1
|
Zhang Z, Chen L, Li X, Cai M, Yan H, Sun G. A quality control system of Chinese medicine preparation based on fingerprint identification technology, chemometrics and network pharmacology, using the Yixinshu capsule as an example. Talanta 2025; 292:128015. [PMID: 40154047 DOI: 10.1016/j.talanta.2025.128015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Establishing a trustworthy quality control system for traditional Chinese medicine (TCM) is crucial to ensure the stability and reliability of the therapeutic efficacy of Chinese medicinal preparations (CMPs). This study takes Yixinshu Capsules (YXSC) as the research subject and develops a quality control system for TCM by integrating fingerprint technology, chemometrics, and network pharmacology. Initially, a dual-wavelength absorption coefficient ratio fingerprint (DWAR) was employed to verify the peak purity of each fingerprint peak in YXSC, while a three-dimensional chromatographic fingerprint (3DCFP) was utilized to generate full-wavelength chromatographic fingerprints of sample components. Subsequently, electrochemical (EC) and differential scanning calorimetry (DSC) methods were adopted as supplementary analytical approaches to evaluate YXSC comprehensively. A five-dimensional quantitative fingerprint method (5DQFM) was then applied to assess the above three detection methods from both qualitative and quantitative perspectives, enabling a holistic evaluation of YXSC's quality consistency. Furthermore, chemometric analysis demonstrated that 5DQFM and 3DCFP could accurately characterize YXSC's quality. Finally, network pharmacology was employed as a research methodology to explore the potential mechanisms through which different active chemical components in YXSC exert therapeutic effects on heart failure (HF). This study evaluates YXSC's quality from both chemical and biological perspectives and develops a comprehensive and reliable quality control approach, providing novel insights for quality control and therapeutic efficacy research of CMP.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Lingkui Chen
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xuan Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ming Cai
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Hui Yan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Guoxiang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
2
|
Cai S, Liao X, Xi Y, Chu Y, Liu S, Su H, Dou D, Xu J, Xiao S. Screening and Application of DNA Markers for Novel Quality Consistency Evaluation in Panax ginseng. Int J Mol Sci 2025; 26:2701. [PMID: 40141343 PMCID: PMC11942579 DOI: 10.3390/ijms26062701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Quality control remains a challenge in traditional Chinese medicine (TCM). This study introduced a novel genetic-based quality control method for TCM. Genetic variations in ginseng were evaluated across whole-genome, chloroplast genome, and ITS2 DNA barcode dimensions. Significant genetic variations were found in whole-genome comparison, leading to the use of inter-simple sequence repeat markers to assess the genetic diversity of ginseng decoction pieces (PG), garden ginseng (GG), and ginseng under forest (FG). Fingerprints of ginseng samples revealed instability within some batches. These evaluations were transformed into information entropy to calculate the size of Hardy-Weinberg equilibrium population (HWEP). FG had significantly higher genetic and chemical minimum HWEP than GG (p < 0.05). Notably, a significant positive correlation was observed between the minimum HWEP for genetics and for chemistry (r = 0.857, p = 0.014). Genetic polymorphism analysis of ginseng has the potential to evaluate chemical quality consistency, offering a new method to ensure quality consistency in TCM.
Collapse
Affiliation(s)
- Siyuan Cai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Xuejiao Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Yidan Xi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China;
| | - Yang Chu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Shuang Liu
- Shanxi Institute of Functional Foods, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China;
| | - Jiang Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Shuiming Xiao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| |
Collapse
|
3
|
Li C, Zhu X, Shen T, Wang Y, Zhang R. A Comprehensive Quality Evaluation for Gentiana Rigescens Franch. by Fingerprinting Combined with Chemometrics and Network Pharmacology. Chem Biodivers 2025; 22:e202401228. [PMID: 39352858 DOI: 10.1002/cbdv.202401228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Gentiana rigescens Franch. (G. rigescens) is a unique traditional medicinal herb from southwestern China, and its clinical mechanism for the treatment of hepatitis and the quality differences between different origins are not clear. The research aims to analyze the mechanisms for the treatment of hepatitis and differences in inter-origin differences using analytical techniques, chemometrics, and network pharmacology. Through infrared spectroscopy, spectral images, and high-performance liquid chromatography (HPLC) analysis, it was found that there were differences in absorbance intensity and significant differences in compound content among the samples' origin. G. rigescens iridoids and flavonoids exert therapeutic effects on hepatitis through multiple targets (GAPDH, EGFR, and MMP9, etc.) and multiple pathways (non-small cell lung cancer, hepatitis C, etc.). The above HPLC, chemometrics, and network pharmacology results revealed that gentiopicroside, and swertiamarine was the best quality marker among origins. The accuracy of the ResNet model train, test, and external validation sets for synchronous spectral images were 100 %, which could be utilized as an effective tool for tracing G. rigescens's origins. The R2 of the calibration and validation sets of the PLSR model was higher than 0.70. This model had excellent predictive performance in determining the content of gentiopicroside and swertiamarine, and could quickly, accurately, and effectively predict these two compounds. The research investigates the differences in G. rigescens origins from multiple perspectives, establishes image recognition models and prediction models, and provides new methods and theoretical basis for quality control of G. rigescens.
Collapse
Affiliation(s)
- Chaoping Li
- College of Traditional Chinese Medicine & Yunnan Key Laboratory of Southern Medicinal Resources, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, 2238, Beijing Road, Panlong District, Kunming, 650200, China
| | - Xinyan Zhu
- College of Traditional Chinese Medicine & Yunnan Key Laboratory of Southern Medicinal Resources, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Tao Shen
- College of Chemistry, Biological and Environment, Yuxi Normal University, Yuxi, 653100, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, 2238, Beijing Road, Panlong District, Kunming, 650200, China
| | - Rongping Zhang
- College of Traditional Chinese Medicine & Yunnan Key Laboratory of Southern Medicinal Resources, Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
4
|
Wen Q, Wei W, Li Y, Chen D, Zhang J, Li Z, Guo DA. Combination ATR-FTIR with Multiple Classification Algorithms for Authentication of the Four Medicinal Plants from Curcuma L. in Rhizomes and Tuberous Roots. SENSORS (BASEL, SWITZERLAND) 2024; 25:50. [PMID: 39796841 PMCID: PMC11722871 DOI: 10.3390/s25010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
Curcumae Longae Rhizoma (CLRh), Curcumae Radix (CRa), and Curcumae Rhizoma (CRh), derived from the different medicinal parts of the Curcuma species, are blood-activating analgesics commonly used for promoting blood circulation and relieving pain. Due to their certain similarities in chemical composition and pharmacological effects, these three herbs exhibit a high risk associated with mixing and indiscriminate use. The diverse methods used for distinguishing the medicinal origins are complex, time-consuming, and limited to intraspecific differentiation, which are not suitable for rapid and systematic identification. We developed a rapid analysis method for identification of affinis and different medicinal materials using attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR) combined with machine learning algorithms. The original spectroscopic data were pretreated using derivatives, standard normal variate (SNV), multiplicative scatter correction (MSC), and smoothing (S) methods. Among them, 1D + MSC + 13S emerged as the best pretreatment method. Then, t-distributed stochastic neighbor embedding (t-SNE) was applied to visualize the results, and seven kinds of classification models were constructed. The results showed that support vector machine (SVM) modeling was superior to other models and the accuracy of validation and prediction was preferable, with a modeling time of 127.76 s. The established method could be employed to rapidly and effectively distinguish the different origins and parts of Curcuma species and thus provides a technique for rapid quality evaluation of affinis species.
Collapse
Affiliation(s)
- Qiuyi Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (W.W.); (Y.L.); (J.Z.); (Z.L.)
| | - Wenlong Wei
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (W.W.); (Y.L.); (J.Z.); (Z.L.)
| | - Yun Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (W.W.); (Y.L.); (J.Z.); (Z.L.)
| | - Dan Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Jianqing Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (W.W.); (Y.L.); (J.Z.); (Z.L.)
| | - Zhenwei Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (W.W.); (Y.L.); (J.Z.); (Z.L.)
| | - De-an Guo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (W.W.); (Y.L.); (J.Z.); (Z.L.)
| |
Collapse
|
5
|
Ji Z, Sun B, Yang T, Li X, Zhang Z, Bao M, Zhao L, Lou H, Li Y, Sun G, Huang J. Holistic quality assessment and monitoring of YiXinShu capsule based on three-dimensional fingerprints combined with quantitative analysis, antioxidant activity and chemometrics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118630. [PMID: 39053720 DOI: 10.1016/j.jep.2024.118630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE YiXinShu capsule (YXSC), originally from the classical TCM formula named "Sheng-Mai-San", has been extensively utilized in clinic for the treatment of cardiovascular diseases. However, there were few reports about the quality assessment of YXSCs both internationally and domestically. AIM OF THE STUDY The objective was to develop a multi-strategy platform incorporating systematic quantitative fingerprint analysis and antioxidant activity determination, with chemometric analysis and bivariate correlation analysis as the auxiliary approaches, to assess and monitor the quality of YXSCs. MATERIALS AND METHODS Firstly, according to the Chinese Pharmacopoeia (2020 edition), 12 key indicator components from seven herb medicines were quantified by HPLC method. Then, three-dimensional fingerprints comprising five-wavelength fusion fingerprint (FWF-FP), electrochemical fingerprint (EC-FP) and Differential Scanning Calorimetry fingerprint (DSC-FP) were established to assess and monitor YXSCs using systematically quantified fingerprint method (SQFM) and principal component analysis (PCA). Moreover, by integrating the analysis of the three-dimensional fingerprints, the quality of YXSCs from different batches was effectively screened. Finally, the antioxidant activity of this TCM was assessed through DPPH and ABTS methods, and the L-ascorbic acid equivalent antioxidant capacity (AEAC) values were compared to evaluate the antioxidant activities of the two methods. A Partial Least Squares (PLS) model was used to develop the spectrum-activity relationship between FWF-FP and AEAC, and a bivariate correlation analysis (BCA) was used to assess the correlation between FWF-FP and EC-FP. RESULTS The key indexes including tanshinone I, tol, toe, Atp, first exothermic peak, and second exothermic peak can differentiate between various batches of YXSCs based on their three-dimensional fingerprint profiles. The integration evaluation results from 42 batches of YXSCs were categorized into 2-5 grades, indicating good quality consistency across different batches. In vitro studies have indicated a significant antioxidant activity capacity of YXSCs. The PLS model revealed that 37 out of the 41 fingerprint peaks exhibited antioxidant activity. The overall trend of BCA was consistent with PLS model results. CONCLUSION This research presents a scientific and holistic strategy for the quality consistency evaluation of YXSCs, thereby offering an effective approach for the thorough evaluation of TCMs.
Collapse
Affiliation(s)
- Zhengchao Ji
- Department of Laboratory Medicine, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin Province, 130021, PR China
| | - Beihan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Ting Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Xuan Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Zhenwei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Mengfan Bao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Liping Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Hongyin Lou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Yanyan Li
- Department of Laboratory Medicine, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin Province, 130021, PR China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China.
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin Province, 130021, PR China.
| |
Collapse
|
6
|
Wang Y, Lai J, Chen Z, Sun L, Ma Y, Wu J. Exploring the therapeutic mechanisms of heart failure with Chinese herbal medicine: a focus on miRNA-mediated regulation. Front Pharmacol 2024; 15:1475975. [PMID: 39564110 PMCID: PMC11573571 DOI: 10.3389/fphar.2024.1475975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Heart failure (HF) is a clinical condition caused by abnormalities in the heart's structure or function, primarily manifested as diminished ability of the heart to pump blood, which leads to compensatory activation of neurohormones and increased left ventricular filling pressure. HF is one of the fastest-growing cardiovascular diseases globally in terms of incidence and mortality, negatively impacting patients' quality of life and imposing significant medical and economic burdens. Despite advancements in the treatment of HF, hospitalization and mortality remain rates high. In China, Chinese herbal medicine (CHM) has historically played a prominent role in addressing HF, with significant proven efficacy. MicroRNA (miRNA) exerts a pivotal regulatory influence on the maintenance of regular cardiac activity and the progression of HF. MiRNAs, a category of single-stranded RNA molecules, are characterized by their inability to code for proteins. They regulate gene expression by binding to the 3'-untranslated region (3'-UTR) of target mRNAs, thereby influencing the onset and progression of various diseases. Abnormal expression of specific miRNAs is closely associated with HF pathological processes, such as cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy. This abnormal expression can influence the pathological progression of HF through the regulation of miRNA expression. This article reviews the regulatory role of miRNAs in HF pathology discusses how CHM compounds and their active ingredients can ameliorate HF pathology through the regulation of miRNA expression. In conclusion, miRNAs represent promising therapeutic targets for HF, and CHM provides a novel strategy for treatment through the regulation of miRNA expression. Future studies must delve deeper into the precise mechanisms by which CHM modulates miRNAs and fully explore its potential for clinical application in HF treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengtao Chen
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liqiang Sun
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yirong Ma
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Caetano ELA, Novoa San Miguel FJ, Errázuriz León R, Grotto D, Hornos Carneiro MF. Exploring the impact of Agaricus bisporus on mitigating lead reproductive toxicity using the Caenorhabditis elegans model. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109963. [PMID: 38889876 DOI: 10.1016/j.cbpc.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Given that Agaricus bisporus, an edible mushroom, has demonstrated antioxidant properties, our investigation aimed to assess whether Agaricus bisporus could mitigate the toxic effects of lead (Pb) on Caenorhabditis elegans (C. elegans) model. A dose-response study was conducted involving Pb and Agaricus bisporus to determine appropriate doses. Subsequently, a co-exposure study utilizing C. elegans strains N2 and CL2166 was implemented, with groups designated as Control, Pb, Agaricus bisporus, and Pb + Agaricus bisporus. Our findings revealed that co-exposure to Pb + 100 mg/mL Agaricus bisporus resulted in reduced embryonic and larval lethality, increased brood size, and enhanced motility compared to nematodes exposed solely to Pb. Notably, our observations indicated a transfer of reproductive toxicity from nematode parents to their offspring. Thus, Agaricus bisporus may play a significant role in Pb detoxification, suggesting its potential as a natural antioxidant for neutralizing the detrimental effects of Pb on reproductive health.
Collapse
Affiliation(s)
| | | | - Rocío Errázuriz León
- Pontificia Universidad Católica de Chile, Faculty of Chemistry and Pharmacy, Santiago, Chile
| | | | | |
Collapse
|
8
|
Lu Y, Lei T, Chen X, Ning N, Huang Q, Wu X, Wang S, Li P, Wan L, Cao J. A comprehensive strategy based on ultra-high performance liquid chromatography with diode array detector fingerprinting and multi-component ultra-performance liquid chromatography with tandem mass spectrometry technology for quality control of Jiawei Huoxiang Zhengqi Pill. J Sep Sci 2024; 47:e2400308. [PMID: 38982562 DOI: 10.1002/jssc.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Jiawei Huoxiang Zhengqi Pill (JHZP) is a commonly used Chinese patent medicine for the clinical treatment of headache, dizziness, chest tightness as well as abdominal distension, and pain caused by wind-cold flu. In this study, a comprehensive strategy combining ultra-high performance liquid chromatography with diode array detector (UHPLC-DAD) fingerprinting and multi-component quantitative analysis was established and validated for quality evaluation of JHZP. A total of 49 characteristic common peaks were selected in a chromatographic fingerprinting study to assess the similarity of 15 batches of JHZP. Furthermore, 109 compounds were identified or preliminarily identified from JHZP by coupling with an advanced hybrid linear ion trap-Orbitrap mass spectrometer. For quantification, the optimized ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was employed for the simultaneous determination of 13 target compounds within 12 min. The sensitivity, precision, reproducibility, and accuracy of the method were satisfactory. This validated UPLC-MS/MS method was successfully applied to analyzing 15 batches of JHZP. The proposed comprehensive strategy combining UHPLC-DAD fingerprinting and multi-component UPLC-MS/MS analysis proved to be highly efficient, accurate, and reliable for the quality evaluation of JHZP, which can be considered as a reference for the overall quality evaluation of other Chinese herbal formulations.
Collapse
Affiliation(s)
- Yang Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Lei
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou, China
| | - Xinyang Chen
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou, China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou, China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Li Wan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiliang Cao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
9
|
Zeng Q, Cheng Z, Li L, Yang Y, Peng Y, Zhou X, Zhang D, Hu X, Liu C, Chen X. Quantitative analysis of the quality constituents of Lonicera japonica Thunberg based on Raman spectroscopy. Food Chem 2024; 443:138513. [PMID: 38277933 DOI: 10.1016/j.foodchem.2024.138513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Quantitative analysis of the quality constituents of Lonicera japonica (Jinyinhua [JYH]) using a feasible method provides important information on its evaluation and applications. Limitations of sample pretreatment, experimental site, and analysis time should be considered when identifying new methods. In response to these considerations, Raman spectroscopy combined with deep learning was used to establish a quantitative analysis model to determine the quality of JYH. Chlorogenic acid and total flavonoids were identified as analysis targets via network pharmacology. High performance liquid chromatograph and ultraviolet spectroscopy were used to construct standard curves for quantitative analysis. Raman spectra of JYH extracts (1200) were collected. Subsequently, models were built using partial least squares regression, Support Vector Machine, Back Propagation Neural Network, and One-dimensional Convolutional Neural Network (1D-CNN). Among these, the 1D-CNN model showed superior prediction capability and had higher accuracy (R2 = 0.971), and lower root mean square error, indicating its suitability for rapid quantitative analysis.
Collapse
Affiliation(s)
- Qi Zeng
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China; Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| | - Zhaoyang Cheng
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Li Li
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yuhang Yang
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yangyao Peng
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xianzhen Zhou
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Dongjie Zhang
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China; Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| | - Xiaojia Hu
- Shanghai Nature's Sunshine Health Products Co. Ltd, Shanghai 200040, China
| | - Chunyu Liu
- Zests Biotechnology Co. Ltd, Suzhou City 215143, China
| | - Xueli Chen
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China; Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China.
| |
Collapse
|
10
|
Ragupathy S, Thirugnanasambandam A, Henry T, Vinayagam V, Sneha R, Newmaster SG. Flower Species Ingredient Verification Using Orthogonal Molecular Methods. Foods 2024; 13:1862. [PMID: 38928803 PMCID: PMC11203286 DOI: 10.3390/foods13121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Flowers are gaining considerable interest among consumers as ingredients in food, beverages, cosmetics, and natural health products. The supply chain trades in multiple forms of botanicals, including fresh whole flowers, which are easier to identify than dried flowers or flowers processed as powdered or liquid extracts. There is a gap in the scientific methods available for the verification of flower species ingredients traded in the supply chains of multiple markets. The objective of this paper is to develop methods for flower species ingredient verification using two orthogonal methods. More specifically, the objectives of this study employed both (1) DNA-based molecular diagnostic methods and (2) NMR metabolite fingerprint methods in the identification of 23 common flower species ingredients. NMR data analysis reveals considerable information on the variation in metabolites present in different flower species, including color variants within species. This study provides a comprehensive comparison of two orthogonal methods for verifying flower species ingredient supply chains to ensure the highest quality products. By thoroughly analyzing the benefits and limitations of each approach, this research offers valuable insights to support quality assurance and improve consumer confidence.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Thomas Henry
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Varathan Vinayagam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Ragupathy Sneha
- College of Medicine, American University of Antigua, Jobberwock Beach Road, Coolidge P.O. Box W1451, Antigua;
| | - Steven G. Newmaster
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| |
Collapse
|
11
|
Cui T, Ying Z, Zhang J, Guo S, Chen W, Zhou G, Li W. Strategies for the quality control of Chrysanthemi Flos: Rapid quantification and end-to-end fingerprint conversion based on FT-NIR spectroscopy. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:754-770. [PMID: 38282123 DOI: 10.1002/pca.3326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Chrysanthemi Flos (CF) is widely used as a natural medicine or tea. Due to its diverse cultivation regions, CF exhibits varying quality. Therefore, the quality and swiftness in evaluation holds paramount significance for CF. OBJECTIVE The aim of the study was to construct a comprehensive evaluation strategy for assessing CF quality using HPLC, near-infrared (NIR) spectroscopy, and chemometrics, which included the rapid quantification analyses of chemical components and the Fourier transform (FT)-NIR to HPLC conversion of fingerprints. MATERIALS AND METHODS A total of 145 CF samples were utilised for data collection via NIR spectroscopy and HPLC. The partial least squares regression (PLSR) models were optimised using various spectral preprocessing and variable selection methods to predict the chemical composition content in CF. Both direct standardisation (DS) and PLSR algorithms were employed to establish the fingerprint conversion model from the FT-NIR spectrum to HPLC, and the model's performance was assessed through similarity and cluster analysis. RESULTS The optimised PLSR quantitative models can effectively predict the content of eight chemical components in CF. Both DS and PLSR algorithms achieve the calibration conversion of CF fingerprints from FT-NIR to HPLC, and the predicted and measured HPLC fingerprints are highly similar. Notably, the best model relies on CF powder FT-NIR spectra and DS algorithm [root mean square error of prediction (RMSEP) = 2.7590, R2 = 0.8558]. A high average similarity (0.9184) prevails between predicted and measured fingerprints of test set samples, and the results of the clustering analysis exhibit a high level of consistency. CONCLUSION This comprehensive strategy provides a novel and dependable approach for the rapid quality evaluation of CF.
Collapse
Affiliation(s)
- Tongcan Cui
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zehua Ying
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianyu Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shubo Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Chen
- Shanghai Zhen Ren Tang Pharmaceutical Co., Ltd, Shanghai, China
| | - Guifang Zhou
- Shanghai Zhen Ren Tang Pharmaceutical Co., Ltd, Shanghai, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Wang ZK, Ta N, Wei HC, Wang JH, Zhao J, Li M. Research of 2D-COS with metabolomics modifications through deep learning for traceability of wine. Sci Rep 2024; 14:12598. [PMID: 38824219 PMCID: PMC11144233 DOI: 10.1038/s41598-024-63280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
To tackle the difficulty of extracting features from one-dimensional spectral signals using traditional spectral analysis, a metabolomics analysis method is proposed to locate two-dimensional correlated spectral feature bands and combine it with deep learning classification for wine origin traceability. Metabolomics analysis was performed on 180 wine samples from 6 different wine regions using UPLC-Q-TOF-MS. Indole, Sulfacetamide, and caffeine were selected as the main differential components. By analyzing the molecular structure of these components and referring to the main functional groups on the infrared spectrum, characteristic band regions with wavelengths in the range of 1000-1400 nm and 1500-1800 nm were selected. Draw two-dimensional correlation spectra (2D-COS) separately, generate synchronous correlation spectra and asynchronous correlation spectra, establish convolutional neural network (CNN) classification models, and achieve the purpose of wine origin traceability. The experimental results demonstrate that combining two segments of two-dimensional characteristic spectra determined by metabolomics screening with convolutional neural networks yields optimal classification results. This validates the effectiveness of using metabolomics screening to determine spectral feature regions in tracing wine origin. This approach effectively removes irrelevant variables while retaining crucial chemical information, enhancing spectral resolution. This integrated approach strengthens the classification model's understanding of samples, significantly increasing accuracy.
Collapse
Affiliation(s)
- Zhuo-Kang Wang
- School of Electrical and Information Engineering, North Minzu University, No. 204 North Wenchang Street, Yinchuan, 750021, Ningxia, China
| | - Na Ta
- School of Electrical and Information Engineering, North Minzu University, No. 204 North Wenchang Street, Yinchuan, 750021, Ningxia, China
| | - Hai-Cheng Wei
- School of Medical Technology, North Minzu University, No. 204 North Wenchang Street, Yinchuan, 750021, Ningxia, China.
| | - Jin-Hang Wang
- School of Electrical and Information Engineering, North Minzu University, No. 204 North Wenchang Street, Yinchuan, 750021, Ningxia, China
| | - Jing Zhao
- School of Information Engineering, Ningxia University, Yinchuan, 750021, China
| | - Min Li
- College of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, Ningxia, China
| |
Collapse
|
13
|
Chen Y, Zhang J, Feng J, Chen W, Liu W, Chen J, Ye J, Li W. Holistic quality evaluation method of Epimedii Folium based on NIR spectroscopy and chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:771-785. [PMID: 38273442 DOI: 10.1002/pca.3327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/26/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION There are some problems in the quality control of Epimedii Folium (leaves of Epimedium brevicornum Maxim.), such as the mixed use of Epimedii Folium from different harvesting periods and regions, incomplete quality evaluation, and time-consuming analysis methods. OBJECTIVE Near-infrared (NIR) spectroscopy was conducted to establish a rapid overall quality evaluation method for Epimedii Folium. MATERIALS AND METHODS Quantitative models of the total solid, moisture, total flavonoid, and flavonol glycoside (Epimedin A, Epimedin B, Epimedin C, Icariin) contents of Epimedii Folium were established by partial least squares regression (PLSR). The root mean square error (RMSE) and correlation coefficient (R) were used to evaluate the performance of models. The qualitative models of Epimedii Folium from different geographic origins and harvest periods were established based on K-nearest neighbor (KNN), back-propagation neural network (BPNN), and random forest (RF). Accuracy and Kappa values were used to evaluate the performance of models. A new multivariable signal conversion strategy was proposed, which combines NIR spectroscopy with the PLSR model to predict the absorbance values of retention time points in the high-performance liquid chromatography (HPLC) fingerprint to obtain the predicted HPLC fingerprint. The Pearson correlation coefficient and cosine coefficient were used to evaluate the similarity between real and predicted HPLC fingerprints. RESULTS Qualitative models, quantitative models, and the similarity between real and predicted HPLC fingerprints are satisfactory. CONCLUSION The method serves as a fast and green analytical quality evaluation method of Epimedii Folium and can replace traditional methods to achieve the overall quality evaluation of Epimedii Folium.
Collapse
Affiliation(s)
- Yuru Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Jianyu Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Jiahao Feng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Wei Chen
- Shanghai Zhen Ren Tang Pharmaceutical Co., Ltd, Shanghai, People's Republic of China
| | - Wengang Liu
- Chengdu Kanghong Pharmaceutical Co., Ltd., Chengdu, People's Republic of China
| | - Jingchao Chen
- Chengdu Kanghong Pharmaceutical Co., Ltd., Chengdu, People's Republic of China
| | - Jianming Ye
- Chengdu Kanghong Pharmaceutical Co., Ltd., Chengdu, People's Republic of China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Fakhlaei R, Babadi AA, Sun C, Ariffin NM, Khatib A, Selamat J, Xiaobo Z. Application, challenges and future prospects of recent nondestructive techniques based on the electromagnetic spectrum in food quality and safety. Food Chem 2024; 441:138402. [PMID: 38218155 DOI: 10.1016/j.foodchem.2024.138402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Safety and quality aspects of food products have always been critical issues for the food production and processing industries. Since conventional quality measurements are laborious, time-consuming, and expensive, it is vital to develop new, fast, non-invasive, cost-effective, and direct techniques to eliminate those challenges. Recently, non-destructive techniques have been applied in the food sector to improve the quality and safety of foodstuffs. The aim of this review is an effort to list non-destructive techniques (X-ray, computer tomography, ultraviolet-visible spectroscopy, hyperspectral imaging, infrared, Raman, terahertz, nuclear magnetic resonance, magnetic resonance imaging, and ultrasound imaging) based on the electromagnetic spectrum and discuss their principle and application in the food sector. This review provides an in-depth assessment of the different non-destructive techniques used for the quality and safety analysis of foodstuffs. We also discussed comprehensively about advantages, disadvantages, challenges, and opportunities for the application of each technique and recommended some solutions and developments for future trends.
Collapse
Affiliation(s)
- Rafieh Fakhlaei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Arman Amani Babadi
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunjun Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Naziruddin Mat Ariffin
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Jinap Selamat
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Guo Y, Wang L, Liu K, Li M, Jin Y, Gu L, Yu XA, Wang S, Wang P, Wang B, Wang T. A Rapid and Accurate UHPLC Method for Determination of Monosaccharides in Polysaccharides of Different Sources of Radix Astragali and Its Immune Activity Analysis. Molecules 2024; 29:2287. [PMID: 38792148 PMCID: PMC11124152 DOI: 10.3390/molecules29102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
With the escalating demand for Astragalus polysaccharides products developed from Radix Astragali (RA), the necessity for quality control of polysaccharides in RA has become increasingly urgent. In this study, a specific method for the simultaneous determination of seven monosaccharides in polysaccharides extracted from Radix Astragali (RA) has been developed and validated using ultra-performance liquid chromatography equipped with an ultraviolet detector (UHPLC-UV) for the first time. The 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatizations were separated on a C18 column (Waters ACQUITYTM, Milfor, MA, USA, 1.8 µm, 2.1 × 100 mm) using gradient elution with a binary system of 5 mm ammonium formate (0.1% formic acid)-acetonitrile for 24 min. Additionally, seven monosaccharides showed good linear relationships (R2, 0.9971-0.9995), adequate precision (RSD < 4.21%), and high recoveries (RSD < 4.70%). The established method was used to analyze 109 batches of RA. Results showed that the Astragalus polysaccharides (APSs) mainly consist of mannose (Man), rhamnose (Rha), glucose (Glu), galactose (Gal), arabinose (Ara), xylose (Xyl); and fucose (Fuc); however, their composition was different among RA samples from different growth patterns, species, growth years, and origins, and the growth mode of RA and the age of wild-simulated RA can be accurately distinguished by principal component analysis (PCA). In addition, the immunological activity of APSs were also evaluated jointly by measurement of the NO release with RAW264.7, with the results showing that APSs have a promoting effect on the release of NO and exhibit a significant correlation with Man, Glu, Xyl, and Fuc contents. Accordingly, the new established monosaccharides analytical method and APS-immune activity determination in this study can provide a reference for quality evaluation and the establishment of quality standards for RA.
Collapse
Affiliation(s)
- Yali Guo
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (Y.G.)
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lijun Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (Y.G.)
| | - Kaishuang Liu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (Y.G.)
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (Y.G.)
| | - Yibao Jin
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (Y.G.)
| | - Lifei Gu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (Y.G.)
| | - Xie-An Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (Y.G.)
| | - Shuhong Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (Y.G.)
| | - Ping Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (Y.G.)
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (Y.G.)
| | - Tiejie Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (Y.G.)
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
16
|
Li Y, Zhao Y, Niu X, Zhu Q, Wang X, Li S, Sun J, Hua S, Yang L, Yao W. Distinguishment of different varieties of rhubarb based on UPLC fingerprints and chemometrics. J Pharm Biomed Anal 2024; 241:116003. [PMID: 38301576 DOI: 10.1016/j.jpba.2024.116003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Rhubarb, a widely used traditional Chinese medicine (TCM), is primarily used for purging in practice. It is derived from the dried roots and rhizomes of R. tanguticum Maxim. ex Balf. (RT), Rheum officinale Baill. (RO) and R. palmatum L. (RP). To date, although the three varieties of rhubarb have been used as the same medicine in clinical, studies have found that they have different chemical compositions and pharmacological effects. To ensure the stability of rhubarb for clinical use, a simple and effective method should be built to compare and discriminate three varieties of rhubarb. Here, ultra-performance liquid chromatography-diode array detection (UPLC-DAD) fingerprints combined with chemometric methods were developed to evaluate and discriminate 29 batches of rhubarb. Similarity evaluation, hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed that the chemical constituents of the three varieties of rhubarb were significantly different, and the three varieties could be effectively distinguished. Finally, all the 14 common peaks were identified by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In this research, the developed UPLC fingerprints offer a simple, reliable and specific approach for distinguishing different varieties of rhubarb. This research aims to promote the scientific and appropriate clinical application of rhubarb from three varieties.
Collapse
Affiliation(s)
- Yuan Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuan Niu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qianqian Zhu
- Jiangyin Tianjiang Pharmaceutical Co., Ltd., Wuxi 214400, China
| | - Xiehe Wang
- Jiangyin Tianjiang Pharmaceutical Co., Ltd., Wuxi 214400, China
| | - Song Li
- Jiangyin Tianjiang Pharmaceutical Co., Ltd., Wuxi 214400, China
| | - Jun Sun
- Jiangsu Food and Drug Administration Certification Review Center, Nanjing 210002, China
| | - Su Hua
- Jiangsu Food and Drug Administration Certification Review Center, Nanjing 210002, China
| | - Liwei Yang
- Jiangsu Food and Drug Administration Certification Review Center, Nanjing 210002, China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
17
|
Kitazoe T, Usui C, Kodaira E, Maruyama T, Kawano N, Fuchino H, Yamamoto K, Kitano Y, Kawahara N, Yoshimatsu K, Shirahata T, Kobayashi Y. Improved quantitative analysis of tenuifolin using hydrolytic continuous-flow system to build prediction models for its content based on near-infrared spectroscopy. J Nat Med 2024; 78:296-311. [PMID: 38172356 DOI: 10.1007/s11418-023-01764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
This study used two types of analyses and statistical calculations on powdered samples of Polygala root (PR) and Senega root (SR): (1) determination of saponin content by an independently developed quantitative analysis of tenuifolin content using a flow reactor, and (2) near-infrared spectroscopy (NIR) using crude drug powders as direct samples for metabolic profiling. Furthermore, a prediction model for tenuifolin content was developed and validated using multivariate analysis based on the results of (1) and (2). The goal of this study was to develop a rapid analytical method utilizing the saponin content and explore the possibility of quality control through a wide-area survey of crude drugs using NIR spectroscopy. Consequently, various parameters and appropriate wavelengths were examined in the regression analysis, and a model with a reasonable contribution rate and prediction accuracy was successfully developed. In this case, the wavenumber contributing to the model was consistent with that of tenuifolin, confirming that this model was based on saponin content. In this series of analyses, we have succeeded in developing a model that can quickly estimate saponin content without post-processing and have demonstrated a brief way to perform quality control of crude drugs in the clinical field and on the market.
Collapse
Affiliation(s)
- Tatsuki Kitazoe
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Chisato Usui
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Eiichi Kodaira
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takuro Maruyama
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Noriaki Kawano
- National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Hiroyuki Fuchino
- National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Kazuhiko Yamamoto
- National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Yasushi Kitano
- Nippon Funmatsu Yakuhin Co., Ltd, 2-5-11, Doshomachi, Chuo-ku, Osaka, 541-0045, Japan
| | - Nobuo Kawahara
- National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
- The Kochi Prefectural Makino Botanical Garden, Godaisan, Kochi, 781-8125, Japan
| | - Kayo Yoshimatsu
- National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
18
|
Wang P, Wang X, Fan J, Li Y, He R, Gao J, Chen C, Dai H, Cao Z, Lan L, Sun G, Sun W. Establishing an integrated, four-dimensional quality assessment system for traditional Chinese medicine: A case study of Shuanghuanglian oral liquid. J Pharm Biomed Anal 2024; 239:115859. [PMID: 38016212 DOI: 10.1016/j.jpba.2023.115859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
The quality of traditional Chinese medicine (TCM) is the premise to ensure its safety and effectiveness in clinical application. In this study, a complete quality control system for four-dimensional fingerprinting of TCM was innovatively constructed based on multiple detection techniques, and the quality of Shuanghuanglian oral liquid (SHL) was evaluated. Electrochemical fingerprinting (ECFP) as an emerging method without pretreatment provides rich and quantifiable information for SHL samples. The first quantitative ECFP of SHL was developed by the B-Z oscillation system. Eight characteristic parameters were analyzed and a good linear relationship was found between the oscillation lifetime and sample volume, by which the calculated values of the added sample volume (VL) showed different fluctuations between samples. What is more, high-performance liquid chromatography five-wavelength fusion fingerprint (HPLC-FWFP), GC fingerprint (GC-FP), and UV quantum fingerprint (UV-QFP) was established. Meanwhile, the purity of the peaks of the HPLC-FWFP was verified by the dual-wavelength absorption coefficient ratio spectrum (DWAR). Equal weighted ratio quantitative fingerprinting method (EWRQFM) was successfully proposed to extract all potential features for the overall quality assessment of the samples. Finally, a comprehensive evaluation strategy was proposed, namely the variation coefficient weighting algorithm (VCWA). The results of qualitative and quantitative evaluation of HPLC-FWFP, GC-FP, electrochemical quantum fingerprints (EC-QFP), and UV-QFP were integrated by this method. The established evaluation system is also a suitable strategy to control the quality of other TCM preparations.
Collapse
Affiliation(s)
- Pengyue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinyi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jiajia Fan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yifang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rongrong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jin Gao
- Guangdong Province Engineering Research Center for Aerosol Inhalation Preparation, Zhuhai 519000,China
| | - Chengyu Chen
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China
| | - Huiqing Dai
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China
| | - Zhiming Cao
- Henan Fusen Pharmaceutical Co., Ltd., Nanyang 473000, China
| | - Lili Lan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - GuoXiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Wanyang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
Cordell GA. The contemporary nexus of medicines security and bioprospecting: a future perspective for prioritizing the patient. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:11. [PMID: 38270809 PMCID: PMC10811317 DOI: 10.1007/s13659-024-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Reacting to the challenges presented by the evolving nexus of environmental change, defossilization, and diversified natural product bioprospecting is vitally important for advancing global healthcare and placing patient benefit as the most important consideration. This overview emphasizes the importance of natural and synthetic medicines security and proposes areas for global research action to enhance the quality, safety, and effectiveness of sustainable natural medicines. Following a discussion of some contemporary factors influencing natural products, a rethinking of the paradigms in natural products research is presented in the interwoven contexts of the Fourth and Fifth Industrial Revolutions and based on the optimization of the valuable assets of Earth. Following COP28, bioprospecting is necessary to seek new classes of bioactive metabolites and enzymes for chemoenzymatic synthesis. Focus is placed on those performance and practice modifications which, in a sustainable manner, establish the patient, and the maintenance of their prophylactic and treatment needs, as the priority. Forty initiatives for natural products in healthcare are offered for the patient and the practitioner promoting global action to address issues of sustainability, environmental change, defossilization, quality control, product consistency, and neglected diseases to assure that quality natural medicinal agents will be accessible for future generations.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., 1320 Ashland Avenue, Evanston, IL, 60201, USA.
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Liu CL, Jiang Y, Li HJ. Quality Consistency Evaluation of Traditional Chinese Medicines: Current Status and Future Perspectives. Crit Rev Anal Chem 2024:1-18. [PMID: 38252135 DOI: 10.1080/10408347.2024.2305267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Quality consistency evaluation of traditional Chinese medicines (TCMs) is a crucial factor that determines the safe and effective application in clinical settings. However, TCMs exhibit diverse, heterogeneous, complex, and flexible chemical compositions, as well as variability in preparation processes. These characteristics pose greater challenges in researching the consistency of TCMs compared to chemically synthesized and biological drugs. Therefore, it is paramount to develop effective strategies for evaluating the quality consistency of TCMs. From the starting point of quality properties, this review explores the strategy used to evaluate quality consistency in terms of chemistry-based strategy (chemical consistency) and the biology-based strategy (bioequivalence). Among them, the chemistry-based strategy is the mainstream, and biology-based strategy complements the chemistry-based strategy each other. Furthermore, the emerging chemistry-biology strategies (overall evaluation) is discussed, including individually combining strategy and integration strategy. Finally, this review provides insights into the challenges and future perspectives in this field. By highlighting current status and trends in TCMs quality consistency, this review aims to contribute to establishment of generally applicable chemistry-biology integrated evaluation strategy for TCMs. This will facilitate the advancement toward a higher stage of overall quality evaluation.
Collapse
Affiliation(s)
- Chun-Lu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Huang R, Ma S, Dai S, Zheng J. Application of Data Fusion in Traditional Chinese Medicine: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 24:106. [PMID: 38202967 PMCID: PMC10781265 DOI: 10.3390/s24010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Traditional Chinese medicine is characterized by numerous chemical constituents, complex components, and unpredictable interactions among constituents. Therefore, a single analytical technique is usually unable to obtain comprehensive chemical information. Data fusion is an information processing technology that can improve the accuracy of test results by fusing data from multiple devices, which has a broad application prospect by utilizing chemometrics methods, adopting low-level, mid-level, and high-level data fusion techniques, and establishing final classification or prediction models. This paper summarizes the current status of the application of data fusion strategies based on spectroscopy, mass spectrometry, chromatography, and sensor technologies in traditional Chinese medicine (TCM) in light of the latest research progress of data fusion technology at home and abroad. It also gives an outlook on the development of data fusion technology in TCM analysis to provide references for the research and development of TCM.
Collapse
Affiliation(s)
- Rui Huang
- National Institutes for Food and Drug Control, Beijing 102629, China; (R.H.); (S.M.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing 102629, China; (R.H.); (S.M.)
| | - Shengyun Dai
- National Institutes for Food and Drug Control, Beijing 102629, China; (R.H.); (S.M.)
| | - Jian Zheng
- National Institutes for Food and Drug Control, Beijing 102629, China; (R.H.); (S.M.)
| |
Collapse
|
22
|
Singh D, Mittal N, Verma S, Singh A, Siddiqui MH. Applications of some advanced sequencing, analytical, and computational approaches in medicinal plant research: a review. Mol Biol Rep 2023; 51:23. [PMID: 38117315 DOI: 10.1007/s11033-023-09057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
The potential active chemicals found in medicinal plants, which have long been employed as natural medicines, are abundant. Exploring the genes responsible for producing these compounds has given new insights into medicinal plant research. Previously, the authentication of medicinal plants was done via DNA marker sequencing. With the advancement of sequencing technology, several new techniques like next-generation sequencing, single molecule sequencing, and fourth-generation sequencing have emerged. These techniques enshrined the role of molecular approaches for medicinal plants because all the genes involved in the biosynthesis of medicinal compound(s) could be identified through RNA-seq analysis. In several research insights, transcriptome data have also been used for the identification of biosynthesis pathways. miRNAs in several medicinal plants and their role in the biosynthesis pathway as well as regulation of the disease-causing genes were also identified. In several research articles, an in silico study was also found to be effective in identifying the inhibitory effect of medicinal plant-based compounds against virus' gene(s). The use of advanced analytical methods like spectroscopy and chromatography in metabolite proofing of secondary metabolites has also been reported in several recent research findings. Furthermore, advancement in molecular and analytic methods will give new insight into studying the traditionally important medicinal plants that are still unexplored.
Collapse
Affiliation(s)
- Dhananjay Singh
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Nishu Mittal
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | - Swati Verma
- College of Horticulture and Forestry Thunag, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Anjali Singh
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | | |
Collapse
|
23
|
Zhang Y, Wang Y. Recent trends of machine learning applied to multi-source data of medicinal plants. J Pharm Anal 2023; 13:1388-1407. [PMID: 38223450 PMCID: PMC10785154 DOI: 10.1016/j.jpha.2023.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 01/16/2024] Open
Abstract
In traditional medicine and ethnomedicine, medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide. In particular, the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019 (COVID-19) pandemic has attracted extensive attention globally. Medicinal plants have, therefore, become increasingly popular among the public. However, with increasing demand for and profit with medicinal plants, commercial fraudulent events such as adulteration or counterfeits sometimes occur, which poses a serious threat to the clinical outcomes and interests of consumers. With rapid advances in artificial intelligence, machine learning can be used to mine information on various medicinal plants to establish an ideal resource database. We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants. The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants. The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.
Collapse
Affiliation(s)
- Yanying Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| |
Collapse
|
24
|
Wen H, Yang T, Yang W, Yang M, Wang Y, Zhang J. Comparison of Metabolites and Species Classification of Thirteen Zingiberaceae Spices Based on GC-MS and Multi-Spectral Fusion Technology. Foods 2023; 12:3714. [PMID: 37893607 PMCID: PMC10606731 DOI: 10.3390/foods12203714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Due to a similar plant morphology in the majority of Zingiberaceae spices, substitution and adulteration frequently take place during the sales process. Therefore, it is important to analyze the metabolites and species classification of different Zingiberaceae spices. This study preliminarily explored the differences in the metabolites in thirteen Zingiberaceae spices through untargeted gas chromatography-mass spectrometry (GC-MS) and combined spectroscopy, establishing models for classifying different Zingiberaceae spices. On one hand, a total of 81 metabolites were successfully identified by GC-MS. Thirty-seven differential metabolites were screened using variable important in projection (VIP ≥ 1). However, the orthogonal partial least squares discriminant analysis (OPLS-DA) model established using GC-MS data only explained about 30% of the variation. On the other hand, the partial least squares discriminant analysis (PLS-DA) models with three spectral data fusion strategies were compared, and their classification accuracy reached 100%. Among them, the mid-level data fusion model based on latent variables had the best performance. This study provides a powerful tool for distinguishing different Zingiberaceae spices and assists in reducing the occurrence of substitution and adulteration phenomena.
Collapse
Affiliation(s)
- Hui Wen
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Tianmei Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
| | - Weize Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
| | - Meiquan Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (H.W.); (T.Y.); (W.Y.); (M.Y.); (Y.W.)
| |
Collapse
|
25
|
Zou JJ, Xu XL, Yang L, Wang YW, Li Y, Dai L, He D. Comprehensive Quality Evaluation of Qizhi Xiangfu Pills Based on Quantitative Analysis of Multi-Components by a Single Marker Combined with GC Fingerprints and Chemometrics. J AOAC Int 2023; 106:1414-1423. [PMID: 37027226 DOI: 10.1093/jaoacint/qsad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Qizhi Xiangfu Pills (QXPs) are a traditional Chinese medicine (TCM) used clinically for qi stagnation and blood stasis. The current quality control of QXPs in the ministry standards and the reported literature is minimal, and requires improvement. OBJECTIVE This study aimed to analyze and determine the active ingredients in QXPs for its overall evaluation. METHODS In this study, a quantitative analysis of multi-components by a single marker (QAMS) method was established to simultaneously determine caryophyllene oxide, cyperotundone, ligustilide, and α-cyperone in QXPs by GC. Moreover, the GC fingerprints of 22 batches of samples were also established, and the common peaks were initially identified by GC-MS, then classified in various dimensions using chemometric methods, and the main markers causing the discrepancies between groups were analyzed by orthogonal partial least-squares discrimination analysis (OPLS-DA). RESULTS Compared with an internal standard method (ISM), the determination results obtained by QAMS had no significant difference. Twenty-two common peaks were distinguished in the fingerprint of 22 batches of QXPs, 17 of which were identified, and the similarity of the fingerprints was greater than 0.898. The 22 batches of QXPs were roughly divided into 3 categories, and 12 main markers causing the discrepancies were discovered. CONCLUSION The established QAMS method combined with the GC fingerprint and chemometrics is convenient and feasible, which helps to improve the quality evaluation of QXPs and provides a demonstration for the related study of compound preparations and single herbs. HIGHLIGHTS QAMS combined with a GC fingerprint and chemometrics method was established to evaluate the quality of QXPs for the first time.
Collapse
Affiliation(s)
- Jia-Jia Zou
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Xiao-Li Xu
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Lin Yang
- Chongqing Medical and Pharmaceutical College, Department of Pharmacology, Daxuecheng Middle Road, Shapingba District, Chongqing 401331, China
| | - Yi-Wu Wang
- Chongqing Medical University, Experimental Teaching Center, Daxuecheng Middle Road, Shapingba District, Chongqing 400016, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Department of Pharmacology, Daxuecheng Middle Road, Shapingba District, Chongqing 401331, China
| | - Lei Dai
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Dan He
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
26
|
Wang P, Wang X, Li Y, He R, Gao J, Chen C, Dai H, Cao Z, Lan L, Sun G, Sun W. Thorough evaluation of the Chinese medicine preparations and intermediates using high performance liquid chromatography fingerprints and ultraviolet quantum fingerprints along with antioxidant activity: Shuanghuanglian oral solution as an example. J Chromatogr A 2023; 1705:464196. [PMID: 37423077 DOI: 10.1016/j.chroma.2023.464196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The growing global popularity of traditional Chinese medicine (TCM) has generated a growing interest in the quality control of TCM products. Shuanghuanglian Oral Liquid (SHL) is a commonly used TCM formula for treating respiratory tract infections. In this study, we present a thorough evaluation method for the quality of SHL and its intermediates. We assessed the quality through multi-wavelength fusion high-performance liquid chromatogram (HPLC) fingerprints of 40 batches of SHL samples and 15 batches of intermediates. Meanwhile, we introduced a new method called multi-markers assay by monolinear method (MAML) to quantify ten components in SHL, and revealed quality transmitting of ten components from intermediates to formulations. This information allowed us to establish a quality control system for intermediates, ensuring their quality consistency. Furthermore, we proposed UV quantum fingerprinting as an orthogonal complement to the quality evaluation by HPLC fingerprint. The relationship between fingerprinting and antioxidant capacity was also established. Overall, this study presented a novel and integrated approach for the quality evaluation of TCM products, providing valuable information for ensuring the safety and efficacy of TCM products for consumers.
Collapse
Affiliation(s)
- Pengyue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinyi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yifang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Rongrong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jin Gao
- Guangdong Province Engineering Research Center for Aerosol Inhalation Preparation, Zhuhai 519000, China
| | - Chengyu Chen
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China
| | - Huiqing Dai
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China
| | - Zhiming Cao
- Henan Fusen Pharmaceutical Co., Ltd., Nanyang 473000, China
| | - Lili Lan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Wanyang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
27
|
Guo Y, Wang B, Gu L, Yin G, Wang S, Li M, Wang L, Yu XA, Wang T. Discrimination of Radix Astragali from Different Growth Patterns, Origins, Species, and Growth Years by an H 1-NMR Spectrogram of Polysaccharide Analysis Combined with Chemical Pattern Recognition and Determination of Its Polysaccharide Content and Immunological Activity. Molecules 2023; 28:6063. [PMID: 37630314 PMCID: PMC10458787 DOI: 10.3390/molecules28166063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The fraud phenomenon is currently widespread in the traditional Chinese medicine Radix Astragali (RA) market, especially where high-quality RA is substituted with low-quality RA. In this case, focused on polysaccharides from RA, the classification models were established for discrimination of RA from different growth patterns, origins, species, and growth years. 1H Nuclear Magnetic Resonance (H1-NMR) was used to establish the spectroscopy of polysaccharides from RA, which were used to distinguish RA via chemical pattern recognition methods. Specifically, orthogonal partial least squares discriminant analysis (OPLS-DA) and linear discriminant analysis (LDA) were used to successfully establish the classification models for RA from different growth patterns, origins, species, and growth years. The satisfactory parameters and high accuracy of internal and external verification of each model exhibited the reliable and good prediction ability of the developed models. In addition, the polysaccharide content and immunological activity were also tested, which was evaluated by the phagocytic activity of RAW 264.7. And the result showed that growth patterns and origins significantly affected the quality of RA. However, there was no significant difference in the aspects of origins and growth years. Accordingly, the developed strategy combined with chemical information, biological activity, and multivariate statistical method can provide new insight for the quality evaluation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yali Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Lifei Gu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Guo Yin
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Shuhong Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Lijun Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Xie-An Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China;
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| |
Collapse
|
28
|
Zhang Y, Xu H, Li Y, Sun Y, Peng X. Advances in the treatment of pancreatic cancer with traditional Chinese medicine. Front Pharmacol 2023; 14:1089245. [PMID: 37608897 PMCID: PMC10440824 DOI: 10.3389/fphar.2023.1089245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Pancreatic cancer is a common malignancy of the digestive system. With a high degree of malignancy and poor prognosis, it is called the "king of cancers." Currently, Western medicine treats pancreatic cancer mainly by surgical resection, radiotherapy, and chemotherapy. However, the curative effect is not satisfactory. The application of Traditional Chinese Medicine (TCM) in the treatment of pancreatic cancer has many advantages and is becoming an important facet of comprehensive clinical treatment. In this paper, we review current therapeutic approaches for pancreatic cancer. We also review the protective effects shown by TCM in different models and discuss the potential molecular mechanisms of these.
Collapse
Affiliation(s)
- Yanhua Zhang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hui Xu
- Department of Internal Medicine, Southern Medical University, Guangzhou, China
| | - Yue Li
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yang Sun
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
29
|
El Hani O, García-Guzmán JJ, Palacios-Santander JM, Digua K, Amine A, Gharby S, Cubillana-Aguilera L. Geographical Classification of Saffron ( Crocus Sativus L.) Using Total and Synchronous Fluorescence Combined with Chemometric Approaches. Foods 2023; 12:1747. [PMID: 37174286 PMCID: PMC10178536 DOI: 10.3390/foods12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
There is an increasing interest in food science for high-quality natural products with a distinct geographical origin, such as saffron. In this work, the excitation-emission matrix (EEM) and synchronous fluorescence were used for the first time to geographically discriminate between Moroccan saffron from Taroudant, Ouarzazate, and Azilal. Moreover, to differentiate between Afghan, Iranian, and Moroccan saffron, a unique fingerprint was assigned to each sample by visualizing the EEM physiognomy. Moreover, principal component analysis (LDA) and linear discriminant analysis (LDA) were successfully applied to classify the synchronous spectra of samples. High fluorescence intensities were registered for Ouarzazate and Taroudant saffron. Yet, the Azilal saffron was distinguished by its low intensities. Furthermore, Moroccan, Afghan, and Iranian saffron were correctly assigned to their origins using PCA and LDA for different offsets (Δλ) (20-250 nm) such that the difference in the fluorescence composition of the three countries' saffron was registered in the following excitation/emission ranges: 250-325 nm/300-480 nm and 360-425 nm/500-550 nm. These regions are characterized by the high polyphenolic content of Moroccan saffron and the important composition of Afghan saffron, including vitamins and terpenoids. However, weak intensities of these compounds were found in Iranian saffron. Furthermore, a substantial explained variance (97-100% for PC1 and PC2) and an important classification rate (70-90%) were achieved. Thus, the non-destructive applied methodology of discrimination was rapid, straightforward, reliable, and accurate.
Collapse
Affiliation(s)
- Ouarda El Hani
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia 28810, Morocco; (O.E.H.)
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (J.J.G.-G.)
| | - Juan José García-Guzmán
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (J.J.G.-G.)
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (J.J.G.-G.)
| | - Khalid Digua
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia 28810, Morocco; (O.E.H.)
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia 28810, Morocco; (O.E.H.)
| | - Said Gharby
- Biotechnology Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir 80000, Morocco
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (J.J.G.-G.)
| |
Collapse
|
30
|
Zhou G, Dai Y, Ge D, Yang J, Fu Q, Jin Y, Liang X. Comprehensive HPLC fingerprint analysis based on a two-step extraction method for quality evaluation of Perilla frutescens (L.) Britt. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1888-1895. [PMID: 36988039 DOI: 10.1039/d3ay00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Abundant chemical components are key to ensure the evaluation accuracy of fingerprint analysis of traditional Chinese medicines (TCMs). A two-step extraction method combining supercritical fluid extraction (SFE) and water ultrasonic extraction was established for the quality evaluation of Perilla frutescens (L.) Britt. Weakly polar components were extracted under optimal SFE conditions (15% co-solvent (EtOH : n-hexane = 1 : 14, (v/v)), 40 °C, 250 bar, and 30 min), and polar components were subsequently extracted by an ultrasonic step (100% water as solvent, 40 °C, and 45 min). Then, HPLC methods were established, which were validated to be accurate, stable, and reliable. In this work, 25 batches of samples were evaluated and the data were analysed by similarity analysis (SA) and hierarchical cluster analysis (HCA). The similarity values of SFE extracts and aqueous extracts were respectively 0.616-0.999, and 0.252-0.997, proving the importance of the extraction method for the accuracy of the subsequent fingerprint analysis results. For the HCA, 25 samples were divided into two categories (leaves and stems), among which four batches of leaves with less similarity were considered as stems, indicating that quality differences of P. frutescens depending on medicinal parts and origin exist. The two-step extraction method developed in this work has been proved to be suitable for the quality evaluation of TCMs with complex compositions.
Collapse
Affiliation(s)
- Guanghao Zhou
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yingping Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Dandan Ge
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Jie Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
- Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
31
|
Comparative analysis of infrared and electrochemical fingerprints of different medicinal parts of Eucommia ulmoides Oliver. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
32
|
Ding R, Yu L, Wang C, Zhong S, Gu R. Quality assessment of traditional Chinese medicine based on data fusion combined with machine learning: A review. Crit Rev Anal Chem 2023; 54:2618-2635. [PMID: 36966435 DOI: 10.1080/10408347.2023.2189477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The authenticity and quality of traditional Chinese medicine (TCM) directly impact clinical efficacy and safety. Quality assessment of traditional Chinese medicine (QATCM) is a global concern due to increased demand and shortage of resources. Recently, modern analytical technologies have been extensively investigated and utilized to analyze the chemical composition of TCM. However, a single analytical technique has some limitations, and judging the quality of TCM only from the characteristics of the components is not enough to reflect the overall view of TCM. Thus, the development of multi-source information fusion technology and machine learning (ML) has further improved QATCM. Data information from different analytical instruments can better understand the connection between herbal samples from multiple aspects. This review focuses on the use of data fusion (DF) and ML in QATCM, including chromatography, spectroscopy, and other electronic sensors. The common data structures and DF strategies are introduced, followed by ML methods, including fast-growing deep learning. Finally, DF strategies combined with ML methods are discussed and illustrated for research on applications such as source identification, species identification, and content prediction in TCM. This review demonstrates the validity and accuracy of QATCM-based DF and ML strategies and provides a reference for developing and applying QATCM methods.
Collapse
Affiliation(s)
- Rong Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianhui Yu
- Chengdu Pushi Pharmaceutical Technology Co., Ltd, Chengdu, China
| | - Chenghui Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shihong Zhong
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Rui Gu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Zhang L, Wei Y, Wang W, Fan Y, Li F, Li Z, Lin A, Gu H, Song M, Wang T, Liu G, Li X. Quantitative fingerprint and antioxidative properties of Artemisia argyi leaves combined with chemometrics. J Sep Sci 2023; 46:e2200624. [PMID: 36579954 DOI: 10.1002/jssc.202200624] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Quantitative fingerprint and differences of Artemisia argyi from different varieties, picking time, aging year, and origins were analyzed combing with chemometrics. The antioxidant activity was determined and antioxidant markers of Artemisia argyi were screened. Variety WA3 was significantly different from that of the other varieties. Fingerprint peak response and antioxidant activity of A. argyi picked in December were lower than samples collected in May and August. Fresh A. argyi leaves were significantly superior to withered leaves and stems. Artemisia argyi aging 1-5 years presented a classification trend. Antioxidant activity of A. argyi produced in Nanyang was generally superior to others origins. Peak 9, isochlorogenic acid A, and 6-methoxyluteolin contributed greatly for classification of A. argyi from different variety, picking time, aging year, and origin. Isochlorogenic acid A, isochlorogenic acid C, 6-methoxyluteolin, and chlorogenic acid were selected as antioxidant marker of A. argyi. The method based on quantitative fingerprint, antioxidant activity evaluation, and chemometrics was reliable to analyze the differences of A. argyi samples from different sources.
Collapse
Affiliation(s)
- Lixian Zhang
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Yue Wei
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Wei Wang
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Yi Fan
- Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Feifei Li
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Zhining Li
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Aiqin Lin
- Zhengzhou Railway Vocational & Technical College, Zhengzhou, P. R. China
| | - Haike Gu
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, P. R. China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, P. R. China
| | - Tao Wang
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China
| | - Guijun Liu
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, P. R. China
| | - Xiao Li
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| |
Collapse
|
34
|
Pu Z, Chen X, Dong B, Ma P, Li X. Multiple approaches to characterize and visualize the chemical composition of Sijunzi Decoction comprehensively. J Sep Sci 2023; 46:e2200737. [PMID: 36807552 DOI: 10.1002/jssc.202200737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/03/2023] [Accepted: 01/24/2023] [Indexed: 02/23/2023]
Abstract
Sijunzi Decoction is composed of Ginseng Radix et Rhizoma, Atractylodes Macrocephalae Rhizoma, Poria, and Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle, and it is a classic formula for treating spleen deficiency syndrome in Chinese medicine. Clarifying the active substances is an effective way to develop Traditional Chinese medicine and innovative medicines. Carbohydrates, proteins, amino acids, saponins, flavonoids, phenolic acids, and inorganic elements in the decoction were analyzed by multiple approaches. A molecular network was also used for visualizing the ingredients in Sijunzi Decoction, and representative components were also quantified. The detected components accounted for 74.544% of the Sijunzi Decoction freeze-dried powder, including 41.751% crude polysaccharides, 17.826% sugars (degree of polymerization 1-2), 8.181% total saponins, 2.427% insoluble precipitates, 2.154% free amino acids, 1.177% total flavonoids, 0.546% total phenolic acids, and 0.483% inorganic elements. Molecular network and quantitative analysis used to characterize the chemical composition of Sijunzi Decoction. The present study systematically characterized the constituents of Sijunzi Decoction, revealed the composition ratio of each type of constituent, and provided a reference for study on the substance basis of other Chinese medicine.
Collapse
Affiliation(s)
- Zongjin Pu
- Traditional Chinese medicine Genomics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P. R. China
| | - Xiaonan Chen
- Traditional Chinese medicine Genomics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P. R. China
| | - Bangjian Dong
- Traditional Chinese medicine Genomics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P. R. China
| | - Ping Ma
- Traditional Chinese medicine Genomics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P. R. China
| | - Xiaobo Li
- Traditional Chinese medicine Genomics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P. R. China
| |
Collapse
|
35
|
Liu Z, Wang W, Liu X. Automated characterization and identification of microplastics through spectroscopy and chemical imaging in combination with chemometric: Latest developments and future prospects. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
36
|
An in silico and in vitro integrated analysis method to reveal the curative mechanisms and pharmacodynamic substances of Bufei granule on chronic obstructive pulmonary disease. Mol Divers 2023; 27:103-123. [PMID: 35266101 DOI: 10.1007/s11030-022-10404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with high disability and mortality. Clinical studies have shown that the Traditional Chinese Medicine Bufei Granule (BFG) has conspicuous effects on relieving cough and improving lung function in patients with COPD and has a reliable effect on the treatment of COPD, whereas the therapeutic mechanism is vague. In the present study, the latent bronchodilators and mechanism of BFG in the treatment of COPD were discussed through the method of network pharmacology. Then, the molecular docking and molecular dynamics simulation were performed to calculate the binding efficacy of corresponding compounds in BFG to muscarinic receptor. Finally, the effects of BFG on bronchial smooth muscle were validated by in vitro experiments. The network pharmacology results manifested the anti-COPD effect of BFG was mainly realized via restraining airway smooth muscle contraction, activating cAMP pathways and relieving oxidative stress. The results of molecular docking and molecular dynamics simulation showed alpinetin could bind to cholinergic receptor muscarinic 3. The in vitro experiment verified both BFG and alpinetin could inhibit the levels of CHRM3 and acetylcholine and could be potential bronchodilators for treating COPD. This study provides an integrating network pharmacology method for understanding the therapeutic mechanisms of traditional Chinese medicine, as well as a new strategy for developing natural medicines for treating COPD.
Collapse
|
37
|
Gu X, Jia S, Hu W, Cui M, Hou J, Wang R, Zhang M. Rapid quality evaluation of Chinese herbal medicines using a miniature mass spectrometer: Lygodium japonicum (Thunb.) Sw. as an example. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:430-435. [PMID: 36637180 DOI: 10.1039/d2ay01769e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The quality of Chinese herbal medicine (CHM) raw materials is essential, and mass spectrometry (MS)-based technologies have been playing key roles in the quality control of CHMs. However, the use of miniature mass spectrometry (mini-MS) for quality control of CHMs has rarely been reported. In this work, we developed a rapid analytical method for the quality evaluation of CHMs based on paper spray ionization (PSI)-mini-MS/MS. The quality evaluation of Lygodium japonicum (Thunb.) Sw. was used as an example. Following a "multi-component" quality evaluation strategy, nine active constituents of L. japonicum were selected to be used as analytes for quality control. We confirmed that the precursor-product ion information in the MS/MS spectra of each analyte in the herbal extracts was consistent with the standards. Also, we developed a mini-MS-based quantitative method for each analyte using its quantification ion. The quantitative methodology was rigorously validated using quality control samples. Finally, the quality evaluation of L. japonicum was carried out using the established MS/MS method combined with statistical analysis. A wide range of common quality issues with L. japonicum can be effectively determined, including whether it is adulterated with sand and distinguishing among different parts and species. This study demonstrates that mini-MS for quality evaluation of CHMs is feasible. Mini-MS for quality evaluation of herbal medicines will potentially have a good prospect due to its many advantages such as low cost, low power consumption, and portability in the future.
Collapse
Affiliation(s)
- Xuan Gu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shanshan Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wangmin Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Mengdi Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Junling Hou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Mei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
38
|
Ertas A, Yigitkan S, Orhan IE. A Focused Review on Cognitive Improvement by the Genus Salvia L. (Sage)-From Ethnopharmacology to Clinical Evidence. Pharmaceuticals (Basel) 2023; 16:171. [PMID: 37259321 PMCID: PMC9966473 DOI: 10.3390/ph16020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 08/31/2023] Open
Abstract
Ethnopharmacology has been an important starting point in medical and pharmaceutical sciences for discovering drug candidates from natural sources. In this regard, the genus Salvia L., commonly known as sage, is one of the best-known medicinal and aromatic plants of the Lamiaceae family; it has been recorded as being used for memory enhancement in European folk medicine. Despite the various uses of sage in folk medicines, the records that have pointed out sage's memory-enhancing properties have paved the way for the aforementioned effect to be proven on scientific grounds. There are many preclinical studies and excellent reviews referring to the favorable effect of different species of sage against the cognitive dysfunction that is related to Alzheimer's disease (AD). Hence, the current review discusses clinical studies that provide evidence for the effect of Salvia species on cognitive dysfunction. Clinical studies have shown that some Salvia species, i.e., hydroalcoholic extracts and essential oils of S. officinalis L. and S. lavandulaefolia leaves in particular, have been the most prominently effective species in patients with mild to moderate AD, and these species have shown positive effects on the memory of young and healthy people. However, the numbers of subjects in the studies were small, and standardized extracts were not used for the most part. Our review points out to the need for longer-term clinical studies with higher numbers of subjects being administered standardized sage preparations.
Collapse
Affiliation(s)
- Abdulselam Ertas
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir 21200, Türkiye
| | - Serkan Yigitkan
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, Diyarbakir 21200, Türkiye
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| |
Collapse
|
39
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS), part II. Recent noteworthy developments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121750. [PMID: 36030669 DOI: 10.1016/j.saa.2022.121750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive survey review compiles noteworthy developments and new concepts of two-dimensional correlation spectroscopy (2D-COS) for the last two years. It covers review articles, books, proceedings, and numerous research papers published on 2D-COS, as well as patent and publication trends. 2D-COS continues to evolve and grow with new significant developments and versatile applications in diverse scientific fields. The healthy, vigorous, and diverse progress of 2D-COS studies in many fields strongly confirms that it is well accepted as a powerful analytical technique to provide an in-depth understanding of systems of interest.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
40
|
Sha KC, Shah MB, Solanki SJ, Makwana VD, Sureja DK, Gajjar AK, Bodiwala KB, Dhameliya TM. Recent Advancements and Applications of Raman Spectroscopy in Pharmaceutical Analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Xu Y, Zhang J, Wang Y. Recent trends of multi-source and non-destructive information for quality authentication of herbs and spices. Food Chem 2023; 398:133939. [DOI: 10.1016/j.foodchem.2022.133939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
|
42
|
Li C, Wang Y. Non-Targeted Analytical Technology in Herbal Medicines: Applications, Challenges, and Perspectives. Crit Rev Anal Chem 2022; 54:1951-1970. [PMID: 36409298 DOI: 10.1080/10408347.2022.2148204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herbal medicines (HMs) have been utilized to prevent and treat human ailments for thousands of years. Especially, HMs have recently played a crucial role in the treatment of COVID-19 in China. However, HMs are susceptible to various factors during harvesting, processing, and marketing, affecting their clinical efficacy. Therefore, it is necessary to conclude a rapid and effective method to study HMs so that they can be used in the clinical setting with maximum medicinal value. Non-targeted analytical technology is a reliable analytical method for studying HMs because of its unique advantages in analyzing unknown components. Based on the extensive literature, the paper summarizes the benefits, limitations, and applicability of non-targeted analytical technology. Moreover, the article describes the application of non-targeted analytical technology in HMs from four aspects: structure analysis, authentication, real-time monitoring, and quality assessment. Finally, the review has prospected the development trend and challenges of non-targeted analytical technology. It can assist HMs industry researchers and engineers select non-targeted analytical technology to analyze HMs' quality and authenticity.
Collapse
Affiliation(s)
- Chaoping Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
43
|
ResNet Model Automatically Extracts and Identifies FT-NIR Features for Geographical Traceability of Polygonatum kingianum. Foods 2022; 11:foods11223568. [PMID: 36429160 PMCID: PMC9689878 DOI: 10.3390/foods11223568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Medicinal plants have incredibly high economic value, and a practical evaluation of their quality is the key to promoting industry development. The deep learning model based on residual convolutional neural network (ResNet) has the advantage of automatic extraction and the recognition of Fourier transform near-infrared spectroscopy (FT-NIR) features. Models are difficult to understand and interpret because of unknown working mechanisms and decision-making processes. Therefore, in this study, artificial feature extraction methods combine traditional partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM) models to understand and compare deep learning models. The results show that the ResNet model has significant advantages over traditional models in feature extraction and recognition. Secondly, preprocessing has a great impact on the feature extraction and feature extraction, and is beneficial for improving model performance. Competitive adaptive reweighted sampling (CARS) and variable importance in projection (VIP) methods screen out more feature variables after preprocessing, but the number of potential variables (LVs) and successive projections algorithm (SPA) methods obtained is fewer. The SPA method only extracts two variables after preprocessing, causing vital information to be lost. The VIP feature of traditional modelling yields the best results among the four methods. After spectral preprocessing, the recognition rates of the PLS-DA and SVM models are up to 90.16% and 88.52%. For the ResNet model, preprocessing is beneficial for extracting and identifying spectral image features. The ResNet model based on synchronous two-dimensional correlation spectra has a recognition accuracy of 100%. This research is beneficial to the application development of the ResNet model in foods, spices, and medicinal plants.
Collapse
|
44
|
Wu H, Lv Y, Wei F, Li C, Ge W, Du W. Comparative analysis of anti-osteoporosis efficacy in Radix Dipsaci before and after processing with salt based on spectrum-effect relationship. J Pharm Biomed Anal 2022; 221:115078. [DOI: 10.1016/j.jpba.2022.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022]
|
45
|
Avila-Sosa R, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Hernández-Carranza P, Cid-Pérez TS. Detection of Saffron’s Main Bioactive Compounds and Their Relationship with Commercial Quality. Foods 2022. [PMCID: PMC9601577 DOI: 10.3390/foods11203245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review aims to evaluate the state of saffron’s main bioactive compounds and their relationship with its commercial quality. Saffron is the commercial name for the dried red stigmas of the Crocus sativus L. flower. It owes its sensory and functional properties mainly to the presence of its carotenoid derivatives, synthesized throughout flowering and also during the whole production process. These compounds include crocin, crocetin, picrocrocin, and safranal, which are bioactive metabolites. Saffron’s commercial value is determined according to the ISO/TS3632 standard that determines their main apocatotenoids. Other techniques such as chromatography (gas and liquid) are used to detect the apocarotenoids. This, together with the determination of spectral fingerprinting or chemo typing are essential for saffron identification. The determination of the specific chemical markers coupled with chemometric methods favors the discrimination of adulterated samples, possible plants, or adulterating compounds and even the concentrations at which these are obtained. Chemical characterization and concentration of various compounds could be affected by saffron’s geographical origin and harvest/postharvest characteristics. The large number of chemical compounds found in the by-products (flower parts) of saffron (catechin, quercetin, delphinidin, etc.) make it an interesting aromatic spice as a colorant, antioxidant, and source of phytochemicals, which can also bring additional economic value to the most expensive aromatic species in the world.
Collapse
Affiliation(s)
- Raul Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | | | - Carlos Enrique Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Addí Rhode Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Teresa Soledad Cid-Pérez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
- Correspondence:
| |
Collapse
|
46
|
An YL, Wei WL, Guo DA. Application of Analytical Technologies in the Discrimination and Authentication of Herbs from Fritillaria: A Review. Crit Rev Anal Chem 2022; 54:1775-1796. [PMID: 36227577 DOI: 10.1080/10408347.2022.2132374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Medicinal plants of Fritillaria are widely distributed in numerous countries around the world and possess excellent antitussive and expectorant effects. In particular, Fritillariae Bulbus (FB) as a precious traditional medicine has thousands of years of medical history in China. Herbs of Fritillaria have a high market value and demand while limited by harsh growing circumstances and scarce wild resources. As a consequence, fraudulent behaviors are regularly engaged by the unscrupulous merchants in an attempt to reap greater profits. It is of an urgent need to evaluate the quality of Fritillaria herbs and their products using various analytical instruments and techniques. This review has scrutinized approximately 160 articles from 1995 to 2022 published on the investigation of Fritillaria herbs and related herbal products. The botanical classification of genus Fritillaria, types of counterfeits, technologies applied for differentiating Fritillaria species were comprehensively summarized and discussed in the current review. Molecular and chromatographic identification were the dominant technologies in the authentication of Fritillaria herbs. Additionally, we brought some potential and promising technologies and analytical strategies into attention, which are worthy attempting in the future researches. This review could conduce to excellent reference value for further investigations of the authenticity assessment of Fritillaria species.
Collapse
Affiliation(s)
- Ya-Ling An
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Liu H, Liu H, Li J, Wang Y. Review of Recent Modern Analytical Technology Combined with Chemometrics Approach Researches on Mushroom Discrimination and Evaluation. Crit Rev Anal Chem 2022; 54:1560-1583. [PMID: 36154534 DOI: 10.1080/10408347.2022.2124839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Mushroom is a macrofungus with precious fruiting body, as a food, a tonic, and a medicine, human have discovered and used mushrooms for thousands of years. Nowadays, mushroom is also a "super food" recommended by the World Health Organization (WHO) and Food and Agriculture Organization (FAO), and favored by consumers. Discrimination of mushroom including species, geographic origin, storage time, etc., is an important prerequisite to ensure their edible safety and commodity quality. Moreover, the effective evaluation of its chemical composition can help us better understand the nutritional properties of mushrooms. Modern analytical technologies such as chromatography, spectroscopy and mass spectrometry, etc., are widely used in the discrimination and evaluation researches of mushrooms, and chemometrics is an effective means of scientifically processing the multidimensional information hidden in these analytical technologies. This review will outline the latest applications of modern analytical technology combined with chemometrics in qualitative and quantitative analysis and quality control of mushrooms in recent years. Briefly describe the basic principles of these technologies, and the analytical processes of common chemometrics in mushroom researches will be summarized. Finally, the limitations and application prospects of chromatography, spectroscopy and mass spectrometry technology are discussed in mushroom quality control and evaluation.
Collapse
Affiliation(s)
- Hong Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Honggao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Zhaotong University, Zhaotong, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
48
|
Gong D, Li X, Liu X, Sun G, Guo P. Electrochemical-based quantitative fingerprint evaluation strategy combined with multi-markers assay by monolinear method for quality control of herbal medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154274. [PMID: 35717807 DOI: 10.1016/j.phymed.2022.154274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Improving the quality control (QC) criterion of herbal medicine (HM) is an ongoing challenge. A rapid and convenient electrochemical analysis technique is now emerging as a promising application for HM QC. So far, extraction and analysis of the overall electroactive components is a key issue need to be solved to improve its application in integral HM QC. PURPOSE In this work, using compound liquorice tablets (CLQTs) as an example, we like to put forward a more reliable and accurate quantification method of multi-components for the precise QC of HM. Furthermore, we propose an electrochemical fingerprint-based data mining, extract and synthesis strategy for in-depth and comprehensive QC of HM, qualitatively and quantitatively. METHODS AND DESIGN Firstly, the electrochemical quantitative fingerprint of 54 batches of CLQTs from nine manufacturers were developed using B-Z oscillatory system. Secondly, eight characteristic parameters were recorded and compared among samples using intuitive information and PCA. Then, tund was used to establish the correlation with sample dosage for determination of the relative content of overall electroactive components (Rc). The quantitative determination of five quality markers (Q-markers) were also performed using the novel method, called multi-markers assay by monolinear method (MAML). Finally, after using area integral calculus for electrochemical fingerprint, average linear quantitative fingerprint method (ALQFM) was successfully proposed to extract all latent characteristics for integral quality evaluation of samples. RESULTS The tund and dosage showed a good correlation, by which the obtained Rc displayed different fluctuation among nine manufacturers. Moreover, the contents of five Q-markers obtained by MAML displayed no significant difference with the traditional quantification method. Samples evaluated by ALQFM manifested the integral information and were divided into eight quality grades. The deduced results of correlation between Pl with P5C, Rc and PA were more persuasive for demonstrating the reliability and integrity of ALQFM in quality evaluation of HM electrochemical fingerprint. CONCLUSION The study confirmed the idea that quantification of Q-markers combined electrochemical-based quality evaluation strategy could be used as a reliable method for HM QC qualitatively and quantitatively from point (precise) to face (integral).
Collapse
Affiliation(s)
- Dandan Gong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiang Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinrong Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Ping Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
49
|
Sequential decision fusion pipeline for the high-throughput species recognition of medicinal caterpillar fungus by using ATR-FTIR. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Cui ZY, Liu CL, Li DD, Wang YZ, Xu FR. Anticoagulant activity analysis and origin identification of Panax notoginseng using HPLC and ATR-FTIR spectroscopy. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:971-981. [PMID: 35715878 DOI: 10.1002/pca.3152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Panax notoginseng is one of the traditional precious and bulk-traded medicinal materials in China. Its anticoagulant activity is related to its saponin composition. However, the correlation between saponins and anticoagulant activities in P. notoginseng from different origins and identification of the origins have been rarely reported. OBJECTIVES We aimed to analyze the correlation of components and activities of P. notoginseng from different origins and develop a rapid P. notoginseng origin identification method. MATERIALS AND METHODS Pharmacological experiments, HPLC, and ATR-FTIR spectroscopy (variable selection) combined with chemometrics methods of P. notoginseng main roots from four different origins (359 individuals) in Yunnan Province were conducted. RESULTS The pharmacological experiments and HPLC showed that the saponin content of P. notoginseng main roots was not significantly different. It was the highest in main roots from Wenshan Prefecture (9.86%). The coagulation time was prolonged to observe the strongest effect (4.99 s), and the anticoagulant activity was positively correlated with the contents of the three saponins. The content of ginsenoside Rg1 had the greatest influence on the anticoagulant effect. The results of spectroscopy combined with chemometrics show that the variable selection method could extract a small number of variables containing valid information and improve the performance of the model. The variable importance in projection has the best ability to identify the origins of P. notoginseng; the accuracy of the training set and the test set was 0.975 and 0.984, respectively. CONCLUSION This method is a powerful analytical tool for the activity analysis and identification of Chinese medicinal materials from different origins.
Collapse
Affiliation(s)
- Zhi-Ying Cui
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chun-Lu Liu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan, Kunming, China
| | - Dan-Dan Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan, Kunming, China
| | - Fu-Rong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|