1
|
Ma J, Wang X, Hu Y, Ma J, Ma Y, Chen H, Han Z. Recent Advances in Augmenting the Therapeutic Efficacy of Peptide-Drug Conjugates. J Med Chem 2025; 68:9037-9056. [PMID: 40267310 DOI: 10.1021/acs.jmedchem.5c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
There is an urgent need for the development of safe and effective modalities for the treatment of diseases owing to drug resistance, undesired side effects, and poor clinical outcomes. Combining cell-targeting and efficient cell-killing properties, peptide-drug conjugates (PDCs) have demonstrated superior efficacy compared with peptides and payloads alone. However, innovative molecular designs of PDCs are essential for further improving targeting precision, protease resistance and stability, cell permeability, and overall treatment efficacy. Several strategies have been developed to address these challenges, such as multivalency approaches, bispecific targeting, and long-acting PDCs. Other novel strategies, including overcoming biological barriers, conjugating novel functional payloads, and targeting macropinocytosis, have also shown promise. This perspective compiles the most recent strategies for enhancing PDC treatment efficacy, highlights key advancements in PDC, and provides insights on future directions for the development of novel PDCs.
Collapse
Affiliation(s)
- Jiahui Ma
- Gansu Provincial Key Laboratory of Environmental Oncology, Department of Tumor Center, Lanzhou University Second Hospital, Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Xuedan Wang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yonghua Hu
- Gansu Provincial Key Laboratory of Environmental Oncology, Department of Tumor Center, Lanzhou University Second Hospital, Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jianping Ma
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yaping Ma
- Shenzhen DIVBIO Pharmaceutical, Shenzhen 518057, China
| | - Hao Chen
- Gansu Provincial Key Laboratory of Environmental Oncology, Department of Tumor Center, Lanzhou University Second Hospital, Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Zhijian Han
- Gansu Provincial Key Laboratory of Environmental Oncology, Department of Tumor Center, Lanzhou University Second Hospital, Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Tai W, Khanal D, Arnold JC, Chan HK, Kwok PCL. Solubilising and Aerosolising Cannabidiol Using Methyl β-Cyclodextrin and Human Serum Albumin. AAPS PharmSciTech 2025; 26:120. [PMID: 40307653 DOI: 10.1208/s12249-025-03121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Pulmonary delivery can deliver cannabidiol (CBD) with high bioavailability and fast onset of action. One formulation obstacle is the low aqueous solubility of CBD, so solubilsers are necessary. This study aimed to develop inhalable CBD powders using excipients that help dissolving CBD. The solubilisation effects of human serum albumin (HSA), β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin, and methyl-β-cyclodextrin (mbCD) were investigated with phase solubility test. MbCD showed the highest CBD solubilisation ability at all tested concentrations, followed by HSA. Therefore, mbCD and HSA were co-spray freeze dried with CBD to obtain CBD + mbCD and CBD + HSA powders, respectively. Both powders were amorphous, had < 3% residual solvent, and contained CBD in complexes. CBD + mbCD maintained its amorphicity at < 70% relative humidity. On the other hand, CBD + HSA resisted recrystallisation even at 90% relative humidity. However, although both formulations emitted about 90% of CBD, CBD + HSA was less dispersible than CBD + mbCD (fine particle fraction < 5 µm: 30.2 ± 1.0% vs 53.5 ± 1.5%). The higher level of CBD solubility enhancement and better aerosol performance from mbCD indicated that it was an effective excipient to deliver CBD and potentially other cannabinoids in the future.
Collapse
Affiliation(s)
- Waiting Tai
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Dipesh Khanal
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jonathon Carl Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2050, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
3
|
Li Y, Liu Z, Li G, Yin X, Guo C, Jiang Y, Hu X, Yi J. Inactivated mechanisms of high pressure processing combined with mild temperature on pectin methylesterase and its inhibitor. Food Chem 2025; 484:144477. [PMID: 40300406 DOI: 10.1016/j.foodchem.2025.144477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/26/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
High pressure processing (HPP) of orange juice faces storage issues due to refrigeration need and cloud loss caused by pectin methylesterase (PME). Our previous research indicated that HPP conjunction with pectin methylesterase inhibitor (PMEI) enhanced juice stability, but not fully inactivated PME. This study explored the effectiveness of HPP with mild temperature treatments to fully inactivate PME and sterilize microorganisms in juice, using experimental analysis and molecular dynamics simulation. The findings revealed that PME activity was reduced by 94 % at 600 MPa and 60 °C, with completely inactivating at 80 °C. Conversely, PMEI exhibited resistance to pressure and temperature. Following processes at 600 MPa and above 60 °C, the tail-end helix structure of PME destabilized, with α-helices converting to β-sheets and disrupting hydrogen bonds within molecular chain. Conversely, the structure of PMEI was stable. Additionally, the combination of HPP and temperature treatment enhanced the binding affinity between PME and PMEI.
Collapse
Affiliation(s)
- Yantong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhuyin Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Guijing Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Xinyi Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China.
| |
Collapse
|
4
|
Sionov RV, Siag A, Mersini ET, Kogan NM, Alkhazov T, Koman I, Rowlo P, Gutkin V, Gross M, Steinberg D. The Incorporation of CBD into Biodegradable DL-Lactide/Glycolide Copolymers Creates a Persistent Antibacterial Environment: An In Vitro Study on Streptococcus mutans and Staphylococcus aureus. Pharmaceutics 2025; 17:463. [PMID: 40284458 PMCID: PMC12030335 DOI: 10.3390/pharmaceutics17040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Cannabidiol (CBD) is a natural compound from the Cannabis sativa L. plant, which has anti-inflammatory, anti-nociceptive, neuroprotective, and antibacterial activities. Objective: The aim of this study was to develop a sustained-release device of CBD that can provide an antibacterial effect against the Gram-positive bacteria Streptococcus mutans and Staphylococcus aureus for extended periods of time. Methods: CBD was incorporated into the biodegradable PURASORB 5010 or PURASORB 7510 DL-lactide/glycolide polymers using either dimethylsulfoxide (DMSO) or acetone as the solvent, and the dried polymer scaffolds were exposed daily to a fresh culture of bacteria. The bacterial growth was determined daily by optical density, and the metabolic activity of biofilms was determined using the MTT assay. Biofilm formation on the polymer scaffolds was visualized by HR-SEM. Its anti-inflammatory effect was determined by measuring the IL-6 release from LPS-stimulated RAW 264.7 macrophages by ELISA. Cell cytotoxicity on normal Vero epithelial cells was determined by the MTT assay. The daily release of CBD was determined by gas chromatography-mass spectrometry (GC-MS). Results: PURASORB 5010/CBD scaffolds had antibacterial activity against S. mutans UA159, S. aureus ATCC25923, and a clinical isolate of a multidrug-resistant S. aureus (MDRSA CI-M) strain for the tested period of up to 17 days. PURASORB 7510/CBD scaffolds also had antibacterial activity, but overall, it was less effective than PURASORB 5010/CBD over time. The addition of PEG400 to the copolymers significantly increased the antibacterial activity of PURASORB 7510/CBD but not of PURASORB 5010/CBD. The daily release of CBD from the polymer scaffolds was sufficient to reduce the LPS-induced IL-6 secretion from RAW 264.7 macrophages, and importantly, it was not cytotoxic to either RAW 264.7 macrophages or Vero epithelial cells. The daily release of CBD was found to be between 1.12 and 9.43 µg/mL, which is far below the cytotoxic dose of 25 µg/mL. Conclusions: The incorporation of CBD into the biodegradable PURASORB 5010 can be used to prepare sustained-release devices for medical purposes where combined antibacterial and anti-inflammatory activities are desirable.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem 9112102, Israel; (A.S.); (E.T.M.); (P.R.); (D.S.)
| | - Ahmad Siag
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem 9112102, Israel; (A.S.); (E.T.M.); (P.R.); (D.S.)
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Medical Center, Jerusalem 9112102, Israel;
| | - Emma Theresa Mersini
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem 9112102, Israel; (A.S.); (E.T.M.); (P.R.); (D.S.)
| | - Natalya M. Kogan
- Institute of Personalized and Translational Medicine, Department of Molecular Biology, Ariel University, Ariel 4070000, Israel; (N.M.K.); (T.A.); (I.K.)
| | - Tatiana Alkhazov
- Institute of Personalized and Translational Medicine, Department of Molecular Biology, Ariel University, Ariel 4070000, Israel; (N.M.K.); (T.A.); (I.K.)
| | - Igor Koman
- Institute of Personalized and Translational Medicine, Department of Molecular Biology, Ariel University, Ariel 4070000, Israel; (N.M.K.); (T.A.); (I.K.)
| | - Praveen Rowlo
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem 9112102, Israel; (A.S.); (E.T.M.); (P.R.); (D.S.)
| | - Vitaly Gutkin
- Unit for Nano Characterization, The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel;
| | - Menachem Gross
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Medical Center, Jerusalem 9112102, Israel;
| | - Doron Steinberg
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem 9112102, Israel; (A.S.); (E.T.M.); (P.R.); (D.S.)
| |
Collapse
|
5
|
Lacerda M, Carona A, Castanheira S, Falcão A, Bicker J, Fortuna A. Pharmacokinetics of Non-Psychotropic Phytocannabinoids. Pharmaceutics 2025; 17:236. [PMID: 40006604 PMCID: PMC11858989 DOI: 10.3390/pharmaceutics17020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Cannabinoids are widely recognized for their potential therapeutic effects, making them significant and valuable candidates for medical research and applications across various fields. This review aims to analyze the pharmacokinetics of Cannabidiol (CBD), Cannabigerol (CBG), and Cannabichromene (CBC), along with their corresponding acidic forms, Cannabidiolic acid (CBDA), Cannabigerolic acid (CBGA), and Cannabichromenic acid (CBCA). Among these cannabinoids, CBD is the most extensively studied. Nevertheless, research involving all the mentioned cannabinoids has shown that their pharmacokinetic parameters are highly variable, depending significantly on factors such as dose, formulation, route of administration, and diet. Furthermore, challenges such as brain penetration and first-pass metabolism have been highlighted. In conclusion, this review demonstrates significant progress in understanding the pharmacokinetics of non-psychotropic cannabinoids. However, it also underscores the need for further research, particularly on CBG, CBC, and their respective acidic forms, with the most significant gap being in clinical investigations. Expanding these studies is essential to facilitate their optimized use in medical treatments.
Collapse
Affiliation(s)
- Mariana Lacerda
- Laboratory of Pharmacology and Pharmaceutical Sciences, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (M.L.); (A.C.); (S.C.); (A.F.); (J.B.)
| | - Andreia Carona
- Laboratory of Pharmacology and Pharmaceutical Sciences, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (M.L.); (A.C.); (S.C.); (A.F.); (J.B.)
- CIBIT, Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Sara Castanheira
- Laboratory of Pharmacology and Pharmaceutical Sciences, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (M.L.); (A.C.); (S.C.); (A.F.); (J.B.)
| | - Amílcar Falcão
- Laboratory of Pharmacology and Pharmaceutical Sciences, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (M.L.); (A.C.); (S.C.); (A.F.); (J.B.)
- CIBIT, Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology and Pharmaceutical Sciences, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (M.L.); (A.C.); (S.C.); (A.F.); (J.B.)
- CIBIT, Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology and Pharmaceutical Sciences, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (M.L.); (A.C.); (S.C.); (A.F.); (J.B.)
- CIBIT, Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
6
|
Cogan PS. A cautionary tale of paradox and false positives in cannabidiol research. Expert Opin Drug Discov 2025; 20:5-15. [PMID: 39663751 DOI: 10.1080/17460441.2024.2441359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Decades of research on cannabidiol (CBD) have identified thousands of purported cellular effects, and many of these have been proposed to correlate with a vast therapeutic potential. Yet despite the large volume of findings fueling broad optimism in this regard, few have translated into any demonstrable clinical benefit or even notable side effects. Therein resides the great paradox of CBD: a drug that appears to affect almost everything in vitro does not clearly do much of anything in a clinical setting. AREAS COVERED Comparative critical evaluation of literature searched in PubMed and Google Scholar discovers multiple instances of inconsistent and contradictory findings regarding the pharmacology and clinical effects of CBD, as well as several uncelebrated reports that suggest potential explanations for these observations. Many of those effects attributed to the ostensible pharmacologic activity of cannabidiol are almost certainly the product of false-positive experimental results and artifactual findings that are unlikely to be realized under physiologic conditions. EXPERT OPINION Concerns regarding the physiological relevance and translational potential of in vitro findings across the field of cannabinoid research are both far-reaching and demanding of attention in the form of appropriate experimental controls that remain almost universally absent.
Collapse
Affiliation(s)
- Peter S Cogan
- School of Pharmacy, Regis University, Denver, CO, USA
| |
Collapse
|
7
|
Barri T, Ramzi R, Idkaidek NM, Al-Hashimi NN, Al-Akayleh F, Ali Agha ASA. Hollow Fiber-in-Syringe Equilibrium Sampling Through Supported-Liquid Membrane for Evaluation of Drug-Plasma Binding. Bioanalysis 2024; 16:883-894. [PMID: 39115045 PMCID: PMC11457647 DOI: 10.1080/17576180.2024.2377908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 10/04/2024] Open
Abstract
Aim: The aim was to evaluate drug-plasma binding (DPB).by employing Hollow Fiber-in-Syringe Equilibrium Sampling Through Supported Liquid Membrane (HFiS ESTSLM) and RP-HPLC analysis.Materials & Methods: HFiS ESTSLM and RP-HPLC were used to evaluate DPB of three weak basic drugs (Metoprolol, Diphenhydramine, and Sildenafil) with differing hydrophilicity and binding ability to blood plasma.Results: The results exhibited an increasing drug-dependent magnitude of DPB for the three model drugs. This trend of DPB confirmed that HFiS ESTSLM has the required sensitivity for determining DPB of the drugs. The DPB was drug concentration-dependent within the tested drug concentration range, especially at high concentration.Conclusion: HFiS ESTSLM and RP-HPLC offered a simple, easy and cost-effective procedure to evaluate DPB of these basic drugs.
Collapse
Affiliation(s)
- Thaer Barri
- Department of Chemistry, Faculty of Arts & Sciences, University of Petra, P. O. Box 961343, Queen Alia Airport Street, Amman, 11196, Jordan
| | - Ruba Ramzi
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, University of Petra, P. O. Box 961343, Queen Alia Airport Street, Amman, 11196, Jordan
| | - Nasir M Idkaidek
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, University of Petra, P. O. Box 961343, Queen Alia Airport Street, Amman, 11196, Jordan
| | - Nabil N Al-Hashimi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, the Hashemite University, P.O. Box 330127, Al-Zarqa, 13133,Jordan
| | - Faisal Al-Akayleh
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, University of Petra, P. O. Box 961343, Queen Alia Airport Street, Amman, 11196, Jordan
| | - Ahmed S A Ali Agha
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, University of Petra, P. O. Box 961343, Queen Alia Airport Street, Amman, 11196, Jordan
| |
Collapse
|
8
|
Paliwal H, Kaewpaiboon S, Ali Khumaini Mudhar Bintang M, Srichana T. Interaction studies of cannabidiol with human serum albumin by surface plasmon resonance, spectroscopy, and molecular docking. J Biomol Struct Dyn 2024; 42:5147-5158. [PMID: 37434318 DOI: 10.1080/07391102.2023.2234494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
The binding interaction of cannabidiol (CBD) and human serum albumin (HSA) under physiological blood pH conditions (pH 7.4) was conducted by surface plasmon resonance (SPR), fluorescence spectroscopy, UV-Visible spectrophotometry, and molecular docking. The responses from SPR measurement increased with the increase in CBD concentration until equilibrium was reached at the equilibrium dissociation constant (KD) of 9.8 × 10-4 M. The results from fluorescence and UV-Visible spectroscopy showed that CBD bound to HSA at one site in a spontaneous manner to form protein-CBD complexes. The quenching process involved both static and dynamic mechanisms while the static mechanism contributed predominantly to the binding between CBD and albumin. The binding constants estimated from the fluorescence studies were from 0.16 × 103 to 8.10 × 103 M-1, which were calculated at different temperature conditions using Stern-Volmer plots. The thermodynamic parameters demonstrated that the binding interaction was a spontaneous reaction as Gibbs free energy had negative values (ΔG = -12.57 to -23.20 kJ.mol-1). Positive ΔH and ΔS values (ΔH = 2.46 × 105 J.mol-1 and ΔS = 869.81 J.mol-1K-1) indicated that the hydrophobic force was the major binding interaction. Finally, confirmation of the type and extent of interaction was provided using UV-spectroscopy and molecular docking studies. The outcomes of this study are expected to serve as a platform to conduct future studies on binding interactions and toxicological research of CBD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Himanshu Paliwal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sunisa Kaewpaiboon
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Muhammad Ali Khumaini Mudhar Bintang
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
9
|
Babayeva M, Srdanovic I. Non-linear plasma protein binding of cannabidiol. J Cannabis Res 2024; 6:27. [PMID: 38902820 PMCID: PMC11191238 DOI: 10.1186/s42238-024-00238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Cannabidiol is highly bound to plasma proteins. Changes in its protein binding can lead to altered unbound plasma concentrations and result in alteration of pharmacological activity of cannabidiol-containing medications. This research has assessed non-linearity of cannabidiol plasma protein binding and the potential effect of tizoxanide on the binding. METHOD Cannabidiol protein binding was evaluated by ultrafiltration technique. Human plasma was spiked with cannabidiol stock solution to produce samples of various concentrations. For interaction study potential interactant tizoxanide was added in each sample. All samples were processed through Amicon Micropartition system and analyzed by HPLC. RESULTS The study has detected cannabidiol binding to borosilicate glass (9%) and polyethylene plastics (15%). In the interaction study the mean protein unbound fraction of cannabidiol was 0.05 (5%), indicating no binding interaction between cannabidiol and tizoxanide since cannabidiol unbound fraction without tizoxanide was also 5%. The cannabidiol fraction unbound was more than 2-fold greater at high concentrations compared to low concentrations. CONCLUSION a). At high concentrations cannabidiol plasma protein binding is non-linear. The non-linearity can affect elimination and medicinal effect of cannabidiol drugs. b). Borosilicate and polyethylene containers should be avoided in formulation, packing and administration of cannabidiol-containing medicines to guarantee correct doses. c). Cannabidiol medications can be co-administered with tizoxanide without caution.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, 3 Times Square, New York, NY, 10036, USA.
| | - Iva Srdanovic
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, 3 Times Square, New York, NY, 10036, USA
| |
Collapse
|
10
|
Alcantara KP, Malabanan JWT, Nalinratana N, Thitikornpong W, Rojsitthisak P, Rojsitthisak P. Cannabidiol-Loaded Solid Lipid Nanoparticles Ameliorate the Inhibition of Proinflammatory Cytokines and Free Radicals in an In Vitro Inflammation-Induced Cell Model. Int J Mol Sci 2024; 25:4744. [PMID: 38731964 PMCID: PMC11083812 DOI: 10.3390/ijms25094744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability. This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained. The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD. In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.
Collapse
Affiliation(s)
- Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - John Wilfred T. Malabanan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worathat Thitikornpong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Peluso P, Chankvetadze B. Recent developments in molecular modeling tools and applications related to pharmaceutical and biomedical research. J Pharm Biomed Anal 2024; 238:115836. [PMID: 37939549 DOI: 10.1016/j.jpba.2023.115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/21/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
In modern pharmaceutical and biomedical research, molecular modeling represents a useful tool to explore processes and their mechanistic bases at the molecular level. Integrating experimental and virtual analysis is a fruitful approach to study ligand-receptor interaction in chemical, biochemical and biological environments. In these fields, molecular docking and molecular dynamics are considered privileged techniques for modeling (bio)macromolecules and related complexes. This review aims to present the current landscape of molecular modeling in pharmaceutical and biomedical research by examining selected representative applications published in the last years and highlighting current topics and trends of this field. Thus, a systematic compilation of all published literature has not been attempted herein. After a brief overview of the main theoretical and computational tools used to investigate mechanisms at molecular level, recent applications of molecular modeling in drug discovery, ligand binding and for studying protein conformation and function will be discussed. Furthermore, specific sections will be devoted to the application of molecular modeling for unravelling enantioselective mechanisms underlying the enantioseparation of chiral compounds of pharmaceutical and biomedical interest as well as for studying new forms of noncovalent interactivity identified in biochemical and biological environments. The general aim of this review is to provide the reader with a modern overview of the topic, highlighting advancements and outlooks as well as drawbacks and pitfalls still affecting the applicability of theoretical and computational methods in the field of pharmaceutical and biomedical research.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB-CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy.
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| |
Collapse
|
12
|
Zhang R, Jia W. Systematic investigation on the multi-scale mechanisms of bitter peptide self-assembly for flavor modulation. Food Chem 2024; 430:137063. [PMID: 37541037 DOI: 10.1016/j.foodchem.2023.137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Suppressing the aversive bitterness of bioactive peptides is an arduous task as it hinders product acceptability. Three acquisition modes (ddMS2, vDIA, and mDIA) of high-resolution mass spectrometry (HRMS) were designed for structure confirmation and accurate quantification of HPFLEWAR, with the mDIA mode chosen as optimum. HRMS and isothermal titration calorimetry was used to elucidate the mechanism that β-lactoglobulin self-assemble to form association complex in 1:1 stoichiometric ratio (ΔG value - 29.36 kJ mol-1), which automatically attracted HPFLEWAR and reduces its distribution in free form, downgraded the level of bitter perception. Proteomics experiments and molecular dynamics simulations was built to discovered that HPFLEWAR bound and stabilized in the negatively charged region of β-lactoglobulin via four hydrogen bonds (Lys69, Ile72, Asp53, and Glu74) and hydrophobic interactions. These findings were considered to give theoretical foundation for strictly controlling the bitter perception of peptides and the possible application of HPFLEWAR as new functional components.
Collapse
Affiliation(s)
- Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
13
|
Puopolo T, Cai A, Liu C, Ma H, Seeram NP. Investigating cannabinoids as P2X purinoreceptor 4 ligands by using surface plasmon resonance and computational docking. Heliyon 2023; 9:e21265. [PMID: 37920520 PMCID: PMC10618793 DOI: 10.1016/j.heliyon.2023.e21265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
P2X purinoceptor 4 (P2X4) is an ATP-gated ion channel receptor with diverse neurophysiological functions, and P2X4 modulators hold promise as potential therapeutics for neuropathic pain, neuroinflammation, and neurodegenerative diseases. While several cannabinoids have been reported as modulators of purinoreceptors, their specific purinoreceptor-binding characteristics remain elusive. In this study, we established a comprehensive workflow that included a binding screening platform and a novel surface plasmon resonance (SPR) competitive assay, complemented by computational docking, to identify potential P2X4 binders among a panel of twenty-eight cannabinoids. Through SPR, we determined the binding affinities of cannabinoids (KD values ranging from 3.4 × 10-4 M to 1 × 10-6 M), along with two known P2X4 antagonists, BX430 (KD = 4.5 × 10-6 M) and 5-BDBD (KD = 7.8 × 10-6 M). The competitive SPR assay validated that BX430 and 5-BDBD acted as non-competitive binders with P2X4. In the following competitive assays, two cannabinoids including cannabidiol (CBD) and cannabivarin (CBV) were identified as competitive P2X4-binders with 5-BDBD, while the remaining cannabinoids exhibited non-competitive binding with either BX430 or 5-BDBD. Our molecular docking experiments further supported these findings, demonstrating that both CBD and CBV shared identical binding sites with residues in the 5-BDBD binding pocket on P2X4. In conclusion, this study provides valuable insights into the P2X4-binding affinity of cannabinoids through SPR and sheds light on the interactions between cannabinoids (CBD and CBV) and P2X4.
Collapse
Affiliation(s)
- Tess Puopolo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ang Cai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
14
|
Ullah A, Shin G, Lim SI. Human serum albumin binders: A piggyback ride for long-acting therapeutics. Drug Discov Today 2023; 28:103738. [PMID: 37591409 DOI: 10.1016/j.drudis.2023.103738] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Human serum albumin (HSA) is the most abundant protein in the blood and has desirable properties as a drug carrier. One of the most promising ways to exploit HSA as a carrier is to append an albumin-binding moiety (ABM) to a drug for in situ HSA binding upon administration. Nature- and library-derived ABMs vary in size, affinity, and epitope, differentially improving the pharmacokinetics of an appended drug. In this review, we evaluate the current state of knowledge regarding various aspects of ABMs and the unique advantages of ABM-mediated drug delivery. Furthermore, we discuss how ABMs can be specifically modulated to maximize potential benefits in clinical development.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Goeun Shin
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Nbios Inc, 7, Jukheon-gil, Gangneung-si, Gangwon-do, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Marine BioResource Co., Ltd., 365, Sinseon-ro, Nam-gu, Busan 48548, Republic of Korea.
| |
Collapse
|
15
|
Huang S, Li H, Xu J, Zhou H, Seeram NP, Ma H, Gu Q. Chemical constituents of industrial hemp roots and their anti-inflammatory activities. J Cannabis Res 2023; 5:1. [PMID: 36642726 PMCID: PMC9841654 DOI: 10.1186/s42238-022-00168-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/04/2022] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Although the chemical constituents of the aerial parts of Cannabis have been extensively studied, phytochemicals of Cannabis roots are not well characterized. Herein, we investigated the chemical constituents of industrial hemp (Cannabis sativa L.) roots and evaluated the anti-inflammatory activities of phytochemicals isolated from the hemp roots extract. METHODS An ethyl acetate extract of hemp roots was subjected to a combination of chromatographic columns to isolate phytochemicals. The chemical structures of the isolates were elucidated based on spectroscopic analyses (by nuclear magnetic resonance and mass spectrometry). The anti-inflammatory effects of phytochemicals from hemp roots were evaluated in an anti-inflammasome assay using human monocyte THP-1 cells. RESULTS Phytochemical investigation of hemp roots extract led to the identification of 32 structurally diverse compounds including six cannabinoids (1-6), three phytosterols (26-28), four triterpenoids (22-25), five lignans (17-21), and 10 hydroxyl contained compounds (7-16), three fatty acids (29-31), and an unsaturated chain hydrocarbon (32). Compounds 14-21, 23, 27, and 32 were identified from the Cannabis species for the first time. Cannabinoids (1-5) reduced the level of cytokine tumor necrosis-alpha (by 38.2, 58.4, 47.7, 52.2, and 56.1%, respectively) and 2 and 5 also decreased the interleukin-1β production (by 42.2 and 92.4%, respectively) in a cell-based inflammasome model. In addition, non-cannabinoids including 11, 13, 20, 25, 29, and 32 also showed selective inhibition of interleukin-1β production (by 23.7, 22.5, 25.6, 78.0, 24.1, 46.6, and 25.4%, respectively) in THP-1 cells. CONCLUSION The phytochemical constituent of a hemp roots extract was characterized and compounds from hemp roots exerted promising anti-inflammatory effects.
Collapse
Affiliation(s)
- Shijie Huang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Huifang Li
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Jun Xu
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Huihao Zhou
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Navindra P. Seeram
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Hang Ma
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Qiong Gu
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| |
Collapse
|
16
|
García-Gutiérrez MS, Navarro D, Austrich-Olivares A, Manzanares J. Unveiling behavioral and molecular neuroadaptations related to the antidepressant action of cannabidiol in the unpredictable chronic mild stress model. Front Pharmacol 2023; 14:1171646. [PMID: 37144214 PMCID: PMC10151764 DOI: 10.3389/fphar.2023.1171646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: This study aims to further characterize cannabidiol's pharmacological and molecular profile as an antidepressant. Methods: Effects of cannabidiol (CBD), alone or combined with sertraline (STR), were evaluated in male CD1 mice (n = 48) exposed to an unpredictable chronic mild stress (UCMS) procedure. Once the model was established (4 weeks), mice received CBD (20 mg·kg-1, i.p.), STR (10 mg·kg-1, p.o.) or its combination for 28 days. The efficacy of CBD was evaluated using the light-dark box (LDB), elevated plus maze (EPM), tail suspension (TS), sucrose consumption (SC) and novel object recognition (NOR) tests. Gene expression changes in the serotonin transporter, 5-HT1A and 5-HT2A receptors, BDNF, VGlut1 and PPARdelta, were evaluated in the dorsal raphe, hippocampus (Hipp) and amygdala by real-time PCR. Besides, BDNF, NeuN and caspase-3 immunoreactivity were assessed in the Hipp. Results: CBD exerted anxiolytic and antidepressant-like effects at 4 and 7 days of treatment in the LDB and TS tests, respectively. In contrast, STR required 14 days of treatment to show efficacy. CBD improved cognitive impairment and anhedonia more significantly than STR. CBD plus STR showed a similar effect than CBD in the LBD, TST and EPM. However, a worse outcome was observed in the NOR and SI tests. CBD modulates all molecular disturbances induced by UCMS, whereas STR and the combination could not restore 5-HT1A, BDNF and PPARdelta in the Hipp. Discussion: These results pointed out CBD as a potential new antidepressant with faster action and efficiency than STR. Particular attention should be given to the combination of CBD with current SSRI since it appears to produce a negative impact on treatment.
Collapse
Affiliation(s)
- María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- *Correspondence: Jorge Manzanares,
| |
Collapse
|
17
|
Puopolo T, Chang T, Liu C, Li H, Liu X, Wu X, Ma H, Seeram NP. Gram-Scale Preparation of Cannflavin A from Hemp ( Cannabis sativa L.) and Its Inhibitory Effect on Tryptophan Catabolism Enzyme Kynurenine-3-Monooxygenase. BIOLOGY 2022; 11:biology11101416. [PMID: 36290320 PMCID: PMC9598531 DOI: 10.3390/biology11101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Inhibitors targeting kynurenine-3-monooxygenase (KMO), an enzyme in the neurotoxic kynurenine pathway (KP), are potential therapeutics for KP metabolites-mediated neuroinflammatory and neurodegenerative disorders. Although phytochemicals from Cannabis (C. sativa L.) have been reported to show modulating effects on enzymes involved in the KP metabolism, the inhibitory effects of C. sativa compounds, including phytocannabinoids and non-phytocannabinoids (i.e., cannflavin A; CFA), on KMO remain unknown. Herein, CFA (purified from hemp aerial material at a gram-scale) and a series of phytocannabinoids were evaluated for their anti-KMO activity. CFA showed the most active inhibitory effect on KMO, which was comparable to the positive control Ro 61-8048 (IC50 = 29.4 vs. 5.1 μM, respectively). Furthermore, a molecular docking study depicted the molecular interactions between CFA and the KMO protein and a biophysical binding assay with surface plasmon resonance (SPR) technique revealed that CFA bound to the protein with a binding affinity of 4.1×10−5 M. A competitive SPR binding analysis suggested that CFA and Ro 61-8048 bind to the KMO protein in a competitive manner. Our findings show that C. sativa derived phytochemicals, including CFA, are potential KMO inhibitors, which provides insight into the development of therapeutics targeting the KP and its related pathological conditions.
Collapse
Affiliation(s)
- Tess Puopolo
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| | - Tanran Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Xu Liu
- Yunnan Hempmon Pharmaceutical Co., Ltd., Kunming 650032, China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: (H.M.); (N.P.S.)
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: (H.M.); (N.P.S.)
| |
Collapse
|
18
|
Liu C, Puopolo T, Li H, Cai A, Seeram NP, Ma H. Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186127. [PMID: 36144858 PMCID: PMC9502466 DOI: 10.3390/molecules27186127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
Abstract
The replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its main protease (Mpro), which is a plausible therapeutic target for coronavirus disease 2019 (COVID-19). Although numerous in silico studies reported the potential inhibitory effects of natural products including cannabis and cannabinoids on SARS-CoV-2 Mpro, their anti-Mpro activities are not well validated by biological experimental data. Herein, a library of minor cannabinoids belonging to several chemotypes including tetrahydrocannabinols, cannabidiols, cannabigerols, cannabichromenes, cannabinodiols, cannabicyclols, cannabinols, and cannabitriols was evaluated for their anti-Mpro activity using a biochemical assay. Additionally, the binding affinities and molecular interactions between the active cannabinoids and the Mpro protein were studied by a biophysical technique (surface plasmon resonance; SPR) and molecular docking, respectively. Cannabinoids tetrahydrocannabutol and cannabigerolic acid were the most active Mpro inhibitors (IC50 = 3.62 and 14.40 μM, respectively) and cannabigerolic acid had a binding affinity KD=2.16×10-4 M). A preliminary structure and activity relationship study revealed that the anti-Mpro effects of cannabinoids were influenced by the decarboxylation of cannabinoids and the length of cannabinoids' alkyl side chain. Findings from the biochemical, biophysical, and computational assays support the growing evidence of cannabinoids' inhibitory effects on SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Cannabis Research Collaborative, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tess Puopolo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Huifang Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ang Cai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Cannabis Research Collaborative, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: (N.P.S.); (H.M.); Tel.: +1-(401)-874-9367 (N.P.S.); +1-(401)-874-2711 (H.M.)
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Cannabis Research Collaborative, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: (N.P.S.); (H.M.); Tel.: +1-(401)-874-9367 (N.P.S.); +1-(401)-874-2711 (H.M.)
| |
Collapse
|