1
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Morales A, Candreva J, Jayarathne T, Esterman AL, Voruganti S, Flagg SC, Slaney T, Liu P, Adamo M, Patel S, Das TK, Zeng M, Li X. A comprehensive strategy for the identification of biologics by liquid-chromatography-mass spectrometry for release testing in a regulated environment. J Pharm Biomed Anal 2023; 234:115580. [PMID: 37478550 DOI: 10.1016/j.jpba.2023.115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Identification (ID) testing is a regulatory requirement for biopharmaceutical manufacturing, requiring robust, GMP-qualified assays that can distinguish the therapeutic from any other in the facility. Liquid Chromatography-Mass Spectrometry (LC-MS) is a powerful analytical tool used to identify and characterize biologics. While routinely leveraged for characterization, LC-MS is relatively rare in Quality Control (QC) settings due to its perceived complexity and scarcity of MS-trained personnel. However, employing LC-MS for identification of drug products has many advantages versus conventional ID techniques, including but not limited to its high specificity, rapid turn-around time, and ease of method execution. In this work, we outline the development and implementation of a comprehensive LC-MS based ID strategy for biologics release testing. Two main workflows (WFs) were developed: i) WF1, a subunit-based assay measuring the molecular weight of the light chain (LC) and heavy chain (HC) of an antibody upon reduction, and ii) WF2, intact mass measurement of the biologic upon N-deglycosylation by PNGase F. The proposed strategy is shown to be applicable for over 40 diverse model biologics including monoclonal antibodies (mAbs), biobetters such as antibody prodrugs/afucosylated mAbs, fusion proteins, multi-specific antibodies, Fabs, and large peptides, all with excellent mass accuracy (error typically < 20 ppm) and precision. It requires a single-step sample preparation and a single click to run and process the data upon method setup. This strategy has been successfully implemented for release testing in GMP labs. Challenges and considerations for the establishment of QC-friendly methods are discussed. It is also shown that these methods can be applied to the ID of more analytically complex biotherapeutics, such as fixed-dose combination (FDC) and drug products co-formulated with trace-level additives.
Collapse
Affiliation(s)
- Anna Morales
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Jason Candreva
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Thilina Jayarathne
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Abbie L Esterman
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Sudhakar Voruganti
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Shannon C Flagg
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Thomas Slaney
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Peiran Liu
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Michael Adamo
- Analytical Strategy and Operations, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Saileshkumar Patel
- Analytical Strategy and Operations, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Tapan K Das
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Ming Zeng
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States
| | - Xue Li
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ, United States.
| |
Collapse
|
3
|
Pérez-Robles R, Salmerón-García A, Clemente-Bautista S, Jiménez-Lozano I, Cabañas-Poy MJ, Cabeza J, Navas N. Method for identification and quantification of intact teduglutide peptide using (RP)UHPLC-UV-(HESI/ORBITRAP)MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4359-4369. [PMID: 36263764 DOI: 10.1039/d2ay01254e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Teduglutide (Revestive®, 10 mg mL-1) is a recombinant human glucagon-like peptide 2 analogue, used in the treatment of short bowel syndrome, a serious and highly disabling condition which results from either too small a length of intestine or loss of critical intestinal function. The determination of therapeutic compounds of protein-nature is always challenging due to their complex structure. In this work, we present a fast, straightforward reversed phase (RP)UHPLC-UV-(HESI/ORBITRAP)MS method for the identification and quantification of the intact teduglutide peptide. The method has been developed and validated in accordance with the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines; therefore, linearity, limits of detection and quantification, accuracy (precision and trueness), robustness, system suitability and specificity using the signal from the UV and MS, have been evaluated. The validation performance parameters obtained from the UV and MS signals were compared throughout the work, to select the most suitable. To study the specificity of the method and the impact of medicine mishandling under hospital conditions, force degradation studies were performed, i.e. thermal (40 °C and 60 °C), shaking (mechanical) and light (accelerated exposition) effects. Identification by the exact mass of teduglutide was achieved and it was confirmed that the peptide does not undergo any post-translational modifications (PTMs). To the best of our knowledge, the present work reports the first method developed for the simultaneous identification, structural characterization, and quantification of the therapeutic teduglutide peptide. Finally, the proposed method is able to indicate stability when quantifying the intact teduglutide since detects and characterises the exact mass of the degradation/modification products.
Collapse
Affiliation(s)
- Raquel Pérez-Robles
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain
- Fundación para la Investigación Biosanitaria de Andalucía Oriental-Alejandro Otero, Granada, Spain
| | - Antonio Salmerón-García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Clinical Pharmacy, San Cecilio University Hospital, Granada, Spain
| | | | - Inés Jiménez-Lozano
- Maternal and Child Pharmacy Service, Vall d'Hebron Hospital, Pharmacy, Barcelona, Spain
| | | | - Jose Cabeza
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Clinical Pharmacy, San Cecilio University Hospital, Granada, Spain
| | - Natalia Navas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Torrente-López A, Hermosilla J, Pérez-Robles R, Salmerón-García A, Cabeza J, Navas N. Combined use of UV and MS data for ICH Stability-Indication Method: Quantification and isoforms identification of intact nivolumab. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Krieg D, Winter G, Svilenov HL. It is never too late for a cocktail - Development and analytical characterization of fixed-dose antibody combinations. J Pharm Sci 2022; 111:2149-2157. [DOI: 10.1016/j.xphs.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
|
6
|
Dash R, Rathore AS. Freeze thaw and lyophilization induced alteration in mAb therapeutics: Trastuzumab as a case study. J Pharm Biomed Anal 2021; 201:114122. [PMID: 33989996 DOI: 10.1016/j.jpba.2021.114122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/13/2023]
Abstract
Long-term stability of therapeutic monoclonal antibody (mAb) products is necessary for their successful commercialization. Freeze-thaw (F/T) operations are often performed for a mAb product during processing, storage and distribution. Lyophilization (Lyo) is another unit operation that is commonly used for drug product manufacturing of mAbs. This paper aims to explore the impact of these operations on structure and function of a mAb therapeutic, as well as of biosimilars. Trastuzumab innovator and its five biosimilars were analysed for aggregation, charge heterogeneity, secondary structure, binding kinetics, and potency after each freeze-thaw and lyophilization cycle. It is observed that both F/T and Lyo induce protein aggregation, which in turn causes perturbations in the biological potency of the mAb therapeutic. The average value of the percentage of aggregation increased from 0.6 % (week 1) to 5.3 % (week 10) in F/T study and from 0.8 % (week 1) to 10.1 % (week 10) in Lyo study. The acidic pool increased from 26.5 % (week 1) to 44.4 % (week 10) and the basic variants from 13.9 % (week 1) to 24.0 % (week 10) in F/T study. Similarly, acidic pool increased from 27.1 % (week 1) to 42.0 % (week 10) and basic variants from 14.8 % (week 1) to 24.4 % (week 10) in Lyo study. The average percentage of beta-sheet increased from 58.4 % (week 1) to 60.9 % (week 10) in F/T study and from 59.7 % (week 1) to 72.6 % (week 10) in Lyo study. Lower binding affinity was found in week 7 as compared to week 1 in Lyo study whereas no change in binding affinity was observed in the F/T study. The average potency value gradually decreased from 0.97IU/ ml (week 1) to 0.75IU/ ml (week 10) in F/T study and from 1.0IU/ ml (week 1) to 0.66IU/ ml (week 10) in Lyo study. Results indicate that lyophilization has a bigger impact on binding affinity than freeze thaw and as expected, the impact was comparable across the innovator and biosimilar products.
Collapse
Affiliation(s)
- Rozaleen Dash
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
7
|
Makki AA, Massot V, Byrne HJ, Respaud R, Bertrand D, Mohammed E, Chourpa I, Bonnier F. Understanding the discrimination and quantification of monoclonal antibodies preparations using Raman spectroscopy. J Pharm Biomed Anal 2020; 194:113734. [PMID: 33243491 DOI: 10.1016/j.jpba.2020.113734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
The use of Raman spectroscopy for analytical quality control of anticancer drug preparations in clinical pharmaceutical dispensing units is increasing in popularity, notably supported by commercially available, purpose designed instruments. Although not legislatively compulsory, analytical methods are frequently used post-preparation to verify the accuracy of a preparation in terms of identity and quantity of the drug in solution. However, while the rapid, cost effective and label free analysis achieved with Raman spectroscopy is appealing, it is important to understand the molecular origin of the spectral contributions collected from the solution of actives and excipients, to evaluate the strength and limitation for the technique, which can be used to identify and quantify either the prescribed commercial formulation, and/or the active drug itself, in personalised solutions. In the current study, four commercial formulations, Erbitux®, Truxima®, Ontruzant® and Avastin® of monoclonal antibodies (mAbs), corresponding respectively to cetuximab, rituximab, trastuzumab and bevacizumab have been used to highlight the key role of excipients in discrimination and quantification of the formulations. It is demonstrated that protein based anticancer drugs such as mAbs have a relatively weak Raman response, while excipients such as glycine, trehalose or histidine contribute significantly to the spectra. Multivariate analysis (partial least square regression and partial least square discriminant analysis) further demonstrates that the signatures of the mAbs themselves are not prominent in mathematical models and that those of the excipients are solely responsible for the differentiation of formulation and accurate determination of concentrations. While Raman spectroscopy can successfully validate the conformity of mAbs intravenous infusion solutions, the basis for the analysis should be considered, and special caution should be given to excipient compositions in commercial formulations to ensure reliability and reproducibility of the analysis.
Collapse
Affiliation(s)
- Alaa A Makki
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France; Faculty of Pharmacy, University of Gezira, P.O. Box 20, 21111 Wad Madani, Sudan
| | - Victor Massot
- Unité de Biopharmacie Clinique Oncologique, Pharmacie, CHU de Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Kevin Street, Dublin 8, Ireland
| | - Renaud Respaud
- Université de Tours, UMR 1100, CHRU de Tours, Service de Pharmacie, F-37032 Tours, France
| | | | - Elhadi Mohammed
- Faculty of Pharmacy, University of Gezira, P.O. Box 20, 21111 Wad Madani, Sudan
| | - Igor Chourpa
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| | - Franck Bonnier
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France.
| |
Collapse
|
8
|
Hermosilla J, Sánchez-Martín R, Pérez-Robles R, Salmerón-García A, Casares S, Cabeza J, Cuadros-Rodríguez L, Navas N. Comparative Stability Studies of Different Infliximab and Biosimilar CT-P13 Clinical Solutions by Combined Use of Physicochemical Analytical Techniques and Enzyme-Linked Immunosorbent Assay (ELISA). BioDrugs 2019; 33:193-205. [DOI: 10.1007/s40259-019-00342-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|