nutritional strategies based on n-3 PUFAs, with a focus on ObOA patients who could specifically benefit from reformulating the dietary composition of FAs towards a protective phenotype. Finally, tissue engineering approaches that involve the delivery of n-3 PUFAs directly into the joint are explored to address the perspectives and current limitations, such as safety and stability issues, for implementing preventive and therapeutic strategies based on dietary compounds in ObOA patients.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
5
|
Hu X, Ni S, Zhao K, Qian J, Duan Y. Bioinformatics-Led Discovery of Osteoarthritis Biomarkers and Inflammatory Infiltrates. Front Immunol 2022; 13:871008. [PMID: 35734177 PMCID: PMC9207185 DOI: 10.3389/fimmu.2022.871008] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
The molecular mechanisms of osteoarthritis, the most common chronic disease, remain unexplained. This study aimed to use bioinformatic methods to identify the key biomarkers and immune infiltration in osteoarthritis. Gene expression profiles (GSE55235, GSE55457, GSE77298, and GSE82107) were selected from the Gene Expression Omnibus database. A protein-protein interaction network was created, and functional enrichment analysis and genomic enrichment analysis were performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) databases. Immune cell infiltration between osteoarthritic tissues and control tissues was analyzed using the CIBERSORT method. Identify immune patterns using the ConsensusClusterPlus package in R software using a consistent clustering approach. Molecular biological investigations were performed to discover the important genes in cartilage cells. A total of 105 differentially expressed genes were identified. Differentially expressed genes were enriched in immunological response, chemokine-mediated signaling pathway, and inflammatory response revealed by the analysis of GO and KEGG databases. Two distinct immune patterns (ClusterA and ClusterB) were identified using the ConsensusClusterPlus. Cluster A patients had significantly lower resting dendritic cells, M2 macrophages, resting mast cells, activated natural killer cells and regulatory T cells than Cluster B patients. The expression levels of TCA1, TLR7, MMP9, CXCL10, CXCL13, HLA-DRA, and ADIPOQSPP1 were significantly higher in the IL-1β-induced group than in the osteoarthritis group in an in vitro qPCR experiment. Explaining the differences in immune infiltration between osteoarthritic tissues and normal tissues will contribute to the understanding of the development of osteoarthritis.
Collapse
Affiliation(s)
- Xinyue Hu
- Department of Clinical Laboratory, Kunming First People’s Hospital, Kunming Medical University, Kunming, China
| | - Songjia Ni
- Department of Orthopedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhao
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Qian
- Department of Clinical Laboratory, Kunming First People’s Hospital, Kunming Medical University, Kunming, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yang Duan,
| |
Collapse
|
6
|
|
7
|
Batushansky A, Zhu S, Komaravolu RK, South S, Mehta-D'souza P, Griffin TM. Fundamentals of OA. An initiative of Osteoarthritis and Cartilage. Obesity and metabolic factors in OA. Osteoarthritis Cartilage 2022; 30:501-515. [PMID: 34537381 PMCID: PMC8926936 DOI: 10.1016/j.joca.2021.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Obesity was once considered a risk factor for knee osteoarthritis (OA) primarily for biomechanical reasons. Here we provide an additional perspective by discussing how obesity also increases OA risk by altering metabolism and inflammation. DESIGN This narrative review is presented in four sections: 1) metabolic syndrome and OA, 2) metabolic biomarkers of OA, 3) evidence for dysregulated chondrocyte metabolism in OA, and 4) metabolic inflammation: joint tissue mediators and mechanisms. RESULTS Metabolic syndrome and its components are strongly associated with OA. However, evidence for a causal relationship is context dependent, varying by joint, gender, diagnostic criteria, and demographics, with additional environmental and genetic interactions yet to be fully defined. Importantly, some aspects of the etiology of obesity-induced OA appear to be distinct between men and women, especially regarding the role of adipose tissue. Metabolomic analyses of serum and synovial fluid have identified potential diagnostic biomarkers of knee OA and prognostic biomarkers of disease progression. Connecting these biomarkers to cellular pathophysiology will require future in vivo studies of joint tissue metabolism. Such studies will help reveal when a metabolic process or a metabolite itself is a causal factor in disease progression. Current evidence points towards impaired chondrocyte metabolic homeostasis and metabolic-immune dysregulation as likely factors connecting obesity to the increased risk of OA. CONCLUSIONS A deeper understanding of how obesity alters metabolic and inflammatory pathways in synovial joint tissues is expected to provide new therapeutic targets and an improved definition of "metabolic" and "obesity" OA phenotypes.
Collapse
Affiliation(s)
- A Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - S Zhu
- Department of Biomedical Sciences, Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, 45701, USA.
| | - R K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - S South
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - P Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - T M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
8
|
Fatty Acids and Oxylipins in Osteoarthritis and Rheumatoid Arthritis-a Complex Field with Significant Potential for Future Treatments. Curr Rheumatol Rep 2021; 23:41. [PMID: 33913032 PMCID: PMC8081702 DOI: 10.1007/s11926-021-01007-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterized by abnormal lipid metabolism manifested as altered fatty acid (FA) profiles of synovial fluid and tissues and in the way dietary FA supplements can influence the symptoms of especially RA. In addition to classic eicosanoids, the potential roles of polyunsaturated FA (PUFA)-derived specialized pro-resolving lipid mediators (SPM) have become the focus of intensive research. Here, we summarize the current state of knowledge of the roles of FA and oxylipins in the degradation or protection of synovial joints. Recent Findings There exists discordance between the large body of literature from cell culture and animal experiments on the adverse and beneficial effects of individual FA and the lack of effective treatments for joint destruction in OA and RA patients. Saturated 16:0 and 18:0 induce mostly deleterious effects, while long-chain n-3 PUFA, especially 20:5n-3, have positive influence on joint health. The situation can be more complex for n-6 PUFA, such as 18:2n-6, 20:4n-6, and its derivative prostaglandin E2, with a combination of potentially adverse and beneficial effects. SPM analogs have future potential as analgesics for arthritic pain. Summary Alterations in FA profiles and their potential implications in SPM production may affect joint lubrication, synovial inflammation, pannus formation, as well as cartilage and bone degradation and contribute to the pathogeneses of inflammatory joint diseases. Further research directions include high-quality randomized controlled trials on dietary FA supplements and investigations on the significance of lipid composition of microvesicle membrane and cargo in joint diseases.
Collapse
|
9
|
Yang Y, Wei J, Li J, Cui Y, Zhou X, Xie J. Lipid metabolism in cartilage and its diseases: a concise review of the research progress. Acta Biochim Biophys Sin (Shanghai) 2021; 53:517-527. [PMID: 33638344 DOI: 10.1093/abbs/gmab021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
The homeostasis of the vertebrate body depends on anabolic and catabolic activities that are closely linked the inside and outside of the cell. Lipid metabolism plays an essential role in these metabolic activities. Although a large amount of evidence shows that normal lipid metabolism guarantees the conventional physiological activities of organs in the vertebrate body and that abnormal lipid metabolism plays an important role in the occurrence and deterioration of cardiovascular-related diseases, such as obesity, atherosclerosis, and type II diabetes, little is known about the role of lipid metabolism in cartilage and its diseases. This review aims to summarize the latest advances about the function of lipid metabolism in cartilage and its diseases including osteoarthritis, rheumatoid arthritis, and cartilage tumors. With the gradual in-depth understanding of lipid metabolism in cartilage, treatment methods could be explored to focus on this metabolic process in various cartilage diseases.
Collapse
Affiliation(s)
- Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jiachi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Effects of Greenshell Mussel (Perna canaliculus) Intake on Pathological Markers of Multiple Phenotypes of Osteoarthritis in Rats. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The prevalence of metabolic osteoarthritis has been increasing worldwide, particularly among women. The aim of this study was to investigate the effects of the New Zealand greenshell mussel (Perna canaliculus; GSM) on osteoarthritis (OA) prevention in a rat model. One-hundred-and-eight female rats aged 12 weeks were divided into four test groups, containing 24 rats each, plus an additional control group. Each test group received one of the four experimental diets: normal control diet (ND), normal control diet supplemented with GSM (ND + GSM), high fat/high sugar diet (HFHS), or high fat/high sugar diet supplemented GSM (HFHS + GSM), for 36 weeks (end of the study). After 8 weeks on experimental diets, half of each group was subjected to ovariectomy (OVX) and the remaining half received a sham operation (ovaries left intact). The study evaluated body composition, bone mass, plasma cytokines, adipokines, HbA1c, CTX-II, and knee joint’s histopathology. HFHS diet and OVX significantly induced body weight gain and leptin production. OVX rats lost bone mineral density but increased adiponectin, HbA1C, and MCP-1. The OVX rats fed HFHS showed the highest Mankin scores. Importantly, inclusion of GSM reduced these pathological features. In conclusion, GSM might be beneficial in halting the progression of OA.
Collapse
|
11
|
Contartese D, Tschon M, De Mattei M, Fini M. Sex Specific Determinants in Osteoarthritis: A Systematic Review of Preclinical Studies. Int J Mol Sci 2020; 21:E3696. [PMID: 32456298 PMCID: PMC7279293 DOI: 10.3390/ijms21103696] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that primarily affects about 10% of the world's population over 60 years old. The purpose of this study is to systematically review the preclinical studies regarding sex differences in OA, with particular attention to the molecular aspect and gene expression, but also to the histopathological aspects. Three databases (PubMed, Scopus, and Web of Knowledge) were screened for eligible studies. In vitro and in vivo papers written in English, published in the last 11 years (2009-2020) were eligible. Participants were preclinical studies, including cell cultures and animal models of OA, evaluating sex differences. Independent extraction of articles and quality assessments were performed by two authors using predefined data fields and specific tools (Animals in Research Reporting In Vivo Experiments (ARRIVE) guideline and Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) tool). Twenty-three studies were included in the review: 4 in vitro studies, 18 in vivo studies, and 1 both in vitro and in vivo study. From in vitro works, sex differences were found in the gene expression of inflammatory molecules, hormonal receptors, and in responsiveness to hormonal stimulation. In vivo research showed a great heterogeneity of animal models mainly focused on the histopathological aspects rather than on the analysis of sex-related molecular mechanisms. This review highlights that many gaps in knowledge still exist; improvementsin the selection and reporting of animal models, the use of advanced in vitro models, and multiomics analyses might contribute to developing a personalized gender-based medicine.
Collapse
Affiliation(s)
- Deyanira Contartese
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS–Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (D.C.); (M.F.)
| | - Matilde Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS–Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (D.C.); (M.F.)
| | - Monica De Mattei
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS–Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (D.C.); (M.F.)
| |
Collapse
|
12
|
Kimmerling KA, Oswald SJ, Huebner JL, Little D, Kraus VB, Kang JX, Wu CL, Guilak F. Transgenic conversion of ω-6 to ω-3 polyunsaturated fatty acids via fat-1 reduces the severity of post-traumatic osteoarthritis. Arthritis Res Ther 2020; 22:83. [PMID: 32295649 PMCID: PMC7160898 DOI: 10.1186/s13075-020-02170-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Background Dietary fatty acid (FA) content has been shown to influence the development of post-traumatic osteoarthritis (PTOA) in obesity. We used the fat-1 transgenic mouse to examine the hypothesis that endogenous reduction of ω-6 to ω-3 FA ratio, under the same dietary conditions, would mitigate metabolic inflammation and the pathogenesis of PTOA in obese male and female mice. Methods Male and female fat-1 and wild-type littermates were fed either a control diet or an ω-6 FA-rich high-fat diet and underwent destabilization of the medial meniscus (DMM) surgery to induce PTOA. OA severity, synovitis, and osteophyte formation were determined histologically, while biomarker and lipidomic analyses were performed to evaluate levels of adipokines, insulin, pro-/anti-inflammatory cytokines, and FAs in serum and joint synovial fluid. Multivariable models were performed to elucidate the associations of dietary, metabolic, and mechanical factors with PTOA. Results We found that elevated serum levels of ω-3 FAs in fat-1 mice as compared to wild-type controls fed the same diet resulted in reduced OA and synovitis in a sex- and diet-dependent manner, despite comparable body weights. The fat-1 mice showed trends toward decreased serum pro-inflammatory cytokines and increased anti-inflammatory cytokines. Multivariable analysis for variables predicting OA severity in mice resulted in correlations with serum FA levels, but not with body weight. Conclusions This study provides further evidence that circulating FA composition and systemic metabolic inflammation, rather than body weight, may be the major risk factor for obesity-associated OA. We also demonstrate the potential genetic use of ω-3 FA desaturase in mitigating PTOA in obese patients following injury.
Collapse
Affiliation(s)
- Kelly A Kimmerling
- Department of Orthopaedic Surgery, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg, Room 3121, St. Louis, MO, 63110, USA.,Shriners Hospitals for Children - St. Louis, St. Louis, MO, USA
| | - Sara J Oswald
- Department of Orthopaedic Surgery, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg, Room 3121, St. Louis, MO, 63110, USA.,Shriners Hospitals for Children - St. Louis, St. Louis, MO, USA
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dianne Little
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA.,Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg, Room 3121, St. Louis, MO, 63110, USA. .,Shriners Hospitals for Children - St. Louis, St. Louis, MO, USA.
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg, Room 3121, St. Louis, MO, 63110, USA. .,Shriners Hospitals for Children - St. Louis, St. Louis, MO, USA.
| |
Collapse
|
13
|
Sansone V, Applefield RC, De Luca P, Pecoraro V, Gianola S, Pascale W, Pascale V. Does a high-fat diet affect the development and progression of osteoarthritis in mice?: A systematic review. Bone Joint Res 2020; 8:582-592. [PMID: 31934329 PMCID: PMC6946912 DOI: 10.1302/2046-3758.812.bjr-2019-0038.r1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Aims The aim of this study was to systematically review the literature for evidence of the effect of a high-fat diet (HFD) on the onset or progression of osteoarthritis (OA) in mice. Methods A literature search was performed in PubMed, Embase, Web of Science, and Scopus to find all studies on mice investigating the effects of HFD or Western-type diet on OA when compared with a control diet (CD). The primary outcome was the determination of cartilage loss and alteration. Secondary outcomes regarding local and systemic levels of proteins involved in inflammatory processes or cartilage metabolism were also examined when reported. Results In total, 14 publications met our inclusion criteria and were included in our review. Our meta-analysis showed that, when measured by the modified Mankin Histological-Histochemical Grading System, there was a significantly higher rate of OA in mice fed a HFD than in mice on a CD (standardized mean difference (SMD) 1.27, 95% confidence interval (CI) 0.63 to 1.91). Using the Osteoarthritis Research Society International (OARSI) score, there was a trend towards HFD causing OA (SMD 0.78, 95% CI -0.04 to 1.61). In terms of OA progression, a HFD consistently worsened the progression of surgically induced OA when compared with a CD. Finally, numerous inflammatory cytokines such as tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, and leptin, among others, were found to be altered by a HFD. Conclusion A HFD seems to induce or exacerbate the progression of OA in mice. The metabolic changes and systemic inflammation brought about by a HFD appear to be key players in the onset and progression of OA. Cite this article:Bone Joint Res 2019;8:582–592.
Collapse
Affiliation(s)
- Valerio Sansone
- Department of Orthopaedics, Universitá degli Studi di Milano and IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | | | - Valentina Pecoraro
- Department of Laboratory Medicine, Ospedale Civile Sant'Agostino Estense di Baggiovra, Baggiovara, Italy
| | | | | | - Valerio Pascale
- Department of Orthopaedics, Universitá degli Studi di Milano and IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
14
|
Kalaitzoglou E, Lopes EBP, Fu Y, Herron JC, Flaming JM, Donovan EL, Hu Y, Filiberti A, Griffin TM, Humphrey MB. TLR4 Promotes and DAP12 Limits Obesity-Induced Osteoarthritis in Aged Female Mice. JBMR Plus 2019; 3:e10079. [PMID: 31044181 PMCID: PMC6478583 DOI: 10.1002/jbm4.10079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022] Open
Abstract
Aging and female sex are the strongest risk factors for nontraumatic osteoarthritis (OA); whereas obesity is a modifiable risk factor accelerating OA. Prior studies indicate that the innate immune receptor toll-like receptor 4 (TLR4) mediates obesity-induced metabolic inflammation and cartilage catabolism via recognition of damage-associated molecular patterns and is increased with aging in OA joints. TLR4 responses are limited by innate immunoreceptor adapter protein DNAX-activating protein of 12kDA (DAP12). We undertook this study to test the hypothesis that TLR4 promotes, whereas DAP12 limits, obesity-accelerated OA in aged female mice. We fed 13- to 15-month-old female WT, TLR4 KO, and DAP12 KO mice a high-fat diet (HFD) or a control diet for 12 weeks, and changes in body composition, glucose tolerance, serum cytokines, and insulin levels were compared. Knee OA was evaluated by histopathology and μCT. Infrapatellar fat pads (IFPs) were analyzed by histomorphometry and F4/80+ crown-like structures were quantified. IFPs and synovium gene expression were analyzed using a targeted insulin resistance and inflammation array. All HFD-treated mice became obese, but only WT and TLR4 KO mice developed glucose intolerance. HFD induced cartilage catabolism in WT and DAP12 KO female mice, but not in TLR4 KO mice. Gene-expression analysis of IFPs and synovium showed significant differences in insulin signaling, adipokines, and inflammation between genotypes and diets. Unlike young mice, systemic inflammation was not induced by HFD in the older female mice independent of genotype. Our findings support the conclusion that TLR4 promotes and DAP12 limits HFD-induced cartilage catabolism in middle-aged female mice.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable Brown Diabetes CenterDepartment of PediatricsUniversity of Kentucky College of MedicineLexingtonKYUSA
| | | | - Yao Fu
- Oklahoma Medical Research FoundationAging and Metabolism Research ProgramOklahoma CityOKUSA
| | - Jacquelyn C Herron
- University of Oklahoma Health Sciences CenterDepartment of MedicineOklahoma CityOKUSA
| | - Josiah M Flaming
- University of Oklahoma Health Sciences CenterDepartment of MedicineOklahoma CityOKUSA
| | - Elise L Donovan
- Oklahoma Medical Research FoundationAging and Metabolism Research ProgramOklahoma CityOKUSA
| | - Yanqing Hu
- University of Oklahoma Health Sciences CenterDepartment of MedicineOklahoma CityOKUSA
| | - Adrian Filiberti
- University of Oklahoma Health Sciences CenterDepartment of MedicineOklahoma CityOKUSA
| | - Timothy M Griffin
- Oklahoma Medical Research FoundationAging and Metabolism Research ProgramOklahoma CityOKUSA
- University of Oklahoma Health Sciences CenterDepartment of MedicineOklahoma CityOKUSA
| | - Mary Beth Humphrey
- University of Oklahoma Health Sciences CenterDepartment of MedicineOklahoma CityOKUSA
- Oklahoma City Veteran's Affairs Medical CenterDepartment of MedicineOklahoma CityOKUSA
| |
Collapse
|
15
|
Berenbaum F, Griffin TM, Liu-Bryan R. Review: Metabolic Regulation of Inflammation in Osteoarthritis. Arthritis Rheumatol 2019; 69:9-21. [PMID: 27564539 DOI: 10.1002/art.39842] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/09/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Francis Berenbaum
- Sorbonnes Universités, UPMC University Paris 06, INSERM, AP-HP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine, DHU i2B, Paris, France
| | - Timothy M Griffin
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Ru Liu-Bryan
- VA San Diego Healthcare System and University of California, San Diego
| |
Collapse
|
16
|
Votava L, Schwartz AG, Harasymowicz NS, Wu CL, Guilak F. Effects of dietary fatty acid content on humeral cartilage and bone structure in a mouse model of diet-induced obesity. J Orthop Res 2019; 37:779-788. [PMID: 30644575 PMCID: PMC6662729 DOI: 10.1002/jor.24219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 02/04/2023]
Abstract
Obesity is a primary risk factor for osteoarthritis (OA), and previous studies have shown that dietary content may play an important role in the pathogenesis of cartilage and bone in knee OA. Several previous studies have shown that the ratio of ω-3 polyunsaturated fatty acids (PUFAs), ω-6 PUFAs, and saturated fatty acids can significantly influence bone structure and OA progression. However, the influence of obesity or dietary fatty acid content on shoulder OA is not well understood. The goal of this study was to investigate the role of dietary fatty acid content on bone and cartilage structure in the mouse shoulder in a model of diet-induced obesity. For 24 weeks, mice were fed control or high-fat diets supplemented with ω-3 PUFAs, ω-6 PUFAs, or saturated fatty acids. The humeral heads were analyzed for bone morphometry and mineral density by microCT. Cartilage structure and joint synovitis were determined by histological grading, and microscale mechanical properties of the cartilage extracellular and pericellular matrices were quantified using atomic force microscopy. Diet-induced obesity significantly altered bone morphology and mineral density in a manner that was dependent on dietary free fatty acid content. In general, high-fat diet groups showed decreased bone quality, with the ω-3 diet being partially protective. Cartilage mechanical properties and OA scores showed no changes with obesity or diet. These findings are consistent with clinical literature showing little if any relationship between obesity and shoulder OA (unlike knee OA), but suggest that diet-induced obesity may influence other joint tissues. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Lauren Votava
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110,Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110
| | - Andrea G. Schwartz
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110,Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110
| |
Collapse
|
17
|
Harasymowicz NS, Dicks A, Wu CL, Guilak F. Physiologic and pathologic effects of dietary free fatty acids on cells of the joint. Ann N Y Acad Sci 2019; 1440:36-53. [PMID: 30648276 DOI: 10.1111/nyas.13999] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
Fatty acids (FAs) are potent organic compounds that not only can be used as an energy source during nutrient deprivation but are also involved in several essential signaling cascades in cells. Therefore, a balanced intake of different dietary FAs is critical for the maintenance of cellular functions and tissue homeostasis. A diet with an imbalanced fat composition creates a risk for developing metabolic syndrome and various musculoskeletal diseases, including osteoarthritis (OA). In this review, we summarize the current state of knowledge and mechanistic insights regarding the role of dietary FAs, such as saturated FAs, omega-6 polyunsaturated FAs (PUFAs), and omega-3 PUFAs on joint inflammation and OA pathogeneses. In particular, we review how different types of dietary FAs and their derivatives distinctly affect a variety of cells within the joint, including chondrocytes, osteoblasts, osteoclasts, and synoviocytes. Understanding the molecular mechanisms underlying the effects of FAs on metabolic behavior, anabolic, and catabolic processes, as well as the inflammatory response of joint cells, may help identify therapeutic targets for the prevention of metabolic joint diseases.
Collapse
Affiliation(s)
- Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| |
Collapse
|
18
|
Berenbaum F, Wallace IJ, Lieberman DE, Felson DT. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2018; 14:674-681. [DOI: 10.1038/s41584-018-0073-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Donovan EL, Lopes EBP, Batushansky A, Kinter M, Griffin TM. Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice. Dis Model Mech 2018; 11:dmm.034827. [PMID: 30018076 PMCID: PMC6176996 DOI: 10.1242/dmm.034827] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of the most significant risk factors for knee osteoarthritis. However, therapeutic strategies to prevent or treat obesity-associated osteoarthritis are limited because of uncertainty about the etiology of disease, particularly with regard to metabolic factors. High-fat-diet-induced obese mice have become a widely used model for testing hypotheses about how obesity increases the risk of osteoarthritis, but progress has been limited by variation in disease severity, with some reports concluding that dietary treatment alone is insufficient to induce osteoarthritis in mice. We hypothesized that increased sucrose content of typical low-fat control diets contributes to osteoarthritis pathology and thus alters outcomes when evaluating the effects of a high-fat diet. We tested this hypothesis in male C57BL/6J mice by comparing the effects of purified diets that independently varied sucrose or fat content from 6 to 26 weeks of age. Outcomes included osteoarthritis pathology, serum metabolites, and cartilage gene and protein changes associated with cellular metabolism and stress-response pathways. We found that the relative content of sucrose versus cornstarch in low-fat iso-caloric purified diets caused substantial differences in serum metabolites, joint pathology, and cartilage metabolic and stress-response pathways, despite no differences in body mass or body fat. We also found that higher dietary fat increased fatty acid metabolic enzymes in cartilage. The findings indicate that the choice of control diets should be carefully considered in mouse osteoarthritis studies. Our study also indicates that altered cartilage metabolism might be a contributing factor to how diet and obesity increase the risk of osteoarthritis. Summary: The contribution of metabolic factors to obesity-associated knee osteoarthritis is uncertain. Here, we show how dietary fat and sucrose independently alter cartilage metabolic enzymes and osteoarthritis pathophysiology in mice.
Collapse
Affiliation(s)
- Elise L Donovan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA
| | - Erika Barboza Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA
| | - Mike Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA.,Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA .,Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Biochemistry and Molecular Biology and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
20
|
Loef M, Schoones JW, Kloppenburg M, Ioan-Facsinay A. Fatty acids and osteoarthritis: different types, different effects. Joint Bone Spine 2018; 86:451-458. [PMID: 30081198 DOI: 10.1016/j.jbspin.2018.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
While the association between obesity and osteoarthritis used to be solely regarded as a result of increased mechanical loading, systemic factors also likely play a role in the pathophysiology of osteoarthritis. Nutrient excess leading to obesity may result in lipotoxicity, which might be involved in the development of osteoarthritis. The different fatty acid types have distinct effects on inflammation. This review focusses on the currently available studies, summarizing the effects of the different fatty acid types on osteoarthritis and involved joint tissues. In animal studies omega-3 polyunsaturated fatty acids reduced the expression of inflammatory markers, cartilage degradation and oxidative stress in chondrocytes. In contrast, these markers were increased upon omega-6 polyunsaturated fatty acid and saturated fatty acid stimulation. Additionally, a decrease in pain and dysfunction was observed upon omega-3 supplementation in cats and dogs. In line, most human in vitro studies show pro-apoptotic and pro-inflammatory actions of saturated fatty acids. While all polyunsaturated fatty acids reduced markers of oxidative stress, omega-3 polyunsaturated fatty acids additionally decreased prostaglandin production. Human intervention studies with omega-3 polyunsaturated fatty acid supplementation may indicate a beneficial effect on pain and function and might be associated with less structural damage. In contrast, an adverse effect of saturated fatty acids on osteoarthritis has been observed. Monounsaturated fatty acids have been infrequently studied and findings are inconclusive. Existing studies indicate a promising effect of especially omega-3 polyunsaturated fatty acids on osteoarthritis signs and symptoms. However, more human intervention studies are warranted to draw robust conclusions.
Collapse
Affiliation(s)
- Marieke Loef
- Department of rheumatology, C1-R, Leiden university medical center, 2300 RC Leiden, The Netherlands.
| | | | - Margreet Kloppenburg
- Department of rheumatology, C1-R, Leiden university medical center, 2300 RC Leiden, The Netherlands; Department of clinical epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Andreea Ioan-Facsinay
- Department of rheumatology, C1-R, Leiden university medical center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
21
|
Zhang C, Chiu KY, Chan BPM, Li T, Wen C, Xu A, Yan CH. Knocking out or pharmaceutical inhibition of fatty acid binding protein 4 (FABP4) alleviates osteoarthritis induced by high-fat diet in mice. Osteoarthritis Cartilage 2018; 26:824-833. [PMID: 29549054 DOI: 10.1016/j.joca.2018.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/01/2018] [Accepted: 03/06/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Adipokines play roles in the pathogenesis of osteoarthritis (OA). Fatty acid binding protein 4 (FABP4) is a novel adipokine that is closely associated with obesity and metabolic diseases. The aim of this study was to discover the potential role of FABP4 in OA. METHODS Seventy-two FABP4 knockout mice (KO) in C57BL/6N background and wild-type littermates (WT) (male, 6-week-old) were fed with a high-fat diet (HFD, 60% calorie) or standard diet (STD, 11.6% calorie) for 3 months, 6 months and 9 months (n = 6 each). In the parallel study, forty-eight 6-week-old male WT mice were fed with HFD or STD, and simultaneously treated with daily oral gavage of selective FABP4 inhibitor BMS309403 (15 mg/kg/d) or vehicle for 4 months and 6 months (n = 6 each). Serum FABP4 and cartilage oligomeric matrix protein (COMP) concentration was quantified. Histological assessment of knee OA and micro-CT analysis of subchondral bone were performed. RESULTS HFD induced obesity in mice. After 3 months and 6 months of HFD, KO mice showed alleviated cartilage degradation and synovitis, with significantly lower COMP, modified Mankin OA score, and MMP-13/ADAMTS4 expression. After 6 months and 9 months of HFD, KO mice showed less osteophyte formation and subchondral bone sclerosis. Chronic treatment of BMS309403 for 4 months and 6 months significantly alleviated cartilage degradation, but had no effects on the subchondral bone. Knocking out or pharmaceutical inhibition of FABP4 did not have significant effects on lean mice fed with STD. CONCLUSIONS Knocking out or pharmaceutical inhibition of FABP4 alleviates OA induced by HFD in mice.
Collapse
Affiliation(s)
- C Zhang
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - K Y Chiu
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - B P M Chan
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - T Li
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - C Wen
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - A Xu
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - C H Yan
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Interest in the metabolic syndrome-associated osteoarthritis phenotype is increasing. Here, we summarize recently published significant findings. RECENT FINDINGS Meta-analyses confirmed an association between type 2 diabetes and osteoarthritis and between cardiovascular diseases and osteoarthritis. Recent advances in the study of metabolic syndrome-associated osteoarthritis have focused on a better understanding of the role of metabolic diseases in inducing or aggravating joint damage. In-vivo models of obesity, diabetes, or dyslipidemia have helped to better decipher this association. They give emerging evidence that, beyond the role of common pathogenic mechanisms for metabolic diseases and osteoarthritis (i.e., low-grade inflammation and oxidative stress), metabolic diseases have a direct systemic effect on joints. In addition to the impact of weight, obesity-associated inflammation is associated with osteoarthritis severity and may modulate osteoarthritis progression in mouse models. As well, osteoarthritis synovium from type 2 diabetic patients shows insulin-resistant features, which may participate in joint catabolism. Finally, exciting data are emerging on the association of gut microbiota and circadian rhythm and metabolic syndrome-associated osteoarthritis. SUMMARY The systemic role of metabolic syndrome in osteoarthritis pathophysiology is now better understood, but new avenues of research are being pursued to better decipher the metabolic syndrome-associated osteoarthritis phenotype.
Collapse
|
23
|
Fu Y, Kinter M, Hudson J, Humphries KM, Lane RS, White JR, Hakim M, Pan Y, Verdin E, Griffin TM. Aging Promotes Sirtuin 3-Dependent Cartilage Superoxide Dismutase 2 Acetylation and Osteoarthritis. Arthritis Rheumatol 2017; 68:1887-98. [PMID: 26866626 DOI: 10.1002/art.39618] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To quantify functional age-related changes in the cartilage antioxidant network in order to discover novel mediators of cartilage oxidative stress and osteoarthritis (OA) pathophysiology. METHODS We evaluated histopathologic changes of knee OA in 10-, 20-, and 30-month-old male F344BN rats and analyzed cartilage oxidation according to the ratio of reduced to oxidized glutathione. Antioxidant gene expression and protein abundance were analyzed by quantitative reverse transcription-polymerase chain reaction and selected reaction-monitoring mass spectrometry, respectively. Superoxide dismutase 2 (SOD2) activity and acetylation were analyzed by colorimetric enzyme assays and Western blotting, respectively. We examined human OA cartilage to evaluate the clinical relevance of SOD2 acetylation, and we tested age-related changes in the mitochondrial deacetylase sirtuin 3 (SIRT-3) in rats and mice. RESULTS Cartilage oxidation and OA severity in F344BN rats increased with age and were associated with an increase in SOD2 expression and protein abundance. However, SOD2-specific activity decreased with age due to elevated posttranslational lysine acetylation. Consistent with these findings, SIRT-3 levels decreased substantially with age, and treatment with SIRT-3 increased SOD2 activity in an age-dependent manner. SOD2 was also acetylated in human OA cartilage, and activity was increased with SIRT-3 treatment. Moreover, in C57BL/6J mice, cartilage SIRT-3 expression decreased with age, and whole-body deletion of SIRT-3 accelerated the development of knee OA. CONCLUSION Our results show that SIRT-3 mediates age-related changes in cartilage redox regulation and protects against early-stage OA. These findings suggest that mitochondrial acetylation promotes OA and that restoration of SIRT-3 in aging cartilage may improve cartilage resistance to oxidative stress by rescuing acetylation-dependent inhibition of SOD2 activity.
Collapse
Affiliation(s)
- Yao Fu
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Michael Kinter
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | | | - Kenneth M Humphries
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Rachel S Lane
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Jeremy R White
- University of Oklahoma College of Medicine and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Michael Hakim
- Oklahoma Medical Research Foundation, University of Oklahoma College of Medicine, and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Yong Pan
- Gladstone Institutes and University of California, San Francisco
| | - Eric Verdin
- Gladstone Institutes and University of California, San Francisco
| | - Timothy M Griffin
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
24
|
Barboza E, Hudson J, Chang WP, Kovats S, Towner RA, Silasi-Mansat R, Lupu F, Kent C, Griffin TM. Profibrotic Infrapatellar Fat Pad Remodeling Without M1 Macrophage Polarization Precedes Knee Osteoarthritis in Mice With Diet-Induced Obesity. Arthritis Rheumatol 2017; 69:1221-1232. [PMID: 28141918 DOI: 10.1002/art.40056] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To test the hypothesis that high-fat (HF) diet-induced obesity increases proinflammatory cytokine expression, macrophage infiltration, and M1 polarization in the infrapatellar fat pad (IFP) prior to knee cartilage degeneration. METHODS We characterized the effect of HF feeding on knee OA pathology, body adiposity, and glucose intolerance in male C57BL/6J mice and identified a diet duration that induces metabolic dysfunction prior to cartilage degeneration. Magnetic resonance imaging and histomorphology were used to quantify changes in the epididymal, subcutaneous, and infrapatellar fat pads and in adipocyte sizes. Finally, we used targeted gene expression and protein arrays, immunohistochemistry, and flow cytometry to quantify differences in fat pad markers of inflammation and immune cell populations. RESULTS Twenty weeks of feeding with an HF diet induced marked obesity, glucose intolerance, and early osteoarthritis (OA), including osteophytes and cartilage tidemark duplication. This duration of HF feeding increased the IFP volume. However, it did not increase IFP inflammation, macrophage infiltration, or M1 macrophage polarization as observed in epididymal fat. Furthermore, leptin protein levels were reduced. This protection from obesity-induced inflammation corresponded to increased IFP fibrosis and the absence of adipocyte hypertrophy. CONCLUSION The IFP does not recapitulate classic abdominal adipose tissue inflammation during the early stages of knee OA in an HF diet-induced model of obesity. Consequently, these findings do not support the hypothesis that IFP inflammation is an initiating factor of obesity-induced knee OA. Furthermore, the profibrotic and antihypertrophic responses of IFP adipocytes to HF feeding suggest that intraarticular adipocytes are subject to distinct spatiotemporal structural and metabolic regulation among fat pads.
Collapse
Affiliation(s)
| | | | | | - Susan Kovats
- Oklahoma Medical Research Foundation, Oklahoma City
| | | | | | - Florea Lupu
- Oklahoma Medical Research Foundation, Oklahoma City
| | - Collin Kent
- Oklahoma Medical Research Foundation, Oklahoma City
| | - Timothy M Griffin
- Oklahoma Medical Research Foundation, Reynolds Oklahoma Center on Aging, and University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
25
|
Subramanyam K, Poornima S, Juturu KK, Anand D, Mohanthy S, khan IA, Hasan Q. Missense FokI variant in the vitamin D receptor gene in primary knee osteoarthritis patients in south Indian population. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Bay-Jensen AC, Reker D, Kjelgaard-Petersen CF, Mobasheri A, Karsdal MA, Ladel C, Henrotin Y, Thudium CS. Osteoarthritis year in review 2015: soluble biomarkers and the BIPED criteria. Osteoarthritis Cartilage 2016; 24:9-20. [PMID: 26707988 DOI: 10.1016/j.joca.2015.10.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review and summarize biomarker data published from April 2014 to May 2015 to provide insight to the ongoing work in the field of osteoarthritis (OA). Furthermore, to summarize the BIPED criteria and set it in context of the medical needs of 2015. METHODS PubMed was used as searching machine: Time period 2014/04/01-2015/05/01, MeSH term [Biomarker] AND [Osteoarthritis], Language; English, Full text available. Reviews were excluded. Only papers describing protein based biomarkers measured in human body fluids from OA patients were included. RESULTS Biomarkers of joint tissue turnover, cytokines, chemokines and peptide arrays were measured in different cohorts and studies. Amongst those were previously tested biomarkers such as osteocalcin, Carboxy-terminal cross-linked fragment of type II collagen (CTX-II) and cartilage oligomeric matrix protein (COMP). A majority of the biomarker were classified as I, B or B biomarkers according to the BIPED criteria. Work is continuing on testing biomarkers in OA. There is still a huge, unmet medical need to identify, test, validate and qualify novel and well-known biomarkers. A pre-requisite for this is better characterization and classification of biomarkers to their needs, which may not be reached before higher understanding of OA phenotypes has been gained. In addition, we provide some references to some recent guidelines from Food and Drug Administration (FDA) and European Medicines Agency (EMA) on qualification and usage of biomarkers for drug development and personalized medicine, which may provide value to the field.
Collapse
Affiliation(s)
- A C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - D Reker
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | | | - A Mobasheri
- Faculty of Health and Medical Sciences, University of Surrey, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, Saudi Arabia
| | - M A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | - C Ladel
- OA Research & Early Clinical Development, Merck KGaA, Darmstadt, Germany
| | - Y Henrotin
- Bone and Cartilage Research Unit, Arthropole Liège, University of Liège, Institute of Pathology, Liège, Belgium
| | - C S Thudium
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
27
|
Malfait AM. Osteoarthritis year in review 2015: biology. Osteoarthritis Cartilage 2016; 24:21-6. [PMID: 26707989 PMCID: PMC4693144 DOI: 10.1016/j.joca.2015.09.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023]
Abstract
This review highlights a selection of recently published literature in the area of osteoarthritis biology. Major themes transpiring from a PubMed search covering the year between the 2014 and the 2015 Osteoarthritis Research Society International (OARSI) World Congress are explored. Inflammation emerged as a significant theme, revealing complex pathways that drive dramatic changes in cartilage homeostasis and in the synovium. Highlights include a homeostatic role for CXC chemokines in cartilage, identification of the zinc-ZIP8-MTF1 axis as an essential regulator of cartilage catabolism, and the discovery that a small aggrecan fragment can have catabolic and pro-inflammatory effects through Toll-like receptor 2. Synovitis can promote joint damage, partly through alarmins such as S100A8. Synovitis and synovial expression of the pro-algesic neurotrophin, Nerve Growth Factor, are associated with pain. Increasingly, researchers are considering specific pathogenic pathways that may operate in distinct subsets of osteoarthritis associated with distinct risk factors, including obesity, age, and joint injury. In obesity, the contribution of metabolic factors and diet is under intense investigation. The role of autophagy and oxidative stress in age-related osteoarthritis has been further explored. This approach may open avenues for targeted treatment of distinct phenotypes of osteoarthritis. Finally, a small selection of novel analgesic targets in the periphery is briefly discussed, including calcitonin gene-related peptide and the neuronal sodium voltage-gated channels, Nav1.7 and Nav1.8.
Collapse
Affiliation(s)
- A M Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA; Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
28
|
Sunflower Oil but Not Fish Oil Resembles Positive Effects of Virgin Olive Oil on Aged Pancreas after Life-Long Coenzyme Q Addition. Int J Mol Sci 2015; 16:23425-45. [PMID: 26426013 PMCID: PMC4632707 DOI: 10.3390/ijms161023425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022] Open
Abstract
An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. In this context, it has been reported that different pancreatic compartments from rats were affected according to the fat composition consumed. Since there is a close relationship between mitochondria, oxidative stress and aging, an experimental approach has been developed to gain more insight into this process in the pancreas. A low dosage of coenzyme Q was administered life-long in rats in order to try to prevent pancreatic aging-related alterations associated to some dietary fat sources. According to that, three groups of rats were fed normocaloric diets containing Coenzyme Q (CoQ) for two years, where virgin olive, sunflower, or fish oil was included as unique fat source. Pancreatic samples for microscopy and blood samples were collected at the moment of euthanasia. The main finding is that CoQ supplementation gives different results according to fat used in diet. When sunflower oil was the main fat in the diet, CoQ supplementation seems to improve endocrine pancreas structure and in particular β-cell mass resembling positive effects of virgin olive oil. Conversely, CoQ intake does not seem to improve the structural alterations of exocrine compartment previously observed in fish oil fed rats. Therefore CoQ may improve pancreatic alterations associated to the chronic intake of some dietary fat sources.
Collapse
|
29
|
Marion-Letellier R, Savoye G, Ghosh S. Polyunsaturated fatty acids and inflammation. IUBMB Life 2015; 67:659-67. [DOI: 10.1002/iub.1428] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/15/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Rachel Marion-Letellier
- INSERM Unit UMR1073, Rouen University and Rouen University Hospital; 22, Boulevard Gambetta Rouen Cedex 76183 France
| | - Guillaume Savoye
- INSERM Unit UMR1073, Rouen University and Rouen University Hospital; 22, Boulevard Gambetta Rouen Cedex 76183 France
- Department of Gastroenterology; Rouen University Hospital; 1 Rue De Germont Rouen Cedex 76031 France
| | - Subrata Ghosh
- Division of Gastroenterology; University of Calgary; AB Canada
| |
Collapse
|
30
|
Omega-3 polyunsaturated fatty acids as an angelus custos to rescue patients from NSAID-induced gastroduodenal damage. J Gastroenterol 2015; 50:614-25. [PMID: 25578017 DOI: 10.1007/s00535-014-1034-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/17/2014] [Indexed: 02/04/2023]
Abstract
Nonsteroidal anti-inflammat ory drugs (NSAIDs) are one of the drug types frequently prescribed for their analgesic, anti-inflammatory, and antithrombotic actions, but carry a risk of major gastroduodenal damage from mild erosive changes to serious ulceration leading to fatal outcomes. From the long history of willow tree bark and its extracts being applied for the relief of pain and fever, the synthesis of acetylsalicylic acid, the development of selective cyclooxygenase 2 inhibitors (coxibs), and the identification of a G-protein-coupled receptor for prostaglandin, the popular combination regimen of an NSAID and a proton pump inhibitor was invented, but development was continued for further improvement. With regard to major NSAID adverse effects, gastrointestinal (GI) and cardiovascular (CV) risks still remained as problems to be solved. In this review, it is shown that n-3 polyunsaturated fatty acid (PUFA) based NSAIDs can be an angelus custos, supported with facts that an intake of essential n-3 PUFAs orchestrates concerted protective actions against two notorious side effects of NSAIDs, the aforementioned GI risk and CV risk of NSAIDs. Since pills containing n-3 PUFAs, omega-3-acid ethyl ester capsules (Lovaza, Omarcor), have already been safely prescribed to prevent atherosclerosis through lessening lipid burdening, the introduction of a drug delivery system such as a gastroretentive form of n-3 PUFA based NSAIDs will highlight newer hope for GI safety under the guarantee of reduced CV risk. Because n-3 PUFAs have been proven to attenuate cytotoxicity, inhibit lipid-raft-associated harmful signaling, and relieve oxidative stress relevant to NSAIDs, n-3 PUFA based NSAIDs will be next-generation GI-safe NSAIDs.
Collapse
|
31
|
Borbély É, Botz B, Bölcskei K, Kenyér T, Kereskai L, Kiss T, Szolcsányi J, Pintér E, Csepregi JZ, Mócsai A, Helyes Z. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis. Brain Behav Immun 2015; 45:50-9. [PMID: 25524130 PMCID: PMC4349500 DOI: 10.1016/j.bbi.2014.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/18/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro-immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. METHODS Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. RESULTS In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. CONCLUSIONS Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody-induced chronic arthritis, they play important anti-inflammatory roles at least partially through somatostatin release.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary
| | - Tibor Kenyér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, University of Pécs, Medical School, Pécs, Hungary
| | - Tamás Kiss
- János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary
| | - Janka Zsófia Csepregi
- Department of Physiology, and MTA-SE "Lendület" Inflammation Physiology Research Group, Semmelweis University, School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, and MTA-SE "Lendület" Inflammation Physiology Research Group, Semmelweis University, School of Medicine, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary; MTA-PTE NAP B Pain Research Group, Hungary.
| |
Collapse
|