1
|
Hong H, Guo D, Xia T, Zhang Y. Dihydromyricetin attenuates intervertebral disc degeneration by inhibiting NLRP3 inflammasome activation via the Keap1/Nrf2/HO-1 pathway. Eur J Pharmacol 2025; 998:177501. [PMID: 40058758 DOI: 10.1016/j.ejphar.2025.177501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
Intervertebral disc degeneration (IVDD) is a highly prevalent chronic degenerative condition that significantly compromises patients' quality of life. Currently employed clinical treatments include surgical intervention and symptom management strategies; however, effective pharmacological strategies are lacking. Dihydromyricetin (DHM) has remarkable anti-inflammatory and antioxidative properties. On the basis of these biological characteristics, we hypothesized that DHM might have therapeutic potential in IVDD through its anti-inflammatory effects. Network pharmacology analysis revealed 130 overlapping targets between DHM and IVDD, with the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway emerging as a crucial regulatory axis. Experimental validation demonstrated that DHM treatment significantly ameliorated LSI-induced disc degeneration, as evidenced by reduced histopathological scores, upregulated expression of extracellular matrix (ECM) proteins. In vitro studies revealed that DHM effectively inhibited IL-1β-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and pyroptosis by decreasing Keap1 expression and activating the Nrf2/HO-1 signaling pathway. Specific silencing of Nrf2 significantly attenuated the protective effects of DHM, further confirming the crucial role of the Keap1/Nrf2/HO-1 pathway in the therapeutic action of DHM. Through integrated network pharmacology analysis and experimental validation, this study demonstrated for the first time that DHM alleviates IVDD by inhibiting Keap1-mediated Nrf2 degradation and activating the Nrf2/HO-1 pathway to suppress NLRP3 inflammasome-mediated pyroptosis. Furthermore, these findings validate the therapeutic potential of natural bioactive compounds in IVDD, providing experimental evidence and a theoretical foundation for the development of novel therapeutic strategies against IVDD.
Collapse
Affiliation(s)
- Hainan Hong
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Di Guo
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Tao Xia
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| | - Yuhang Zhang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China; Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| |
Collapse
|
2
|
Wang Y, Deng M, Wu Y, Zheng C, Zhang F, Guo C, Zhang B, Hu C, Kong Q, Wang Y. A multifunctional mitochondria-protective gene delivery platform promote intervertebral disc regeneration. Biomaterials 2025; 317:123067. [PMID: 39742837 DOI: 10.1016/j.biomaterials.2024.123067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/09/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Intervertebral disc degeneration (IDD) is a deleterious condition driven by localized inflammation and the associated disruption of the normal homeostatic balance between anabolism and catabolism, contributing to progressive functional abnormalities within the nucleus pulposus (NP). Despite our prior evidence demonstrating that a miR-21 inhibitor can have regenerative effects that counteract the progression of IDD, its application for IDD treatment remains limited by the inadequacy of current local delivery systems. Here, an injectable tannic acid (TA)-loaded hydrogel gene delivery system was developed and used for the encapsulation of a multifunctional mitochondria-protecting gene nanocarrier (PHs). This engineered platform was designed for the sustained on-demand delivery of both miR-21 inhibitor and ss-31 (mitochondrial-targeted peptide) constructs to the NP. This prepared hydrogel could be implanted into the intervertebral disc using a minimally invasive approach whereupon it was able to rapidly release TA. Sustained PHs release was then achieved as appropriate through a mechanism mediated by the activity of MMP-2. Following the targeted uptake of PHs by degenerated NP cells, the subsequent release of encapsulated miR-21 inhibitor suppressed apoptotic cell death and modulated the metabolism of the extracellular matrix (ECM) by targeting the Spry1 gene. At the same time, ss-31 was able to target damaged mitochondria and alleviate inflammatory activity via the suppression of mitochondrial ROS-NLRP3-IL-1β/Caspase1 pathway activity. Synergistic ECM regeneration and anti-inflammatory effects were sufficient to provide therapeutic benefits in an in vivo model of IDD. Together, these results thus highlight this hydrogel-based gene delivery platform as a promising novel approach to the treatment of IDD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyan Deng
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Wu X, Pan Q, Yao C, Gong Y, Li Z, Tang F, Fang Z, Bao Y, Chen Y, Yu M, Wang Z, Jiang C, Hong Z. Therapeutic potential of quercitrin in intervertebral disc degeneration: Targeting pyroptosis and inflammation. Int Immunopharmacol 2025; 156:114680. [PMID: 40273673 DOI: 10.1016/j.intimp.2025.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/20/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is the predominant cause of low back pain (LBP), that leads to significant disability and imposes a substantial socioeconomic burden. Despite its prevalence, effective treatment for IDD has yet to be fully established. This study aimed to explore the therapeutic potential of quercitrin (QUE) in IDD development and to elucidate its underlying mechanisms. METHODS In vitro, we investigated the effects of QUE on ECM metabolism, inflammatory response and pyroptosis in IL-1β-stimulated nucleus pulposus cells (NPCs), along with the potential mechanisms. In vivo, mice lumbar spinal instability (LSI) was established to determined the impact of QUE on IDD progression. RESULTS QUE significantly alleviated inflammation and maintained the ECM homeostasis under IL-1β stimulation in NPCs. Moreover, QUE appeared to inhibit pyroptosis, which was closely related to intense inflammatory response. Notably, the protective effects of QUE were abrogated upon inhibition of TRIM31 activity, indicating that TRIM31 mediated pyroptosis suppression is crucial for the therapeutic effects of QUE. CONCLUSION QUE plays an important role in alleviating pyroptosis and inflammation within NPCs, thereby slowing the progression of IDD. Therefore, QUE might emerge as a promising therapeutic candidate for IDD, holding the potential for clinical application in the future.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China
| | - Qiaohong Pan
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China
| | - Can Yao
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China
| | - Yuhang Gong
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China
| | - Ze Li
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China
| | - Fang Tang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China
| | - Zhiyu Fang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China
| | - Yuxuan Bao
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China
| | - Yiyu Chen
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China
| | - Minyang Yu
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China
| | - Zhangfu Wang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China.
| | - Chao Jiang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China.
| | - Zhenghua Hong
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China; Bone Development and Metabolism Research Center of Taizhou Hospital, Zhejiang Province, Linhai, Zhejiang Province, China.
| |
Collapse
|
4
|
Liang H, Yang S, Huang Y, Zhu Y, Wu Q, Wu Z, Li S, Shi Y, Chen Z, Jin H, Wang X. PTPN22 as a therapeutic target in intervertebral disc degeneration: Modulating mitophagy and pyroptosis through the PI3K/AKT/mTOR axis. J Adv Res 2025:S2090-1232(25)00311-X. [PMID: 40349959 DOI: 10.1016/j.jare.2025.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
INTRODUCTION Intervertebral disc degeneration (IDD) is a predominant risk factor for low back pain (LBP). However, the mechanisms underlying IDD progression remain unclear. OBJECTIVES The protein tyrosine phosphatase non-receptor type 22 (PTPN22) is associated with various chronic inflammatory and autoimmune conditions. However, its role in the progression of IDD remains obscure. This investigation delves into the function of PTPN22 within IDD and examines its molecular mechanisms. METHODS The expression levels of PTPN22 in human and rat degenerative nucleus pulposus (NP) cells were analyzed using Western blot and immunohistochemistry. Following PTPN22 knockdown via lentiviral transfection, pyroptosis, extracellular matrix (ECM) degradation, mitophagy, and mitochondrial function were assessed using Western blot, immunofluorescence, Calcein-AM/PI staining, qPCR, Seahorse, JC-1, and MitoSOX assays. The roles of autophagy and the PI3K/AKT/mTOR pathway were further investigated using the autophagy inhibitor 3-MA, Baf-A1, and the PI3K agonist 740Y-P. A puncture-induced rat model was established, and the effects of LV-shPTPN22 on IDD were evaluated through imaging and histological analyses. RESULTS We noted an upregulation of PTPN22 in degenerative NP cells. A deficiency in PTPN22 was found to enhance mitophagy, thereby alleviating hydrogen peroxide (H2O2)-induced mitochondrial dysfunction and consequently mitigating NP cell pyroptosis and ECM degradation. Inhibition of the PI3K/AKT/mTOR pathway appears to play a pivotal role in the protective effects of PTPN22 deficiency against IDD. Experiments conducted in vivo revealed that PTPN22 knockdown significantly curtails the progression of IDD. CONCLUSION In summary, PTPN22 knockdown alleviates IDD progression by reducing pyroptosis and ECM degradation through enhanced mitophagy. This highlights PTPN22 as a critical contributor to IDD and a promising therapeutic target.
Collapse
Affiliation(s)
- Haibo Liang
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shu Yang
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yeheng Huang
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Zhu
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qihang Wu
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhouwei Wu
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sunlong Li
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenya Chen
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haiming Jin
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Wang
- Division of Spine Surgery, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Zheng J, Ma Z, Liu P, Wei J, Min S, Shan Y, Zhang J, Li Y, Xue L, Tan Z, Wang D. EZH2 inhibits senescence-associated inflammation and attenuates intervertebral disc degeneration by regulating the cGAS/STING pathway via H3K27me3. Osteoarthritis Cartilage 2025; 33:548-559. [PMID: 39938633 DOI: 10.1016/j.joca.2025.02.771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
OBJECTIVE Senescent nucleus pulposus mesenchymal stem cells (NPMSCs) are key instigators of local chronic inflammation and disruptions in nucleus pulposus tissue repair in intervertebral disc degeneration (IVDD). This study aimed to investigate the interplay between EZH2 and NPMSCs senescence-associated inflammation. METHODS Nucleus pulposus samples were collected from IVDD patients (n = 15, F/M = 7/8, average age 47.9 (21-72) year-old). Multiplex immunohistochemistry was conducted to detect the expression of EZH2 and the cGAS/STING pathway. Subsequently, NPMSCs were isolated from 7 patients (n = 7, F/M = 4/3, average age 49.4 (36-68) year-old). After treatment with tert-butyl hydroperoxide and lentivirus-overexpression-EZH2 (Lv-OE-EZH2), real time fluorescent quantitative PCR, immunofluorescence, western blot, and ChIP were used to detect the expression of EZH2 and the cGAS/STING pathway. Micro-CT, magnetic resonance imaging, and histological staining were performed to assess the therapeutic effects of Lv-OE-EZH2 and a STING inhibitor on rat IVDD. All experiment designs were independent. RESULTS In both human nucleus pulposus tissues and an in vitro cell model, EZH2 expression decreased while the cGAS/STING pathway became activated in senescent NPMSCs. ChIP assays and Lv-OE-EZH2 experiments validated that EZH2 epigenetically inhibited STING expression via H3K27me3, thereby impairing the cGAS/STING pathway and attenuating senescence-associated inflammation. Moreover, overexpression of EZH2 (Pfirrmann grade means difference -1.375, p = 0.0089) and inhibition of STING effectively attenuated rat IVDD. CONCLUSION The decreased expression of EZH2 in senescent NPMSCs promotes senescence-associated inflammation and the progression of IVDD, possibly by relieving the transcriptional inhibition of STING and enabling the activation of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Jianrui Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Zetao Ma
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Pei Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Jiewen Wei
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China; Shantou University Medical College, Shantou 515000, PR China.
| | - Shaoxiong Min
- Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Ying Shan
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Jianlin Zhang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100000, PR China.
| | - Ye Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong.
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100000, PR China.
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| |
Collapse
|
6
|
Mu K, Geng J, Dong Y, Guo W. Identification of signature genes and relationship with immune cell infiltration in intervertebral disc degeneration. Front Genet 2025; 16:1551124. [PMID: 40270539 PMCID: PMC12015982 DOI: 10.3389/fgene.2025.1551124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Background Early diagnosis of intervertebral disc (IVD) degeneration is of great significance for prevention of the disease from progressing to a serious stage. This study aimed to investigate the signature genes and their association with immune cells in IVD degeneration. Methods We analyzed differentially expressed genes (DEGs) in a dataset of IVD degeneration samples from the GEO database. Weighted gene coexpression network analysis (WGCNA) and DEGs were employed to pinpoint the key modules and IVD degeneration genes. Functional enrichment analysis was performed for these IVD degeneration genes. Signature genes were identified using least absolute shrinkage and selection operator (LASSO) analysis. Gene set enrichment analysis (GSEA) was used to explore signaling pathways related to signature genes, and CIBERSORT® was used to classify immune cell infiltration. Function of the hub gene was confirmed by PCR, Western blotting and ELISA. Results 2,254 DEGs were identified from GSE56081, and WGCNA grouped the data into 9 modules. MEbrown module had a significant correlation with IVD degeneration (cor = 0.99, P = 8.00 × 10-8). LASSO analysis selected HSPA1B, TOB1, ECM1, PTTG1IP as signature genes with excellent diagnostic efficiency. Furthermore, we assessed the diagnostic efficacy of every signature gene in predicting IVD degeneration using an external validation group (GSE70362). The results showed that two of the signature genes (TOB1, ECM1) had significant diagnostic effect in predicting the degeneration of IVD. GSEA analysis showed TOB1 and ECM1 involve in NOD like receptor signaling pathway, phenylalanine metabolism. Ether lipid metabolism, glycosaminoglycan biosynthesis keratin sulfate, RNA degradation pathway. CIBERSORT® suggested TOB1 and ECM1 may participate in immune cells infiltration. Finally, we identified TOB1 as a crucial molecule in the process of NP cell pyroptosis and NLRP3 inflammasome activation. Conclusion TOB1 may show remarkable diagnostic performance in IVD degeneration and may be implicated in the infiltration of immune cells.
Collapse
Affiliation(s)
- Kun Mu
- Department of Breast Surgery, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
| | - JingChao Geng
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
| | - Yu Dong
- Department of Anaesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
| | - Wei Guo
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
- Hebei Province Integrated Traditional Chinese and Western Medicine 3D Printing Technology Innovation Center, Cangzhou, China
| |
Collapse
|
7
|
Yao Q, Lei Y, Zhang Y, Chen H, Dong X, Ye Z, Liang H. EZH2-H3K27me3-Mediated Epigenetic Silencing of DKK1 Induces Nucleus Pulposus Cell Pyroptosis in Intervertebral Disc Degeneration by Activating NLRP3 and NAIP/NLRC4. Inflammation 2025; 48:902-918. [PMID: 39052181 DOI: 10.1007/s10753-024-02096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Nucleus pulposus (NP) cell pyroptosis is crucial for intervertebral disc degeneration (IDD). However, the precise mechanisms underlying pyroptosis in IDD remain elusive. Therefore, this study aimed to investigate how dickkopf-1 (DKK1) influences NP cell pyroptosis and delineate the regulatory mechanisms of IDD. Behavioral tests and histological examinations were conducted in rat IDD models to assess the effect of DKK1 on the structure and function of intervertebral discs. Detected pyroptosis levels using Hoechst 33,342/propidium iodide (PI) double staining, and determined pyroptosis-related protein expression via western blotting. The cellular mechanisms of DKK1 in pyroptosis were explored in interleukin (IL)-1β-induced NP cells transfected with or without DKK1 overexpression plasmids (oe-DKK1). In addition, IL-1β-treated NP cells transfected with sh-EZH2 and/or sh-DKK1 were utilized to clarify the interplay between the enhancer of zeste homologue 2 (EZH2) and DKK1 in pyroptosis. Additionally, the epigenetic regulation of DKK1 by EZH2 was explored in NP cells treated with the EZH2 inhibitors GSK126/DZNep. DKK1 expression decreased in IDD rats. Transfection with oe-DKK1 reduced pro-inflammatory factors and extracellular matrix markers in IDD rats. In IL-1β-induced NP cells, DKK1 overexpression suppressed pyroptosis and inhibited the NLRP3 and NAIP/NLRC4 inflammasome activation. EZH2 knockdown increased DKK1 expression and reduced pyroptosis-related proteins. Conversely, DKK1 downregulation reversed the inhibitory effects of EZH2 knockdown on pyroptosis. Furthermore, EZH2 suppressed DKK1 expression via H3K27 methylation at the DKK1 promoter. EZH2 negatively regulates DKK1 expression via H3K27me3 methylation, promoting NP cell pyroptosis in IDD patients. This regulatory effect involves the activation of NLRP3 and NAIP/NLRC4 inflammasomes.
Collapse
Affiliation(s)
- Qijun Yao
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Yue Lei
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Yongxu Zhang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Haoran Chen
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Xiaowei Dong
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Zhiqiang Ye
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Haidong Liang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China.
| |
Collapse
|
8
|
Li Q, Guo R, Zhao C, Chen X, Wang H, Shen C. End Plate Chondrocyte-Derived Exosomal miR-133a-3p Alleviates Intervertebral Disc Degeneration by Targeting the NF-κB Signaling Pathway through the miR-133a-3p/MAML1 Axis. Mol Pharm 2025; 22:1262-1279. [PMID: 39898539 DOI: 10.1021/acs.molpharmaceut.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Chondrocyte-derived exosomes have shown efficacy in differentiating osteoarthritis-affected cartilage. Intervertebral disc degeneration (IVDD) and osteoarthritis often affect facet joints of the spine and show common epidemiological and pathophysiological characteristics. However, the potential of chondrocyte-derived exosomes for treating IVDD remains unclear. The present study aimed to confirm the effect of end plate chondrocyte-derived exosomes (EPC-Exo) on IVDD and elucidate the underlying mechanism. EPC-Exos were isolated and identified by ultracentrifugation, Western blotting, electron microscopy, and nanoparticle tracking analysis. In the in vitro, EPC-Exo uptake by nucleus pulposus (NP) cells reduced cell death by blocking the nuclear factor-κB (NF-κB) signaling pathway. In the in vivo study, EPC-Exos injected into rat intervertebral discs mitigated lipopolysaccharide-induced IVDD, as revealed by a decreased loss of disc height and improved magnetic resonance imaging findings and histological scores. Bioinformatics and sequencing analyses indicated that EPC-Exos alleviated IVDD through the miR-133a-3p/MAML1 axis. The present study suggests that EPC-Exos reduced IVDD incidence via the miR-133a-3p/MAML1 axis-mediated suppression of NF-κB signaling, which prevented the pyroptosis of NP cells.
Collapse
Affiliation(s)
- Qiuwei Li
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Ruocheng Guo
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Chenhao Zhao
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Xuewu Chen
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Wuhu, Anhui 241000, China
| | - Hong Wang
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Wuhu, Anhui 241000, China
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| |
Collapse
|
9
|
Xu W, Dhar R, Li K, Zheng D, He M, Ding W, Xin L, Xu B, He Y, Peng Q, Tang H. PDE4B promotes JNK/NLRP3 activation in the nucleus pulposus and mediates intervertebral disc degeneration. Sci Rep 2025; 15:5739. [PMID: 39962094 PMCID: PMC11833099 DOI: 10.1038/s41598-025-88053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
Intervertebral disc degeneration disease (IDD) is one of the leading causes of disability, and current therapies are ineffective. Phosphodiesterase 4B (PDE4B) plays essential roles in regulating the activation of the NLRP3 inflammasome. However, whether PDE4B or NLRP3 is involved in the development of IDD is unclear. This study sought to explore the role of PDE4B in IDD pathogenesis by in vivo and in vitro experiments. This results showed that PDE4B and NLRP3 were significantly upregulated in nucleus pulposus (NP) tissues from IDD-related human patients. Deletion of PDE4B in the NP resulted in downregulated JNK and NLRP3. Aberrant PDE4B expression enhanced the phosphorylation of JNK and NLRP3 expression. Furthermore, genetic ablation of the pde4b gene delayed IDD pathogenesis, and PDE4 inhibitor also can reverse the IDD pathogenesis. Our study showed that aberrant PDE4B activation in NP tissues induces pathological changes in IDD, phosphorylation of JNK and NLRP3 are involved in this process, and inhibition of aberrant PDE4B activity is a potential therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Weixing Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Rana Dhar
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Clinical Laboratory, Sir Run Run Shaw Hospital, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Kaiyue Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Danyang Zheng
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Minxin He
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Weiguo Ding
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Long Xin
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Bin Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yuqing He
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qi Peng
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Huifang Tang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Clinical Laboratory, Sir Run Run Shaw Hospital, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
10
|
Zhang F, Cui D, Wang Z, Li Y, Wang K, Lu H, Yu H, Jiao W, Cui X. NOX4 Regulates NLRP3 by Inhibiting the Ubiquitination of LRRC8A to Promote Ferroptosis in Nucleus Pulposus Cells. Inflammation 2025:10.1007/s10753-025-02253-0. [PMID: 39909992 DOI: 10.1007/s10753-025-02253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Intervertebral disc degeneration (IDD) is a significant contributor to low back pain, imposing a considerable socioeconomic burden. Ferroptosis, a novel form of cell death driven by iron and characterized by the accumulation of reactive oxygen species (ROS), has been associated with the progression of IDD. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) has been widely recognized as a pivotal factor promoting ferroptosis across various diseases; however, its precise role in the pathogenesis of IDD remains incompletely understood. Our experimental findings demonstrated a marked upregulation of NOX4 in degenerated cells, accompanied by elevated ROS levels and a diminished mitochondrial membrane potential, indicating the participation of ferroptosis. Furthermore, the expression of the critical regulatory factor GPX4 was reduced, while ACSL4 levels were significantly increased, further corroborating the involvement of ferroptosis. Functional loss and gain experiments revealed that NOX4 overexpression augmented ferroptosis and ROS production while promoting the secretion of inflammatory cytokines. Subsequent studies indicated that the knockdown of NOX4 could reverse tert-butyl hydroperoxide (TBHP)-induced ferroptosis. Mass spectrometry analysis identified leucine-rich repeat-containing 8A (LRRC8A) as an interacting protein of NOX4, and further validation confirmed that they co-regulate Nod-like receptor pyrin domain-3 (NLRP3) activation through their interaction. Utilizing a rat model of intervertebral disc degeneration, we further corroborated the role of NOX4 in IDD. This study provides theoretical support for the potential application of NOX4-targeting drugs in the treatment of IDD.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Di Cui
- Medical School of Fuyang, Normal University, No. 100, Qinghe West Road, Yingzhou District, Fuyang, 236000, Anhui, China
| | - Zhaodong Wang
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, No.2600, Donghai Dadao, Bengbu, 233000, Anhui, China
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, No. 287,Changhuai Road, Bengbu, 233000, Anhui, China
| | - Yifei Li
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Kangkang Wang
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Haitao Lu
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Haiyang Yu
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| | - Wei Jiao
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| | - Xilong Cui
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| |
Collapse
|
11
|
Dou Y, Zhang Y, Liu Y, Sun X, Liu X, Li B, Yang Q. Role of macrophage in intervertebral disc degeneration. Bone Res 2025; 13:15. [PMID: 39848963 PMCID: PMC11758090 DOI: 10.1038/s41413-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized. Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities, extracellular matrix metabolism, intervertebral disc vascularization, and innervation, profoundly influencing the progression of disc degeneration. To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration, this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration, analyze the regulatory mechanisms involving macrophages, and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration. These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China.
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
12
|
Tu Y, Ren J, Fang W, Zhou C, Zhao B, Hua T, Chen Y, Chen Z, Feng Y, Jin H, Wang X. Daphnetin-mediated mitophagy alleviates intervertebral disc degeneration via the Nrf2/PINK1 pathway. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39838851 DOI: 10.3724/abbs.2025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), and effective therapies are still lacking. Reactive oxygen species (ROS) stress induces NLRP3 inflammasome activation, and this, along with extracellular matrix metabolism (ECM) degradation in nucleus pulposus cells (NPCs), plays a crucial role in the progression of IDD. Daphnetin (DAP) is a biologically active phytochemical extracted from plants of the Genus Daphne, which possesses various bioactivities, including antioxidant properties. In the present study, we demonstrate that DAP significantly attenuates tert-butyl hydroperoxide (TBHP)-induced ECM degradation, oxidative stress and NLRP3 inflammasome activation in NPCs. Furthermore, DAP could facilitate mitophagy to increase the removal of damaged mitochondria, consequently reducing mitochondrial ROS accumulation and alleviating NLRP3 inflammasome activation. Mechanistically, we unveil that DAP activates mitophagy by stimulating the Nrf2/PINK1 signaling pathway in TBHP-induced NPCs. In vivo experiments further corroborate the protective effect of DAP against IDD progression in a rat model induced by disc puncture. Accordingly, our findings reveal that DAP could be a promising therapeutic candidate for the treatment of IDD.
Collapse
Affiliation(s)
- Yiting Tu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaping Ren
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Weiyuan Fang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Chencheng Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Binli Zhao
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Tianyong Hua
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yiqi Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhenya Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yongzeng Feng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
13
|
Min Q, Chen X, Yifei G, Baifeng S, Zichuan W, Xiaolong S, Huajiang C, Wen Y, Yang L. FOXO3a overexpression ameliorates intervertebral disc degeneration by decreasing NLRP3-mediated pyroptosis. Int Immunopharmacol 2025; 144:113596. [PMID: 39579536 DOI: 10.1016/j.intimp.2024.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Affiliation(s)
- Qi Min
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Xu Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Gu Yifei
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Sun Baifeng
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Wu Zichuan
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Shen Xiaolong
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Chen Huajiang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Yuan Wen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China.
| | - Liu Yang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China.
| |
Collapse
|
14
|
Zhan J, Cui Y, Zhang P, Du Y, Hecker P, Zhou S, Liang Y, Zhang W, Jin Z, Wang Y, Gao W, Moroz O, Zhu L, Zhang X, Zhao K. Cartilage Endplate-Targeted Engineered Exosome Releasing and Acid Neutralizing Hydrogel Reverses Intervertebral Disc Degeneration. Adv Healthc Mater 2025; 14:e2403315. [PMID: 39555665 DOI: 10.1002/adhm.202403315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Cartilage endplate cell (CEPC) and nucleus pulposus cell (NPC) inflammation are critical factors that contribute to intervertebral disc degeneration (IVDD). Recent evidence indicated that iron ion influx, reactive oxygen species (ROS), and the cGAS-STING pathway are involved in CEPC inflammatory degeneration. Moreover, cytokines produced by degenerating CEPCs and lactic acid accumulation within the microenvironment significantly contribute to NPC inflammation. Consequently, simultaneous alleviation of CEPC inflammation and correction of the acidic microenvironment are anticipated to reverse IVDD. Herein, CEPC-targeted engineered exosomes loaded with salvianolic acid A are incorporated into a CaCO3/chitosan hydrogel, forming a composite gel, CAP-sEXOs@Gel. Notably, CAP-sEXOs@Gel shows long local retention, realizes the slow release of CAP-sEXOs and specific uptake by CEPCs. After uptake by CEPCs, CAP-sEXOs reduce intracellular iron ion and ROS by inhibiting hypoxia-inducible factor-2α (HIF-2α)/TfR1 expression. Iron ion influx and ROS inhibition contribute to the maintenance of normal mitochondrial function and reduced mtDNA leakage, suppresing the cGAS-STING pathway. Additionally, the CaCO3 component of CAP-sEXOs@Gel neutralizes H+, thereby alleviating NPC inflammation. Collectively, this novel composite hydrogel demonstrates the ability to concurrently inhibit CEPC and NPC inflammation, thereby presenting a promising therapeutic approach for IVDD.
Collapse
Affiliation(s)
- Jiawen Zhan
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yongzhi Cui
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ping Zhang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yuxuan Du
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Prisca Hecker
- Department of Cognitive Science, University of California, La Jolla, San Diego, California, 92093, USA
| | - Shuaiqi Zhou
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yupeng Liang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Weiye Zhang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Zhefeng Jin
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yuan Wang
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Weihang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Oleksandr Moroz
- Department of Thyroid and Breast, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liguo Zhu
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Xiaoguang Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ke Zhao
- Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China
| |
Collapse
|
15
|
Zhang T, Huang Q, Lu L, Zhou K, Hu K, Gan K. ROS-responsive Hydrogel Loaded with Allicin Suppresses Cell Apoptosis for the Treatment of Intervertebral Disc Degeneration in a Rat Model. World Neurosurg 2025; 193:675-686. [PMID: 39490768 DOI: 10.1016/j.wneu.2024.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common cause of lower back pain, and cell apoptosis plays a key role in its progression. This study explores the therapeutic potential of a reactive oxygen species (ROS)-responsive hydrogel loaded with allicin for treating IVDD. METHODS Allicin was encapsulated in an ROS-responsive hydrogel, and its controlled release was studied in vitro. Nucleus pulposus cells were treated with hydrogen peroxide to induce apoptosis, and the effects of the hydrogel were examined using quantitative polymerase chain reaction and Western blotting. An in vivo rat model of IVDD was also established to assess the efficacy of the treatment. RESULTS The ROS-responsive hydrogel effectively inhibited apoptosis in nucleus pulposus cells by reducing ROS levels and modulating the expression of apoptotic and antiapoptotic genes. In the rat model, the hydrogel loaded with allicin significantly reduced IVDD, preserving disc morphology and matrix integrity. CONCLUSIONS ROS-responsive hydrogel loaded with allicin shows potential as a therapeutic approach for IVDD by inhibiting cell apoptosis and reducing disc degeneration in vivo.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Qing Huang
- Department of Gynecology, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Liangjie Lu
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Ke Zhou
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Keqi Hu
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Kaifeng Gan
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
16
|
Zhao K, Zhang Y, Liao Z, Zhang W, Li G, Shi P, Cheng Z, Chen Y, Li S, Wang K, Song Y, Feng X, An R, Yang C. Melatonin mitigates intervertebral disc degeneration by suppressing NLRP3 inflammasome activation via the EGR1/DDX3X pathway. FASEB J 2024; 38:e70143. [PMID: 39708233 DOI: 10.1096/fj.202302453rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 12/23/2024]
Abstract
Intervertebral disc degeneration (IVDD), is one of the leading causes of low back pain. Inflammation is considered to be the main pathophysiological process of IVDD. The nucleotide-binding domain and leucine-rich pyrin domain containing 3 (NLRP3) inflammasome-mediated inflammatory responses are critically involved in the progression of IVDD. Melatonin is known for its anti-inflammatory and antioxidant effects. However, little is known about the potential effects of melatonin in the pathological process of IVDD. We found that the expression of EGR1, DDX3X, and NLRP3 inflammasome increased and extracellular matrix (ECM) degraded in IVDD. With the application of EGR1 siRNA, the expression of DDX3X and the activation of NLRP3 inflammasome were inhibited in stress-induced NP cells. DDX3X/NLRP3 was regulated on dependence of EGR1. Besides, the utility of melatonin mitigated the EGR1-induced overproduction of DDX3X and activation of NLRP3 inflammasome, thus protecting cells from pyroptosis and ECM degradation. In vivo, in a rat IVDD model, melatonin was found to be able to delay the development of IVDD by imageological and histological evaluation. In conclusion, our study demonstrated that melatonin prevented IVDD progression by regulating EGR1/DDX3X/NLRP3 axis. Our study provides insight into melatonin as a new target for therapeutic approaches for IVDD.
Collapse
Affiliation(s)
- Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Chen H, Tang T, Xue C, Liu X, Xi Z, Xie L, Kang R. Exploration and breakthrough in the mode of intervertebral disc cell death may lead to significant advances in treatments for intervertebral disc degeneration. J Orthop Surg Res 2024; 19:825. [PMID: 39639370 PMCID: PMC11619685 DOI: 10.1186/s13018-024-05280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Low back pain caused by intervertebral disc degeneration (IDD) has emerged as a significant global public health concern, with far-reaching consequences for patients' quality of life and healthcare systems. Although previous research have revealed that the mechanisms of intervertebral disc cell apoptosis, pyroptosis and necroptosis can aggravate IDD damage by mediating inflammation and promoting extracellular matrix degradation, but they cannot explain the connection between different cell death mechanisms and ion metabolism disorders. The latest study shows that cell death mechanisms such as cellular senescence, ferroptosis, and cuproptosis, and PANopotosis have similar roles in the progression of intervertebral disc degeneration, but not exactly the same damage mechanism. This paper summarizes the effects of various cell death patterns on the disease progression of IDD, related molecular mechanisms and signaling pathways, providing new perspectives and potential clinical intervention strategies for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Heng Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Tian Tang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Congyang Xue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
18
|
Wang X, Song C, Zhou D, Mei Y, Cai W, Chen R, Lv J, Shi H, Liu Z. Exploring the therapeutic potential of puerarin on intervertebral disc degeneration by regulating apoptosis of nucleus pulposus cells. JOR Spine 2024; 7:e70020. [PMID: 39664589 PMCID: PMC11632247 DOI: 10.1002/jsp2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) stands as a prevalent chronic orthopedic ailment, profoundly impacting patients' well-being due to incapacitating low back pain. Studies have highlighted a close correlation between IVDD and the programmed cell death of nucleus pulposus (NP) cells orchestrated by interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and caspase-3 (CASP3). Puerarin, renowned for its anti-inflammatory attributes and its influence on IL-1β and TNF-α, emerges as a promising candidate for IVDD treatment. However, the precise mechanism by which it regulates apoptosis via these pathways remains ambiguous. This investigation utilizes bioinformatics to unveil the molecular intricacies of puerarin-mediated apoptosis regulation in IVDD, substantiated by preliminary in vitro experiments. Analysis exposes aberrant expression of pivotal apoptosis-associated proteins (IL-1β, TNF-α, CASP3, CASP8, and BCL2) in IVDD patients, with network pharmacology indicating puerarin's potential efficacy in IVDD treatment by modulating apoptosis and cellular senescence pathways. Further experiments elucidate puerarin's capacity to stimulate NP cell proliferation while inhibiting apoptosis, potentially contributing to IVDD mitigation. Western blot and PCR outcomes reveal escalated expression of apoptosis-related proteins (IL-1β, TNF-α, and CASP3) in lipopolysaccharide-treated NPCs, ameliorated by puerarin intervention. Molecular docking simulations demonstrate favorable binding properties of puerarin with apoptotic proteins, while flow cytometry analysis indicates its ability to diminish NPC apoptosis. These discoveries imply that puerarin might alleviate NPC apoptosis by modulating key targets, thereby potentially ameliorating IVDD. In summary, this study unveils the intrinsic mechanism of puerarin in regulating NPC apoptosis to alleviate IVDD, underscoring its therapeutic promise.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Chao Song
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Daqian Zhou
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Yongliang Mei
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Weiye Cai
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Rui Chen
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Jiale Lv
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Houyin Shi
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Zongchao Liu
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
- Department of OrthopedicsLuzhouChina
| |
Collapse
|
19
|
Zhou Q, Pu X, Qian Z, Chen H, Wang N, Wang S, Feng Z, Zhu Z, Wang B, Qiu Y, Sun X. Nuclear receptor Rev-erbα alleviates intervertebral disc degeneration by recruiting NCoR-HDAC3 co-repressor and inhibiting NLRP3 inflammasome. Cell Prolif 2024; 57:e13720. [PMID: 39045886 PMCID: PMC11628727 DOI: 10.1111/cpr.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
Intervertebral discs (IVDs) are rhythmic tissues that experience daily low-load recovery. Notably, aging and abnormal mechanical stress predispose IVDs to degeneration due to dysrhythmia-induced disordered metabolism. Meanwhile, Rev-erbα acts as a transcriptional repressor in maintaining biorhythms and homeostasis; however, its function in IVD homeostasis and degeneration remains unclear. This study assessed the relationship between low Rev-erbα expression levels and IVD degeneration. Rev-erbα deficiency accelerated needle puncture or aging-induced IVD degeneration, characterized by increased extracellular matrix (ECM) catabolism and nucleus pulposus (NP) cell apoptosis. Mechanistically, Rev-erbα knockdown in NP cells aggravated rhIL1β-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, exacerbating the imbalanced ECM and NP cell apoptosis. Meanwhile, blocking NLRP3 inflammasome activation mitigated Rev-erbα deficiency and needle puncture-induced IVD degeneration. Particularly, Rev-erbα mediated the transcriptional repression of the NLRP3 inflammasome via the ligand heme-binding of nuclear receptor co-repressor (NCoR) and histone deacetylase 3 (HDAC3) complex. Thus, the increased expression of Rev-erbα in NP cells following short-term rhIL1β treatment failed to inhibit NLRP3 transcription in vitro owing to heme depletion. Pharmacological activation of Rev-erbα in vivo and in vitro alleviated IVD degeneration by altering the NLRP3 inflammasome. Taken together, targeting Rev-erbα may be a potential therapeutic strategy for alleviating IVD degeneration and its related diseases.
Collapse
Affiliation(s)
- Qingshuang Zhou
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xiaojiang Pu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Zhuang Qian
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Haojie Chen
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Nannan Wang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Sinian Wang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Bin Wang
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xu Sun
- Division of Spine Surgery, Department of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
20
|
Sun H, Guo J, Xiong Z, Zhuang Y, Ning X, Liu M. Targeting nucleus pulposus cell death in the treatment of intervertebral disc degeneration. JOR Spine 2024; 7:e70011. [PMID: 39703198 PMCID: PMC11655182 DOI: 10.1002/jsp2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/21/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a progressive age-related disorder characterized by the reduction in the number of nucleus pulposus cells (NPCs) and degradation of extracellular matrix (ECM), thereby leading to chronic pain and disability. The pathogenesis of IDD is multifaceted, and current therapeutic strategies remain limited. The nucleus pulposus (NP), primarily composed of NPCs, proteoglycans, and type II collagen, constitutes essential components for maintaining intervertebral disc (IVD) function and spinal motion. The disturbed homeostasis of NPCs is closely associated with IDD. Accumulating evidence increasingly suggests the crucial role of programmed cell death (PCD) in regulating the homeostasis of NPCs. Aims This review aimed to elucidate various forms of PCD and their respective roles in IDD, and investigate diverse strategies targeting the cell death of NPCs for IDD treatment. Materials & Methods We collected the relevant literature regarding PCD and their roles in the development of IDD. Subsequently, we comprehensively summarized the intricate association between PCD and IDD, and also explored the potential and application of cell therapy and traditional Chinese medicine (TCM) in the prevention and treatment of IDD. Results Current literature indicated that the PCD of NPCs was closely associated with the pathogenesis of IDD. Additionally, the development of targeted pharmaceuticals based on the mechanisms of PCD could effectively impede the loss of NPCs. Conclusion This review demonstrated that targeting the PCD of NPCs may be a promising strategy for the treatment of IDD.
Collapse
Affiliation(s)
- Hong Sun
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Jiajie Guo
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangChina
| | - Zhilin Xiong
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangChina
| | - Yong Zhuang
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xu Ning
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Miao Liu
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| |
Collapse
|
21
|
Nie S, Zhang S, Wu R, Zhao Y, Wang Y, Wang X, Zhu M, Huang P. Scutellarin: pharmacological effects and therapeutic mechanisms in chronic diseases. Front Pharmacol 2024; 15:1470879. [PMID: 39575387 PMCID: PMC11578714 DOI: 10.3389/fphar.2024.1470879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Scutellarin (SCU), a flavonoid glucuronide derived from Scutellaria barbata and Erigeron breviscapus, exhibits broad pharmacological effects with promising therapeutic potential in treating various chronic diseases. It has demonstrated efficacy in modulating multiple biological pathways, including antioxidant, anti-inflammatory, anti-apoptotic, and vasodilatory mechanisms. These protective roles make SCU a valuable compound in treating chronic diseases such as cerebrovascular diseases, cardiovascular diseases, neurodegenerative disorders, and metabolic diseases. Despite its multi-targeted effects, SCU faces challenges such as low bioavailability and limited clinical data, which hinder its widespread therapeutic application. Current research supports its potential to prevent oxidative stress, reduce inflammatory responses, and enhance cell survival in cells and rats. However, more comprehensive studies are required to clarify its molecular mechanisms and to develop strategies that enhance its bioavailability for clinical use. SCU could emerge as a potent therapeutic agent for the treatment of chronic diseases with complex pathophysiological mechanisms. This review examines the current literature on Scutellarin to provide a comprehensive understanding of its pharmacological activity, mechanisms of action, and therapeutic potential in treating chronic diseases.
Collapse
Affiliation(s)
- Shanshan Nie
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruipeng Wu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuhang Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongxia Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinlu Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mingjun Zhu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
22
|
Sang P, Li X, Wang Z. Bone Mesenchymal Stem Cells Inhibit Oxidative Stress-Induced Pyroptosis in Annulus Fibrosus Cells to Alleviate Intervertebral Disc Degeneration Based on Matric Hydrogels. Appl Biochem Biotechnol 2024; 196:8043-8057. [PMID: 38676833 DOI: 10.1007/s12010-024-04953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Intervertebral disc degeneration (IVDD) is the primary cause of low back pain. Stem cell transplantation may be a possible approach to promote IVDD. This study was aimed to investigate the role of bone mesenchymal stem cells (BMSCs) in IVDD and the molecular mechanism. Annulus fibrosus cells (AFCs) were treated with tert-butyl hydroperoxide (TBHP) to induce oxidative stress injury. AFC biological functions were analyzed using a lactate dehydrogenase kit, enzyme-linked immunosorbent assay, flow cytometry, and western blot. The molecular mechanisms of BMSC functions were assessed using quantitative real-time PCR, western blot, immunoprecipitation (IP), co-IP, GST pull-down, and cycloheximide treatment. Furthermore, the impacts of BMSCs in IVDD progression in vivo were evaluated by magnetic resonance imaging (MRI) and H&E analysis. BMSCs inhibited TBHP-induced inflammation and pyroptosis in AFCs. Knockdown of SIRT1 reversed the effects on inflammation and pyroptosis of BMSCs. Moreover, SIRT1 promoted the deacetylation of ASC rather than NLRP3. SIRT1 interacted with ASC to reduce its protein stability, thereby negatively regulating ASC protein levels. In addition, BMSCs alleviated LPS-induced IVDD based on matrix hydrogels. BMSCs inhibited oxidative stress-induced pyroptosis and inflammation in AFCs, thereby alleviating IVDD, suggesting that BMSCs may contribute to treating intervertebral disc generation.
Collapse
Affiliation(s)
- Ping Sang
- Department of Spine Surgery, Jilin Provincial People's Hospital, No. 1183, Gongnong Road, Changchun, 130021, Jilin, China.
| | - Xuepeng Li
- Department of Spine Surgery, Jilin Provincial People's Hospital, No. 1183, Gongnong Road, Changchun, 130021, Jilin, China
| | - Ziyu Wang
- Department of Spine Surgery, Jilin Provincial People's Hospital, No. 1183, Gongnong Road, Changchun, 130021, Jilin, China
| |
Collapse
|
23
|
Wang J, Jing X, Liu X, Chen F, Ge Z, Liu X, Yang H, Guo Y, Cui X. Naringin safeguards vertebral endplate chondrocytes from apoptosis and NLRP3 inflammasome activation through SIRT3-mediated mitophagy. Int Immunopharmacol 2024; 140:112801. [PMID: 39121608 DOI: 10.1016/j.intimp.2024.112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
AIM The degradation of the cartilage endplate (CEP) plays a critical role in the initiation and progression of intervertebral disc degeneration (IVDD), a disease closely associated with inflammation and oxidative stress. Naringin (NGN), a flavonoid compound derived from citrus fruits, has been shown to exhibit significant anti-inflammatory and antioxidant properties. This suggests a promising avenue for NGN's application in IVDD therapy. This study aims to elucidate the therapeutic effects and underlying mechanisms of NGN on CEP degeneration, contributing to the formulation of evidence-based treatment strategies for IVDD. METHODS In vivo, we developed an intervertebral disc degeneration (IVDD) model in mice by excising the bilateral facet joints and surrounding ligaments, and evaluated the effects of naringin using HE staining and Micro-CT analysis. In vitro, endplate chondrocytes were isolated and subjected to TBHP to replicate the IVDD pathological condition. The protective effects of NGN on these cells were confirmed through immunofluorescence, Western Blot, and flow cytometry. RESULTS In vivo, NGN effectively mitigated IVDD progression and CEP calcification in mice. In vitro, NGN enhanced mitophagy and suppressed NLRP3 inflammasome activation through the SIRT3/FOXO3a/Parkin pathway. Furthermore, NGN safeguarded chondrocytes against apoptosis and calcification triggered by oxidative stress, in addition to mitigating the degradation of the extracellular matrix. However, silencing SIRT3 negated NGN's protective influence on chondrocytes. CONCLUSION Our study demonstrated that NGN effectively shields chondrocytes from apoptosis and NLRP3 inflammasome activation by facilitating SIRT3-mediated mitophagy. These insights could pave the way for innovative approaches in the prevention and management of IVDD.
Collapse
Affiliation(s)
- Jinjin Wang
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China
| | - Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Feifei Chen
- Department of Spine Surgery, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Zhongpeng Ge
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xiaodong Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Heng Yang
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China
| | - Yifei Guo
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xingang Cui
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China.
| |
Collapse
|
24
|
Peng S, Liu X, Chang L, Liu B, Zhang M, Mao Y, Shen X. Exosomes Derived from Rejuvenated Stem Cells Inactivate NLRP3 Inflammasome and Pyroptosis of Nucleus Pulposus Cells via the Transfer of Antioxidants. Tissue Eng Regen Med 2024; 21:1061-1077. [PMID: 39060654 PMCID: PMC11416441 DOI: 10.1007/s13770-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Accumulating evidence supports the potential of exosomes as a promising therapeutic approach for intervertebral disc degeneration (IDD). Nevertheless, enhancing the efficiency of exosome treatment remains an urgent concern. This study investigated the impact of quercetin on the characteristics of mesenchymal stem cells (MSCs) and their released exosomes. METHODS Exosomes were obtained from quercetin pre-treated MSCs and quantified for the production based on nanoparticle tracking and western blot analysis. The molecules involved in the secretion and cargo sorting of exosomes were investigated using western blot and immunofluorescence analysis. Based on the in vitro biological analysis and in vivo histological analysis, the effects of exosomes derived from conventional or quercetin-treated MSCs on nucleus pulposus (NP) cells were compared. RESULTS A significant enhancement in the production and transportation efficiency of exosomes was observed in quercetin-treated MSCs. Moreover, the exosomes derived from quercetin-treated MSCs exhibited a greater abundance of antioxidant proteins, specifically superoxide dismutase 1 (SOD1), which inhibit the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome in NP cells. Through in vitro and in vivo experiments, it was elucidated that exosomes derived from quercetin-treated MSCs possessed enhanced anti-inflammatory and antioxidant properties. CONCLUSION Collectively, our research underscores an optimized therapeutic strategy for IDD utilizing MSC-derived exosomes, thereby augmenting the efficacy of exosomes in intervertebral disc regeneration.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Xiangyang Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Lei Chang
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Bin Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Mingyan Zhang
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Yan Mao
- Department of Ophthalmology, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, China
| | - Xiongjie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China.
| |
Collapse
|
25
|
Wang Y, Zhang W, Yang Y, Qin J, Wang R, Wang S, Fu W, Niu Q, Wang Y, Li C, Li H, Zhou Y, Liu M. Osteopontin deficiency promotes cartilaginous endplate degeneration by enhancing the NF-κB signaling to recruit macrophages and activate the NLRP3 inflammasome. Bone Res 2024; 12:53. [PMID: 39242551 PMCID: PMC11379908 DOI: 10.1038/s41413-024-00355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 09/09/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of discogenic pain, and is attributed to the dysfunction of nucleus pulposus, annulus fibrosus, and cartilaginous endplate (CEP). Osteopontin (OPN), a glycoprotein, is highly expressed in the CEP. However, little is known on how OPN regulates CEP homeostasis and degeneration, contributing to the pathogenesis of IDD. Here, we investigate the roles of OPN in CEP degeneration in a mouse IDD model induced by lumbar spine instability and its impact on the degeneration of endplate chondrocytes (EPCs) under pathological conditions. OPN is mainly expressed in the CEP and decreases with degeneration in mice and human patients with severe IDD. Conditional Spp1 knockout in EPCs of adult mice enhances age-related CEP degeneration and accelerates CEP remodeling during IDD. Mechanistically, OPN deficiency increases CCL2 and CCL5 production in EPCs to recruit macrophages and enhances the activation of NLRP3 inflammasome and NF-κB signaling by facilitating assembly of IRAK1-TRAF6 complex, deteriorating CEP degeneration in a spatiotemporal pattern. More importantly, pharmacological inhibition of the NF-κB/NLRP3 axis attenuates CEP degeneration in OPN-deficient IDD mice. Overall, this study highlights the importance of OPN in maintaining CEP and disc homeostasis, and proposes a promising therapeutic strategy for IDD by targeting the NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wanqian Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Jinghao Qin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ruoyu Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qin Niu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yanxia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hongli Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
26
|
Chen M, Li F, Qu M, Jin X, He T, He S, Chen S, Yao Q, Wang L, Chen D, Wu X, Xiao G. Pip5k1γ promotes anabolism of nucleus pulposus cells and intervertebral disc homeostasis by activating CaMKII-Ampk pathway in aged mice. Aging Cell 2024; 23:e14237. [PMID: 38840443 PMCID: PMC11488325 DOI: 10.1111/acel.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Degenerative disc disease (DDD) represents a significant global health challenge, yet its underlying molecular mechanisms remain elusive. This study aimed to investigate the role of type 1 phosphatidylinositol 4-phosphate 5-kinase (Pip5k1) in intervertebral disc (IVD) homeostasis and disease. All three Pip5k1 isoforms, namely Pip5k1α, Pip5k1β, and Pip5k1γ, were detectable in mouse and human IVD tissues, with Pip5k1γ displaying a highest expression in nucleus pulposus (NP) cells. The expression of Pip5k1γ was significantly down-regulated in the NP cells of aged mice and patients with severe DDD. To determine whether Pip5k1γ expression is required for disc homeostasis, we generated a Pip5k1γfl/fl; AggrecanCreERT2 mouse model for the conditional knockout of the Pip5k1γ gene in aggrecan-expressing IVD cells. Our findings revealed that the conditional deletion of Pip5k1γ did not affect the disc structure or cellular composition in 5-month-old adult mice. However, in aged (15-month-old) mice, this deletion led to several severe degenerative disc defects, including decreased NP cellularity, spontaneous fibrosis and cleft formation, and a loss of the boundary between NP and annulus fibrosus. At the molecular level, the absence of Pip5k1γ reduced the anabolism of NP cells without markedly affecting their catabolic or anti-catabolic activities. Moreover, the loss of Pip5k1γ significantly dampened the activation of the protective Ampk pathway in NP cells, thereby accelerating NP cell senescence. Notably, Pip5k1γ deficiency blunted the effectiveness of metformin, a potent Ampk activator, in activating the Ampk pathway and mitigating lumbar spine instability (LSI)-induced disc lesions in mice. Overall, our study unveils a novel role for Pip5k1γ in promoting anabolism and maintaining disc homeostasis, suggesting it as a potential therapeutic target for DDD.
Collapse
Affiliation(s)
- Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Feiyun Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Minghao Qu
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Xiaowan Jin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Shuangshuang He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Lin Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiaohao Wu
- Division of Immunology and RheumatologyStanford UniversityStanfordCaliforniaUSA
- VA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
27
|
Zhou D, Mei Y, Song C, Cheng K, Cai W, Guo D, Gao S, Lv J, Liu T, Zhou Y, Wang L, Liu B, Liu Z. Exploration of the mode of death and potential death mechanisms of nucleus pulposus cells. Eur J Clin Invest 2024; 54:e14226. [PMID: 38632688 DOI: 10.1111/eci.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a common chronic orthopaedic disease in orthopaedics that imposes a heavy economic burden on people and society. Although it is well established that IVDD is associated with genetic susceptibility, ageing and obesity, its pathogenesis remains incompletely understood. Previously, IVDD was thought to occur because of excessive mechanical loading leading to destruction of nucleus pulposus cells (NPCs), but studies have shown that IVDD is a much more complex process associated with inflammation, metabolic factors and NPCs death and can involve all parts of the disc, characterized by causing NPCs death and extracellular matrix (ECM) degradation. The damage pattern of NPCs in IVDD is like that of some programmed cell death, suggesting that IVDD is associated with programmed cell death. Although apoptosis and pyroptosis of NPCs have been studied in IVDD, the pathogenesis of intervertebral disc degeneration can still not be fully elucidated by using only traditional cell death modalities. With increasing research, some new modes of cell death, PANoptosis, ferroptosis and senescence have been found to be closely related to intervertebral disc degeneration. Among these, PANoptosis combines essential elements of pyroptosis, apoptosis and necroptosis to form a highly coordinated and dynamically balanced programmed inflammatory cell death process. Furthermore, we believe that PANoptosis may also crosstalk with pyroptosis and senescence. Therefore, we review the progress of research on multiple deaths of NPCs in IVDD to provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chao Song
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Daru Guo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Silong Gao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jiale Lv
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yang Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liquan Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bing Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Luzhou Longmatan District People's Hospital, Luzhou, Sichuan, China
| |
Collapse
|
28
|
Yang M, Wei X, Yi X, Jiang DS. Mitophagy-related regulated cell death: molecular mechanisms and disease implications. Cell Death Dis 2024; 15:505. [PMID: 39013891 PMCID: PMC11252137 DOI: 10.1038/s41419-024-06804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024]
Abstract
During oxidative phosphorylation, mitochondria continuously produce reactive oxygen species (ROS), and untimely ROS clearance can subject mitochondria to oxidative stress, ultimately resulting in mitochondrial damage. Mitophagy is essential for maintaining cellular mitochondrial quality control and homeostasis, with activation involving both ubiquitin-dependent and ubiquitin-independent pathways. Over the past decade, numerous studies have indicated that different forms of regulated cell death (RCD) are connected with mitophagy. These diverse forms of RCD have been shown to be regulated by mitophagy and are implicated in the pathogenesis of a variety of diseases, such as tumors, degenerative diseases, and ischemia‒reperfusion injury (IRI). Importantly, targeting mitophagy to regulate RCD has shown excellent therapeutic potential in preclinical trials, and is expected to be an effective strategy for the treatment of related diseases. Here, we present a summary of the role of mitophagy in different forms of RCD, with a focus on potential molecular mechanisms by which mitophagy regulates RCD. We also discuss the implications of mitophagy-related RCD in the context of various diseases.
Collapse
Affiliation(s)
- Molin Yang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Tao X, Xue F, Xu J, Wang W. Platelet-rich plasma-derived extracellular vesicles inhibit NF-κB/NLRP3 pathway-mediated pyroptosis in intervertebral disc degeneration via the MALAT1/microRNA-217/SIRT1 axis. Cell Signal 2024; 117:111106. [PMID: 38373669 DOI: 10.1016/j.cellsig.2024.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a main contributor to lower back pain, and compression stress-induced apoptosis of nucleus pulposus (NP) cells and extracellular matrix (ECM) degradation has been implicated in the IDD progression. The functions of platelet-rich plasma (PRP)-derived extracellular vesicles (PRP-EVs) in regulating these biological processes remain unclear in IDD. Here, we aimed to investigate the key role of long noncoding RNA (lncRNA) MALAT1 incorporated in PRP-EVs in IDD. METHODS Tert-butyl hydroperoxide (TBHP)-induced damage in NP cells was treated with PRP-EVs extracted from healthy volunteers, followed by MTT, EdU, TUNEL, and Western blot assays. IDD mice were also treated with PRP-EVs. Histomorphological and pathological changes were evaluated. The pyroptosis of cells and the degradation of ECM were detected by ELISA and immunohistochemistry. We screened the differentially expressed lncRNAs in NP cells after PRP-EVs treatment by microarray analysis. The downstream targets of MALAT1 in NP cells were predicted and validated by rescue experiments. FINDINGS TBHP induction reduced cell proliferation and exacerbated pyroptosis and ECM degradation, and PRP-EVs inhibited TBHP-induced cell damage. PRP-EVs-treated mice with IDD had reduced Thompson scores, increased NP tissue content, and restored ECM. PRP-EVs upregulated MALAT1 expression in vivo and in vitro, whereas MALAT1 downregulation exacerbated NP cell pyroptosis and ECM degradation. MALAT1 upregulated SIRT1 expression by downregulating microRNA (miR)-217 in NP cells. SIRT1 blocked the NF-κB/NLRP3 pathway-mediated pyroptosis, thereby alleviating IDD. INTERPRETATION PRP-EVs deliver MALAT1 to regulate miR-217/SIRT1, thereby controlling NP cell pyroptosis in IDD.
Collapse
Affiliation(s)
- Xueqiang Tao
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China; Department of Orthopaedics, The Fourth Hospital of BaoTou, Baotou 014030, Inner Mongolia, China
| | - Fen Xue
- Department of Obstetrics and Gynecology, The Fourth Hospital of BaoTou, Baotou 014030, Inner Mongolia, China
| | - Jiayuan Xu
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China
| | - Wenbo Wang
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China.
| |
Collapse
|
30
|
Rahmati S, Khazaei M, Abpeikar Z, Soleimanizadeh A, Rezakhani L. Exosome-loaded decellularized tissue: Opening a new window for regenerative medicine. J Tissue Viability 2024; 33:332-344. [PMID: 38594147 DOI: 10.1016/j.jtv.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSCs-EXO) have received a lot of interest recently as a potential therapeutic tool in regenerative medicine. Extracellular vesicles (EVs) known as exosomes (EXOs) are crucial for cell-cell communication throughout a variety of activities including stress response, aging, angiogenesis, and cell differentiation. Exploration of the potential use of EXOs as essential therapeutic effectors of MSCs to encourage tissue regeneration was motivated by success in the field of regenerative medicine. EXOs have been administered to target tissues using a variety of methods, including direct, intravenous, intraperitoneal injection, oral delivery, and hydrogel-based encapsulation, in various disease models. Despite the significant advances in EXO therapy, various methods are still being researched to optimize the therapeutic applications of these nanoparticles, and it is not completely clear which approach to EXO administration will have the greatest effects. Here, we will review emerging developments in the applications of EXOs loaded into decellularized tissues as therapeutic agents for use in regenerative medicine in various tissues.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Arghavan Soleimanizadeh
- Faculty of Medicine, Graduate School 'Molecular Medicine, University of Ulm, 89081, Ulm, Germany
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
31
|
Jia S, Yang T, Gao S, Bai L, Zhu Z, Zhao S, Wang Y, Liang X, Li Y, Gao L, Zhang Z, Gao X, Li D, Chen S, Zhang B, Meng C. Exosomes from umbilical cord mesenchymal stem cells ameliorate intervertebral disc degeneration via repairing mitochondrial dysfunction. J Orthop Translat 2024; 46:103-115. [PMID: 38841339 PMCID: PMC11150913 DOI: 10.1016/j.jot.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 06/07/2024] Open
Abstract
Background Reactive oxygen species (ROS), predominantly generated by mitochondria, play a crucial role in the pathogenesis of intervertebral disc degeneration (IVDD). Reduction of ROS levels may be an effective strategy to delay IVDD. In this study, we assessed whether umbilical cord mesenchymal stem cell-exosomes (UCMSC-exos) can be used to treat IVDD by suppressing ROS production caused by mitochondrial dysfunction. Materials and methods Human UCMSC-exos were isolated and identified. Nucleus pulposus cells (NPCs) were stimulated with H2O2 in the presence or absence of exosomes. Then, 4D label free quantitative (4D-LFQ) proteomics were used to analyze the differentially expressed (DE) proteins. Mitochondrial membrane potential (MMP), mitochondrial ROS and protein levels were determined via immunofluorescence staining, flow cytometry and western blotting respectively. Additionally, high-throughput sequencing was performed to identify the DE miRNAs in NPCs. Finally, therapeutic effects of UCMSC-exos were investigated in a puncture-induced IVDD rat model. Degenerative grades of rat IVDs were assessed using magnetic resonance imaging and histochemical staining. Results UCMSC-exos effectively improved the viability of NPCs and restored the expression of the extracellular matrix (ECM) proteins, collagen type II alpha-1 (COL2A1) and matrix metalloproteinase-13 induced by H2O2. Additionally, UCMSC-exos not only reduced the total intracellular ROS and mitochondrial superoxide levels, but also increased MMP in pathological NPCs. 4D-LFQ proteomics and western blotting further revealed that UCMSC-exos up-regulated the levels of the mitochondrial protein, mitochondrial transcription factor A (TFAM), in H2O2-induced NPCs. High-throughput sequencing and qRT-PCR uncovered that UCMSC-exos down-regulated the levels of miR-194-5p, a potential negative regulator of TFAM, induced by H2O2. Finally, in vivo results showed that UCMSC-exos injection improved the histopathological structure and enhanced the expression levels of COL2A1 and TFAM in the rat IVDD model. Conclusions Our findings suggest that UCMSC-exos promote ECM synthesis, relieve mitochondrial oxidative stress, and attenuate mitochondrial dysfunction in vitro and in vivo, thereby effectively treating IVDD. The translational potential of this article This study provides solid experimental data support for the therapeutic effects of UCMSC-exos on IVDD, suggesting that UCMSC-exos will be a promising nanotherapy for IVDD.
Collapse
Affiliation(s)
- Shu Jia
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong Province, 250355, China
| | - Tao Yang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Sheng Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Luyue Bai
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Zhiguo Zhu
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong Province, 250355, China
| | - Siqi Zhao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Yexin Wang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Xiao Liang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Yanpeng Li
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Longfei Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Zifang Zhang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Xu Gao
- Department of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, Shandong Province, 266021, China
| | - Dongru Li
- Department of Clinical Medical College, Jining Medical University, 45 Jianshe Road, Jining, Shandong Province, 272000, China
| | - Shang Chen
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| | - Chunyang Meng
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272000, China
| |
Collapse
|
32
|
周 豪, 陈 涛, 吴 爱. [Effects of Oxidative Stress on Mitochondrial Functions and Intervertebral Disc Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:249-255. [PMID: 38645848 PMCID: PMC11026887 DOI: 10.12182/20240360201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 04/23/2024]
Abstract
Intervertebral disc degeneration is widely recognized as one of the main causes of lower back pain. Intervertebral disc cells are the primary cellular components of the discs, responsible for synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the discs. Additionally, intervertebral disc cells are involved in maintaining the nutritional and metabolic balance, as well as exerting antioxidant and anti-inflammatory effects within the intervertebral discs. Consequently, intervertebral disc cells play a crucial role in the process of disc degeneration. When these cells are exposed to oxidative stress, mitochondria can be damaged, which may disrupt normal cellular function and accelerate degenerative changes. Mitochondria serve as the powerhouse of cells, being the primary energy-producing organelles that control a number of vital processes, such as cell death. On the other hand, mitochondrial dysfunction may be associated with various degenerative pathophysiological conditions. Moreover, mitochondria are the key site for oxidation-reduction reactions. Excessive oxidative stress and reactive oxygen species can negatively impact on mitochondrial function, potentially leading to mitochondrial damage and impaired functionality. These factors, in turn, triggers inflammatory responses, mitochondrial DNA damage, and cell apoptosis, playing a significant role in the pathological processes of intervertebral disc cell degeneration. This review is focused on exploring the impact of oxidative stress and reactive oxygen species on mitochondria and the crucial roles played by oxidative stress and reactive oxygen species in the pathological processes of intervertebral disc cells. In addition, we discussed current cutting-edge treatments and introduced the use of mitochondrial antioxidants and protectants as a potential method to slow down oxidative stress in the treatment of disc degeneration.
Collapse
Affiliation(s)
- 豪 周
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 涛 陈
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 爱悯 吴
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
33
|
Zhou H, Qian Q, Chen Q, Chen T, Wu C, Chen L, Zhang Z, Wu O, Jin Y, Wang X, Guo Z, Sun J, Zhang J, Shen S, Wang X, Jones M, Khan MA, Makvandi P, Zhou Y, Wu A. Enhanced Mitochondrial Targeting and Inhibition of Pyroptosis with Multifunctional Metallopolyphenol Nanoparticles in Intervertebral Disc Degeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308167. [PMID: 37953455 DOI: 10.1002/smll.202308167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Chenyu Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiguang Zhang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jing Sun
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jun Zhang
- Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, 551700, China
| | - Shuying Shen
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham, B31 2AP, United Kingdom
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
34
|
Zheng D, Chen W, Chen T, Chen X, Liang J, Chen H, Shen H, Deng L, Ruan H, Cui W. Hydrogen Ion Capturing Hydrogel Microspheres for Reversing Inflammaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306105. [PMID: 37699155 DOI: 10.1002/adma.202306105] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Inflammaging is deeply involved in aging-related diseases and can be destructive during aging. The maintenance of pH balance in the extracellular microenvironment can alleviate inflammaging and repair aging-related tissue damage. In this study, the hydrogen ion capturing hydrogel microsphere (GMNP) composed of mineralized transforming growth factor-β (TGF-β) and catalase (CAT) nanoparticles is developed via biomimetic mineralization and microfluidic technology for blocking the NLRP3 cascade axis in inflammaging. This GMNP can neutralize the acidic microenvironment by capturing excess hydrogen ions through the calcium carbonate mineralization layer. Then, the subsequent release of encapsulated TGF-β and CAT can eliminate both endogenous and exogenous stimulus of NLRP3, thus suppressing the excessive activation of inflammaging. In vitro, GMNP can suppress the excessive activation of the TXNIP/NLRP3/IL-1β cascade axis and enhance extracellular matrix (ECM) synthesis in nucleus pulposus cells. In vivo, GMNP becomes a sustainable and stable niche with microspheres as the core to inhibit inflammaging and promote the regeneration of degenerated intervertebral discs. Therefore, this hydrogen ion-capturing hydrogel microsphere effectively reverses inflammaging by interfering with the excessive activation of NLRP3 in the degenerated tissues.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Wei Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Orthopaedics, Fujian Medical University Union Hospital, Xinquan Road No.29, Gulou District, Fuzhou, Fujian, 350001, China
| | - Tongtong Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiuyuan Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Jing Liang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
35
|
Zhang B, He Z, Guo J, Li F, Huang Z, Zheng W, Xing W, Li M, Zhu Y, Yang X. Sesamin-mediated high expression of BECN2 ameliorates cartilage endplate degeneration by reducing autophagy and inflammation. Aging (Albany NY) 2024; 16:1145-1160. [PMID: 38284902 PMCID: PMC10866406 DOI: 10.18632/aging.205386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024]
Abstract
Lumbar disc degeneration (LDD) is a prevalent clinical spinal disease characterized by the calcification and degeneration of the cartilage endplate (CEP), which significantly reduces nutrient supply to the intervertebral disc. Traditional Chinese medicine offers a conservative and effective approach for treating LDD. We aimed to investigate the molecular mechanisms underlying the therapeutic effects of Sesamin in LDD treatment. Transcriptome sequencing was used to analyze the effect of Sesamin on LPS-induced ATDC5. We explored the role of BECN2, a target gene of Sesamin, in attenuating LPS-induced degeneration of ATDC5 cells. Our results revealed the identification of 117 differentially expressed genes (DEGs), with 54 up-regulated and 63 down-regulated genes. Notably, Sesamin significantly increased the expression of BECN2 in LPS-induced ATDC5 cell degeneration. Overexpressed BECN2 enhanced cell viability and inhibited cell apoptosis in LPS-induced ATDC5 cells, while BECN2 knockdown reduced cell viability and increased apoptosis. Furthermore, BECN2 played a crucial role in attenuating chondrocyte degeneration by modulating autophagy and inflammation. Specifically, BECN2 suppressed autophagy by reducing the expression of ATG14, VPS34, and GASP1, and alleviated the inflammatory response by decreasing the expression of inflammasome proteins NLRP3, NLRC4, NLRP1, and AIM2. In vivo experiments further supported the beneficial effects of Sesamin in mitigating LDD. This study provides novel insights into the potential molecular mechanism of Sesamin in treating LDD, highlighting its ability to mediate autophagy and inflammation inhibition via targeting the BECN2. This study provides a new therapeutic strategy for the treatment of LDD, as well as a potential molecular target for LDD.
Collapse
Affiliation(s)
- Baining Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zhiwei He
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jialin Guo
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Feng Li
- Department of Spine Surgery, Area A, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zhi Huang
- Department of Spine Surgery, Area A, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wenkai Zheng
- Department of Spine Surgery, Area A, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wenhua Xing
- Department of Spine Surgery, Area A, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Manglai Li
- Department of Bone and Soft Tissue Oncology, The Affiliated People’s Hospital of inner Mongolia Medical University, Peking University Cancer Hospital, Hohhot, Inner Mongolia, China
| | - Yong Zhu
- Department of Bone and Soft Tissue Oncology, The Affiliated People’s Hospital of inner Mongolia Medical University, Peking University Cancer Hospital, Hohhot, Inner Mongolia, China
| | - Xuejun Yang
- Department of Spine Surgery, Area A, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
36
|
Wang Z, Li X, Yu P, Zhu Y, Dai F, Ma Z, Shen X, Jiang H, Liu J. Role of Autophagy and Pyroptosis in Intervertebral Disc Degeneration. J Inflamm Res 2024; 17:91-100. [PMID: 38204989 PMCID: PMC10778915 DOI: 10.2147/jir.s434896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Intervertebral disc degeneration is a chronic degenerative disease caused by the interaction of genetic and environmental factors, mainly manifested as lower back pain. At present, the diagnosis of intervertebral disc degeneration mainly relies on imaging. However, early intervertebral disc degeneration is usually insidious, and there is currently a lack of relevant clinical biomarkers that can reliably reflect early disease progression. Pyroptosis is a regulatory form of cell death triggered by the activation of inflammatory bodies and caspase, which can induce the formation of plasma membrane pores and cell swelling or lysis. Previous studies have shown that during the progression of intervertebral disc degeneration, sustained activation of inflammasomes leads to nuclear cell pyroptosis, which can occur in the early stages of intervertebral disc degeneration. Moreover, intervertebral disc nucleus pulposus cells adapt to the external environment through autophagy and maintain cellular homeostasis and studying the mechanism of autophagy in IDD and intervening in its pathological and physiological processes can provide new ideas for the clinical treatment of IDD. This review analyzes the effects of pyroptosis and autophagy on IDD by reviewing relevant literature in recent years, in order to explore the relationship between pyroptosis, autophagy and IDD.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Xiaochun Li
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Pengfei Yu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Yu Zhu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Feng Dai
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Zhijia Ma
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Xueqiang Shen
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Hong Jiang
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Jintao Liu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| |
Collapse
|
37
|
Yang S, Zhang Y, Peng Q, Meng B, Wang J, Sun H, Chen L, Dai R, Zhang L. Regulating pyroptosis by mesenchymal stem cells and extracellular vesicles: A promising strategy to alleviate intervertebral disc degeneration. Biomed Pharmacother 2024; 170:116001. [PMID: 38128182 DOI: 10.1016/j.biopha.2023.116001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of low back pain (LBP), which can lead to disability and thus generate a heavy burden on society. IVDD is characterized by a decrease in nucleus pulposus cells (NPCs) and endogenous mesenchymal stem cells (MSCs), degradation of the extracellular matrix, macrophage infiltration, and blood vessel and nerve ingrowth. To date, the therapeutic approaches regarding IVDD mainly include conservative treatment and surgical intervention. However, both can only relieve symptoms rather than stop or revert the progression of IVDD, since the pathogenesis of IVDD is not yet clear. Pyroptosis, which is characterized by Caspase family dependence and conducted by the Gasdermin family, is a newly discovered mode of programmed cell death. Pyroptosis has been observed in NPCs, annulus fibrosus cells (AFCs), chondrocytes, MSCs, macrophages, vascular endothelial cells and neurons and may contribute to IVDD. MSCs are a kind of pluripotent stem cell that can be found in almost all tissues. MSCs have a strong ability to secrete extracellular vesicles (EVs), which contain exosomes, microvesicles and apoptotic bodies. EVs derived from MSCs play an important role in pyroptosis regulation and could be beneficial for alleviating IVDD. This review focuses on clarifying the regulation of pyroptosis to improve IVDD by MSCs and EVs derived from MSCs.
Collapse
Affiliation(s)
- Sheng Yang
- Department of Orthopedics, Graduate School of Dalian Medical University, Dalian 116044, China
| | - Yongbo Zhang
- Department of Orthopedics, Graduate School of Dalian Medical University, Dalian 116044, China
| | - Qing Peng
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Bo Meng
- Department of Orthopedics, Graduate School of Dalian Medical University, Dalian 116044, China
| | - Jiabo Wang
- Department of Orthopedics, Huai'an 82 Hospital, Huai'an 223003, China
| | - Hua Sun
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Liuyang Chen
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Rui Dai
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
38
|
Chen B, Wang L, Xie D, Wang Y. Exploration and breakthrough in the mode of chondrocyte death - A potential new mechanism for osteoarthritis. Biomed Pharmacother 2024; 170:115990. [PMID: 38061136 DOI: 10.1016/j.biopha.2023.115990] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Osteoarthritis (OA) is a frequent chronic joint disease in orthopedics that effects individuals and society significantly. Obesity, aging, genetic susceptibility, and joint misalignment are all known risk factors for OA, but its pathomechanism is still poorly understood. Researches have revealed that OA is a much complex process related to inflammation, metabolic and chondrocyte death. It can affect all parts of the joint and is characterized by causing chondrocyte death and extracellular matrix descent. Previously, OA was thought to develop from excessive mechanical loading leading to the destruction of articular cartilage. Since some programmed cell deaths and OA share a pattern of chondrocyte destruction, it is likely that OA also involves programmed cell death. Even though chondrocyte apoptosis and pyroptosis have been investigated in OA, clarifing solely conventional cell death pathways is still insufficient to understand the pathophysiology of osteoarthritis. With more researches, it has been discovered that osteoarthritis and other new cell death processes, including PANoptosis, ferroptosis, and cell senescence, are strongly associated. Among these, PANoptosis combines the key traits of pyroptosis, cell apoptosis, and necrotic apoptosis into a highly coordinated and dynamically balanced programmed inflammatory cell death mechanism. Furthermore, we think that PANopotosis might obstruct necroptosis and cell senescence. Therefore, in order to offer direction for therapeutic treatment, we evaluate the development of research on multiple cell death of chondrocytes in OA.
Collapse
Affiliation(s)
- Bo Chen
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, China; Department of Rehabilitation Science, Hong Kong Polytechnic University, Hong Kong
| | - Ling Wang
- Department of Operating Room, The Affiliated Hospital of Southwest Medical University, China
| | - Dongke Xie
- Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, China; Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, China
| | - Yuanhui Wang
- Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, China; Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, China.
| |
Collapse
|
39
|
Chen L, Zhu L, Shi H, Xie ZY, Jiang ZL, Xu ZY, Zhang ZJ, Wu XT. Endoplasmic reticulum stress-mediated autophagy alleviates lipopolysaccharide-induced nucleus pulposus cell pyroptosis by inhibiting CHOP signaling in vitro. J Biochem Mol Toxicol 2024; 38:e23523. [PMID: 37654027 DOI: 10.1002/jbt.23523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Pyroptosis, a newly discovered pro-inflammatory programmed necrosis of cells, serves as an initiating and promoting event that leads to intervertebral disc (IVD) degeneration (IDD). Endoplasmic reticulum stress (ERS) and autophagy are vital regulatory mechanisms of cellular homeostasis, which is also closely related to IDD. However, the role and relationship of ERS and autophagy in the pyroptosis of nucleus pulposus cell (NPC) are not well understood. In this research, we aimed to elucidate the role and mechanism of ERS-C/EBP homologous protein (CHOP) in lipopolysaccharide (LPS)-induced cell pyroptosis and determine its interaction with autophagy. ERS and autophagy inducers or inhibitors were used or not in the preconditioning of rat NPCs. Cell viability, pyroptosis-related protein expression, caspase-1 activity assay, and enzyme-linked immunosorbent assay were performed to observe rat NPC pyroptosis after the treatment of LPS. Activation of the ERS pathway and autophagy were assessed by quantitative real-time PCR, western blot analyses, and immunofluorescence staining assay to classify the molecular mechanisms. Our results showed that LPS stimulation induced NPC pyroptosis with concomitant activation of the ERS-CHOP pathway and initiated autophagy. Activation of the ERS-CHOP pathway exacerbated rat NPC pyroptosis, whereas autophagy inhibited cell pyroptosis. LPS-induced cell pyroptosis and CHOP upregulation were negatively regulated by autophagy. LPS-induced autophagy was depressed by the ERS inhibitor but aggravated by the ERS inducer. Taken together, our findings suggested that LPS induced NPC pyroptosis by activating ERS-CHOP signaling and ERS mediated LPS-induced autophagy, which in turn alleviated NPC pyroptosis by inhibiting CHOP signaling.
Collapse
Affiliation(s)
- Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Zhu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hang Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi-Yang Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zan-Li Jiang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zheng-Yuan Xu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zi-Jian Zhang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
40
|
Gao Y, Chen X, Zheng G, Lin M, Zhou H, Zhang X. Current status and development direction of immunomodulatory therapy for intervertebral disk degeneration. Front Med (Lausanne) 2023; 10:1289642. [PMID: 38179277 PMCID: PMC10764593 DOI: 10.3389/fmed.2023.1289642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Intervertebral disk (IVD) degeneration (IVDD) is a main factor in lower back pain, and immunomodulation plays a vital role in disease progression. The IVD is an immune privileged organ, and immunosuppressive molecules in tissues reduce immune cell (mainly monocytes/macrophages and mast cells) infiltration, and these cells can release proinflammatory cytokines and chemokines, disrupting the IVD microenvironment and leading to disease progression. Improving the inflammatory microenvironment in the IVD through immunomodulation during IVDD may be a promising therapeutic strategy. This article reviews the normal physiology of the IVD and its degenerative mechanisms, focusing on IVDD-related immunomodulation, including innate immune responses involving Toll-like receptors, NOD-like receptors and the complement system and adaptive immune responses that regulate cellular and humoral immunity, as well as IVDD-associated immunomodulatory therapies, which mainly include mesenchymal stem cell therapies, small molecule therapies, growth factor therapies, scaffolds, and gene therapy, to provide new strategies for the treatment of IVDD.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiyue Chen
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| | - Guan Zheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| |
Collapse
|
41
|
Wang N, Mi Z, Chen S, Fang X, Xi Z, Xu W, Xie L. Analysis of global research hotspots and trends in immune cells in intervertebral disc degeneration: A bibliometric study. Hum Vaccin Immunother 2023; 19:2274220. [PMID: 37941392 PMCID: PMC10760394 DOI: 10.1080/21645515.2023.2274220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Intervertebral disc degeneration is an important pathological basis for spinal degenerative diseases. The imbalance of the immune microenvironment and the involvement of immune cells has been shown to lead to nucleus pulposus cells death. This article presents a bibliometric analysis of studies on immune cells in IDD in order to clarify the current status and hotspots. We searched the WOSCC, Scopus and PubMed databases from 01/01/2001 to 08/03/2023. We analyzed and visualized the content using software such as Citespace, Vosviewer and the bibliometrix. This study found that the number of annual publications is increasing year on year. The journal study found that Spine had the highest number of articles and citations. The country/regions analysis showed that China had the highest number of publications, the USA had the highest number of citations and total link strength. The institutional analysis found that Shanghai Jiao Tong University and Huazhong University of Science Technology had the highest number of publications, Tokai University had the highest citations, and the University of Bern had the highest total link strength. Sakai D and Risbud MV had the highest number of publications. Sakai D had the highest total link strength, and Risbud MV had the highest number of citations. The results of the keyword analysis suggested that the current research hotspots and future directions continue to be the study of the mechanisms of immune cells in IDD, the therapeutic role of immune cells in IDD and the role of immune cells in tissue engineering for IDD.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Zehua Mi
- Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Xiaoyang Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Wenqiang Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
42
|
Wu S, Liu S, Huang R, Zhou Y, Zou Y, Yang W, Zhang J. Adiponectin inhibits LPS-induced nucleus pulposus cell pyroptosis through the miR-135a-5p/TXNIP signaling pathway. Aging (Albany NY) 2023; 15:13680-13692. [PMID: 38048212 PMCID: PMC10756118 DOI: 10.18632/aging.205226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/15/2023] [Indexed: 12/06/2023]
Abstract
Pyroptosis, a newly discovered programmed cell death process, is characterized by NLRP3 inflammasome activation and pro-inflammatory mediator release. Nucleus pulposus (NP) cell pyroptosis is an important cause of intervertebral disc degeneration (IDD). Adiponectin (APN) is an adipokine and has an anti-inflammatory effect. However, whether and how APN protects against NP cell pyroptosis remains unexplored. Our results showed that human degenerated NP tissue displayed a significant increase in the protein levels of NLRP3, caspase-1 and GSDMD-N. APN expression was down-regulated in human degenerated NP tissue and NP cells challenged with lipopolysaccharide (LPS). Lentivirus-mediated overexpression of APN increased miR-135a-5p levels, decreased thioredoxin-interacting protein (TXNIP) expression and its interaction with NLRP3, and inhibited pyroptosis in human NP cells stimulated with LPS. TXNIP was identified as a direct target of miR-135a-5p. The inhibitory effects of APN on pyroptosis were reversed by pretreatment with miR-135a-5p inhibitor or lentiviral vector expressing TXNIP in LPS-treated human NP cells. In summary, these data suggest that APN restrains LPS-induced pyroptosis through the miR-135a-5p/TXNIP signaling pathway in human NP cells. Increasing APN levels could be a new approach to retard IDD.
Collapse
Affiliation(s)
- Shuang Wu
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shida Liu
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Rui Huang
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Youbing Zhou
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yongcheng Zou
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Wei Yang
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Jian Zhang
- The First Affiliated Hospital, Orthopedic Center, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| |
Collapse
|
43
|
Gao W, Bao J, Zhang Y, He D, Zhang L, Zhang J, Pan H, Wang D. Injectable kaempferol-loaded fibrin glue regulates the metabolic balance and inhibits inflammation in intervertebral disc degeneration. Sci Rep 2023; 13:20001. [PMID: 37968507 PMCID: PMC10651831 DOI: 10.1038/s41598-023-47375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023] Open
Abstract
To construct an injectable fibrin glue system loaded with kaempferol (FG@F) to improve the bioavailability of kaempferol and observe its efficacy in the treatment of intervertebral disc degeneration (IVDD). Kaempferol-loaded fibrin glue was first synthesized in advance. Subsequently, the materials were characterized by various experimental methods. Then, nucleus pulposus cells (NPCs) were stimulated with lipopolysaccharide (LPS) to establish a degenerative cell model, and the corresponding intervention treatment was conducted to observe the effect in vitro. Finally, the tail disc of rats was punctured to establish a model of IVDD, and the therapeutic effect of the material in vivo was observed after intervertebral disc injection. The FG@F system has good injectability, sustained release and biocompatibility. This treatment reduced the inflammatory response associated with IVDD and regulated matrix synthesis and degradation. Animal experimental results showed that the FG@F system can effectively improve needle puncture-induced IVDD in rats. The FG@F system has better efficacy than kaempferol or FG alone due to its slow release and mechanical properties. The drug delivery and biotherapy platform based on this functional system might also serve as an alternative therapy for IVDD.
Collapse
Affiliation(s)
- Wenshuo Gao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, People's Republic of China
| | - Jianhang Bao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
- Department of Orthopaedics, Yiwu Central Hospital, Yiwu, 322000, Zhejiang, People's Republic of China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jun Zhang
- Department of General Surgery, Institute of Orthopaedics and Traumatology, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China.
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang, People's Republic of China.
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang, People's Republic of China.
| | - Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, People's Republic of China.
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang, People's Republic of China.
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang, People's Republic of China.
| |
Collapse
|
44
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
45
|
Ruan H, Zhang H, Feng J, Luo H, Fu F, Yao S, Zhou C, Zhang Z, Bian Y, Jin H, Zhang Y, Wu C, Tong P. Inhibition of Caspase-1-mediated pyroptosis promotes osteogenic differentiation, offering a therapeutic target for osteoporosis. Int Immunopharmacol 2023; 124:110901. [PMID: 37839278 DOI: 10.1016/j.intimp.2023.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Pyroptosis, an emerging inflammatory form of cell death, has been previously demonstrated to stimulate a massive inflammatory response, thus hindering the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Nevertheless, the impact of pyroptosis in thwarting osteogenic differentiation and exacerbating the advancement of osteoporosis (OP) remains enigmatic. METHODS We evaluated the expression levels of pyroptosis-associated indicators, including NOD-like receptor family pyrin domain-containing protein 3 (NLRP3), CASPASE-1, IL-1β, and IL-18, in specimens obtained from femoral heads of OP patients, as well as in an ovariectomy-induced mouse model of OP. Subsequently, the precise roles of pyroptosis in osteogenic differentiation were investigated using bioinformatics analysis, alongside morphological and biochemical assessments. RESULTS The pivotal pyroptotic proteins, including NLRP3, Caspase-1, IL-1β, and IL-18, exhibited significant upregulation within the bone tissue samples of clinical OP cases, as well as in the femoral tissues of ovariectomy (OVX)-induced mouse OP model, displaying a negatively associated with compromised osteogenic capacity, as represented by lessened bone mass, suppressed expression of osteogenic proteins such as Runt-related transcription factor 2 (RUNX2), Alkaline phosphatase (ALP), Osterix (OSX), and Osteopontin (OPN), and increased lipid droplets. Moreover, bioinformatics analysis substantiated shared gene expression patterns between pyroptosis and OP pathology, encompassing NLRP3, Caspase-1, IL-1β, IL-18, etc. Furthermore, our in vitro investigation using ST2 cells revealed that dexamethasone treatment prominently induced pyroptosis while impeding osteogenic differentiation. Notably, gene silencing of Caspase-1 effectively counteracted the inhibitory effects of dexamethasone on osteogenic differentiation, as manifested by increased ALP activity and enhanced expression of RUNX2, ALP, OSX, and OPN. CONCLUSION Our findings unequivocally underscore that inhibition of Caspase-1-mediated pyroptosis promotes osteogenic differentiation, providing a promising therapeutic target for managing OP.
Collapse
Affiliation(s)
- Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huihao Zhang
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei, China; Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Jing Feng
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei, China
| | - Huan Luo
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yishan Bian
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuliang Zhang
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China.
| | - Chengliang Wu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
46
|
Guo D, Cheng K, Song C, Liu F, Cai W, Chen J, Mei Y, Zhou D, Gao S, Wang G, Liu Z. Mechanisms of inhibition of nucleus pulposus cells pyroptosis through SDF1/CXCR4-NFkB-NLRP3 axis in the treatment of intervertebral disc degeneration by Duhuo Jisheng Decoction. Int Immunopharmacol 2023; 124:110844. [PMID: 37647678 DOI: 10.1016/j.intimp.2023.110844] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the leading causes of lower back pain and the most common health problem in the world. Inflammasomes, which is mainly caused by NLRP3, mediated nucleus pulposus pyroptosis has been discovered to be strongly related to IVDD. In addition, Duhuo Jisheng Decoction (DHJSD) has anti-inflammatory and regulatory effects on NLRP3 inflammasome, but the molecular mechanism of whether DHJSD can regulate pyroptosis through NLRP3 to treat IVDD is unclear. In this study, we used a bioinformatics way to discover the molecular mechanism of DHJSD regulation of pyroptosis in IVDD, and validated our predictions through vitro and vivo experiments. Through bioinformatics, we found that NLRP3, GSDMD, IL-1βand other hub proteins of pyroptosis were highly expressed in IVDD SD rats, and network pharmacology discovered that DHJSD may control cellular senescence, apoptosis, and pyroptosis in order to treat IVDD. Additional findings demonstrated that DHJSD could successfully treat IVDD brought on by imaging and histomorphological analysis. Western blot showed that NLRP3, a key protein of pyroptosis, was elevated in rat degenerated nucleus pulposus tissue and lipopolysaccharide-treated Nucleus pulposus Cells (NPCs), and that DHJSD intervention was effective in reducing LPS-induced inflammatory responses and further suppressing the expression of pyroptosis related proteins to improve IVDD. The specific mechanism is that DHJSD inhibits NPCs pyroptosis via the SDF-1/CXCR4-NF-kB-NLRP3 axis. In conclusion, we revealed the intrinsic mechanism of DHJSD regulation of NPCs pyroptosis to improve IVDD and its intrinsic value for IVDD treatment.
Collapse
Affiliation(s)
- Daru Guo
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China; RuiKang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jingwen Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Silong Gao
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Guoyou Wang
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China; Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan Province, China.
| |
Collapse
|
47
|
Jinying W, Keming L, Hanqing T, Xuqing Z, Muccee F, Xuan L, Yalin L, Meiye S, Shumin Z, Selvaraj C, Safi SZ. Role and anti-inflammatory mechanisms of acupuncture and moxibustion therapy on pain relief through NOX-ROS-NLRP3 pathway in CCI rats models. Mol Biol Rep 2023; 50:9367-9378. [PMID: 37819498 DOI: 10.1007/s11033-023-08858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE To observe the effects of acupuncture and moxibustion therapy on pain relief in sciatica rats and to explore the mechanism of its anti-inflammatory effect. METHODS SPF grade 4-6-week-old Kunming rats were randomly divided into 5 groups including a blank group, sham-operated group, model group, acupuncture, and moxibustion (AnM) group, and positive group. A total of 10 rats were included in each group. The model group, the AnM group, and the positive group were prepared by ligating the left sciatic nerve. AnM group was used for acupuncture and moxibustion therapy intervention, and the positive group was rendered to quick-acting sciatica pills once a day for 7 days (3 courses of treatment). The blank group, sham-operated group, and model group were not treated. The changes in thermal and mechanical pain thresholds were observed before and after the operation, and the morphological changes of the dorsal horn of the spinal cord in the lumbosacral region of the rats in each group were observed by HE staining after the courses of treatment finished. The contents of IL-1β, IL-6, IL-18, and TNF-α were measured by ELISA and the expressions of NOX1, NOX2, NOX4, and NLRP3 genes were detected by RT-qPCR while the protein expressions of NOX1, NOX2, NOX4 and NLRP3 were analyzed by Western blotting. RESULTS The AnM and positive group showed a significant increase in thermal and mechanical pain thresholds after treatment, while there was no significant change in the model group. As compared to the control group, the contents of IL- 1β, IL-6, IL-18, and TNF-α, as well as the relative expressions of NOX1, NOX2, NOX4, and NLRP3 genes were significantly increased in the model group (P < 0.05 or P < 0.01). As compared to the model group, the contents of IL-1β, IL-6, IL-18, and TNF-α, as well as the relative expressions of NOX1, NOX2, NOX4, and NLRP3 genes significantly decreased in the AnM and positive groups (P < 0.05 or P < 0.01). The pathological changes of inflammatory infiltration of tissue cells in the dorsal horn of the lumbosacral spinal cord were slowed in the AnM group. CONCLUSION Acupuncture and moxibustion therapy have a positive effect on pain relief and anti-inflammatory effects in CCI sciatica rats, which may point to the regulation of NOX1, NOX2, NOX4, and NLRP3 expressions, and inhibition of ROS.
Collapse
Affiliation(s)
- Wang Jinying
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Li Keming
- Youjiang Medical University for Nationalities, Baise, 533000, China
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, 42610, Jenjarom, Selangor, Malaysia
| | - Tang Hanqing
- Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Zhang Xuqing
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Fatima Muccee
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Luo Xuan
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Liu Yalin
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Song Meiye
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Zhang Shumin
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Chandrabose Selvaraj
- Laboratory for Artificial Intelligence and Molecular Modelling, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 600077, India
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, 42610, Jenjarom, Selangor, Malaysia.
| |
Collapse
|
48
|
Chen Y, Cao X, Pan B, Du H, Li B, Yang X, Chen X, Wang X, Zhou T, Qin A, Zhao C, Zhao J. Verapamil attenuates intervertebral disc degeneration by suppressing ROS overproduction and pyroptosis via targeting the Nrf2/TXNIP/NLRP3 axis in four-week puncture-induced rat models both in vivo and in vitro. Int Immunopharmacol 2023; 123:110789. [PMID: 37579541 DOI: 10.1016/j.intimp.2023.110789] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Low back pain is usually caused by intervertebral disc degeneration (IVDD), during which the involvement of oxidation system imbalance and inflammasome activation cannot be neglected. In this study, we aimed to validate the expression level of TXNIP in IVDD and investigate the function and potential mechanism of action of verapamil. TXNIP is upregulated in the degenerate nucleus pulposus in both humans and rats, as well as in tert-butyl hydroperoxide (TBHP)-stimulated nucleus pulposus cells. Administration of verapamil, a classic clinical drug, mitigated the TBHP-induced overproduction of reactive oxygen species and activation of the NLRP3 inflammasome, thus protecting cells from pyroptosis, apoptosis, and extracellular matrix degradation. The Nrf2/TXNIP/NLRP3 axis plays a major role in verapamail-mediated protection. In vivo, a puncture-induced IVDD rat model was constructed, and we found that verapamil delayed the development of IVDD at both the imaging and histological levels. In summary, our results indicate the potential therapeutic effects and mechanisms of action of verapamil in the treatment of IVDD.
Collapse
Affiliation(s)
- Yan Chen
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xiankun Cao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Bin Pan
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Han Du
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Baixing Li
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xiao Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xin Wang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Tangjun Zhou
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - An Qin
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| | - Changqing Zhao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| | - Jie Zhao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| |
Collapse
|
49
|
Wu X, Chen M, Lin S, Chen S, Gu J, Wu Y, Qu M, Gong W, Yao Q, Li H, Zou X, Chen D, Xiao G. Loss of Pinch Proteins Causes Severe Degenerative Disc Disease-Like Lesions in Mice. Aging Dis 2023; 14:1818-1833. [PMID: 37196110 PMCID: PMC10529740 DOI: 10.14336/ad.2023.0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/12/2023] [Indexed: 05/19/2023] Open
Abstract
Degenerative disc disease (DDD) is one of the most common skeletal disorders affecting aged populations. DDD is the leading cause of low back/neck pain, resulting in disability and huge socioeconomic burdens. However, the molecular mechanisms underlying DDD initiation and progression remain poorly understood. Pinch1 and Pinch2 are LIM-domain-containing proteins with crucial functions in mediating multiple fundamental biological processes, such as focal adhesion, cytoskeletal organization, cell proliferation, migration, and survival. In this study, we found that Pinch1 and Pinch2 were both highly expressed in healthy intervertebral discs (IVDs) and dramatically downregulated in degenerative IVDs in mice. Deleting Pinch1 in aggrecan-expressing cells and Pinch2 globally (AggrecanCreERT2; Pinch1fl/fl; Pinch2-/-) caused striking spontaneous DDD-like lesions in lumbar IVDs in mice. Pinch loss inhibited cell proliferation and promoted extracellular matrix (ECM) degradation and apoptosis in lumbar IVDs. Pinch loss markedly enhanced the production of pro-inflammatory cytokines, especially TNFα, in lumbar IVDs and exacerbated instability-induced DDD defects in mice. Pharmacological inhibition of TNFα signaling mitigated the DDD-like lesions caused by Pinch loss. In human degenerative NP samples, reduced expression of Pinch proteins was correlated with severe DDD progression and a markedly upregulated expression of TNFα. Collectively, we demonstrate the crucial role of Pinch proteins in maintaining IVD homeostasis and define a potential therapeutic target for DDD.
Collapse
Affiliation(s)
- Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Sixiong Lin
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Sheng Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Jingliang Gu
- Department of Orthopedics, Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China.
| | - Yuchen Wu
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Huiping Li
- Department of Respiratory and Critical Care Medicine, Shenzhen People’s Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
50
|
Jia Z, Zhang S, Li W. Harnessing Stem Cell-Derived Extracellular Vesicles for the Regeneration of Degenerative Bone Conditions. Int J Nanomedicine 2023; 18:5561-5578. [PMID: 37795043 PMCID: PMC10546935 DOI: 10.2147/ijn.s424731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023] Open
Abstract
Degenerative bone disorders such as intervertebral disc degeneration (IVDD), osteoarthritis (OA), and osteoporosis (OP) pose significant health challenges for aging populations and lack effective treatment options. The field of regenerative medicine holds promise in addressing these disorders, with a focus on utilizing extracellular vesicles (EVs) derived from stem cells as an innovative therapeutic approach. EVs have shown great potential in stimulating biological responses, making them an attractive candidate for rejuvenating degenerative bone disorders. However, a comprehensive review summarizing the current state of this field and providing a clear assessment of EV-based therapies in degenerative bone disorders is currently deficient. In this review, we aim to fill the existing gap by outlining the current knowledge on the role of EVs derived from different types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells, in bone regeneration. Furthermore, we discuss the therapeutic potential of EV-based treatments for IVDD, OA, and OP. By substantiating the use of stem cell-derived EVs, we highlight their promising potential as a cell-free strategy to improve degenerative bone disorders.
Collapse
Affiliation(s)
- Zhiwei Jia
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 101100, People’s Republic of China
| | - Shunxin Zhang
- Department of Ultrasound, 2nd Medical Center of PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Wei Li
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
| |
Collapse
|