1
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Zhang X, Lin W, Lei S, Zhang S, Cheng Y, Chen X, Lu Y, Zhao D, Zhang Y, Guo C. The anti-hyperlipidemic effects of Poria cocos (Schw.) Wolf extract: Modulating cholesterol homeostasis in hepatocytes via PPARα pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117532. [PMID: 38048892 DOI: 10.1016/j.jep.2023.117532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poria cocos (Schw.) Wolf (Polyporaceae, P.cocos), which is born on the pine root, has a history of more than two thousand years of medicine in China. P.cocos was first recorded in the Shennong's Herbal Classic, studies have proved its lipid-lowering effect. AIM OF STUDY The aim of study was to investigate the underlying mechanism of P.cocos extract on hyperlipidemia. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats aged 9-12 weeks were intraperitoneally (IP) injected with Triton-WR 1339 to establish an acute hyperlipidemia model. At 0 h and 20 h after the model was established, low and high doses of P.cocos extract or simvastatin were given twice. After 48 h, the rats were sacrificed, and liver and serum samples were collected for analysis. The cell model was constructed by treating L02 cells with 1% fat emulsion-10% FBS-RPMI 1640 medium for 48 h. At the same time, low and high doses of P.cocos extract and simvastatin were administered. Oil red O staining was used to evaluate the lipid accumulation in the cells, and H&E staining was used to evaluate the liver lesions of rats. Real-time quantitative PCR and western blotting were used to detect the expressions of lipid metabolism-related genes. RESULTS P.cocos extract relieved lipid accumulation in vitro and alleviated hyperlipidemia in vivo. Both gene and protein expressions of peroxisome proliferator-activated receptor α (PPARα) were shown to be up-regulated by P.cocos extract. Additionally, P.cocos extract down-regulated the expressions of fatty acid synthesis-related genes sterol regulatory element-binding protein-1 (SREBP-1), Acetyl-CoA Carboxylase 1 (ACC1) and fatty acid synthase (FAS), while up-regulated the expressions of cholesterol metabolism-related genes liver X receptor-α (LXRα), ATP-binding cassette transporter A1 (ABCA1), cholesterol 7alpha-hydroxylase (CYP7A1) and low density lipoprotein receptor (LDLR), which were reversed by the treatment with the PPARα inhibitor GW6471. CONCLUSION P.cocos extract ameliorates hyperlipidemia and lipid accumulation by regulating cholesterol homeostasis in hepatocytes through PPARα pathway. This study provides evidence that supplementation with P.cocos extract could be a potential strategy for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Xinyu Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wei Lin
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuyue Lei
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Siqi Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yujie Cheng
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chaorui Guo
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Chen L, Jiang L, Shi X, Yang J, Wang R, Li W. Constituents, pharmacological activities, pharmacokinetic studies, clinical applications, and safety profile on the classical prescription Kaixinsan. Front Pharmacol 2024; 15:1338024. [PMID: 38362144 PMCID: PMC10867185 DOI: 10.3389/fphar.2024.1338024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Kaixinsan (KXS) is a noteworthy classical prescription, which consists of four Chinese medicinal herbs, namely Polygalae Radix, Ginseng Radix et Rhizoma, Poria, and Acori Tatarinowii Rhizoma. KXS was initially documented in the Chinese ancient book Beiji Qianjin Yaofang written by Sun Simiao of the Tang Dynasty in 652 A.D. As a traditional Chinese medicine (TCM) prescription, it functions to nourish the heart and replenish Qi, calm the heart tranquilize the mind, and excrete dampness. Originally used to treat amnesia, it is now also effective in memory decline and applied to depression. Although there remains an abundance of literature investigating KXS from multiple aspects, few reviews summarize the features and research, which impedes better exploration and exploitation of KXS. This article intends to comprehensively analyze and summarize up-to-date information concerning the chemical constituents, pharmacology, pharmacokinetics, clinical applications, and safety of KXS based on the scientific literature, as well as to examine possible scientific gaps in current research and tackle issues in the next step. The chemical constituents of KXS primarily consist of saponins, xanthones, oligosaccharide esters, triterpenoids, volatile oils, and flavonoids. Of these, saponins are the predominant active ingredients, and increasing evidence has indicated that they exert therapeutic properties against mental disease. Pharmacokinetic research has illustrated that the crucial exposed substances in rat plasma after KXS administration are ginsenoside Re (GRe), ginsenoside Rb1 (GRb1), and polygalaxanthone III (POL). This article provides additional descriptions of the safety. In this review, current issues are highlighted to guide further comprehensive research of KXS and other classical prescriptions.
Collapse
Affiliation(s)
- Liping Chen
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Lin Jiang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoyu Shi
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jihong Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Rong Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| |
Collapse
|
4
|
Yang B, Zhang Z, Song J, Qi T, Zeng J, Feng L, Jia X. Interpreting the efficacy enhancement mechanism of Chinese medicine processing from a biopharmaceutic perspective. Chin Med 2024; 19:14. [PMID: 38238801 PMCID: PMC10797928 DOI: 10.1186/s13020-024-00887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Chinese medicine processing (CMP) is a unique pharmaceutical technology that distinguishes it from natural medicines. Current research primarily focuses on changes in chemical components to understand the mechanisms behind efficacy enhancement in processing. However, this paper presents a novel perspective on the biopharmaceutics of CMP. It provides a comprehensive overview of the current research, emphasizing two crucial aspects: the role of 'heat' during processing and the utilization of processing adjuvants. The paper highlights the generation of easily absorbed components through the hydrolysis of glycosides by 'heat', as well as the facilitation of dissolution, absorption, and targeted distribution of active components through the utilization of processing adjuvants. From a biopharmaceutic perspective, this paper provides a lucid comprehension of the scientific foundation for augmenting the efficacy of CMP. Moreover, it proposes a three-dimensional research framework encompassing chemical reactions, phase transitions, and biopharmaceutical properties to further investigate the mechanisms involved in enhancing the efficacy of CMP.
Collapse
Affiliation(s)
- Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhubin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jinjing Song
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tianhao Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
5
|
Hu QR, Hong H, Zhang ZH, Feng H, Luo T, Li J, Deng ZY, Chen F. Methods on improvements of the poor oral bioavailability of ginsenosides: Pre-processing, structural modification, drug combination, and micro- or nano- delivery system. J Ginseng Res 2023; 47:694-705. [PMID: 38107396 PMCID: PMC10721471 DOI: 10.1016/j.jgr.2023.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 12/19/2023] Open
Abstract
Panax ginseng Meyer is a traditional Chinese medicine that is widely used as tonic in Asia. The main pharmacologically active components of ginseng are the dammarane-type ginsenosides, which have been shown to have anti-cancer, anti-inflammatory, immunoregulatory, neuroprotective, and metabolic regulatory activities. Moreover, some of ginsenosides (eg, Rh2 and Rg3) have been developed into nutraceuticals. However, the utilization of ginsenosides in clinic is restrictive due to poor permeability in cells and low bioavailability in human body. Obviously, the dammarane skeleton and glycosyls of ginsenosides are responsible for these limitations. Therefore, improving the oral bioavailability of ginsenosides has become a pressing issue. Here, based on the structures of ginsenosides, we summarized the understanding of the factors affecting the oral bioavailability of ginsenosides, introduced the methods to enhance the oral bioavailability and proposed the future perspectives on improving the oral bioavailability of ginsenosides.
Collapse
Affiliation(s)
- Qi-rui Hu
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Huan Hong
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| | - Zhi-hong Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| | - Hua Feng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Ze-yuan Deng
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Fang Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Zhou JC, Li HL, Zhou Y, Li XT, Yang ZY, Tohda C, Komatsu K, Piao XH, Ge YW. The roles of natural triterpenoid saponins against Alzheimer's disease. Phytother Res 2023; 37:5017-5040. [PMID: 37491018 DOI: 10.1002/ptr.7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
The aging of the world population and increasing stress levels in life are the major cause of the increased incidence of neurological disorders. Alzheimer's disease (AD) creates a huge burden on the lives and health of individuals and has become a big concern for society. Triterpenoid saponins (TS), representative natural product components, have a wide range of pharmacological bioactivities such as anti-inflammation, antioxidation, antiapoptosis, hormone-like, and gut microbiota regulation. Notably, some natural TS exhibited promising neuroprotective activity that can intervene in AD progress, especially in the early stage. Recently, studies have indicated that TS play a pronounced positive role in the prevention and treatment of AD. This review discusses the recent research on the neuroprotection of TS and proceeds to detail the action mechanisms of TS against AD, hoping to provide a reference for drug development for anti-AD.
Collapse
Affiliation(s)
- Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xi-Tao Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Chihiro Tohda
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Wu X, Li W, Li C, Yin J, Wu T, Zhang M, Zhu L, Chen H, Zhang X, Bie S, Li F, Song X, Gong X, Yu H, Li Z. Discrimination and characterization of the volatile organic compounds of Acori tatarinowii rhizoma based on headspace-gas chromatography-ion mobility spectrometry and headspace solid phase microextraction-gas chromatography-mass spectrometry. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
Hao DC, Wang F, Xiao PG. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based anti-COVID-19 Drug Research. Curr Drug Metab 2022; 23:374-393. [PMID: 35440304 DOI: 10.2174/1389200223666220418110133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The representative anti-COVID-19 herbs, i.e. Poria cocos, Pogostemon, Prunus, and Glycyrrhiza plants, are commonly used in the prevention and treatment of COVID-19, a pandemic caused by SARS-CoV-2. Diverse medicinal compounds with favorable anti-COVID-19 activities are abundant in these plants, and their unique pharmacological/pharmacokinetic properties are being revealed. However, the current trends of drug metabolism/pharmacokinetic (DMPK) investigations of anti-COVID-19 herbs have not been systematically summarized. METHODS Here, the latest awareness, as well as the perception gaps of DMPK attributes, in the anti-COVID-19 drug development and clinical usage was elaborated and critically commented. RESULTS The extracts and compounds of P. cocos, Pogostemon, Prunus, and Glycyrrhiza plants show distinct and diverse absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. The complicated herb-herb interactions (HHIs) and herb-drug interactions (HDIs) of anti-COVID-19 Traditional Chinese Medicine (TCM) herb pair/formula dramatically influence the PK/pharmacodynamic (PD) performance of compounds thereof, which may inspire researchers to design innovative herbal/compound formulas for optimizing the therapeutic outcome of COVID-19 and related epidemic diseases. The ADME/T of some abundant compounds in anti-COVID-19 plants have been elucidated, but DMPK studies should be extended to more compounds of different medicinal parts, species and formulations, and would be facilitated by various omics platforms and computational analyses. CONCLUSION In the framework of systems pharmacology and pharmacophylogeny, the DMPK knowledge base would promote the translation of bench findings into the clinical practice of anti-COVID-19, and speed up the anti-COVID-19 drug discovery and development.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China.,Institute of Molecular Plant Science, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Fan Wang
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Zafar A, Alruwaili NK, Imam SS, Alsaidan OA, Ahmed MM, Yasir M, Warsi MH, Alquraini A, Ghoneim MM, Alshehri S. Development and Optimization of Hybrid Polymeric Nanoparticles of Apigenin: Physicochemical Characterization, Antioxidant Activity and Cytotoxicity Evaluation. SENSORS (BASEL, SWITZERLAND) 2022; 22:1364. [PMID: 35214260 PMCID: PMC8962971 DOI: 10.3390/s22041364] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023]
Abstract
Breast cancer is the most common cancer in females and ranked second after skin cancer. The use of natural compounds is a good alternative for the treatment of breast cancer with less toxicity than synthetic drugs. The aim of the present study is to develop and characterize hybrid Apigenin (AN) Nanoparticles (NPs) for oral delivery (AN-NPs). The hybrid AN-NPs were prepared by the self-assembly method using lecithin, chitosan and TPGS. Further, the NPs were optimized by Box-Behnken design (3-factor, 3-level). The hybrid NPs were evaluated for particle size (PS), entrapment efficiency (EE), zeta potential (ZP), and drug release. The optimized hybrid NPs (ON2), were further evaluated for solid state characterization, permeation, antioxidant, cytotoxicity and antimicrobial study. The formulation (ON2) exhibited small PS of 192.6 ± 4.2 nm, high EE 69.35 ± 1.1%, zeta potential of +36.54 mV, and sustained drug release (61.5 ± 2.5% in 24 h), as well as significantly (p < 0.05) enhanced drug permeation and antioxidant activity. The IC50 of pure AN was found to be significantly (p < 0.05) lower than the formulation (ON2). It also showed significantly greater (p < 0.05) antibacterial activity than pure AN against Bacillus subtilis and Salmonella typhimurium. From these findings, it revealed that a hybrid AN polymeric nanoparticle is a good carrier for the treatment of breast cancer.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia; (N.K.A.); (O.A.A.)
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia; (N.K.A.); (O.A.A.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia; (N.K.A.); (O.A.A.)
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella 396, Ethiopia;
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al-Maarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
10
|
Houriet J, Arnold YE, Pellissier L, Kalia YN, Wolfender JL. Using Porcine Jejunum Ex Vivo to Study Absorption and Biotransformation of Natural Products in Plant Extracts: Pueraria lobata as a Case Study. Metabolites 2021; 11:metabo11080541. [PMID: 34436482 PMCID: PMC8398828 DOI: 10.3390/metabo11080541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Herbal preparations (HPs) used in folk medicine are complex mixtures of natural products (NPs). Their efficacy in vivo after ingestion depends on the uptake of the active ingredient, and, in some cases, their metabolites, in the gastrointestinal tract. Thus, correlating bioactivities measured in vitro and efficacy in vivo is a challenge. An extract of Pueraria lobata rich in different types of isoflavones was used to evaluate the capacity of viable porcine small intestine ex vivo to elucidate the absorption of HP constituents, and, in some cases, their metabolites. The identification and transport of permeants across the jejunum was monitored by liquid chromatography-mass spectrometry (LC-MS), combining targeted and untargeted metabolite profiling approaches. It was observed that the C-glycoside isoflavones were stable and crossed the intestinal membrane, while various O-glycoside isoflavones were metabolized into their corresponding aglycones, which were then absorbed. These results are consistent with human data, highlighting the potential of using this approach. A thorough investigation of the impact of absorption and biotransformation was obtained without in vivo studies. The combination of qualitative untargeted and quantitative targeted LC-MS methods effectively monitored a large number of NPs and their metabolites, which is essential for research on HPs.
Collapse
Affiliation(s)
- Joëlle Houriet
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Yvonne E. Arnold
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Léonie Pellissier
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
11
|
Sun Y, He Y, Liu S, Gao H, Pi Z, Song F, Liu Z, Liu S. Comparative pharmacokinetics of Ding-Zhi-Xiao-Wan preparation and its single herbs in rats by using a putative multiple-reaction monitoring UPLC-MS/MS method. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:362-374. [PMID: 32896044 DOI: 10.1002/pca.2982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The formula of Chinese medicine, Ding-Zhi-Xiao-Wan (DZXW), has the distinct feature of compatibility therapy, which is attributed to the interactions of multi-herbs. However, the quantification problem caused by the absence of pure reference standards is a bottleneck to clarify the compatibility advantages from the perspective of pharmacokinetics (PKs). OBJECTIVE This study aimed to develop a putative multiple-reaction monitor (PMRM) strategy for exploring the comparative PKs of DZXW and its single herbs. METHODS First, precursor ion and tandem mass spectrometry (MS/MS) chromatograms were obtained via ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight MS (UHPLC-Q-TOF-MS) under different collision energy (CE) values. Then, the two most abundance ions in the MS/MS chromatograms were chosen as product ions, and CE values were selected according to the abundance of the product ion peaks. Next, a PMRM strategy consisting of optimal MRM parameters was constructed. Finally, the established PMRM parameters were imported to UHPLC coupled with triple quadrupole MS (UHPLC-TQ-MS) for quantification. RESULTS The strategy was exemplified by the comparative PK study of DZXW and its single herbs. This strategy could extend the PK scopes of multi-components. The quantitative results displayed substantial variations in PK parameters between DZXW and its single herbs. CONCLUSION The PK parameters indicated that the DZXW formula could increase the exposure levels of most ingredients and reduce the maximum concentration (Cmax ) of Radix Polygala, indicating that herb compatibility could produce synergistic effects and diminish possible toxic effects. This study provides a viable orientation for the compatibility investigation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yufei Sun
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang He
- School of Pharmacy and Food Science, Zhuhai College of Jilin University, Zhuhai, China
| | - Shuxin Liu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Hongxue Gao
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
12
|
A target integration strategy for analyzing multidimensional chemical and metabolic substance groups of Ding-Zhi-Xiao-Wan prescription by using ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2019; 1608:460412. [DOI: 10.1016/j.chroma.2019.460412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 02/03/2023]
|
13
|
Yang H, Hao Q, Cheng J, Wang M, Zou J, Zhang X, Guo D. Exploring the compatibility mechanism of ShengDiHuang Decoction based on the in situ single-pass intestinal perfusion model. Biopharm Drug Dispos 2019; 41:44-53. [PMID: 31778580 DOI: 10.1002/bdd.2211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
Affecting the absorption of active ingredients in the intestine serves as one of the important compatibility mechanisms of traditional Chinese medicine. The aim of this study was to investigate the compatibility mechanism of ShengDiHuang Decoction (SDHD) by using the single-pass intestinal perfusion in situ model. The major effective ingredients, catalpol, aucubin, acteoside, rehmannioside D, rehmannioside A, rhein, aloe emodin, emodin, chrysophanol, and physcion, were determined by HPLC. By analysing the effects of different concentrations, different pH, intestinal segments, protein inhibitors, and tight junction regulators on SDHD absorption, it was found that catalpol, aucubin, rehmannioside D, rehmannioside A, acteoside, rhein, and chrysophanol may undergo active transport, while aloe-emodin and emodin may undergo passive transport. Catalpol, aucubin, and rehmannioside D may be substrates of BCRP and MRP2, while rehmannioside A and rhein may be substrates of BCRP, and acteoside and chrysophanol may be substrates of P-gp, BCRP and MRP2. By comparing the Papp values of the major effective ingredients between single herb and herb-pairs, the compatibility of rehmannia and rheum could significantly promote the absorption of components in rehmannia. It is verified that rheum has a synergistic effect on the absorption of rehmannia in SDHD.
Collapse
Affiliation(s)
- Hui Yang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Qi Hao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jiangxue Cheng
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Mei Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|
14
|
Cao G, Wang N, He D, Wang X, Tian Y, Wan N, Yan W, Ye H, Hao H. Intestinal mucosal metabolites-guided detection of trace-level ginkgo biloba extract metabolome. J Chromatogr A 2019; 1608:460417. [PMID: 31416627 DOI: 10.1016/j.chroma.2019.460417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
Abstract
The characterization of metabolome for poorly absorptive natural medicines is challenging. Previous identification strategy often relies on nontargeted scanning biological samples from animals administered with natural medicines in a data-dependent acquisition (DDA) mode by LC-MS/MS. Substances that displayed significant increases following drug administration are thus assigned as potential metabolites. The accurate m/z of precursors and the corresponding MS/MS fragment ions are used to match with herbal ingredients and to infer possible metabolic reactions. Nevertheless, the low concentration of these metabolites within complex biological matrices has often hampered the detection. Herein we developed a strategy termed intestinal mucosal metabolome-guided detection (IMMD) to tackle this challenge using ginkgo biloba (GBE) as an example. The rationale is that poorly absorptive natural products are usually concentrated and extensively metabolized by enterocytes before they enter the blood stream and distribute to other organs. Therefore, we firstly identified the metabolites from intestinal mucosa of GBE-treated rats, and then used the identified intestinal mucosal GBE metabolome as targeted repository for MRM analysis. The presences of these metabolites were subsequently examined in rat plasma, liver and brain. The resultant GBE metabolome showed significantly improved coverage with 39, 45 and 6 metabolites identified in plasma, liver and brain compared to 22, 16 and 0 metabolites from the corresponding regions via the DDA-based strategy. In addition, we integrated the previously reported nontargeted diagnostic ion network analysis to facilitate the characterization of GBE components, and a chemicalome-metabolome matching approach (CMMA) to assist the identity assignment of GBE metabolome with IMMD. Combinatorially, we establish a multi-faceted platform to streamline the workflow of metabolome characterization for herbal medicines of low bioavailability. The metabolome information is expected to shed light on the elucidation of metabolic pathways for natural products, and the underlying mechanisms of their biological efficacies.
Collapse
Affiliation(s)
- Guoxiu Cao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Nian Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Dandan He
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Xinmiao Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Yang Tian
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Ning Wan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Wenchao Yan
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China
| | - Hui Ye
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China.
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, China.
| |
Collapse
|
15
|
Zhi H, Deng Y, Yan B, Li Z, Han S, Zhang Y, Hou J, Wu W, Guo D. Study on the herb-herb interaction of Danqi Tongmai Tablet based on the pharmacokinetics of twelve notoginsenoides in acute myocardial ischemia and sham rats. J Pharm Biomed Anal 2019; 166:52-65. [DOI: 10.1016/j.jpba.2018.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/22/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022]
|
16
|
Ma L, Zhang X, Xu X, Ke Y, Dai J, Cheng H, Mao W. Compatibility principle in the Tanyu Tongzhi Formula revealed by a cell-based analysis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:507-515. [PMID: 30508622 DOI: 10.1016/j.jep.2018.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The concept of the prescription in Traditional Chinese Medicine (TCM) is usually characterized by the compatibility principle "monarch, minister, assistant, and guide", which means herbs play primary, secondary, auxiliary, or harmonic roles, respectively, to achieve the optimally holistic effect. Following this compatibility principle, the Tanyu Tongzhi Formula (TTF), used for many years to treat cardiovascular diseases, has been proved effective clinically and experimentally. AIM OF THE STUDY The ancient compatibility principle is based on experiences, but whether its underlying interactions can be explained at the cellular level is unknown. We aimed to explore the mechanisms of activity of the TTF herbs and the interactions between them. MATERIALS AND METHODS We used a real-time cell analyzer to record the responses of COS-7 cells to the herbs in TTF, both individually and in different combinations. We also used biochemical assays to further characterize the TTF activity. RESULTS Monarch herb Fructus trichosanthis acts as an inhibitor of the EGF signaling. It's cytotoxicity, derived from inhibition of tubulin polymerization, could be completely neutralized by the combination of the phlegm group, or the whole TTF combination. Meanwhile, the minister, assistant, and guide herbs in the TTF did not affect EGF signaling. CONCLUSION Our results provide a demonstration, at the cellular level, of the compatibility principle of "monarch, minister, assistant, and guide" in TTF. Under the guidance of this principle, TTF exerts the anti-inflammation and anti-tumor effects through inhibiting EGF signaling, while avoiding the microtubule-disrupting activity of Fructus trichosanthis.
Collapse
Affiliation(s)
- Lan Ma
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoming Xu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jin Dai
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Wei Mao
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
17
|
Zheng Y, Liu S, Xing J, Zheng Z, Pi Z, Song F, Liu Z. Equivalently Quantitative Ion Strategy with Quaternary Ammonium Cation Derivatization for Highly Sensitive Quantification of Lanostane-Type Triterpene Acids without Standards by Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC–MS/MS). Anal Chem 2018; 90:13946-13952. [DOI: 10.1021/acs.analchem.8b03367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yan Zheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry & Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- State Key Laboratory of Electroanalytiacl Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|