1
|
Holsgrove TP, Ebisch I, Lazaro‐Pacheco D. Do we know more about the mechanobiology of the intervertebral disc in space than on Earth? JOR Spine 2025; 8:e70024. [PMID: 39968355 PMCID: PMC11834163 DOI: 10.1002/jsp2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 12/01/2024] [Indexed: 02/20/2025] Open
Abstract
This work provides a perspective on the loading protocols used in whole-organ interverterbal disc culture studies using bioreactors. We put this in the context of in vivo spinal loading, and we put forward the case that the majority of previous bioreactor studies have more in common with spinal loading in space than on Earth. Finally, we provide an outlook for the future of bioreactor research, to provide data more relevant to spinal loading on Earth, and maximize the translational potential of findings to the clinical setting.
Collapse
Affiliation(s)
| | - Isabelle Ebisch
- Department of Engineering, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| | - Daniela Lazaro‐Pacheco
- Department of Engineering, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| |
Collapse
|
2
|
Rudnik‐Jansen I, van Kruining Kodele S, Creemers L, Joosten B. Biomolecular therapies for chronic discogenic low back pain: A narrative review. JOR Spine 2024; 7:e1345. [PMID: 39114580 PMCID: PMC11303450 DOI: 10.1002/jsp2.1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 05/01/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic low back pain caused by intervertebral disc (IVD) degeneration, also termed chronic discogenic low back pain (CD-LBP), is one of the most prevalent musculoskeletal diseases. Degenerative processes in the IVD, such as inflammation and extra-cellular matrix breakdown, result in neurotrophin release. Local elevated neurotrophin levels will stimulate sprouting and innervation of sensory neurons. Furthermore, sprouted sensory nerves that are directly connected to adjacent dorsal root ganglia have shown to increase microglia activation, contributing to the maintenance and chronification of pain. Current pain treatments have shown to be insufficient or inadequate for long-term usage. Furthermore, most therapeutic approaches aimed to target the underlying pathogenesis of disc degeneration focus on repair and regeneration and neglect chronic pain. How biomolecular therapies influence the degenerative IVD environment, pain signaling cascades, and innervation and excitability of the sensory neurons often remains unclear. This review addresses the relatively underexplored area of chronic pain treatment for CD-LBP and summarizes effects of therapies aimed for CD-LBP with special emphasis on chronic pain. Approaches based on blocking pro-inflammatory mediators or neurotrophin activity have been shown to hamper neuronal ingrowth into the disc. Furthermore, the tissue regenerative and neuro inhibitory properties of extracellular matrix components or transplanted mesenchymal stem cells are potentially interesting biomolecular approaches to not only block IVD degeneration but also impede pain sensitization. At present, most biomolecular therapies are based on acute IVD degeneration models and thus do not reflect the real clinical chronic pain situation in CD-LBP patients. Future studies should aim at investigating the effects of therapeutic interventions applied in chronic degenerated discs containing established sensory nerve ingrowth. The in-depth understanding of the ramifications from biomolecular therapies on pain (chronification) pathways and pain relief in CD-LBP could help narrow the gap between the pre-clinical bench and clinical bedside for novel CD-LBP therapeutics and optimize pain treatment.
Collapse
Affiliation(s)
- Imke Rudnik‐Jansen
- Department of Anesthesiology and Pain ManagementMaastricht University Medical Center (MUMC+)Maastrichtthe Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| | - Sanda van Kruining Kodele
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| | - Laura Creemers
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Bert Joosten
- Department of Anesthesiology and Pain ManagementMaastricht University Medical Center (MUMC+)Maastrichtthe Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| |
Collapse
|
3
|
Peng B, Li Q, Chen J, Wang Z. Research on the role and mechanism of IL-17 in intervertebral disc degeneration. Int Immunopharmacol 2024; 132:111992. [PMID: 38569428 DOI: 10.1016/j.intimp.2024.111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the primary causes of low back pain (LBP), which seriously affects patients' quality of life. In recent years, interleukin (IL)-17 has been shown to be highly expressed in the intervertebral disc (IVD) tissues and serum of patients with IDD, and IL-17A has been shown to promote IDD through multiple pathways. We first searched databases such as PubMed, Cochrane, Embase, and Web of Science using the search terms "IL-17 or interleukin 17″ and "intervertebral discs". The search period ranged from the inception of the databases to December 2023. A total of 24 articles were selected after full-text screening. The main conclusion of the clinical studies was that IL-17A levels are significantly increased in the IVD tissues and serum of IDD patients. The results from the in vitro studies indicated that IL-17A can activate signaling pathways such as the NF-κB and MAPK pathways; promote inflammatory responses, extracellular matrix degradation, and angiogenesis; and inhibit autophagy in nucleus pulposus cells. The main finding of the in vivo experiments was that puncture of animal IVDs resulted in elevated levels of IL-17A within the IVD, thereby inducing IDD. Clinical studies, in vitro experiments, and in vivo experiments confirmed that IL-17A is closely related to IDD. Therefore, drugs that target IL-17A may be novel treatments for IDD, providing a new theoretical basis for IDD therapy.
Collapse
Affiliation(s)
- Bing Peng
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Li
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Jiangping Chen
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Zhexiang Wang
- Hunan Provincial Hospital of Integrative Traditional Chinese and Western Medicine, Changsha City, Hunan Province, China.
| |
Collapse
|
4
|
McKinley JP, O'Connell GD. Review of state-of-the-art micro and macro-bioreactors for the intervertebral disc. J Biomech 2024; 165:111964. [PMID: 38412621 DOI: 10.1016/j.jbiomech.2024.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Lower back pain continues to be a global epidemic, limiting quality of life and ability to work, due in large part to symptomatic disc degeneration. Development of more effective and less invasive biological strategies are needed to treat disc degeneration. In vitro models such as macro- or micro-bioreactors or mechanically active organ-chips hold great promise in reducing the need for animal studies that may have limited clinical translatability, due to harsher and more complex mechanical loading environments in human discs than in most animal models. This review highlights the complex loading conditions of the disc in situ, evaluates state-of-the-art designs for applying such complex loads across multiple length scales, from macro-bioreactors that load whole discs to organ-chips that aim to replicate cellular or engineered tissue loading. Emphasis was placed on the rapidly evolving more customizable organ-chips, given their greater potential for studying the progression and treatment of symptomatic disc degeneration. Lastly, this review identifies new trends and challenges for using organ-chips to assess therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan P McKinley
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| | - Grace D O'Connell
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| |
Collapse
|
5
|
Xue P, Wang Y, Lv L, Wang D, Wang Y. Roles of Chemokines in Intervertebral Disk Degeneration. Curr Pain Headache Rep 2024; 28:95-108. [PMID: 37976014 DOI: 10.1007/s11916-023-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration is the primary etiology of low back pain and radicular pain. This review examines the roles of crucial chemokines in different stages of degenerative disc disease, along with interventions targeting chemokine function to mitigate disc degeneration. RECENT FINDINGS The release of chemokines from degenerated discs facilitates the infiltration and activation of immune cells, thereby intensifying the inflammatory cascade response. The migration of immune cells into the venous lumen is concomitant with the emergence of microvascular tissue and nerve fibers. Furthermore, the presence of neurogenic factors secreted by disc cells and immune cells stimulates the activation of pain-related cation channels in the dorsal root ganglion, potentially exacerbating discogenic and neurogenic pain and intensifying the degenerative cascade response mediated by chemokines. Gaining a deeper comprehension of the functions of chemokines and immune cells in these processes involving catabolism, angiogenesis, and injury detection could offer novel therapeutic avenues for managing symptomatic disc disease.
Collapse
Affiliation(s)
- Pengfei Xue
- Medical School of Southeast University, Nanjing, Jiangsu, 210009, China
- Central Laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, 211300, China
| | - Yi Wang
- Department of Orthopaedics, Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, Jiangxi, 332000, China
| | - Long Lv
- Central Laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, 211300, China
| | - Dongming Wang
- Central Laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, 211300, China.
| | - Yuntao Wang
- Medical School of Southeast University, Nanjing, Jiangsu, 210009, China.
- Department of Spine Center, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
6
|
Xie W, Li F, Han Y, Chi X, Qin Y, Ye F, Li Z, Xiao J. Calcitonin gene-related peptide attenuated discogenic low back pain in rats possibly via inhibiting microglia activation. Heliyon 2024; 10:e25906. [PMID: 38371980 PMCID: PMC10873749 DOI: 10.1016/j.heliyon.2024.e25906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Discogenic low back pain (DLBP) is a multifactorial disease and associated with intervertebral disc degeneration. Calcitonin gene-related protein (CGRP) plays a critical role in pain processing, while the role in DLBP remains unclear. This study aims to investigate the anti-nociceptive role and related mechanisms of CGRP in DLBP. Here we established the DLBP rat and validated the model using histology and radiography. Minocycline, a microglial inhibitor, and CGRP were intrathecally injected and the behavioral test was performed to determine hyperalgesia. Further, BV2 microglial cells and microglial activation agent lipopolysaccharide (LPS) were employed for the in vitro experiment. We observed obvious lumbar intervertebral disc degeneration and hyperalgesia at 12 weeks postoperation in DLBP group, with significantly activated microglia in the spinal cord. CGRP treatment significantly inhibited the upregulation of proinflammatory cytokines and NLRP3/caspase-1 expression induced by LPS in BV2 cells, whereas treatment with CGRP alone had little effect on BV2 cells. The intrathecal injection of CGRP into DLBP rats relieved mechanical and thermal hyperalgesia, reverted the microglial activation and decreased the expression of NLRP3/caspase-1, similar to the effects produced by minocycline. Our results provide evidence that microglial activation in the spinal cord play a key role in hyperalgesia in DLBP rats. CGRP alleviates DLBP induced hyperalgesia and inhibits microglial activation in the spinal cord. Regulation of CGRP and microglial activation may provide a new strategy for ameliorating DLBP.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Fan Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yi Han
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xiaoying Chi
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yi Qin
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Fan Ye
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhanchun Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
7
|
Creighton D, Fausone D, Swanson B, Young W, Nolff S, Ruble A, Hassan N, Soley E. Myofascial and discogenic origins of lumbar pain: A critical review. J Man Manip Ther 2023; 31:435-448. [PMID: 37503571 PMCID: PMC10642329 DOI: 10.1080/10669817.2023.2237739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The purpose of this three-part narrative review is to examine the anatomy of, and the research which supports, either the lumbar myofascia or intervertebral disc (IVD) as principal sources of our patient's low back pain. A comprehensive understanding of anatomical lumbar pain generators in combination with the current treatment-based classification system will further improve and enhance clinical decision-making skills. Section I reviews the anatomy of the spinal myofascia, myofascial sources of lumbar pain, and imaging of myofascial tissues. Part II reviews the anatomy of the IVD, examines the IVD as a potential lumbar pain generator, and includes detailed discussion on Nerve Growth Factor, Inflammatory Cytokines, Vertebral End Plates and Modic change, Annular tears, and Discogenic instability. Part III looks at the history of myofascial pain, lab-based research and myofascial pain, and various levels of discogenic pain provocation research including animal, laboratory and human subjects. Our review concludes with author recommendations on developing a comprehensive understanding of altered stress concentrations affecting the posterior annulus fibrosis, neo-innervation of the IVD, inflammatory cytokines, discogenic instability, and how this knowledge can complement use of the Treatment-Based Classification System.
Collapse
|
8
|
Karchevskaya AE, Poluektov YM, Korolishin VA. Understanding Intervertebral Disc Degeneration: Background Factors and the Role of Initial Injury. Biomedicines 2023; 11:2714. [PMID: 37893088 PMCID: PMC10604877 DOI: 10.3390/biomedicines11102714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The etiology of intervertebral disc degeneration (IVDD) is complex and multifactorial, and it is still not fully understood. A better understanding of the pathogenesis of IVDD will help to improve treatment regimens and avoid unnecessary surgical aggression. In order to summarize recent research data on IVDD pathogenesis, including genetic and immune factors, a literature review was conducted. The pathogenesis of IVDD is a complex multifactorial process without an evident starting point. There are extensive data on the role of the different genetic factors affecting the course of the disease, such as mutations in structural proteins and enzymes involved in the immune response. However, these factors alone are not sufficient for the development of the disease. Nevertheless, like mechanical damage, they can also be considered risk factors for IVDD. In conclusion, currently, there is no consensus on a single concept for the pathogenesis of IVDD. We consider the intervertebral disc autoimmune damage hypothesis to be the most promising hypothesis for clinicians, because it can be extrapolated to all populations and does not counteract other factors. The genetic factors currently known do not allow for building effective predictive models; however, they can be used to stratify the risks of individual populations.
Collapse
Affiliation(s)
- Anna E. Karchevskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova Str., 117485 Moscow, Russia;
- Medical Faculty, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119334 Moscow, Russia
| | - Yuri M. Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119334 Moscow, Russia
- Department of Spinal Surgery, Burdenko Neurosurgical Institute, 4th-Tverskaya-Yamskaya Str. 16, 125047 Moscow, Russia
| | - Vasiliy A. Korolishin
- Russian Medical Academy of Postgraduate Education Studies, 2/1 Barrikadnaya Str., Building 1, 125993 Moscow, Russia;
| |
Collapse
|
9
|
Chen X, Wang Z, Deng R, Yan H, Liu X, Kang R. Intervertebral disc degeneration and inflammatory microenvironment: expression, pathology, and therapeutic strategies. Inflamm Res 2023; 72:1811-1828. [PMID: 37665342 DOI: 10.1007/s00011-023-01784-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP), posing a significant socioeconomic burden. Recent studies highlight the crucial role of inflammatory microenvironment in IDD progression. METHOD A keyword-based search was performed using the PubMed database for published articles. RESULTS AND CONCLUSIONS Dysregulated expression of inflammatory cytokines disrupts intervertebral disc (IVD) homeostasis, causing atrophy, fibrosis, and phenotypic changes in nucleus pulposus cells. Modulating the inflammatory microenvironment and restoring cytokine balance hold promise for IVD repair and regeneration. This comprehensive review systematically examines the expression regulation, pathological effects, therapeutic strategies, and future challenges associated with the inflammatory microenvironment and relevant cytokines in IDD. Key inflammatory cytokines, including interleukins (IL), tumor necrosis factor-alpha (TNF-α), and chemokines, exhibit significant pathological effects in IDD. Furthermore, major therapeutic modalities such as chemical antagonists, biologics, plant extracts, and gene transcription therapies are introduced to control and ameliorate the inflammatory microenvironment. These approaches provide valuable insights for identifying potential targets in future anti-inflammatory treatments for IDD.
Collapse
Affiliation(s)
- Xin Chen
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Zihan Wang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Rongrong Deng
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Hongjie Yan
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Xin Liu
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| | - Ran Kang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Gewiess J, Eglauf J, Soubrier A, Grad S, Alini M, Peroglio M, Ma J. The influence of intervertebral disc overloading on nociceptor calcium flickering. JOR Spine 2023; 6:e1267. [PMID: 37780827 PMCID: PMC10540821 DOI: 10.1002/jsp2.1267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/07/2023] [Accepted: 05/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Mechanical overloading can trigger a degenerative-like cascade in an organ culture of intervertebral disc (IVD). Whether the overloaded IVD can influence the activation of nociceptors (i.e., the damage sensing neurons) remains unknown. The study aims to investigate the influence of overloaded IVD conditioned medium (CM) on the activation of nociceptors. Methods In the static loading regime, force-controlled loading of 0.2 MPa for 20 h/day representing "long-term sitting and standing" was compared with a displacement-controlled loading maintaining original IVD height. In the dynamic loading regime, high-frequency-intensity loading representing degenerative "wear and tear" was compared with a lower-frequency-intensity loading. CM of differently loaded IVDs were collected to stimulate the primary bovine dorsal root ganglion (DRG) cultures. Calcium imaging (Fluo-4) and calcitonin gene-related peptide (CGRP) immunofluorescent labeling were jointly used to record the calcium flickering in CGRP(+) nociceptors. Results Force-controlled loading led to a higher IVD cell death compared to displacement-controlled loading. Both static and dynamic overloading (force-controlled and high-frequency-intensity loadings) elevated the frequency of calcium flickering in the subsurface space of CGRP(+) nociceptors compared to their mild loading counterparts. Conclusion In the organ culture system, IVD overloading mediated an altered IVD-nociceptor communication suggesting a biological mechanism associated with discogenic pain.
Collapse
Affiliation(s)
- Jan Gewiess
- AO Research Institute, AO FoundationDavosSwitzerland
- Department of Orthopaedic Surgery and TraumatologyInselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Janick Eglauf
- AO Research Institute, AO FoundationDavosSwitzerland
| | | | - Sibylle Grad
- AO Research Institute, AO FoundationDavosSwitzerland
| | - Mauro Alini
- AO Research Institute, AO FoundationDavosSwitzerland
| | | | - Junxuan Ma
- AO Research Institute, AO FoundationDavosSwitzerland
| |
Collapse
|
11
|
Marfia G, Guarnaccia L, Navone SE, Ampollini A, Balsamo M, Benelli F, Gaudino C, Garzia E, Fratocchi C, Di Murro C, Ligarotti GK, Campanella C, Landolfi A, Perelli P, Locatelli M, Ciniglio Appiani G. Microgravity and the intervertebral disc: The impact of space conditions on the biomechanics of the spine. Front Physiol 2023; 14:1124991. [PMID: 36998982 PMCID: PMC10043412 DOI: 10.3389/fphys.2023.1124991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
The environmental conditions to which astronauts and other military pilots are subjected represent a unique example for understanding and studying the biomechanical events that regulate the functioning of the human body. In particular, microgravity has shown a significant impact on various biological systems, such as the cardiovascular system, immune system, endocrine system, and, last but not least, musculoskeletal system. Among the potential risks of flying, low back pain (LBP) has a high incidence among astronauts and military pilots, and it is often associated with intervertebral disc degeneration events. The mechanisms of degeneration determine the loss of structural and functional integrity and are accompanied by the aberrant production of pro-inflammatory mediators that exacerbate the degenerative environment, contributing to the onset of pain. In the present work, the mechanisms of disc degeneration, the conditions of microgravity, and their association have been discussed in order to identify possible molecular mechanisms underlying disc degeneration and the related clinical manifestations in order to develop a model of prevention to maintain health and performance of air- and space-travelers. The focus on microgravity also allows the development of new proofs of concept with potential therapeutic implications.
Collapse
Affiliation(s)
- Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale “A. Mosso”, Aeronautica Militare, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella Ampollini
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Melissa Balsamo
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Benelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Gaudino
- Department of Neuroradiology, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Emanuele Garzia
- Istituto di Medicina Aerospaziale “A. Mosso”, Aeronautica Militare, Milan, Italy
| | - Claudia Fratocchi
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale “A. Mosso”, Aeronautica Militare, Milan, Italy
| | - Claudia Di Murro
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale “A. Mosso”, Aeronautica Militare, Milan, Italy
| | | | - Carmelo Campanella
- Istituto di Medicina Aerospaziale “Aldo Di Loreto”, Aeronautica Militare, Rome, Italy
| | | | | | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
12
|
Wang Q, Zheng J, Pettersson S, Reynolds R, Tan EK. The link between neuroinflammation and the neurovascular unit in synucleinopathies. SCIENCE ADVANCES 2023; 9:eabq1141. [PMID: 36791205 PMCID: PMC9931221 DOI: 10.1126/sciadv.abq1141] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/19/2023] [Indexed: 05/28/2023]
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glial cells, and neurons. As a fundamental functional module in the central nervous system, the NVU maintains homeostasis in the microenvironment and the integrity of the blood-brain barrier. Disruption of the NVU and interactions among its components are involved in the pathophysiology of synucleinopathies, which are characterized by the pathological accumulation of α-synuclein. Neuroinflammation contributes to the pathophysiology of synucleinopathies, including Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. This review aims to summarize the neuroinflammatory response of glial cells and vascular cells in the NVU. We also review neuroinflammation in the context of the cross-talk between glial cells and vascular cells, between glial cells and pericytes, and between microglia and astroglia. Last, we discuss how α-synuclein affects neuroinflammation and how neuroinflammation influences the aggregation and spread of α-synuclein and analyze different properties of α-synuclein in synucleinopathies.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 308433, Singapore
- Karolinska Institutet, Department of Odontology, 171 77 Solna, Sweden
- Faculty of Medical Sciences, Sunway University, Subang Jaya, 47500 Selangor, Malaysia
- Department of Microbiology and Immunology, National University Singapore, Singapore 117545, Singapore
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
13
|
Shnayder NA, Ashhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Vaiman EE, Petrova MM, Nasyrova RF. Cytokine Imbalance as a Biomarker of Intervertebral Disk Degeneration. Int J Mol Sci 2023; 24:ijms24032360. [PMID: 36768679 PMCID: PMC9917299 DOI: 10.3390/ijms24032360] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The intervertebral disk degeneration (IDD) and its associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. IDD progresses with age, leading to spondylosis, spondylarthrosis, intervertebral disk herniation, and spinal stenosis. The purpose of this review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines in IDD and to appreciate the prognostic value of cytokine imbalance as its biomarker. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to the maintenance or alteration of cytokine balance may be a new key to unlocking the mystery of IDD development and new therapeutic strategies for the treatment of IDD in the setting of acute and chronic inflammation. The presented data support the hypothesis that cytokine imbalance is one of the most important biomarkers of IDD.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Zaitun A. Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Elena E. Vaiman
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| |
Collapse
|
14
|
Li Z, Yang H, Hai Y, Cheng Y. Regulatory Effect of Inflammatory Mediators in Intervertebral Disc Degeneration. Mediators Inflamm 2023; 2023:6210885. [PMID: 37101594 PMCID: PMC10125773 DOI: 10.1155/2023/6210885] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 03/18/2023] [Indexed: 04/28/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a major contributor to back, neck, and radicular pain. It is related to changes in tissue structure and function, including the breakdown of the extracellular matrix (ECM), aging, apoptosis of the nucleus pulposus, and biomechanical tissue impairment. Recently, an increasing number of studies have demonstrated that inflammatory mediators play a crucial role in IDD, and they are being explored as potential treatment targets for IDD and associated disorders. For example, interleukins (IL), tumour necrosis factor-α (TNF-α), chemokines, and inflammasomes have all been linked to the pathophysiology of IDD. These inflammatory mediators are found in high concentrations in intervertebral disc (IVD) tissues and cells and are associated with the severity of LBP and IDD. It is feasible to reduce the production of these proinflammatory mediators and develop a novel therapy for IDD, which will be a hotspot of future research. In this review, the effects of inflammatory mediators in IDD were described.
Collapse
Affiliation(s)
- Zhangfu Li
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Honghao Yang
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunzhong Cheng
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
15
|
Wang P, Zhang J. Persistent expression of NLRP3 in spinal microglia promotes development of lumbar disc degeneration. Front Immunol 2022; 13:1064303. [PMID: 36505450 PMCID: PMC9727189 DOI: 10.3389/fimmu.2022.1064303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Activated microglia play a critical role in the development of lumbar disc degeneration (LDD), which is a severe disease that causes neuropathic pain in affected people. Interleukin 1β (IL-1β) is a proinflammatory cytokine produced and secreted by activated microglia to induce the inflammation and the subsequent degradation of the disease discs. Recent findings suggest that activation of IL-1β in cells usually requires the involvement of NACHT, LRR and PYD domains-containing protein 3 (NLRP3)-induced formation of inflammasome. However, the importance of NLRP3 in spinal microglia in LDD is not known and thus addressed in the current study. Methods NLRP3 expression was examined in the spinal discs. Correlation of NLRP3 levels in microglia with the pain score of the LDD patients or Thompson classification of the degeneration level of the patients was determined. The effects of persistent expression or depletion of NLRP3 on phagocytosis potential and production of proinflammatory cytokines in microglia were tested in vitro, while their effects on the severity of LDD and LDD-associated neuropathic pain were assessed in a mouse model for LDD. Results NLRP3 was exclusively expressed in microglia in the spinal discs. NLRP3 levels in microglia strongly correlated with the pain score of the LDD patients, and modestly correlated with the Thompson classification of the degeneration level of the patients. Persistent NLRP3 expression in microglia increased both their phagocytosis potential and production of proinflammatory cytokines, while NLRP3-depleted microglia decreased both their phagocytosis potential and production of proinflammatory cytokines. In a mouse model for LDD, persistent NLRP3 activation in microglia significantly increased the severity of LDD and LDD-associated neuropathic pain, while specific depletion of NLRP3 in microglia significantly attenuated the severity of LDD and reduced the LDD-associated neuropathic pain. Conclusions Persistent activation of NLRP3 in spinal microglia promotes development of LDD, while suppression of NLRP3 in microglia could be a promising strategy for LDD therapy.
Collapse
|
16
|
Engineered Human Intervertebral Disc Model Inducing Degenerative Microglial Proinflammation. Int J Mol Sci 2022; 23:ijms232012216. [PMID: 36293070 PMCID: PMC9603448 DOI: 10.3390/ijms232012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a major contributor to low back pain (LBP). IVD degeneration is characterized by abnormal production of inflammatory cytokines secreted by IVD cells. Although the underlying molecular mechanisms of LBP have not been elucidated, increasing evidence suggests that LBP is associated particularly with microglia in IVD tissues and the peridiscal space, aggravating the cascade of degenerative events. In this study, we implemented our microfluidic chemotaxis platform to investigate microglial inflammation in response to our reconstituted degenerative IVD models. The IVD models were constructed by stimulating human nucleus pulposus (NP) cells with interleukin-1β and producing interleukin-6 (129.93 folds), interleukin-8 (18.31 folds), C-C motif chemokine ligand-2 (CCL-2) (6.12 folds), and CCL-5 (5.68 folds). We measured microglial chemotaxis (p < 0.05) toward the conditioned media of the IVD models. In addition, we observed considerable activation of neurodegenerative and deactivation of protective microglia via upregulated expression of CD11b (p < 0.001) and down-regulation of CD206 protein (p < 0.001) by soluble factors from IVD models. This, in turn, enhances the inflammatory milieu in IVD tissues, causing matrix degradation and cellular damage. Our findings indicate that degenerative IVD may induce degenerative microglial proinflammation, leading to LBP development.
Collapse
|
17
|
Mesenchymal Stem Cells May Alleviate the Intervertebral Disc Degeneration by Reducing the Oxidative Stress in Nucleus Pulposus Cells. Stem Cells Int 2022; 2022:6082377. [PMID: 36238530 PMCID: PMC9551678 DOI: 10.1155/2022/6082377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Stem cell therapy is a promising therapeutic modality for intervertebral disc degeneration (IDD). Oxidative stress is a vital contributor to the IDD; however, the definite role of oxidative stress in stem cell therapy for IDD remains obscure. The aim of this study was to determine the vital role of oxidative stress-related differentially expressed genes (OSRDEGs) in degenerative NPCs cocultured with mesenchymal stem cells (MSCs). Methods A series of bioinformatic methods were used to calculate the oxidative stress score and autophagy score, identify the OSRDEGs, conduct the function enrichment analysis and protein-protein interaction (PPI) analysis, build the relevant competing endogenous RNA (ceRNA) regulatory networks, and explore the potential association between oxidative stress and autophagy in degenerative NPCs cocultured with MSCs. Results There was a significantly different oxidative stress score between NPC/MSC samples and NPC samples (p < 0.05). Forty-one OSRDEGs were selected for the function enrichment and PPI analyses. Ten hub OSRDEGs were obtained according to the PPI score, including JUN, CAT, PTGS2, TLR4, FOS, APOE, EDN1, TXNRD1, LRRK2, and KLF2. The ceRNA regulatory network, which contained 17 DElncRNAs, 240 miRNAs, and 10 hub OSRDEGs, was constructed. Moreover, a significant relationship between the oxidative stress score and autophagy score was observed (p < 0.05), and 125 significantly related gene pairs were obtained (|r| > 0.90, p < 0.05). Conclusion Stem cell therapy might repair the degenerative IVD via reducing the oxidative stress through the ceRNA regulatory work and restoration of autophagy in degenerative NPCs. This research could provide new insights into the mechanism research of stem cell therapy for IDD and potential therapeutic targets in the IDD treatment.
Collapse
|
18
|
Kim TW, Kim AG, Lee KH, Hwang MH, Choi H. Microfluidic Electroceuticals Platform for Therapeutic Strategies of Intervertebral Disc Degeneration: Effects of Electrical Stimulation on Human Nucleus Pulposus Cells under Inflammatory Conditions. Int J Mol Sci 2022; 23:10122. [PMID: 36077518 PMCID: PMC9456475 DOI: 10.3390/ijms231710122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
The degeneration of an intervertebral disc (IVD) is a major cause of lower back pain. IVD degeneration is characterized by the abnormal expression of inflammatory cytokines and matrix degradation enzymes secreted by IVD cells. In addition, macrophage-mediated inflammation is strongly associated with IVD degeneration. However, the precise pathomechanisms of macrophage-mediated inflammation in IVD are still unknown. In this study, we developed a microfluidic platform integrated with an electrical stimulation (ES) array to investigate macrophage-mediated inflammation in human nucleus pulposus (NP). This platform provides multiple cocultures of different cell types with ES. We observed macrophage-mediated inflammation and considerable migration properties via upregulated expression of interleukin (IL)-6 (p < 0.001), IL-8 (p < 0.05), matrix metalloproteinase (MMP)-1 (p < 0.05), and MMP-3 (p < 0.05) in human NP cells cocultured with macrophages. We also confirmed the inhibitory effects of ES at 10 μA due to the production of IL-6 (p < 0.05) and IL-8 (p < 0.01) under these conditions. Our findings indicate that ES positively affects degenerative inflammation in diverse diseases. Accordingly, the microfluidic electroceutical platform can serve as a degenerative IVD inflammation in vitro model and provide a therapeutic strategy for electroceuticals.
Collapse
Affiliation(s)
- Tae-Won Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, 148, Gurodong-ro, Guro-gu, Seoul 08308, Korea
| | - An-Gi Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, 148, Gurodong-ro, Guro-gu, Seoul 08308, Korea
| | - Kwang-Ho Lee
- Division of Mechanical and Biomedical Mechatronics, and Materials Science and Engineering, College of and Engineering, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si 24341, Korea
| | - Min-Ho Hwang
- Department of Medical Sciences, Graduate School of Medicine, Korea University, 148, Gurodong-ro, Guro-gu, Seoul 08308, Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, 148, Gurodong-ro, Guro-gu, Seoul 08308, Korea
| |
Collapse
|
19
|
Sun Z, Zheng X, Li S, Zeng B, Yang J, Ling Z, Liu X, Wei F. Single Impact Injury of Vertebral Endplates Without Structural Disruption, Initiates Disc Degeneration Through Piezo1 Mediated Inflammation and Metabolism Dysfunction. Spine (Phila Pa 1976) 2022; 47:E203-E213. [PMID: 34431832 PMCID: PMC8815838 DOI: 10.1097/brs.0000000000004203] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro experimental study. OBJECTIVE To establish an axial impact injury model of intervertebral disc (IVD) and to investigate if a single impact injury without endplate structural disruption could initiate intervertebral disc degeneration (IDD), and what is the roles of Piezo1 in this process. SUMMARY OF BACKGROUND DATA Although IDD process has been confirmed to be associated with structural failures such as endplate fractures, whether a single impact injury of the endplates without structural disruption could initiate IDD remains controversial. Previous studies reported that Piezo1 mediated inflammation participated in the progression of IDD induced by mechanical stretch; however, the roles of Piezo1 in IVD impact injury remain unknown. METHODS Rats spinal segments were randomly assigned into Control, Low, and High Impact groups, which were subjected to pure axial impact loading using a custom-made apparatus, and cultured for 14 days. The degenerative process was investigated by using histomorphology, real-time Polymerase Chain Reaction(PCR), western-blot, immunofluorescence, and energy metabolism of IVD cell. The effects of Piezo1 were investigated by using siRNA transfection, real-time PCR, western-blot, and immunofluorescence. RESULTS The discs in both of the impact groups presented degenerative changes after 14 days, which showed significant up-regulation of Piezo1, NLRP3 inflammasome, the catabolic (MMP-9, MMP-13), and pro-inflammatory gene (IL-1β) expression than that of the control group (P < 0.05), accompanied by significantly increased release of ATP, lactate, nitric oxide (NO), and glucose consumption of IVD cells at first 7 days. Silencing Piezo1 reduced the activation of NLRP3 inflammasome and IL-1β expression in the nucleus pulposus induced by impact injury. CONCLUSION It demonstrated that not only fracture of the endplate but also a single impact injury without structural impairment could also initiate IDD, which might be mediated by activation of Piezo1 induced inflammation and abnormal energy metabolism of IVD cells.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spine Surgery, Qingdao West Coast New Area Central Hospital of Binzhou Medical College, Qingdao, China
| | - Xinfeng Zheng
- Department of Clinic of Spine Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Songbo Li
- Department of Spine Surgery, Dongguan People's Hospital, Dongguan, China
| | - Baozhu Zeng
- Department of Orthopaedic Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiaming Yang
- Department of Orthopaedic Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zemin Ling
- Department of Orthopaedic Surgery, the first Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xizhe Liu
- Department of Orthopaedic Surgery, the first Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fuxin Wei
- Department of Orthopaedic Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
20
|
Naringin protects human nucleus pulposus cells against TNF-α-induced inflammation, oxidative stress, and loss of cellular homeostasis by enhancing autophagic flux via AMPK/SIRT1 activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7655142. [PMID: 35265264 PMCID: PMC8898769 DOI: 10.1155/2022/7655142] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/26/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
Activation of the proinflammatory-associated cytokine, tumor necrosis factor-α (TNF-α), in nucleus pulposus (NP) cells is essential for the pathogenesis of intervertebral disc degeneration (IDD). Restoring autophagic flux has been shown to effectively protect against IDD and is a potential target for treatment. The goal of this study was to explore particular autophagic signalings responsible for the protective effects of naringin, a known autophagy activator, on human NP cells. The results showed that significantly increased autophagic flux was observed in NP cells treated with naringin, with pronounced decreases in the inflammatory response and oxidative stress, which rescued the disturbed cellular homeostasis induced by TNF-α activation. Autophagic flux inhibition was detectable in NP cells cotreated with 3-methyladenine (3-MA, an autophagy inhibitor), partially offsetting naringin-induced beneficial effects. Naringin promoted the expressions of autophagy-associated markers via SIRT1 (silent information regulator-1) activation by AMPK (AMP-activated protein kinase) phosphorylation. Either AMPK inhibition by BML-275 or SIRT1 silencing partially counteracted naringin-induced autophagic flux enhancement. These findings indicate that naringin boosts autophagic flux through SIRT1 upregulation via AMPK activation, thus protecting NP cells against inflammatory response, oxidative stress, and impaired cellular homeostasis. Naringin can be a promising inducer of restoration autophagic flux restoration for IDD.
Collapse
|
21
|
Vigeland MD, Flåm ST, Vigeland MD, Espeland A, Kristoffersen PM, Vetti N, Wigemyr M, Bråten LCH, Gjefsen E, Schistad EI, Haugen AJ, Froholdt A, Skouen JS, Zwart JA, Storheim K, Pedersen LM, Lie BA. Correlation between gene expression and MRI STIR signals in patients with chronic low back pain and Modic changes indicates immune involvement. Sci Rep 2022; 12:215. [PMID: 34997115 PMCID: PMC8741947 DOI: 10.1038/s41598-021-04189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/16/2021] [Indexed: 01/02/2023] Open
Abstract
Disability and distress caused by chronic low back pain (LBP) lacking clear pathoanatomical explanations cause huge problems both for patients and society. A subgroup of patients has Modic changes (MC), identifiable by MRI as vertebral bone marrow lesions. The cause of such changes and their relationship to pain are not yet understood. We explored the pathobiology of these lesions using profiling of gene expression in blood, coupled with an edema-sensitive MRI technique known as short tau inversion recovery (STIR) imaging. STIR images and total RNA from blood were collected from 96 patients with chronic LBP and MC type I, the most inflammatory MC state. We found the expression of 37 genes significantly associated with STIR signal volume, ten genes with edema abundancy (a constructed combination of STIR signal volume, height, and intensity), and one gene with expression levels significantly associated with maximum STIR signal intensity. Gene sets related to interferon signaling, mitochondrial metabolism and defense response to virus were identified as significantly enriched among the upregulated genes in all three analyses. Our results point to inflammation and immunological defense as important players in MC biology in patients with chronic LBP.
Collapse
Affiliation(s)
- Maria Dehli Vigeland
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ansgar Espeland
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Per Martin Kristoffersen
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Nils Vetti
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Monica Wigemyr
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Lars Christian Haugli Bråten
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Elisabeth Gjefsen
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Anne Froholdt
- Department of Physical Medicine and Rehabilitation, Drammen Hospital, Drammen, Norway
| | - Jan Sture Skouen
- Department of Physical Medicine and Rehabilitation, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - John-Anker Zwart
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kjersti Storheim
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | - Linda Margareth Pedersen
- Division of Clinical Neuroscience, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | | | | |
Collapse
|
22
|
Liu H, Hu X, Jiang R, Cai J, Lin Q, Fan Z, Zhao P, Wang S, Zou C, Du W, Dong Z, Liu Y. CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice. Inflammation 2021; 44:1345-1358. [PMID: 33528726 PMCID: PMC8285337 DOI: 10.1007/s10753-021-01420-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
Excessive microglial activation-mediated neuroinflammation is closely involved in the pathogenesis of several neurological diseases. CQMUH-011, as a novel adamantane sulfonamide compound, has been shown anti-inflammatory properties in activated macrophages (RAW264.7). However, the role of CQMUH-011 in microglial activation-induced neuroinflammation and neuroprotective properties has yet to be elucidated. In the present study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-stimulated primary microglia in vitro and transient middle cerebral artery occlusion (t-MCAO)-induced acute cerebral ischemia/reperfusion (I/R) injury in vivo. The results demonstrated that CQMUH-011 significantly suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β by LPS-stimulated primary microglia. In addition, CQMUH-011 inhibited the proliferation of activated microglia by arresting the cell cycle at the G1/S phase accompanied by downregulating the expression of cell cycle regulatory proteins such as proliferating cell nuclear antigen (PCNA) and cyclin D1. CQMUH-011 was seen to induce apoptosis in activated microglia by regulating the expression of Bax and Bcl-2. Furthermore, CQMUH-011 markedly attenuated the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) as well as the phosphorylation levels of nuclear factor-kappa (NF-κB) subunit p65, inhibitory kappa B-alpha (IκBα), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and p38 kinases. In vivo, CQMUH-011 administration significantly improved neurological function and infarct volume, and ameliorated the inflammatory cytokines and microglia amount around the injury site of mice. In conclusion, these results suggested that CQMUH-011 has a notable anti-inflammatory effect and protects mice from I/R injure. Thus, CQMUH-011 may be a candidate drug for the treatment of cerebral ischemia patients.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Xiangnan Hu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianghui Cai
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Qiao Lin
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiguo Fan
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Pan Zhao
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Song Wang
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Chunqiao Zou
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Weimin Du
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Dong
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Yingju Liu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
23
|
A comparative study of mesenchymal stem cell transplantation and NTG-101 molecular therapy to treat degenerative disc disease. Sci Rep 2021; 11:14804. [PMID: 34285277 PMCID: PMC8292352 DOI: 10.1038/s41598-021-94173-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular replacement therapy using mesenchymal stem cells (MSCs) and/or the delivery of growth factors are at the forefront of minimally invasive biological treatment options for Degenerative Disc Disease (DDD). In this study, we compared the therapeutic potential of a novel drug candidate, NTG-101 to MSCs, including rat cartilage derived stem cells (rCDSCs), bone marrow stem cells (rBMSCs) and human Umbilical Cord Derived Mesenchymal Stem Cells (hUCMSCs) for the treatment of DDD. We induced DDD using a validated image-guided needle puncture injury in rat-tail IVDs. Ten weeks post-injury, animals were randomized and injected with MSCs, NTG-101 or vehicle. At the end of the study, histological analysis of the IVD-Nucleus Pulposus (NPs) injected with NTG-101 or rCDSCs showed a healthy or mild degenerative phenotype in comparison to vehicle controls. Immunohistochemical analysis revealed strong expression of aggrecan, collagen 2, brachyury and Oct4 in IVD-NPs injected with NTG-101. Our results also demonstrated suppression of inflammation induced p38 and NFκB resulting in inhibition of catabolic genes, but activation of Smad-2/3, Erk-1/2 and Akt-dependent signaling inducing anabolic genes in IVD-NP on treatment with NTG-101. In conclusion, a single injection of NTG-101 into the degenerative disc demonstrated superior benefits compared to stem cell transplantation.
Collapse
|
24
|
Navone SE, Campanella R, Guarnaccia L, Ouellet JA, Locatelli M, Cordiglieri C, Gualtierotti R, Gaudino C, Ciniglio Appiani G, Luzzi S, Borsa S, Rampini P, Pluderi M, Haglund L, Riboni L, Alini M, Marfia G. Inflammatory interactions between degenerated intervertebral discs and microglia: Implication of sphingosine-1-phosphate signaling. J Orthop Res 2021; 39:1479-1495. [PMID: 32779775 DOI: 10.1002/jor.24827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/08/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
The etiology of intervertebral disc degeneration is largely unknown, but local neuroinflammation may exert a crucial role through activation of cells as microglia and pro-inflammatory cytokines production. We aimed to compare the effect of degenerated and normal intervertebral disc microenvironment on microglial cells and the potential role of sphingosine-1-phosphate, a pro-inflammatory sphingolipid, in their crosstalk. Human degenerated intervertebral discs (Pfirrmann grade IV) were obtained at surgery for spondylolisthesis. Normal intervertebral discs were collected from cadaveric normal lumbar spines. Normal and degenerated-intervertebral discs were kept in culture to obtain media conditioning. Then, microglial cells were cocultured with conditioned media and viability, proliferation, migration, chemotaxis, and inflammatory gene expression were evaluated. The results demonstrate that conditioned media from degenerated intervertebral discs activate microglial cells, increasing chemotaxis, migration, and pro-inflammatory mediators release to a great extent than normal discs. In addition, we show that the administration of sphingosine-1-phosphate to normal intervertebral disc/microglia coculture mimicked degenerative effects. Interestingly, sphingosine-1-phosphate content in conditioned media from degenerated discs was significantly higher than that from normal ones. In addition, FTY720, a functional antagonist of sphingosine-1-phosphate, potently inhibited the effect of degenerated intervertebral discs on microglial inflammatory factor transcription and migration. Our data report, for the first time, that sphingosine-1-phosphate is involved as signal in the microenvironment of human degenerated intervertebral discs. Sphingosine-1-phosphate signaling modulation by FTY720 may induce beneficial effects in counteracting microglial activation during intervertebral disc degeneration.
Collapse
Affiliation(s)
- Stefania E Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,"Aldo Ravelli" Research Center, Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jean A Ouellet
- McGill Scoliosis and Spine Group, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,"Aldo Ravelli" Research Center, Milan, Italy
| | - Chiara Cordiglieri
- Imaging Facility, National Institute for Molecular Genetics (INGM), Milan, Italy
| | - Roberta Gualtierotti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Gaudino
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Borsa
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Rampini
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Pluderi
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lisbet Haglund
- McGill Scoliosis and Spine Group, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,"Aldo Ravelli" Research Center, Milan, Italy.,Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milano
| |
Collapse
|
25
|
Li L, Zhou Z, Xiong W, Fang J, Scotti A, Shaghaghi M, Zhu W, Cai K. Characterization of microenvironmental changes in the intervertebral discs of patients with chronic low back pain using multiparametric MRI contrasts extracted from Z-spectrum. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1063-1071. [PMID: 33475842 PMCID: PMC11421479 DOI: 10.1007/s00586-021-06733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Z-spectral MRI data were analyzed to produce multiparametric metabolic and microenvironmental contrasts for identifying intervertebral discs with/without pain symptom and sore pain. METHODS Z-spectra data were collected from the lumbar discs of 26 patients with non-specific chronic low bck pain (CLBP) and 21 asymptomatic controls (AC) with a chemical exchange saturation transfer (CEST). Data were fitted to quantify the CEST effects from glycosaminoglycan, amide proton transfer (APT), nuclear Overhauser enhancement (NOE), semi-solid magnetization transfer contrast effects, and the direct saturation of water. Multiparametric maps were computed from the fitted peak amplitudes, and the average values were calculated from all five lumber discs. Those parameters were compared between the CLBP and AC groups and between the subgroups with and without (Nsore) sore pain. RESULTS The discs in symptomatic patients have lower water content, collagen-bound water and collagen than the discs in AC (P < 0.05). Additionally, Z-sepctral MRI indicated that the discs in the sore subgroup had less water, collagen-bound water and collagen, and likely lower pH compared to the Nsore subgroup (P < 0.05). Lower pH as measured with reduced APT and NOE effects may be an important pathological factor causing sore pain of the back. CONCLUSION Z-spectral MRI with its multiparametric metabolic and microenvironmental contrasts has been demonstrated to identify discs with and without pain symptom or sore pain, providing more important information of CLBP.
Collapse
Affiliation(s)
- Li Li
- Radiological Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhiguo Zhou
- Department of Orthopedics, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
| | - Jicheng Fang
- Radiological Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
| | - Alessandro Scotti
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Mehran Shaghaghi
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - WenZhen Zhu
- Radiological Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China.
| | - Kejia Cai
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Puntillo F, Giglio M, Paladini A, Perchiazzi G, Viswanath O, Urits I, Sabbà C, Varrassi G, Brienza N. Pathophysiology of musculoskeletal pain: a narrative review. Ther Adv Musculoskelet Dis 2021; 13:1759720X21995067. [PMID: 33737965 PMCID: PMC7934019 DOI: 10.1177/1759720x21995067] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal pain (excluding bone cancer pain) affects more than 30% of the global population and imposes an enormous burden on patients, families, and caregivers related to functional limitation, emotional distress, effects on mood, loss of independence, and reduced quality of life. The pathogenic mechanisms of musculoskeletal pain relate to the differential sensory innervation of bones, joints, and muscles as opposed to skin and involve a number of peripheral and central nervous system cells and mediators. The interplay of neurons and non-neural cells (e.g. glial, mesenchymal, and immune cells) amplifies and sensitizes pain signals in a manner that leads to cortical remodeling. Moreover, sex, age, mood, and social factors, together with beliefs, thoughts, and pain behaviors influence the way in which musculoskeletal pain manifests and is understood and assessed. The aim of this narrative review is to summarize the different pathogenic mechanisms underlying musculoskeletal pain and how these mechanisms interact to promote the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Filomena Puntillo
- Department of Interdisciplinary Medicine, 'Aldo Moro' University of Bari, Piazza G. Cesare 11, Bari 70124, Italy
| | - Mariateresa Giglio
- Anesthesia, Intensive Care and Pain Unit, Policlinico Hospital, Bari, Italy
| | | | - Gaetano Perchiazzi
- Department of Surgical Science, Hedenstierna Laboratory, Uppsala University, Uppsala, Sweden
| | - Omar Viswanath
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ivan Urits
- Department of Anesthesia, Beth Israel Deaconess Med Center, Harvard Medical School, Boston, MA, USA
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, 'Aldo Moro' University of Bari, Bari, Italy
| | | | - Nicola Brienza
- Department of Interdisciplinary Medicine, 'Aldo Moro' University of Bari, Bari, Italy
| |
Collapse
|
27
|
CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice. Inflammation 2021. [PMID: 33528726 DOI: 10.1007/s10753-021-01420-3.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Excessive microglial activation-mediated neuroinflammation is closely involved in the pathogenesis of several neurological diseases. CQMUH-011, as a novel adamantane sulfonamide compound, has been shown anti-inflammatory properties in activated macrophages (RAW264.7). However, the role of CQMUH-011 in microglial activation-induced neuroinflammation and neuroprotective properties has yet to be elucidated. In the present study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-stimulated primary microglia in vitro and transient middle cerebral artery occlusion (t-MCAO)-induced acute cerebral ischemia/reperfusion (I/R) injury in vivo. The results demonstrated that CQMUH-011 significantly suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β by LPS-stimulated primary microglia. In addition, CQMUH-011 inhibited the proliferation of activated microglia by arresting the cell cycle at the G1/S phase accompanied by downregulating the expression of cell cycle regulatory proteins such as proliferating cell nuclear antigen (PCNA) and cyclin D1. CQMUH-011 was seen to induce apoptosis in activated microglia by regulating the expression of Bax and Bcl-2. Furthermore, CQMUH-011 markedly attenuated the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) as well as the phosphorylation levels of nuclear factor-kappa (NF-κB) subunit p65, inhibitory kappa B-alpha (IκBα), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and p38 kinases. In vivo, CQMUH-011 administration significantly improved neurological function and infarct volume, and ameliorated the inflammatory cytokines and microglia amount around the injury site of mice. In conclusion, these results suggested that CQMUH-011 has a notable anti-inflammatory effect and protects mice from I/R injure. Thus, CQMUH-011 may be a candidate drug for the treatment of cerebral ischemia patients.
Collapse
|
28
|
Lyu FJ, Cui H, Pan H, MC Cheung K, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res 2021; 9:7. [PMID: 33514693 PMCID: PMC7846842 DOI: 10.1038/s41413-020-00125-x] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain (LBP), as a leading cause of disability, is a common musculoskeletal disorder that results in major social and economic burdens. Recent research has identified inflammation and related signaling pathways as important factors in the onset and progression of disc degeneration, a significant contributor to LBP. Inflammatory mediators also play an indispensable role in discogenic LBP. The suppression of LBP is a primary goal of clinical practice but has not received enough attention in disc research studies. Here, an overview of the advances in inflammation-related pain in disc degeneration is provided, with a discussion on the role of inflammation in IVD degeneration and pain induction. Puncture models, mechanical models, and spontaneous models as the main animal models to study painful disc degeneration are discussed, and the underlying signaling pathways are summarized. Furthermore, potential drug candidates, either under laboratory investigation or undergoing clinical trials, to suppress discogenic LBP by eliminating inflammation are explored. We hope to attract more research interest to address inflammation and pain in IDD and contribute to promoting more translational research.
Collapse
Affiliation(s)
- Feng-Juan Lyu
- grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, China
| | - Haowen Cui
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hehai Pan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XBreast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kenneth MC Cheung
- grid.194645.b0000000121742757Department of Orthopedics & Traumatology, The University of Hong Kong, Hong Kong, SAR China
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - James C. Iatridis
- grid.59734.3c0000 0001 0670 2351Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhaomin Zheng
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XPain Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Fu F, Bao R, Yao S, Zhou C, Luo H, Zhang Z, Zhang H, Li Y, Yan S, Yu H, Du W, Yang Y, Jin H, Tong P, Sun ZT, Yue M, Chen D, Wu C, Ruan H. Aberrant spinal mechanical loading stress triggers intervertebral disc degeneration by inducing pyroptosis and nerve ingrowth. Sci Rep 2021; 11:772. [PMID: 33437038 PMCID: PMC7804398 DOI: 10.1038/s41598-020-80756-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023] Open
Abstract
Aberrant mechanical factor is one of the etiologies of the intervertebral disc (IVD) degeneration (IVDD). However, the exact molecular mechanism of spinal mechanical loading stress-induced IVDD has yet to be elucidated due to a lack of an ideal and stable IVDD animal model. The present study aimed to establish a stable IVDD mouse model and evaluated the effect of aberrant spinal mechanical loading on the pathogenesis of IVDD. Eight-week-old male mice were treated with lumbar spine instability (LSI) surgery to induce IVDD. The progression of IVDD was evaluated by μCT and Safranin O/Fast green staining analysis. The metabolism of extracellular matrix, ingrowth of sensory nerves, pyroptosis in IVDs tissues were determined by immunohistological or real-time PCR analysis. The apoptosis of IVD cells was tested by TUNEL assay. IVDD modeling was successfully produced by LSI surgery, with substantial reductions in IVD height, BS/TV, Tb.N. and lower IVD score. LSI administration led to the histologic change of disc degeneration, disruption of the matrix metabolism, promotion of apoptosis of IVD cells and invasion of sensory nerves into annulus fibrosus, as well as induction of pyroptosis. Moreover, LSI surgery activated Wnt signaling in IVD tissues. Mechanical instability caused by LSI surgery accelerates the disc matrix degradation, nerve invasion, pyroptosis, and eventually lead to IVDD, which provided an alternative mouse IVDD model.
Collapse
Affiliation(s)
- Fangda Fu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Ronghua Bao
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, 311400, Zhejiang, China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huan Luo
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huihao Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Yan Li
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Shuxin Yan
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huan Yu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Weibin Du
- Research Institute of Orthopedics, the Affiliated JiangNan Hospital of Zhejiang Chinese Medical University, Hangzhou, 311200, Zhejiang, China
| | - Yanping Yang
- Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Zhi-Tao Sun
- Department of Orthopedics, Shenzhen Traditional Chinese Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518055, China
| | - Ming Yue
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China. .,Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
30
|
Xu Q, Xing H, Wu J, Chen W, Zhang N. miRNA-141 Induced Pyroptosis in Intervertebral Disk Degeneration by Targeting ROS Generation and Activating TXNIP/NLRP3 Signaling in Nucleus Pulpous Cells. Front Cell Dev Biol 2020; 8:871. [PMID: 32984347 PMCID: PMC7487322 DOI: 10.3389/fcell.2020.00871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The role and mechanism of pyroptosis in intervertebral disk (IVD) degeneration are unclear. MicroRNAs (miRNAs) regulate the viability and function of nucleus pulposus cells (NPCs) in IVDs and are related to pyroptosis. We performed microarray analyses of normal and degenerated nucleus pulposus (NP) to assess the role of pyroptosis and identify key miRNAs in IVD degeneration. We also evaluated the underlying mechanism of miRNA-mediated pyroptosis in NPCs. In addition, we demonstrated the preventative effects of miRNAs on IVD degeneration in a rat model. The levels of the pyroptosis-related proteins cleaved caspase-1, N-terminal gasdermin D (GSDMD), interleukin (IL)-1β, and IL-18 in the degenerative NP were significantly higher than those in the normal NP. miRNA-141 was significantly upregulated in the degenerated NP. miR-141 mimic suppressed the matrix synthesis function of NPCs. By contrast, reactive oxygen species (ROS) generation, and the expression of TXNIP and NLRP3 were significantly downregulated by an miR-141 inhibitor. Furthermore, the miRNA-141 inhibitor prevented the degeneration of IVDs in vivo. Our findings suggest that miRNA-141 induces pyroptosis and extracellular matrix (ECM) catabolism in NPCs by increasing ROS generation and activating TXNIP/NLRP3 signaling. miRNA-141-regulated pyroptosis may be a novel therapeutic target for IVD degeneration.
Collapse
Affiliation(s)
- Qiaolong Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Orthopaedics, The People's Hospital of Cixi, Cixi, China
| | - Hongyuan Xing
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaqi Wu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weishan Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ning Zhang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Murugan M, Ravula A, Gandhi A, Vegunta G, Mukkamalla S, Mujib W, Chandra N. Chemokine signaling mediated monocyte infiltration affects anxiety-like behavior following blast injury. Brain Behav Immun 2020; 88:340-352. [PMID: 32240765 DOI: 10.1016/j.bbi.2020.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/31/2022] Open
Abstract
The activation of resident microglia and infiltrated monocytes are known potent mediators of chronic neuroinflammation following traumatic brain injury (TBI). In this study, we use a mouse model of blast-induced TBI (bTBI) to investigate whether microglia and monocytes contribute to the neuroinflammatory and behavioral consequences of bTBI. Eight-ten week old mice were subject to moderate TBI (180 kPa) in a shock tube. Using double transgenic CCR2RFP/+: CX3CR1GFP/+ mice, we were able to note that in addition to resident Cx3CR1+ microglia, infiltrating CCR2+ monocytes also contributed to the expanding macrophage population that was observed after bTBI. The microglia activation and monocyte infiltration occurred as early as 4 h and lasted up to 30d after blast exposure, suggesting chronic inflammation. The infiltration of monocytes may be partly mediated by chemokine CCL2-CCR2 signaling axis and compromised blood brain barrier permeability. Hence, bTBI-induced infiltration of monocytes and production of IL-1β were prevented in mice lacking CCR2 (CCR2 KO). Finally, this study showed that interference of monocyte infiltration using CCR2 KO, ameliorated the chronic effects of bTBI such as anxiety-like behavior and short-term memory decline. Taken together, these data suggest that bTBI leads to activation of both resident microglia and infiltrated monocytes. The infiltration of monocytes was partly mediated by CCL2-CCR2 signaling, which in turn contributes to increased production of IL-1β leading to behavioral deficits after bTBI. Furthermore, bTBI induced behavioral outcomes were reduced by targeting CCL2-CCR2 signaling, highlighting the significance of this signaling axis in bTBI pathology.
Collapse
Affiliation(s)
- Madhuvika Murugan
- Department of Biomedical Engineering, Center for Injury Biomechanics Materials and Medicine, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Arunreddy Ravula
- Department of Biomedical Engineering, Center for Injury Biomechanics Materials and Medicine, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Ajay Gandhi
- Department of Biomedical Engineering, Center for Injury Biomechanics Materials and Medicine, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Geetasravya Vegunta
- Department of Biomedical Engineering, Center for Injury Biomechanics Materials and Medicine, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Sushni Mukkamalla
- Department of Biomedical Engineering, Center for Injury Biomechanics Materials and Medicine, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Waleed Mujib
- Department of Biomedical Engineering, Center for Injury Biomechanics Materials and Medicine, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics Materials and Medicine, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| |
Collapse
|
32
|
Effects of photobiomodulation on annulus fibrosus cells derived from degenerative disc disease patients exposed to microvascular endothelial cells conditioned medium. Sci Rep 2020; 10:9655. [PMID: 32541845 PMCID: PMC7296027 DOI: 10.1038/s41598-020-66689-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration with chronic low back pain is associated with neo-vascularisation into the deeper IVD regions. During this process, endothelial cells (ECs), which are primarily responsible for angiogenesis, interact with the adjacent annulus fibrosus (AF) cells, which are the first line of defence against the invasion of vascular structures into deeper IVD regions. However, the accumulation of inflammatory and catabolic enzymes that results from this interaction promotes matrix degradation and an inflammatory response. Thus, regulating the production of these mediators and catabolic enzymes could ameliorate IVD degeneration. Photobiomodulation (PBM) therapy is a non-invasive stimulation known to have biologically beneficial effects on wound healing, tissue repair, and inflammation. Here, we examined the effects of PBM, administered at various wavelengths (645, 525, and 465 nm) and doses (16, 32, and 64 J/cm2), on EC-stimulated human AF cells. Our results show that PBM selectively inhibited the EC-mediated production of inflammatory mediators, catabolic enzymes, and neurotrophins by human AF cells in a dose- and wavelength-dependent manner. These results suggest that PBM could be a superior and advanced treatment strategy for IVD degeneration.
Collapse
|
33
|
Involvement of the G-Protein-Coupled Receptor 4 in the Increased Expression of RANK/RANKL/OPG System and Neurotrophins by Nucleus Pulposus Cells under the Degenerated Intervertebral Disc-Like Acidic Microenvironment. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1328436. [PMID: 32566653 PMCID: PMC7277045 DOI: 10.1155/2020/1328436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 12/05/2022]
Abstract
Intervertebral disc (IVD) degeneration is associated with local inflammation and increased expression of neurotrophins. Acidic microenvironment is believed to cause the progression of IVD degeneration. However, there is a paucity of information regarding the relationship between acidic microenvironment and the inflammation and expression of neurotrophins in IVD. G-protein-coupled receptor 4 (GPR4) is a pH-sensing receptor, which can activate the inflammation and increase the expression levels of nerve growth factor in acidic microenvironment. In this study, culture media with pH 7.2 (representing the normal IVD-like acidic condition) and pH 6.5 (degenerated IVD-like acidic condition) were prepared. The gene and protein expression levels of GPR4 in SD rat nucleus pulposus cells were determined under the acidic conditions. And cyclic AMP (cAMP), the second messenger of GPR4, was assayed. Furthermore, the expression levels of receptor activator of nuclear factor κ B (RANK), RANKL ligand (RANKL), osteoprotegerin (OPG), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were also determined. To clarify the involvement of GPR4 in the upregulation of the expression of RANK/RANKL/OPG system and neurotrophins, gene knockdown and forced expression of GPR4 and inhibiting its downstream cAMP accumulation and Ca2+ mobilization were performed. The alternation of the expression levels of matrix metalloproteinase-3 (MMP-3), MMP-13, and aggrecanase-2 (ADAMTS-5) were evaluated by RT-PCR and western blot. The results showed that GPR4 was expressed in rat nucleus pulposus cells, and the expression was upregulated under the degenerated IVD-like acidic microenvironment. cAMP accumulation levels were increased under the degenerated IVD-like acidic culture conditions. The expression levels of RANK, RANKL, OPG, NGF, and BNDF were significantly upregulated under the degenerated IVD-like acidic microenvironment. GPR4 knockdown and reduction of cAMP by the inhibitor SQ22536 abolished the upregulation of the expression of RANK, RANKL, OPG, NGF, and BNDF under the degenerated IVD-like acidic microenvironment. On the opposite, acidosis-induced cAMP accumulation and upregulation of RANK, RANKL, OPG, NGF, and BNDF were further promoted by GPR4 overexpression. The expression levels of MMP-3, MMP-13, and ADAMTS-5 were upregulated under the degenerated IVD-like acidic condition, which can be promoted or attenuated by GPR4 overexpression or knockdown, respectively. We concluded that GPR4-mediated cAMP accumulation was involved in the increased expression of RANK/RANKL/OPG system and neurotrophins by nucleus pulposus cells under the degenerated IVD-like acidic microenvironment.
Collapse
|
34
|
Molladavoodi S, McMorran J, Gregory D. Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs. Cell Tissue Res 2019; 379:429-444. [PMID: 31844969 DOI: 10.1007/s00441-019-03136-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
Abstract
Low back pain (LBP) is a chronic condition that can affect up to 80% of the global population. It is the number one cause of disability worldwide and has enormous socioeconomic consequences. One of the main causes of this condition is intervertebral disc (IVD) degeneration. IVD degenerative processes and inflammation associated with it has been the subject of many studies in both tissue and cell level. It is believed that the phenotype of the resident cells within the IVD directly affects homeostasis of the tissue. At the same time, IVDs located between vertebral bodies of spine are under various mechanical loading conditions in vivo. Therefore, investigating how mechanical loading can affect the behaviour of IVD cells has been a subject of many research articles. In this review paper, following a brief explanation of the anatomy of the IVD and its resident cells, we compiled mechanobiological studies of IVD cells (specifically, annulus fibrosus and nucleus pulposus cells) and synthesized and discussed the key findings of the field.
Collapse
Affiliation(s)
- Sara Molladavoodi
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada.,Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - John McMorran
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Diane Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada. .,Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
35
|
Zheng Q, Li XX, Xiao L, Shao S, Jiang H, Zhang XL, Sun LY, Xu HG. MicroRNA-365 functions as a mechanosensitive microRNA to inhibit end plate chondrocyte degeneration by targeting histone deacetylase 4. Bone 2019; 128:115052. [PMID: 31472300 DOI: 10.1016/j.bone.2019.115052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/01/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023]
Abstract
End plate chondrocyte degeneration is a major cause of intervertebral disc degeneration. Mechanical biophysical forces, including intermittent cyclic mechanical tension (ICMT), exacerbate end plate chondrocyte degeneration. However, the underlying molecular mechanism of mechanical stretch-induced end plate chondrocyte degeneration is still unclear. This study sought to determine whether microRNAs (miRNAs) respond to mechanical stretch and play a role in regulating mechanically-induced end plate chondrocyte degeneration. We identified miR-365 as a mechanoresponsive miRNA in primary human end plate chondrocytes after ICMT application by miRNA microarray analysis. The expression of miR-365 was down-regulated in the disc samples obtained from patients with disc degeneration. We also found that the miR-365 stimulates chondrocyte proliferation but does not promote end plate chondrocyte death. Using bioinformatic analyses and subsequent confirmation by real-time RT-PCR, we identified multiple candidate target genes of miR-365 that responded to in vitro mechanical stimulation; among them, HDAC4 was fully characterized. Mutation of putative miR-365 binding sites in HDAC4 mRNA abolished miR-365 mediated repression of HDAC4 3'-untranslated region (3'UTR) luciferase reporter activity, suggesting that miR-365 binds to the HDAC4 3'UTR. Overexpression of miR-365 significantly decreased the HDAC4 protein level, suggesting that miR-365 acts as an endogenous attenuator of HDAC4 in human end plate chondrocytes. Further, perturbation of miR-365 expression also had a significant effect on the expression of COL2A and ACAN and on matrix degeneration. Overexpression of HDAC4 abolished miR-365 rescued end plate chondrocyte degeneration during ICMT application. Furthermore, we found that the wnt/β-catenin signal pathway was related to HDAC4 and promoted end plate chondrocyte degeneration. Overall, our results suggest that miR-365 is a mechanosensitive miRNA that regulates human chondrocyte degeneration by directly targeting HDAC4. We propose that therapeutic regulation of miR-365 may be an efficient anabolic strategy for inhibiting end plate chondrocyte degeneration.
Collapse
Affiliation(s)
- Quan Zheng
- Department of Orthopedic Surgery, Luan People's Hospital, Luan Hospital Affiliated of Anhui Medical University, Luan 237001, Anhui, China; Spine Research Center of Wannan Medical Colleg, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution(Wannan Medical College), Dept of Spine Surgery, Yijishan hospital, The first affiliated hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xing-Xing Li
- Department of Orthopedic Surgery, Luan People's Hospital, Luan Hospital Affiliated of Anhui Medical University, Luan 237001, Anhui, China
| | - Liang Xiao
- Spine Research Center of Wannan Medical Colleg, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution(Wannan Medical College), Dept of Spine Surgery, Yijishan hospital, The first affiliated hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Song Shao
- Department of Orthopedic Surgery, Luan People's Hospital, Luan Hospital Affiliated of Anhui Medical University, Luan 237001, Anhui, China
| | - Huai Jiang
- Department of Orthopedic Surgery, Luan People's Hospital, Luan Hospital Affiliated of Anhui Medical University, Luan 237001, Anhui, China
| | - Xiao-Ling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China,; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang-Ye Sun
- Department of Orthopedic Surgery, Luan People's Hospital, Luan Hospital Affiliated of Anhui Medical University, Luan 237001, Anhui, China.
| | - Hong-Guang Xu
- Spine Research Center of Wannan Medical Colleg, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution(Wannan Medical College), Dept of Spine Surgery, Yijishan hospital, The first affiliated hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|
36
|
Alcántara Guardado A, Cooper G, Weightman A, Spiess R, Baker ADL. Dilution and microfiltration of particulate corticosteroids for spinal epidural injections: impact on drug concentration and agglomerate formation. Anaesthesia 2019; 74:1551-1557. [PMID: 31228255 DOI: 10.1111/anae.14733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 02/04/2023]
Abstract
Particulate corticosteroids have been described to lead to greater pain improvement compared with their non-particulate counterparts when used in epidural injections. It is hypothesised that filtering may significantly impact their concentration and long-term efficacy. We investigated if passing particulate suspensions through different commonly-used filters affects drug dosage. Two particulate corticosteroid formulations, triamcinolone acetonide and methylprednisolone acetate, were mixed at different concentrations with either bupivacaine hydrochloride or 0.9% sodium chloride. Solutions were passed through a 5-μm and a 0.2-μm filter. Mass spectroscopy results indicated a complete loss of corticosteroid from the solutions using both filters, and light microscopy imaging demonstrated agglomerate formation, suggesting that filtering interferes with drug dosage. The choice of diluents must also be considered to reduce large agglomerate formation. Clinicians should be aware of the consequences of filtering particulate suspensions and carefully consider the selection of diluent when considering treatment plans.
Collapse
Affiliation(s)
- A Alcántara Guardado
- School of Mechanical, Aerospace & Civil Engineering, University of Manchester, UK
| | - G Cooper
- School of Mechanical, Aerospace & Civil Engineering, University of Manchester, UK
| | - A Weightman
- School of Mechanical, Aerospace & Civil Engineering, University of Manchester, UK
| | - R Spiess
- Experimental Officer, Manchester Institute of Biotechnology, University of Manchester, UK
| | | |
Collapse
|
37
|
Jiang Y, Fu L, Song Y. Responses of apoptosis and matrix metabolism of annulus fibrosus cells to different magnitudes of mechanical tension in vitro. Biosci Rep 2019; 39:BSR20182375. [PMID: 30700570 PMCID: PMC6386766 DOI: 10.1042/bsr20182375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Annulus fibrosus (AF) is important to confine disc nucleus pulposus (NP) tissue during mechanical load experience. However, the knowledge on AF cell biology under mechanical load is much limited compared with disc NP. OBJECTIVE The present study aimed to investigate responses of apoptosis and matrix metabolism of AF cells to different magnitudes of mechanical tension in vitro Methods: Rat AF cells were subjected to different magnitudes (5, 10, and 20% elongations at a frequency of 1.0 Hz for 6 h per day) of mechanical tension for 7 days. Control AF cells were cultured without mechanical tension. Cell apoptosis ratio, caspase-3 activity, gene/protein expression of apoptosis-related molecules (Bcl-2, Bax, caspase-3/cleaved caspase-3 and cleaved PARP), matrix macromolecules (aggrecan and collagen I) and matrix metabolism-related enzymes (TIMP-1, TIMP-3, MMP-3, and ADAMTS-4) were analyzed. RESULTS Compared with 5% tension group and control group, 10 and 20% tension groups significantly increased apoptosis ratio, caspase-3 activity, up-regulated gene/protein expression of Bax, caspase-3/cleaved caspase-3, cleaved PARP, MMP-3, and ADAMTS-4, whereas down-regulated gene/protein expression of Bcl-2, aggrecan, collagen I, TIMP-1, and TIMP-3. No significant difference was found in these parameters apart from Bcl-2 expression between the control group and 5% tension group. CONCLUSION High mechanical tension promotes AF cell apoptosis and suppresses AF matrix synthesis compared with low mechanical tension. The present study indirectly indicates how mechanical overload induces disc degeneration through affecting AF biology.
Collapse
Affiliation(s)
- Yanhai Jiang
- Department of Orthopaedics, The Affiliated Weihai Second Hospital of Qingdao University, Weihai 264200, China
| | - Lianqiang Fu
- Department of Orthopaedics, The Affiliated Weihai Second Hospital of Qingdao University, Weihai 264200, China
| | - Yeliang Song
- Department of Orthopaedics, The Affiliated Weihai Second Hospital of Qingdao University, Weihai 264200, China
| |
Collapse
|
38
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [PMID: 30554385 DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|