1
|
Shan Y, Lu J, Qian H, Xia Z, Mo X, An M, Yang W, Wang S, Che D, Wang C, He H. Immobilized protein strategies based on cell membrane chromatography and its application in discovering active and toxic substances in traditional Chinese medicine. Pharmacol Res 2024; 210:107492. [PMID: 39491633 DOI: 10.1016/j.phrs.2024.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Traditional Chinese medicine (TCM) contributes significantly to human health. Owing to the complexity of the ingredients in TCM, it is necessary to conduct basic research on effective substances and identify toxic substances to control the safety of medication. Cell membrane chromatography (CMC) is an important method for identifying target components in complex systems. The cell membrane stationary phase (CMSP) is the core component and key factor in determining the effectiveness of CMC. This review summarizes the development of CMSP with different membrane protein immobilization strategies and the application of CMC in the discovery of active and toxic substances in TCM, with the aim of providing an effective means for the discovery of active ingredients and quality control of TCM.
Collapse
Affiliation(s)
- Yi Shan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jiayu Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Hua Qian
- Department of Cardiology, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zhaomin Xia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiaoxue Mo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Meidi An
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Siqi Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Delu Che
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University Second Afffliated Hospital, Xi'an 710000, PR China
| | - Cheng Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Huaizhen He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
2
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [PMID: 38663779 DOI: 10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.
Collapse
Affiliation(s)
- Yingkun Sheng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guibing Meng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaopeng Chen
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [DOI: https:/doi.org/10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
4
|
Zeng R, Zhang Y, Shi S, Long X, Zhang H, Wang M, Shi J, Jiang Y, Chen B. Study on the mechanism of Panax notoginseng-Salvia miltiorrhiza herb pair on invigorating blood circulation and eliminating blood stasis by blocking the conversion of arachidonic acid to prostaglandin. J Nat Med 2024; 78:411-426. [PMID: 38261160 DOI: 10.1007/s11418-023-01773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/10/2023] [Indexed: 01/24/2024]
Abstract
We combined untargeted and targeted metabolomics to explore the mechanism of blood circulation and blood stasis activation in the traditional Chinese herb pair Panax notoginseng-Salvia miltiorrhiza (PS). In this study, the right hind limb of SD rats was struck by a 1 kg weight, causing traumatic blood stasis (TBS) model, then the rats were gavaged with PS (at ratios of 1:0, 0:1, 3:1, 1:1, and 1:3) for 5 consecutive days. At the end of treatment, blood samples were collected for blood rheology and metabolomics analysis, and muscle tissues of injured limbs were used for HE staining and q-PCR analysis. The results showed that different ratios of PS reduced swelling and improved stasis and blood viscosity in the injured limbs of rats, and intervened in metabolism by modulating 11, 11, 17, 15, and 13 differential metabolites, respectively. The PS (3:1) shows the best treatment effect and the most differential metabolites regression. Targeted metabolomics shows that PS (3:1) can increase the content of AA, and reduce the content of PGF2-α by down-regulating the expression of enzymes Ptgs1 and Cbrl12 and up-regulating the expression of enzyme Hpgd. These results suggested that the PS herb pair exerts its blood stasis activating effects by blocking the conversion of arachidonic acid to prostaglandins.
Collapse
Affiliation(s)
- Rui Zeng
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
- Key Research Laboratory of Chinese Medicine Release System, National Institute of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
| | - Yuefan Zhang
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
- Key Research Laboratory of Chinese Medicine Release System, National Institute of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
| | - Shengtong Shi
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
- Key Research Laboratory of Chinese Medicine Release System, National Institute of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
| | - Xianqin Long
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210036, China
| | - Haixia Zhang
- Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Min Wang
- Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jianfeng Shi
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
| | - Ye Jiang
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
| | - Bin Chen
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China.
- Key Research Laboratory of Chinese Medicine Release System, National Institute of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China.
| |
Collapse
|
5
|
Du K, Liu T, Ma W, Guo J, Chen S, Wen J, Zhou R, Cui Y, Wang S, Li L, Li J, Chang Y. A global profiling strategy for identification of the total constituents in Chinese herbal medicine based on online comprehensive two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry combined with intelligentized chemical classification guidance. J Chromatogr A 2023; 1710:464387. [PMID: 37757527 DOI: 10.1016/j.chroma.2023.464387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
A comprehensive strategy for effective identification of total constituents in Chinese patent medicine has been advanced applying full scan-preferred parent ions capture-static and active exclusion (FS-PIC-SAE) acquisition coupled with intelligent deep-learning supported mass defect filter (MDF) process, with Naoxintong capsule (NXT) as a case. Online comprehensive two-dimensional liquid chromatography (2DLC) coupled with Q-TOF-MS/MS system was established for obtaining the excellent separation and detection performance of total components, which could exhibit excellent peak capacity with 1052 and orthogonality with 0.69. In addition, a total of 901 unknown compounds could be classified into nine chemical classes rapidly and effectively, based on the intelligent deep-learning algorithm supported MDF model with 96.4% accuracy. Consequently, 276 compounds were successfully identified from NXT, especially including 44 flavonoids, 27 phenolic acids, 25 fatty acids, 17 saponins, 21 phthalocyanines, 20 triterpenes, 10 monoterpenes, 13 diterpenoid ketones, 14 amino acids, and others. It is concluded that the proposed program is an effective and practical strategy enabling the in-depth chemical profiling of complex herbal and biological samples.
Collapse
Affiliation(s)
- Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tianyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wentao Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiading Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiake Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Liu C, Liu Q, Nian M, Wu H, Cao S, Wu H, Dong T, Wu P, Zhou A. Identification and quantitative analysis of the chemical constituents of Gandouling tablets using ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Sep Sci 2023; 46:e2300060. [PMID: 37344982 DOI: 10.1002/jssc.202300060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Gandouling tablets are used in a clinical agent for the treatment of hepatocellular degeneration; however, their chemical constituents have not been elucidated. Here, we screened and identified the chemical constituents of Gandouling tablets using ultra-high-performance liquid chromatography (UHPLC)-quadrupole time of flight/mass spectrometry. A method for the quality evaluation of Gandouling tablets was developed by combining the UHPLC fingerprints and the simultaneous quantitative analysis of multiple active ingredients. For fingerprint analysis, 20 shared peaks were identified to assess the similarities among the 10 batches of Gandouling tablets and the similarity was >0.9. The levels of nine representative active ingredients were simultaneously determined to ensure consistency in quality. A total of 99 chemical components were identified, including 18 alkaloids, 20 anthraquinones, 13 flavonoids, 11 phenolic acids, 9 polyphenols, 7 phenanthrenes, 5 sesquiterpenes, 3 curcuminoids, 2 lignans, 2 isoflavones, 2 dianthranones, and 7 other components. The retention times, molecular formulae, and secondary fragmentation information of these compounds were analyzed, and the cleavage pathways and characteristic fragments of some of the representative compounds were elucidated. This systematic analysis used to identify the chemical components of Gandouling tablets lays the foundation for its further quality control and research on their pharmacodynamic substances.
Collapse
Affiliation(s)
- Cuicui Liu
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Qiao Liu
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Mengnan Nian
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, P. R. China
| | - Shijian Cao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Huan Wu
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, P. R. China
| | - Ting Dong
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Peng Wu
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, P. R. China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, P. R. China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, P. R. China
| |
Collapse
|
7
|
Li M, Rao C, Ye X, Wang M, Yang B, Wang C, Guo L, Xiong Y, Cui X. Applications for natural deep eutectic solvents in Chinese herbal medicines. Front Pharmacol 2023; 13:1104096. [PMID: 36699048 PMCID: PMC9868165 DOI: 10.3389/fphar.2022.1104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Chinese herbal medicines (CHMs), with a wide range of bioactive components, are considered to be an important source for new drug discovery. However, the process to isolate and obtain those bioactive components to develop new drugs always consumes a large amount of organic solvents with high toxicity and non-biodegradability. Natural deep eutectic solvents (NADES), a new type of green and designable solvents composed of primary plant-based metabolites, have been used as eco-friendly substitutes for traditional organic solvents in various fields. Due to the advantages of easy preparation, low production cost, low toxicity, and eco-friendliness, NADES have been also applied as extraction solvents, media, and drug delivery agents in CHMs in recent years. Besides, the special properties of NADES have been contributed to elucidating the traditional processing (also named Paozhi in Chinese) theory of CHMs, especially processing with honey. In this paper, the development process, preparation, classification, and applications for NADES in CHMs have been reviewed. Prospects in the future applications and challenges have been discussed to better understand the possibilities of the new solvents in the drug development and other uses of CHMs.
Collapse
Affiliation(s)
- Minghui Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Cheng Rao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqian Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Mei Wang
- Leiden University–European Center for Chinese Medicine and Natural Compounds, Institute of Biology Leiden, Leiden University, Leiden, Netherlands,SU Biomedicine BV, Leiden, Netherlands
| | - Boyuan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Liqun Guo
- Center for Drug Discovery & Technology Development of Yunnan Traditional Medicine, Kunming, China
| | - Yin Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China,Leiden University–European Center for Chinese Medicine and Natural Compounds, Institute of Biology Leiden, Leiden University, Leiden, Netherlands,*Correspondence: Yin Xiong, ; Xiuming Cui,
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China,*Correspondence: Yin Xiong, ; Xiuming Cui,
| |
Collapse
|
8
|
Xue Y, Zhang L, Zhang L, Sun W, Fang Z, Leng Y, Li M, Ren X, Zhang R, Zhang Y, Chen L, Wang H. Danshensu prevents thrombosis by inhibiting platelet activation via SIRT1/ROS/mtDNA pathways without increasing bleeding risk. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154271. [PMID: 35777120 DOI: 10.1016/j.phymed.2022.154271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Coronary thrombosis and its correlated disorders are main healthcare problems globally. The therapeutic effects of current treatments involving antiplatelet drugs are not fully satisfactory. Danshensu (DSS) is an important monomer obtained from Salvia miltiorrhiza roots that have been widely employed for vascular diseases in medicinal practices. Nonetheless, the underlying mechanisms of DSS are not fully unraveled. PURPOSE The objective of this study was to penetrate the antithrombotic and antiplatelet mechanisms of DSS. METHODS Network pharmacology assay was used to forecast the cellular mechanisms of DSS for treating thrombosis. The work focused the impacts of DSS on platelet activation by analyzing aggregation and adhesion in vitro. Flow cytometry, western blotting, CM-H2DCFDA staining and mitochondrial function assays were performed to reveal the molecular mechanisms. The model of common carotid artery thrombus induced by ferric chloride was established. The wet weight of thrombus was measured, and the thrombosis was observed by hematoxylin and eosin (H&E) staining, in order to support the inhibitory effect of DSS on thrombosis. RESULTS Data mining found the antithrombotic effect of DSS is related to platelet activation and the core target is silent information regulator 1 (SIRT1). We confirmed that DSS dose-dependently inhibited platelet activation in vitro. DSS was further demonstrated to induce the expression of SIRT1 and decreased reactive oxygen species (ROS) burden and thereby prevented mitochondrial dysfunction. Mitochondrial function tests further indicated that DSS prevented mitochondrial DNA (mtDNA) release, which induced activation of platelet in a dendritic cell specific intercellular-adhesion-molecule-3 grabbing non-integrin (DC-SIGN)-dependent manner. In carotid artery injury model induced by ferric chloride, DSS inhibited the development of carotid arterial thrombosis. More encouragingly, in tail bleeding time assay, DSS did not augment bleeding risk. CONCLUSION These findings indicated that DSS effectively inhibited platelet activation by depressing the collection of ROS and the release of platelet mtDNA without arousing hemorrhage risk. DSS might represent a promising candidate drug for thrombosis and cardiovascular disease therapeutics.
Collapse
Affiliation(s)
- Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Liyuan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Zhirui Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Mengyao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Xiuyun Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Rui Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Yingxue Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, 301617 Tianjin, China; Tianjin State Key Laboratory of Modern Chinese Medicine, 301617 Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China.
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, 301617 Tianjin, China; Tianjin State Key Laboratory of Modern Chinese Medicine, 301617 Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China.
| |
Collapse
|
9
|
Zhang YG, Liu XX, Zong JC, Zhang YTJ, Dong R, Wang N, Ma ZH, Li L, Wang SL, Mu YL, Wang SS, Liu ZM, Han LW. Investigation Driven by Network Pharmacology on Potential Components and Mechanism of DGS, a Natural Vasoprotective Combination, for the Phytotherapy of Coronary Artery Disease. Molecules 2022; 27:molecules27134075. [PMID: 35807320 PMCID: PMC9268537 DOI: 10.3390/molecules27134075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Phytotherapy offers obvious advantages in the intervention of Coronary Artery Disease (CAD), but it is difficult to clarify the working mechanisms of the medicinal materials it uses. DGS is a natural vasoprotective combination that was screened out in our previous research, yet its potential components and mechanisms are unknown. Therefore, in this study, HPLC-MS and network pharmacology were employed to identify the active components and key signaling pathways of DGS. Transgenic zebrafish and HUVECs cell assays were used to evaluate the effectiveness of DGS. A total of 37 potentially active compounds were identified that interacted with 112 potential targets of CAD. Furthermore, PI3K-Akt, MAPK, relaxin, VEGF, and other signal pathways were determined to be the most promising DGS-mediated pathways. NO kit, ELISA, and Western blot results showed that DGS significantly promoted NO and VEGFA secretion via the upregulation of VEGFR2 expression and the phosphorylation of Akt, Erk1/2, and eNOS to cause angiogenesis and vasodilation. The result of dynamics molecular docking indicated that Salvianolic acid C may be a key active component of DGS in the treatment of CAD. In conclusion, this study has shed light on the network molecular mechanism of DGS for the intervention of CAD using a network pharmacology-driven strategy for the first time to aid in the intervention of CAD.
Collapse
Affiliation(s)
- You-Gang Zhang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Xia-Xia Liu
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030000, China
| | - Jian-Cheng Zong
- Chenland Research Institute, Irvine, CA 92697, USA; (J.-C.Z.); (L.L.); (S.-L.W.)
| | - Yang-Teng-Jiao Zhang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Rong Dong
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Na Wang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030000, China
| | - Zhi-Hui Ma
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Li Li
- Chenland Research Institute, Irvine, CA 92697, USA; (J.-C.Z.); (L.L.); (S.-L.W.)
| | - Shang-Long Wang
- Chenland Research Institute, Irvine, CA 92697, USA; (J.-C.Z.); (L.L.); (S.-L.W.)
| | - Yan-Ling Mu
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Song-Song Wang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
| | - Zi-Min Liu
- Chenland Nutritionals Inc., Irvine, CA 92697, USA
- Correspondence: (Z.-M.L.); (L.-W.H.)
| | - Li-Wen Han
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China; (Y.-G.Z.); (X.-X.L.); (Y.-T.-J.Z.); (R.D.); (N.W.); (Z.-H.M.); (Y.-L.M.); (S.-S.W.)
- Correspondence: (Z.-M.L.); (L.-W.H.)
| |
Collapse
|
10
|
Du KZ, Cui Y, Chen S, Yang R, Shang Y, Wang C, Yan Y, Li J, Chang YX. An integration strategy combined progressive multivariate statistics with anticoagulant activity evaluation for screening anticoagulant quality markers in Chinese patent medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114964. [PMID: 34990765 DOI: 10.1016/j.jep.2021.114964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The cardiovascular and cerebrovascular diseases affect human health globally. Naoxintong capsules (NXTs), a famous Chinese Patent Medicine, has been especially applied to treat cerebral infarction and coronary heart disease in clinical practice. The anticoagulant activity of this prescription plays an important role in this course of treatment. AIM OF THE STUDY Thrombin and factor Xa (FXa) are two key targets considering the anticoagulant activity. The purpose of this investigation is to screen the quanlity markers as key thrombin and FXa inhibitors for the anticoagulant activity oriented quality control of Chinese patent medicine. MATERIALS AND METHODS Simple multi-polar solvent extraction processes using various proportions of solvents were conducted and their thrombin/FXa inhibitory activities were evaluated in vitro. Bivariate correlation analysis (BCA), grey correlation analysis (GCA), and orthogonal partial least squares discriminate analysis (OPLS-DA) were adopted for screening the potential active markers related to the anticoagulant activity. The chemical structures of these active compounds were identified by UHPLC-Q-TOF-MS/MS and their thrombin/FXa inhibitory activity was determined. The molecular docking technology was applied to explore the interaction between the compounds and targets. The contribution of these anticoagulant active ingredients in NXT was also investigated. Last but not the least, the contents of these markers in NXT were determined by liquid chromatography-electrospray ionization tandem triple quadrupole mass spectrometry (HPLC-ESI-MS/MS) method. RESULTS The results showed that the NXT extract exhibited great activity against thrombin and FXa, especially extracted by 75% methanol (v/v). Six marker compounds with potential anticoagulant activity were screened out. Therein, four of the active compounds owing thrombin inhibitory activity (paeoniflorin, lithospermic acid, salvianolic acid B, Z-ligustilide) and five of the active compounds owing FXa inhibitory activity (3,5-dicaffeoylquinic acid, rosmarinic acid, lithospermic acid, salvianolic acid B and Z-ligustilide). In addition, these active compounds accounted for a large proportion of thrombin/FXa inhibitory activity of NXTs. The binding energy also showed the strong interaction formed by close connection of the compounds to the residues of targets. CONCLUSIONS The proposed integrated stategy could be an efficient strategy to screen potential thrombin/FXa inhibitors for the bioactivity related quanlity control of Chinese patent medicine.
Collapse
Affiliation(s)
- Kun-Ze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenhong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yiqi Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
11
|
Yang Y, He Y, Wei X, Wan H, Ding Z, Yang J, Zhou H. Network Pharmacology and Molecular Docking-Based Mechanism Study to Reveal the Protective Effect of Salvianolic Acid C in a Rat Model of Ischemic Stroke. Front Pharmacol 2022; 12:799448. [PMID: 35153756 PMCID: PMC8828947 DOI: 10.3389/fphar.2021.799448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Salvianolic acid C (SAC) is a major bioactive component of Salvia miltiorrhiza Bunge (Danshen), a Chinese herb for treating ischemic stroke (IS). However, the mechanism by which SAC affects the IS has not yet been evaluated, thus a network pharmacology integrated molecular docking strategy was performed to systematically evaluate its pharmacological mechanisms, which were further validated in rats with cerebral ischemia. A total of 361 potential SAC-related targets were predicted by SwissTargetPrediction and PharmMapper, and a total of 443 IS-related targets were obtained from DisGeNET, DrugBank, OMIM, and Therapeutic Target database (TTD) databases. SAC-related targets were hit by the 60 targets associated with IS. By Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment combined with the protein-protein interaction (PPI) network and cytoHubba plug-ins, nine related signaling pathways (proteoglycans in cancer, pathways in cancer, PI3K-Akt signaling pathway, Focal adhesion, etc.), and 20 hub genes were identified. Consequently, molecular docking indicated that SAC may interact with the nine targets (F2, MMP7, KDR, IGF1, REN, PPARG, PLG, ACE and MMP1). Four of the target proteins (VEGFR2, MMP1, PPARγ and IGF1) were verified using western blot. This study comprehensively analyzed pathways and targets related to the treatment of IS by SAC. The results of western blot also confirmed that the SAC against IS is mainly related to anti-inflammatory and angiogenesis, which provides a reference for us to find and explore the effective anti-IS drugs.
Collapse
Affiliation(s)
- Yuting Yang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoyu Wei
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Zhang F, Jiang Y, Jiao P, Li S, Tang C. Ligand fishing via a monolithic column coated with white blood cell membranes: A useful technique for screening active compounds in Astractylodes lancea. J Chromatogr A 2021; 1656:462544. [PMID: 34543881 DOI: 10.1016/j.chroma.2021.462544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023]
Abstract
The cell membrane-coated monolithic column (CMMC) ligand fishing assay is an interesting approach set up for the study of natural products (NPs). NPs such as Atractylodes lancea contain many compounds. Traditional methods used to separate compounds and determine active compounds by pharmacological tests are time-consuming and inefficient. Therefore, an alternative method is required to determine active compounds in NPs. Here, white blood cells were broken, and the white blood cell membranes (WBCMs) were immobilized on the surface of a monolithic column to form a CMMC. The column was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. Combined with gas chromatography/mass spectrometry (GC/MS), the CMMC was used to screen active compounds in Atractylodes lancea. Three potential active compounds including hinesol, β-eudesmol, and 4-phenylbenzaldehyde were discovered. A molecular docking assay demonstrated that these compounds could bind to MD-2 laid on WBCMs. In addition, antiinflammatory effects by the discovered compound in vitro were confirmed, and β-eudesmol showed a concentration-dependent inhibitory effect on the tumor necrosis factor (TNF)-α of a RAW264.7 cell (P < 0.05). The CMMC ligand fishing assay exhibits good selectivity, great speed effects and is a potentially reliable tool for drug discovery in NPs.
Collapse
Affiliation(s)
- Fan Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Jiang
- Department of Pharmacy, Tianjin Union Medical Center, 130, Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Pan Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shaoyong Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Cheng Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
13
|
Pan J, Zhang L, Xiong D, Li B, Qu H. A HPLC-DAD-MS/MS Method for Simultaneous Determination of Six Active Ingredients of Salviae Miltiorrhizae and Ligustrazine Hydrochloride Injection in Rat Plasma and its Application to Pharmacokinetic Studies. Curr Drug Metab 2021; 22:60-69. [PMID: 32819255 DOI: 10.2174/1389200221999200819143230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
AIMS This is a pharmacokinetic study of Salviae miltiorrhizae and ligustrazine hydrochloride injection. The study aimed to evaluate the mechanism of action, safety and rational clinical use of Salviae miltiorrhizae and ligustrazine hydrochloride injection. BACKGROUND Salviae miltiorrhizae and ligustrazine hydrochloride injection is a compound preparation consisted of Salvia miltiorrhiza extract and ligustrazine hydrochloride for the treatment of cardiovascular and cerebrovascular diseases in China. OBJECTIVE The study aimed to develop a rapid and sensitive high-performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS) method for simultaneous determination of six major active ingredients of Salviae miltiorrhizae and ligustrazine hydrochloride injection, namely danshensu, protocatechuic aldehyde, rosmarinic acid, lithospermic acid, salvianolic acid A, and ligustrazine hydrochloride, in rat plasma. METHODS Plasma samples were precipitated with methanol, which was spiked with ascorbic acid and the supernatant was separated on a Waters Cortecs C18 column, by using a gradient mobile phase system of acetonitrile-water containing 0.05% formic acid (v/v). For internal standards, puerarin was selected for the five salvianolic acids, while isofraxidin was used for ligustrazine hydrochloride. Besides, electrospray ionization in negative mode and multiplereaction monitoring were used to identify and quantify the five salvianolic acids, whereas ligustrazine hydrochloride was quantified at 310 nm using the diode array detector. RESULTS Noticeably, all calibration curves showed good linearity (R2>0.99) over the concentration range, with a lower limit of quantification between 0.00411 and 0.0369 μg/mL for salvianolic acids, and 1.74 μg/mL for ligustrazine hydrochloride. Next, the precision of the developed method was evaluated by intra- and inter-day assays, and the percentage of relative standard deviation was within 10%. Although the extraction efficiency of some salvianolic acids was not very satisfactory, the sensitivity of the analytical method met the analysis requirements of rat plasma samples. Moreover, the validated method was successfully applied to a pharmacokinetic study of Salviae miltiorrhizae and ligustrazine hydrochloride injection in the rat model. CONCLUSION Linear pharmacokinetic characteristics were observed for the six active ingredients after intravenous infusion administration in rats within the dose range examined here. In summary, our study proposed a HPLC-DADMS/ MS method with the simultaneous determination of multiple ingredients, and demonstrated its applicability in pharmacokinetic studies.
Collapse
Affiliation(s)
- Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Luquan Zhang
- Guizhou Baite Pharmaceutical Co., Ltd., Guiyang, 550014, China
| | - Difeifei Xiong
- Guizhou Baite Pharmaceutical Co., Ltd., Guiyang, 550014, China
| | - Bailing Li
- Guizhou Baite Pharmaceutical Co., Ltd., Guiyang, 550014, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866, Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
14
|
Ma W, Wang C, Liu R, Wang N, Lv Y, Dai B, He L. Advances in cell membrane chromatography. J Chromatogr A 2021; 1639:461916. [PMID: 33548663 DOI: 10.1016/j.chroma.2021.461916] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Cell membrane chromatography (CMC) is a biomimetic chromatographic method based on the ability of membrane receptors to selectively interact with their ligands in vivo. Using membrane receptors as a stationary phase, the CMC method helps in determining the binding characteristics between ligands and membrane receptors and in efficiently identifying specific target components in a complex sample that produce the cellular biological effects of ligands (drugs, antibodies, enzymes, cytokines, etc.). CMC is an analytical tool for revealing characteristics of ligand-receptor interactions, screening and discovering target substances, and accurately controlling the quality of drugs. Since establishment of CMC in the early 1990s, with the rapid development of cell biology, significant progress has been made in the development of high-expression receptors, engineered cell cultures, and standardized preparations, which allowed in vitro immobilization of cell membrane receptors and miniaturization of binding assays. A variety of CMC models have been established using different membrane receptors as a stationary phase, and many new methods have been developed by combining CMC with high-performance liquid chromatography (HPLC)/mass spectrometry or HPLC-IT-TOF technologies. CMC methods have been widely used to study drug-receptor interactions and to screen complex samples for effective or harmful components.
Collapse
Affiliation(s)
- Weina Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Cheng Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Rui Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Bingling Dai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China.
| |
Collapse
|
15
|
Hou X, Sun M, Bao T, Xie X, Wei F, Wang S. Recent advances in screening active components from natural products based on bioaffinity techniques. Acta Pharm Sin B 2020; 10:1800-1813. [PMID: 33163336 PMCID: PMC7606101 DOI: 10.1016/j.apsb.2020.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
Natural products have provided numerous lead compounds for drug discovery. However, the traditional analytical methods cannot detect most of these active components, especially at their usual low concentrations, from complex natural products. Herein, we reviewed the recent technological advances (2015–2019) related to the separation and screening bioactive components from natural resources, especially the emerging screening methods based on the bioaffinity techniques, including biological chromatography, affinity electrophoresis, affinity mass spectroscopy, and the latest magnetic and optical methods. These screening methods are uniquely advanced compared to other traditional methods, and they can fish out the active components from complex natural products because of the affinity between target and components, without tedious separation works. Therefore, these new tools can reduce the time and cost of the drug discovery process and accelerate the development of more effective and better-targeted therapeutic agents.
Collapse
Key Words
- AAs, amaryllidaceous alkaloids
- ABCA1, ATP-binding cassette transporter A1
- ACE, affinity capillary electrophoresis
- APTES, 3-aminopropyl-triethoxysilane
- ASMS, affinity selection mass spectrometry
- Active components
- Bioaffinity techniques
- CMC, Cell membrane chromatography
- CMMCNTs, Cell membrane magnetic carbon nanotube
- CMSP, Cell membrane stationary phase
- CNT, carbon nanotubes
- ChE, cholesterol efflux
- EGFR, epidermal growth factor receptor
- FP, fluorescence polarization
- Fe3O4–NH2, aminated magnetic nanoparticles
- HCS, high content screen
- HTS, high throughout screen
- HUVEC, human umbilical vein endothelial cells
- IMER, immobilized enzyme microreactor
- MAO-B, monoamine oxidases B
- MNP, immobilized on nanoparticles
- MPTS, 3-mercaptopropyl-trimethoxysilane
- MS, mass spectrometry
- MSPE, magnetic solid-phase extraction
- Natural products
- PD, Parkinson's disease
- PMG, physcion-8-O-β-d-monoglucoside
- RGD, arginine-glycine-aspartic acid
- SPR, surface plasmon resonance
- STAT3, signal transducer and activator of transcription 3
- Screening
- TCMs, traditional Chinese medicines
- TYR, tyrosinase
- TYR-MNPs, tyrosinase-immobilized magnetic nanoparticles
- Topo I, topoisomerase I
- UF, affinity ultrafiltration
- XOD, xanthine oxidase
- α1A-AR, α1A-adrenergic receptor
Collapse
|
16
|
Lu P, Xing Y, Peng H, Liu Z, Zhou Q(T, Xue Z, Ma Z, Kebebe D, Zhang B, Liu H. Physicochemical and Pharmacokinetic Evaluation of Spray-Dried Coformulation of Salvia miltiorrhiza Polyphenolic Acid and L-Leucine with Improved Bioavailability. J Aerosol Med Pulm Drug Deliv 2020; 33:73-82. [DOI: 10.1089/jamp.2019.1538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Peng Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Yue Xing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Hui Peng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Zhifeng Xue
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Zhe Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
- School of Pharmacy, Institute of Health Science, Jimma University, Jimma, Ethiopia
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
|
18
|
Salvianolic Acid D Alleviates Cerebral Ischemia-Reperfusion Injury by Suppressing the Cytoplasmic Translocation and Release of HMGB1-Triggered NF- κB Activation to Inhibit Inflammatory Response. Mediators Inflamm 2020; 2020:9049614. [PMID: 32410871 PMCID: PMC7204335 DOI: 10.1155/2020/9049614] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory response participates in the overall pathophysiological process of stroke. It is a promising strategy to develop antistroke drugs targeting inflammation. This study is aimed at investigating the therapeutic effect and anti-inflammatory mechanism of salvianolic acid D (SalD) against cerebral ischemia/reperfusion (I/R) injury. A rat middle cerebral artery occlusion/reperfusion (MCAO/R) injury model was established, and an oxygen-glucose deprivation/reoxygenation (OGD/R) injury model was established in PC12 cells. Neurological deficit score, cerebral infarction, and edema were studied in vivo. Cell viability was achieved using the MTT method in vitro. The Bax, Bcl-2, cytochrome c, HMGB1, TLR4, TRAF6, NF-κB p65, p-NF-κB p65, and cleaved caspase-3 and -9 were tested via the Western blot method. Cytokines and cytokine mRNA, including TNF-α, IL-1β, and IL-6, were studied via ELISA and PCR methods. The translocation of HMGB1 and NF-κB were studied by immunofluorescence assay. The HMGB1/NeuN, HMGB1/GFAP, and HMGB1/Iba1 double staining was carried out to observe the localization of HMGB1 in different cells. Results showed that SalD alleviated neurological impairment, decreased cerebral infarction, and reduced edema in I/R rats. SalD improved OGD/R-downregulated PC12 cell viability. SalD also promoted Bcl-2 expression and suppressed Bax, cytochrome c, and cleaved caspase-3 and -9 expression. SalD decreased the intensity of TLR4, MyD88, and TRAF6 proteins both in vivo and in vitro, and significantly inhibited the NF-κB nuclear translocation induced by I/R and OGD/R. What's more, SalD inhibited HMGB1 cytoplasmic translocation in neurons, astrocytes, and microglia in both the cortex and hippocampus regions of I/R rats. In conclusion, SalD can alleviate I/R-induced cerebral injury in rats and increase the PC12 cell viability affected by OGD/R. The anti-inflammatory mechanism of SalD might result from the decreased nuclear-to-cytoplasmic translocation of HMGB1 and the inhibition on its downstream TLR4/MyD88/NF-κB signaling.
Collapse
|
19
|
Green and Efficient Ultrasonic-Assisted Extraction of Bioactive Components from Salvia miltiorrhiza by Natural Deep Eutectic Solvents. Molecules 2019; 25:molecules25010140. [PMID: 31905777 PMCID: PMC6983008 DOI: 10.3390/molecules25010140] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/19/2023] Open
Abstract
Natural deep eutectic solvents (NaDESs) are recently developed green solvent alternatives to conventional fossil solvents. The present work systematically screened 22 different NaDESs for the ultrasonic-assisted extraction of bioactive components from Salvia miltiorrhiza (SM), a widely used traditional Chinese medical plant. The suitable solvent and extraction condition were optimized in a two-round screening. In comparison with fossil solvents, NaDESs, especially L-proline-lactic acid (L-Pro-Lac) showed significant advantages in the extraction of salvianolic acid B (SAB), tanshinone IIA (TIIA) and cryptotanshinone (CYT). The optimized yields of the three targeting compounds were 42.05, 1.485 and 0.839 mg/g, respectively. The present method was also applied to the pretreatment of SM samples from different geographic origins. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities of NaDES extracts were determined in the study to prove the feasibility of NaDES in bioactive component extraction. The application of NaDESs in the extraction of both hydrophilic and hydrophobic small molecules from SM is proved to be a green and efficient method for pretreatment of herbal materials.
Collapse
|
20
|
Cell Chromatography-Based Screening of the Active Components in Buyang Huanwu Decoction Promoting Axonal Regeneration. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6970198. [PMID: 31662991 PMCID: PMC6791218 DOI: 10.1155/2019/6970198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 12/04/2022]
Abstract
Buyang Huanwu decoction (BHD), a popular formulation prescribed in traditional Chinese medicine (TCM) for the treatment of ischemic stroke, has been reported to have a potential role in promoting axonal regeneration. The purpose of the study was to screen and identify bioactive compounds from BHD using live PC12 cells coupled with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Using this approach, we successfully identified six bioactive components from BHD. These components have protective effects on oxygen-glucose deprivation/reperfusion (OGD/R) injury to PC12 cells. Furthermore, calycosin-7-d-glucoside (CG) and formononetin-7-O-β-d-glucoside (FG) could upregulate the protein expression of growth-associated protein 43 (GAP-43) and brain-derived neurotrophic factor (BDNF). This study suggests that living cells combined with HPLC-MS/MS can be used for the screening of active ingredients in TCMs.
Collapse
|
21
|
Yu A, Zheng H, Yan X, Wang S, Shen X, Zheng H, Meng Y, Wang L. Erythrocyte membrane affinity chromatography, solid-phase extraction and UPLC-QTOF-MS/MS to screen active ingredients of Buyang Huanwu decoction. RSC Adv 2019; 9:29217-29224. [PMID: 35528420 PMCID: PMC9071827 DOI: 10.1039/c9ra03447a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/09/2019] [Indexed: 01/22/2023] Open
Abstract
Buyang Huanwu decoction (BHD) is a well-known traditional Chinese medicine that has long been used to treat ischemic brain damage which is associated with hemorheology. To screen active ingredients in BHD responsible for reducing blood viscosity by reducing red blood cell (RBC) lesions to treat ischemic stroke, a method involving RBC membrane binding and solid-phase extraction (SPE) was developed in this study. The components of BHD interacting with RBC were analyzed by mass spectrometry and four compounds, calycosin, paeoniflorin, 6-hydroxy behenol-3,6-di-O-glucoside and calycosin-7-O-β-d-glucoside, showed binding affinity to RBCs. An erythrocyte activity assay revealed that the identified ingredients promoted the activities of Na+-K+-ATPase, sialic acid and superoxide dismutase and reduced the content of cholesterol on the RBC membrane, suggesting a mechanism underlying their anti-erythrocyte aggregation activity. Based on these results, the RBC membrane binding assay combined with SPE and mass spectrometry is a novel and effective approach for screening potentially anti-erythrocyte lesion constituents in traditional Chinese medicines.
Collapse
Affiliation(s)
- Aiming Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road, Panyu District Guangzhou 510006 China
| | - Huazhu Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road, Panyu District Guangzhou 510006 China
| | - Xiangli Yan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road, Panyu District Guangzhou 510006 China
| | - Shengxin Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road, Panyu District Guangzhou 510006 China
| | - Xiao Shen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road, Panyu District Guangzhou 510006 China
| | - Haozhen Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road, Panyu District Guangzhou 510006 China
| | - Yingjiao Meng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road, Panyu District Guangzhou 510006 China
| | - Lisheng Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road, Panyu District Guangzhou 510006 China
| |
Collapse
|
22
|
Lu P, Xing Y, Xue Z, Ma Z, Zhang B, Peng H, Zhou QT, Liu H, Liu Z, Li J. Pharmacokinetics of salvianolic acid B, rosmarinic acid and Danshensu in rat after pulmonary administration of Salvia miltiorrhiza polyphenolic acid solution. Biomed Chromatogr 2019; 33:e4561. [PMID: 31017297 DOI: 10.1002/bmc.4561] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2023]
Abstract
A sensitive and accurate LC-MS/MS method was established for quantifying salvianolic acid B (Sal B), rosmarinic acid (Ros A) and Danshensu (DA) in rat plasma. Salvia miltiorrhiza polyphenolic acid (SMPA), active water-soluble ingredients isolated and purified from Salvia miltiorrhiza Bge included Sal B, Ros A and DA. The pharmacokinetic analysis of Sal B, Ros A and DA after pulmonary administration of SMPA solution to rat was performed by LC-MS/MS. Results from the pharmacokinetic studies showed that the peak concentration of DA was 21.85 ± 6.43 and 65.39 ± 3.83 ng/mL after pulmonary and intravenous administration, respectively. DA was not detected at 2 h after administration. The absolute bioavailabilities of Sal B and Ros A were respectively 50.37 ± 27.04 and 89.63 ± 12.16% after pulmonary administration of 10 mg/kg SMPA solution in rats. The absolute bioavailability of Sal B increased at least 10-fold after pulmonary administration, compared with oral administration. It was concluded that the newly established LC-MS/MS method was suitable for describing the pharmacokinetic characteristics of Sal B, Ros A and DA in rat after pulmonary administration of SMPA solution. The data from this study will provide a preclinical insight into the feasibility of pulmonary administration of SMPA.
Collapse
Affiliation(s)
- Peng Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Yue Xing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Zhifeng Xue
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Zhe Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Hui Peng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Hongfei Liu
- College of pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Jiawei Li
- College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
23
|
Cheng T, Ye J, Li H, Dong H, Xie N, Mi N, Zhang Z, Zou J, Jin H, Zhang W. Hybrid multidimensional data acquisition and data processing strategy for comprehensive characterization of known, unknown and isomeric compounds from the compound Dan Zhi Tablet by UPLC-TWIMS-QTOFMS. RSC Adv 2019; 9:8714-8727. [PMID: 35517662 PMCID: PMC9062044 DOI: 10.1039/c8ra10100k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/01/2019] [Indexed: 12/21/2022] Open
Abstract
The compound Dan Zhi Tablet (DZT), a reputable traditional Chinese medicine prescription, is widely used for the treatment of ischemic stroke in clinic. However, its systematic chemical constituents have rarely been elucidated, which hampers its quality evaluation, the study of bioactive constituents and the mechanism of action interpretation. In this study, we developed a combination of multidimensional data acquisition and data processing strategy with the aim to globally and comprehensively identify the chemical constituents in DZT based on UPLC-TWIMS-QTOFMS. First, multidimensional acquisition modes (MSE, Fast DDA and HDMSE) were performed on UPLC-TWIMS-QTOFMS. Second, targeted characterizations of the known compounds and their analogues present in DZT were carried out on the basis of the corresponding commercial standards or Mass2Motifs. Third, untargeted identification of unknown compounds in DZT was performed by extracting shared Mass2Motifs from the raw fragmentation spectra. Finally, the coeluting isomers were characterized using a precursor and/or product ion mobility. Consequently, 202 compounds were detected from DZT: 29 of them were unambiguously identified by comparison with reference compounds, 29 unknown compounds were discovered in specific medicinal materials, and ten pairs of coeluting isomers, which could not be distinguished using conventional MSE or Fast-DDA, were resolved using HDMSE only. This strategy was successfully used for the rapid and global identification of complex compounds including known, unknown and coeluting isomeric compounds in DZT and provided helpful chemical information for further quality control, pharmacology and active mechanism research on DZT.
Collapse
Affiliation(s)
- Taofang Cheng
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China +86-21-34205989 +86-21-34205989
| | - Ji Ye
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Huiliang Li
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Hongyuan Dong
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd. Ganzhou 341000 China
| | - Nan Mi
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Jingtao Zou
- Tonghua Huaxia Pharmaceutical Co., Ltd. Tonghua 134100 China
| | - Huizi Jin
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China +86-21-34205989 +86-21-34205989
| | - Weidong Zhang
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China +86-21-34205989 +86-21-34205989
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| |
Collapse
|
24
|
Guo J, Lin H, Wang J, Lin Y, Zhang T, Jiang Z. Recent advances in bio-affinity chromatography for screening bioactive compounds from natural products. J Pharm Biomed Anal 2019; 165:182-197. [DOI: 10.1016/j.jpba.2018.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023]
|
25
|
Kasimu R, Wang X, Wang X, Hu J, Wang X, Mu Y. Antithrombotic effects and related mechanisms of Salvia deserta Schang root EtOAc extracts. Sci Rep 2018; 8:17753. [PMID: 30532017 PMCID: PMC6288089 DOI: 10.1038/s41598-018-36026-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/01/2018] [Indexed: 12/16/2022] Open
Abstract
Salvia deserta Schang (SDS) belongs to the same family as Salvia miltiorrhiza bunge, one of the antithrombotic Chinese herbal medicines. In our study, EtOAc root extracts were analyzed for their effects on adenosine diphosphate (ADP)-induced platelet aggregation in rabbits and FeCl3-induced rat common carotid artery thrombosis as well as on rat blood plasma concentrations of thromboxane B2 (TXB2), 6-keto-prostaglandin F1 alpha (6-keto-PGF1α), antithrombin-III (AT-III), protein C (PC), plasminogen (PLG), plasminogen activator inhibitor (PAI-1), von Willebrand factor (vWF) and tissue-type plasminogen activator (t-PA). EtOAc extracts from SDS roots had significant inhibitory effects on ADP-induced maximum platelet aggregation rate (10.2 ± 2.6 vs control 35.7 ± 5.2; P < 0.05), reduced the FeCl3-induced rat common carotid artery thrombus weight and thrombus area ratio (P < 0.05), significantly decreased plasma TXB2, vWF and PAI-1 levels and increased 6-keto-PGF1α and t-PA levels in a dose dependent manner (all P < 0.05). Thus, the ratio of TXB2/6-keto-PGF1α was significantly decreased (P < 0.05), while the ratio of t-PA/PAI-1 was significantly increased (P < 0.05). In addition, enhanced AT-III and PC activities indicated coagulation inactivation effects of EtOAc SDS root extracts. EtOAc extraction from SDS showed antithrombotic effects, which are likely due to platelet adhesion and aggregation inhibition as well as anticoagulant activities.
Collapse
Affiliation(s)
- Rena Kasimu
- College of Pharmacy, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, China
| | - Xinling Wang
- College of Pharmacy, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, China.
| | - Xiaomei Wang
- College of Pharmacy, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, China
| | - Xiaoqing Wang
- College of Pharmacy, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, China
| | - Yuming Mu
- The First Affiliated Hospital Of Xinjiang Medical University, No. 137 South Liyushan Road, Urumqi, 830054, China
| |
Collapse
|
26
|
WANG XY, CHEN XF, GU YQ, CAO Y, YUAN YF, HONG ZY, CHAI YF. Progress of Cell Membrane Chromatography and Its Application in Screening Active Ingredients of Traditional Chinese Medicine. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61121-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Liu H, Zhu R, Wang L, Liu C, Ma R, Qi B, Chen B, Li L, Guo Y, Shi S, Jia Q, Niu J, Zhao D, Mo F, Gao S, Zhang D. Radix Salviae miltiorrhizae
improves bone microstructure and strength through Wnt/β-catenin and osteoprotegerin/receptor activator for nuclear factor-κB ligand/cathepsin K signaling in ovariectomized rats. Phytother Res 2018; 32:2487-2500. [DOI: 10.1002/ptr.6188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/16/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Haixia Liu
- Diabetes Research Center; Beijing University of Chinese Medicine; Beijing China
- Traditional Chinese Medicine School; Beijing University of Chinese Medicine; Beijing China
| | - Ruyuan Zhu
- Diabetes Research Center; Beijing University of Chinese Medicine; Beijing China
- Traditional Chinese Medicine School; Beijing University of Chinese Medicine; Beijing China
| | - Lili Wang
- Diabetes Research Center; Beijing University of Chinese Medicine; Beijing China
- Traditional Chinese Medicine School; Beijing University of Chinese Medicine; Beijing China
- Chinese Materia Medica School; Beijing University of Chinese Medicine; Beijing China
| | - Chenyue Liu
- Chinese Materia Medica School; Beijing University of Chinese Medicine; Beijing China
| | - Rufeng Ma
- Diabetes Research Center; Beijing University of Chinese Medicine; Beijing China
- Guang'anmen Hospital; China Academy of Chinese Medical Sciences; Beijing China
| | - Bowen Qi
- Chinese Materia Medica School; Beijing University of Chinese Medicine; Beijing China
| | - Beibei Chen
- Traditional Chinese Medicine School; Beijing University of Chinese Medicine; Beijing China
| | - Lin Li
- Traditional Chinese Medicine School; Beijing University of Chinese Medicine; Beijing China
| | - Yubo Guo
- Diabetes Research Center; Beijing University of Chinese Medicine; Beijing China
- The Third Affiliated Clinical Hospital; Beijing University of Chinese Medicine; Beijing China
| | - Shepo Shi
- Chinese Materia Medica School; Beijing University of Chinese Medicine; Beijing China
| | - Qiangqiang Jia
- Traditional Chinese Medicine School; Beijing University of Chinese Medicine; Beijing China
| | - Jianzhao Niu
- Traditional Chinese Medicine School; Beijing University of Chinese Medicine; Beijing China
| | - Dandan Zhao
- Diabetes Research Center; Beijing University of Chinese Medicine; Beijing China
- Traditional Chinese Medicine School; Beijing University of Chinese Medicine; Beijing China
| | - Fangfang Mo
- Diabetes Research Center; Beijing University of Chinese Medicine; Beijing China
- Traditional Chinese Medicine School; Beijing University of Chinese Medicine; Beijing China
| | - Sihua Gao
- Diabetes Research Center; Beijing University of Chinese Medicine; Beijing China
- Traditional Chinese Medicine School; Beijing University of Chinese Medicine; Beijing China
| | - Dongwei Zhang
- Diabetes Research Center; Beijing University of Chinese Medicine; Beijing China
- Traditional Chinese Medicine School; Beijing University of Chinese Medicine; Beijing China
| |
Collapse
|
28
|
Zheng L, Chen S, Cao Y, Zhao L, Gao Y, Ding X, Wang X, Gu Y, Wang S, Zhu Z, Yuan Y, Chen X, Chai Y. Combination of comprehensive two-dimensional prostate cancer cell membrane chromatographic system and network pharmacology for characterizing membrane binding active components from Radix et Rhizoma Rhei and their targets. J Chromatogr A 2018; 1564:145-154. [DOI: 10.1016/j.chroma.2018.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
|
29
|
Han S, Lv Y, Wei F, Fu J, Hu Q, Wang S. Screening of bioactive components from traditional Chinese medicines using cell membrane chromatography coupled with mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:341-350. [PMID: 29573482 DOI: 10.1002/pca.2756] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/10/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Cell membrane chromatography (CMC), as a highly selective type of affinity chromatography, has been demonstrated as an effective method to screen bioactive components acting on specific receptor from a complicated biological system. OBJECTIVE To review the recent research progress and the technical applications of these analytical methods using CMC combined with gas chromatography-mass spectrometry, (GC/MS) and liquid chromatography-mass spectrometry (LC/MS). METHODOLOGY In this review, we briefly introduce the CMC offline GC/MS, CMC online GC/MS, CMC offline LC/MS, and CMC online LC/MS system. And the practical application of these technologies is also enumerated. Then the future of these technologies and research methods were discussed. RESULTS Many bioactive components interacting with specific receptors have been screened and identified in traditional Chinese medicines. CONCLUSION CMC technique has been combined with GC/MS and HPLC/MS and these combined systems have been successfully used to screen bioactive components acting on specific receptors from a complicated biological system.
Collapse
Affiliation(s)
- Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Fen Wei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jia Fu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Qi Hu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
30
|
Identification of active ingredients mediating anti-platelet aggregation effects of BuyangHuanwu decoction using a platelet binding assay, solid phase extraction, and HPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:320-327. [PMID: 29936367 DOI: 10.1016/j.jchromb.2018.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 05/13/2018] [Accepted: 06/13/2018] [Indexed: 01/24/2023]
Abstract
BuyangHuanwu decoction (BHD) is widely used as a traditional herbal medicine because of its antithrombotic effect, which is attributed to the inhibition of platelet aggregation; however, its active compounds remain unknown. In this study, we developed a method involving platelet binding, solid-phase extraction, and HPLC-MS/MS for screening BHD compounds with potential anti-platelet aggregation properties. Five compounds showing platelet binding affinity were identified as 6-hydroxykaempferol-di-O-glucoside, paeoniflorin, calycosin-7-O-β-d-glucoside, galloylpaeoniflorin, and formononetin-7-O-β-d-glucoside. The results of anti-platelet aggregation experiments in vitro confirmed that these compounds inhibited adenosine diphosphate-induced platelet aggregation. Our results suggest that a platelet binding assay combined with solid-phase extraction and HPLC-MS/MS is an effective method for screening anti-platelet aggregation agents in traditional Chinese medicines.
Collapse
|
31
|
Liu X, Gao ZG, Wu Y, Stevens RC, Jacobson KA, Zhao S. Salvianolic acids from antithrombotic Traditional Chinese Medicine Danshen are antagonists of human P2Y 1 and P2Y 12 receptors. Sci Rep 2018; 8:8084. [PMID: 29795391 PMCID: PMC5967328 DOI: 10.1038/s41598-018-26577-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/15/2018] [Indexed: 01/14/2023] Open
Abstract
Many hemorheologic Traditional Chinese Medicines (TCMs) that are widely-used clinically lack molecular mechanisms of action. We hypothesized that some of the active components of hemorheologic TCMs may function through targeting prothrombotic P2Y1 and/or P2Y12 receptors. The interactions between 253 antithrombotic compounds from TCM and these two G protein-coupled P2Y receptors were evaluated using virtual screening. Eleven highly ranked hits were further tested in radioligand binding and functional assays. Among these compounds, salvianolic acid A and C antagonized the activity of both P2Y1 and P2Y12 receptors in the low µM range, while salvianolic acid B antagonized the P2Y12 receptor. These three salvianolic acids are the major active components of the broadly-used hemorheologic TCM Danshen (Salvia militorrhiza), the antithrombotic molecular mechanisms of which were largely unknown. Thus, the combination of virtual screening and experimental validation identified potential mechanisms of action of multicomponent drugs that are already employed clinically.
Collapse
MESH Headings
- Alkenes/chemistry
- Alkenes/isolation & purification
- Alkenes/pharmacology
- Benzofurans/chemistry
- Benzofurans/isolation & purification
- Benzofurans/pharmacology
- Caffeic Acids/chemistry
- Caffeic Acids/isolation & purification
- Caffeic Acids/pharmacology
- Drugs, Chinese Herbal/chemistry
- Fibrinolytic Agents/chemistry
- Fibrinolytic Agents/isolation & purification
- Fibrinolytic Agents/pharmacology
- Humans
- Lactates/chemistry
- Lactates/isolation & purification
- Lactates/pharmacology
- Medicine, Chinese Traditional
- Models, Molecular
- Molecular Docking Simulation
- Molecular Structure
- Polyphenols/chemistry
- Polyphenols/isolation & purification
- Polyphenols/pharmacology
- Purinergic P2Y Receptor Antagonists/chemistry
- Purinergic P2Y Receptor Antagonists/isolation & purification
- Purinergic P2Y Receptor Antagonists/pharmacology
- Receptors, Purinergic P2Y1/chemistry
- Receptors, Purinergic P2Y1/drug effects
- Receptors, Purinergic P2Y1/metabolism
- Receptors, Purinergic P2Y12/chemistry
- Receptors, Purinergic P2Y12/drug effects
- Receptors, Purinergic P2Y12/metabolism
- Salvia miltiorrhiza/chemistry
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Xuyang Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20031, China
- University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing, 100049, China
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | | | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
32
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
33
|
Discovery of a Novel ERp57 Inhibitor as Antiplatelet Agent from Danshen (Salvia miltiorrhiza). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9387568. [PMID: 29849736 PMCID: PMC5941821 DOI: 10.1155/2018/9387568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/02/2018] [Accepted: 03/11/2018] [Indexed: 01/03/2023]
Abstract
Danshen (Salvia miltiorrhiza) is a well-known herb in Traditional Chinese Medicine (TCM) for treating cardiovascular diseases, but the underlying mechanism remains to be fully elucidated. Here, we showed that Danshen and its active ingredient rosmarinic acid exhibited antiplatelet effects through the inhibition of ERp57, a member of protein disulfide isomerase (PDI) with potential roles in platelet aggregation. Danshen extract (DSE) exhibited potent inhibitory effects on the platelet aggregation induced by arachidonic acid- (AA-) induced platelet aggregation and the enzymatic activity of ERp57. Rosmarinic acid was identified by virtual screening and molecular docking as one of the hit compounds for ERp57. In line with this, rosmarinic acid displayed significant inhibitory effect on ERp57 activity and inhibited AA-induced platelet aggregation. Taken together, we demonstrated for the first time that DSE and rosmarinic acid displayed inhibitory effects on the catalytic activity of ERp57, providing evidence of the regulatory role of ERp57 underlying the antiplatelet effects of Danshen.
Collapse
|
34
|
Shen Y, Feng Z, Yang M, Zhou Z, Han S, Hou J, Li Z, Wu W, Guo DA. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching. J Sep Sci 2018; 41:1888-1895. [PMID: 29333638 DOI: 10.1002/jssc.201701134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/06/2017] [Accepted: 12/25/2017] [Indexed: 11/09/2022]
Abstract
Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (>5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers, and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, fragment ion searching, and parent list-based multistage mass spectrometry acquisition by linear trap quadropole-orbitrap Velos mass spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix.
Collapse
Affiliation(s)
- Yao Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zijin Feng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhe Zhou
- Thermo Fisher Scientific (China) Co. Ltd., Shanghai, China
| | - Sumei Han
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenwei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
35
|
Wang XY, Ding X, Yuan YF, Zheng LY, Cao Y, Zhu ZY, Zhang GQ, Chai YF, Chen XF, Hong ZY. Comprehensive two-dimensional APTES-decorated MCF7-cell membrane chromatographic system for characterizing potential anti-breast-cancer components from Yuanhu-Baizhi herbal medicine pair. J Food Drug Anal 2017; 26:823-833. [PMID: 29567254 PMCID: PMC9322241 DOI: 10.1016/j.jfda.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/21/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Rhizoma corydalis and Radix Angelicae Dahurica (Yuanhu–Baizhi) herbal medicine pair has been used for thousands of years and has been reported to be potentially active in recent cancer therapy. But the exact active components or fractions remain unclear. In this study, a new comprehensive two-dimensional (2D) 3-aminopropyltriethoxysilane (APTES)-decorated MCF7-cell membrane chromatography (CMC)/capcell-C18 column/time-of-flight mass spectrometry system was established for screening potential active components and clarifying the active fraction of Yuanhu–Baizhi pair. APTES was modified on the surface of silica, which can provide an amino group to covalently link cell membrane fragments with the help of glutaraldehyde in order to improve the stability and column life span of the MCF7 CMC column. The comprehensive 2D MCF7-CMC system showed good separation and identification abilities. Our screen results showed that the retention components are mainly from the alkaloids in Yuanhu (12 compounds) and the coumarins (10 compounds) in Baizhi, revealing the active fractions of Yuanhu–Baizhi herbal medicine pair. Oxoglaucine, protopine, berberine, osthole, isopimpinellin and palmitic acid were selected as typical components to test the effects on cell proliferation and their IC50 were calculated as 38.17 μM, 29.45 μM, 45.42 μM, 132.7 μM, 156.8 μM and 90.5 μM respectively. Cell apoptosis assay showed that the drug efficacy was obtained mainly through inducing cell apoptosis. Furthermore, a synergistic assay results demonstrated that oxoglaucine (representative of alkaloids from Yuanhu) and isopimpinellin (representative of coumarins from Baizhi) showed significant synergistic efficacy with GFT, indicating that these components may act on other membrane receptors. The proposed 2D CMC system could also be equipped with other cells for further applications. Besides, the follow-up in-vitro experimental strategy using cell proliferation assay, cell apoptosis assay and synergistic assay proved to be a practical way to confirm the active fractions of herbal medicine.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Xuan Ding
- Department of Pharmacy & Medical Appliance, Hangzhou Sanatorium of PLA, Hangzhou, Zhejiang 310000, China
| | - Yong-Fang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, No. 280 Mohe Road, Shanghai 201999, China
| | - Le-Yi Zheng
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Zhen-Yu Zhu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Guo-Qing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, No. 225 Changhai Road, Shanghai 200438, China
| | - Yi-Feng Chai
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Xiao-Fei Chen
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.
| | - Zhan-Ying Hong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
36
|
|
37
|
Biospecific isolation and characterization of angiogenesis-promoting ingredients in Buyang Huanwu decoction using affinity chromatography on rat brain microvascular endothelial cells combined with solid-phase extraction, and HPLC-MS/MS. Talanta 2017; 179:490-500. [PMID: 29310265 DOI: 10.1016/j.talanta.2017.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 02/03/2023]
Abstract
Buyang Huanwu decoction (BHD) was reported to exert angiogenesis-promoting effects, but its active ingredients remain unknown. In this study, we developed a method to screen potential angiogenesis-promoting compounds in BHD, which involved biospecific isolation using live rat brain microvascular endothelial cells (rBMECs) and characterization using solid-phase extraction (SPE) and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Six compounds showed binding affinity to rBMECs and were further identified as 6-hydroxykaempferol-di-O-glucoside, paeoniflorin, calycosin-7-O-β-D-glucoside, galloylpaeoniflorin, formononetin-7-O-β-D-glucoside, and (3R)-7,2'-hydroxy-3',4'-dimethoxy-isoflavan. The results indicated that five of them except 6-hydroxykaempferol-di-O-glucoside showed a protective effect against oxygen glucose deprivation/reperfusion injury in rBMECs and upregulated the secretion of vascular endothelial growth factor and basic fibroblast growth factor, suggesting a mechanism underlying their angiogenic activity. Our findings suggest that biospecific live cell-based isolation combined with SPE and HPLC-MS/MS is an effective method for screening potential bioactive components in traditional Chinese medicines.
Collapse
|
38
|
A multiple biomarker assay for quality assessment of botanical drugs using a versatile microfluidic chip. Sci Rep 2017; 7:12243. [PMID: 28947774 PMCID: PMC5612938 DOI: 10.1038/s41598-017-12453-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Quality control is critical for ensuring the safety and effectiveness of drugs. Current quality control method for botanical drugs is mainly based on chemical testing. However, chemical testing alone may not be sufficient as it may not capture all constituents of botanical drugs. Therefore, it is necessary to establish a bioassay correlating with the drug's known mechanism of action to ensure its potency and activity. Herein we developed a multiple biomarker assay to assess the quality of botanicals using microfluidics, where enzyme inhibition was employed to indicate the drug's activity and thereby evaluate biological consistency. This approach was exemplified on QiShenYiQi Pills using thrombin and angiotensin converting enzyme as "quality biomarkers". Our results demonstrated that there existed variations in potency across different batches of the intermediates and preparations. Compared with chromatographic fingerprinting, the bioassay provided better discrimination ability for some abnormal samples. Moreover, the chip could function as "affinity chromatography" to identify bioactive phytochemicals bound to the enzymes. This work proposed a multiple-biomarker strategy for quality assessment of botanical drugs, while demonstrating for the first time the feasibility of microfluidics in this field.
Collapse
|
39
|
Qiu H, Zhang L, Zhu M, Zhang M, Chen J, Feng L, Jia X, Jacob JA. Capture of anti-coagulant active ingredients from Moutan Cortex by platelet immobilized chromatography and evaluation of anticoagulant activity in rats. Biomed Pharmacother 2017; 95:235-244. [PMID: 28843912 DOI: 10.1016/j.biopha.2017.08.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 01/14/2023] Open
Abstract
Moutan Cortex (MC) is a well-known Chinese medicine for promoting blood circulation and relieving blood stasis. The intent of this study was to evaluate the anticoagulant activity of MC and capture the bioactive compounds by platelet immobilized chromatography. Sprague Dawley (SD) rats were randomly divided into the control group, aspirin group and MC group (1.25, 2.5, 5g/kg/d). Coagulation system and platelet activity were investigated to evaluate the anti-coagulation effect of MC. The effective components of MC were captured by platelet immobilized chromatography. High performance liquid chromatography-diode array detection (HPLC-DAD) and liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) analysis were used to identify the binding ingredients. Meanwhile, the efficacy of active ingredients was assessed through inhibiting platelet adhesion and regulating the expression of platelet related proteins. Principal findings showed that 2.5g/kg/d MC significantly prolonged thrombin time (TT) and 5g/kg/d MC significantly prolonged TT and prothrombin time (PT). MC exhibited an inhibitory potency on adenosine diphosphate-induced platelet aggregation. Four active compounds were found by platelet immobilized chromatography including oxypaeoniflorin, tetragalloylglucose, pentagalloyl glucose and benzoylpaeoniflorin; these active ingredients significantly up-regulated the expression of hsp-70 and coronin-1B, reduced the ratio of adhesion platelets. These results suggest that MC markedly promoted blood circulation and relieved blood stasis by inhibiting platelet activation, as an anti-coagulant, elucidating its potential capacity to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Huihui Qiu
- Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, PR China
| | - Li Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, PR China; Jiangsu University, Zhenjiang 212013, PR China
| | - Maomao Zhu
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, PR China; Nanjing Institute of Product Quality Inspection, Nanjing 210028, PR China
| | - Minghua Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, PR China
| | - Juan Chen
- Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, PR China
| | - Liang Feng
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, PR China.
| | - Xiaobin Jia
- Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, PR China.
| | - Joe Antony Jacob
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| |
Collapse
|
40
|
Cao J, Xu JJ, Liu XG, Wang SL, Peng LQ. Screening of thrombin inhibitors from phenolic acids using enzyme-immobilized magnetic beads through direct covalent binding by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J Chromatogr A 2016; 1468:86-94. [PMID: 27646060 DOI: 10.1016/j.chroma.2016.09.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/07/2016] [Accepted: 09/11/2016] [Indexed: 02/06/2023]
Abstract
Thrombin was immobilized on dynabeads®M-270 epoxy by direct covalent binding method for the first time. The enzyme coated magnetic beads were combined with ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry technique to establish a simple, rapid and reliable approach for screening thrombin inhibitors from Danshen preparation. The conjugation of thrombin to the magnetic beads was characterized using scanning electron microscope, transmission electron microscope and infrared spectroscopy, and the enzyme activity was determined by the analysis of enzyme-bead ratio and peak areas of target compounds. Several factors including amount of magnetic beads, type of elution solvent, incubation temperature and time were optimized. Additionally, two thrombin-bound compounds (protocatechuic aldehyde and salvianolic acid C) in Danshen injection were validated by conventional inhibitory assay and the IC50 values were 286.11 and 66.09μg/mL, respectively. Our findings suggested that the proposed method was efficient in screening active compounds from medicinal plants.
Collapse
Affiliation(s)
- Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | - Jing-Jing Xu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Xun-Gao Liu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Shu-Ling Wang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Li-Qing Peng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
41
|
Guo YX, Shi CZ, Zhang L, Lv L, Zhang YY. Extraction and isolation of lithospermic acid B from Salvia miltiorrhiza Bunge using aqueous two-phase extraction followed by high-performance liquid chromatography. J Sep Sci 2016; 39:3624-30. [PMID: 27484287 DOI: 10.1002/jssc.201600368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/17/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
Abstract
A rapid and effective method integrating separation and purification of lithospermic acid B from Salvia miltiorrhiza Bunge was developed by combining an aqueous two-phase system extraction with preparative chromatography. An aqueous two-phase system of n-butyl alcohol/KH2 PO4 was chosen from seven systems. The influence of parameters including concentration of KH2 PO4 , n-butyl alcohol concentration, pH, and the ratio of an aqueous two-phase system to crude extract were investigated using a single factor design. Response surface methodology was subsequently used to find the optimal compositions of an aqueous two-phase system. Keeping a solvent-to-solid ratio of 10, the final optimized composition of an aqueous two-phase system was 39.1% w/w n-butyl alcohol and 22.6% w/w KH2 PO4 . Under these conditions a recovery yield of 99.8% and a high partition coefficient of 310.4 were obtained. In a pilot-scale experiment using optimized conditions, 18.79 g of lithospermic acid B with a purity of 70.5% and in a yield of 99.8% was separated from 0.5 kg of crude extract. Subsequently, 9.94 g lithospermic acid B with a purity of 99.3% and recovery yield of 70.3% was obtained with a preparative chromatographic process, and the two-step total recovery was 70.1%.
Collapse
Affiliation(s)
- Yong Xue Guo
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China.
| | - Chang Zhi Shi
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Lei Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Lin Lv
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yue Yong Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
42
|
Liu B, Du Y, Cong L, Jia X, Yang G. Danshen (Salvia miltiorrhiza) Compounds Improve the Biochemical Indices of the Patients with Coronary Heart Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:9781715. [PMID: 27366196 PMCID: PMC4913020 DOI: 10.1155/2016/9781715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/16/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023]
Abstract
Danshen was able to reduce the risk of the patients with coronary heart disease (CHD), but the mechanism is still widely unknown. Biochemical indices (lipid profile, markers of renal and liver function, and homocysteine (Hcy)) are closely associated with CHD risk. We aimed to investigate whether the medicine reduces CHD risk by improving these biochemical indices. The patients received 10 Danshen pills (27 mg/pill) in Dashen group, while the control patients received placebo pills, three times daily. The duration of follow-up was three months. The serum biochemical indices were measured, including lipid profiles (LDL cholesterol (LDL-C), HDL-C, total cholesterol (TC), triglycerides (TG), apolipoprotein (Apo) A, ApoB, ApoE, and lipoprotein (a) (Lp(a))); markers of liver function (gamma-glutamyl transpeptidase (GGT), total bilirubin (TBil), indirect bilirubin (IBil), and direct bilirubin (DBil)); marker of renal function (uric acid (UA)) and Hcy. After three-month follow-up, Danshen treatment reduced the levels of TG, TC, LDL-C, Lp(a), GGT, DBil, UA, and Hcy (P < 0.05). In contrast, the treatment increased the levels of HDL-C, ApoA, ApoB, ApoE, TBil, and IBil (P < 0.05). Conclusion. Danshen can reduce the CHD risk by improving the biochemical indices of CHD patients.
Collapse
Affiliation(s)
- Boyan Liu
- Department of Geriatrics, Affiliated Hospital, Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Yanhui Du
- Department of Geriatrics, Affiliated Hospital, Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Lixin Cong
- Department of Geriatrics, Affiliated Hospital, Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Xiaoying Jia
- Department of Neurology, Jilin Province People's Hospital, Changchun 130000, China
| | - Ge Yang
- Department of Geriatrics, Affiliated Hospital, Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| |
Collapse
|
43
|
Wang B, Wan Y, Zheng G, Hu J. Evaluating a Tap Water Contamination Incident Attributed to Oil Contamination by Nontargeted Screening Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2956-2963. [PMID: 26862992 DOI: 10.1021/acs.est.5b05755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The present study applied nontargeted screening techniques as a novel approach to evaluate the tap water samples collected during the "4.11" tap water pollution incident occurred on April 11, 2014 in Lanzhou in west China. Multivariate analysis (PCA and OPLS-DA) of about 3000 chemical features obtained in extracts of tap water samples by ultrahigh-pressure liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) analysis showed significantly different chemical profiles in tap water from pollution regions versus reference regions during the event. These different chemical profiles in samples from different regions were not observed in samples collected during the nonpollution period. The compounds responsible for the differences in profiles between regions were identified as naphthenic acids (NAs) and oxidized NAs (oxy-NAs) after the sample extracts underwent bromination to explore saturations, dansylation to identify hydroxylations and corresponding MS/MS mode analysis. A consistent finding was further observed in the targeted analysis of NA mixtures, demonstrating that the Lanzhou "4.11" tap water pollution incident could be attributed to oil spill pollution, and NA mixtures would be a marker for oil contamination. Such evaluations can help to rapidly discriminate pollution sources in accidental pollution events and contribute to regular water monitoring management of water safety issues.
Collapse
Affiliation(s)
- Beili Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Guomao Zheng
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
44
|
Li X, Zhai X, Shu Z, Dong R, Ming Q, Qin L, Zheng C. Phoma glomerata D14: An Endophytic Fungus from Salvia miltiorrhiza That Produces Salvianolic Acid C. Curr Microbiol 2016; 73:31-7. [DOI: 10.1007/s00284-016-1023-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
|