1
|
Kumar P, Koach J, Nekritz E, Mukherjee S, Braun BS, DuBois SG, Nasholm N, Haas-Kogan D, Matthay KK, Weiss WA, Gustafson C, Seo Y. Aurora Kinase A inhibition enhances DNA damage and tumor cell death with 131I-MIBG therapy in high-risk neuroblastoma. EJNMMI Res 2024; 14:54. [PMID: 38869684 PMCID: PMC11176152 DOI: 10.1186/s13550-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Neuroblastoma is the most common extra-cranial pediatric solid tumor. 131I-metaiodobenzylguanidine (MIBG) is a targeted radiopharmaceutical highly specific for neuroblastoma tumors, providing potent radiotherapy to widely metastatic disease. Aurora kinase A (AURKA) plays a role in mitosis and stabilization of the MYCN protein in neuroblastoma. We aimed to study the impact of AURKA inhibitors on DNA damage and tumor cell death in combination with 131I-MIBG therapy in a pre-clinical model of high-risk neuroblastoma. RESULTS Using an in vivo model of high-risk neuroblastoma, we demonstrated a marked combinatorial effect of 131I-MIBG and alisertib on tumor growth. In MYCN amplified cell lines, the combination of radiation and an AURKA A inhibitor increased DNA damage and apoptosis and decreased MYCN protein levels. CONCLUSION The combination of AURKA inhibition with 131I-MIBG treatment is active in resistant neuroblastoma models.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, 530 NE Glen Oak Ave, Peoria, IL, 61637, USA.
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| | - Jessica Koach
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Erin Nekritz
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Sucheta Mukherjee
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Benjamin S Braun
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Nicole Nasholm
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katherine K Matthay
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - William A Weiss
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Departments of Neurology, Neurosurgery, and Brain Tumor Research Center, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - Clay Gustafson
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| |
Collapse
|
2
|
Kumar P, Koach J, Nekritz E, Mukherjee S, Braun BS, DuBois SG, Nasholm N, Haas-Kogan D, Matthay KK, Weiss WA, Gustafson C, Seo Y. Aurora Kinase A inhibition enhances DNA damage and tumor cell death with 131I-MIBG therapy in high-risk neuroblastoma. RESEARCH SQUARE 2024:rs.3.rs-3845114. [PMID: 38313265 PMCID: PMC10836112 DOI: 10.21203/rs.3.rs-3845114/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Background Neuroblastoma is the most common extra-cranial pediatric solid tumor. 131I-metaiodobenzylguanidine (MIBG) is a targeted radiopharmaceutical highly specific for neuroblastoma tumors, providing potent radiotherapy to widely metastatic disease. Aurora kinase A (AURKA) plays a role in mitosis and stabilization of the MYCN protein in neuroblastoma. Here we explore whether AURKA inhibition potentiates a response to MIBG therapy. Results Using an in vivo model of high-risk neuroblastoma, we demonstrated a marked combinatorial effect of 131I-MIBG and alisertib on tumor growth. In MYCN amplified cell lines, the combination of radiation and an AURKA A inhibitor increased DNA damage and apoptosis and decreased MYCN protein levels. Conclusion The combination of AURKA inhibition with 131I-MIBG treatment is active in resistant neuroblastoma models and is a promising clinical approach in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Prerna Kumar
- University of Illinois College of Medicine at Peoria, Department of Pediatrics, Peoria, IL, United States
- University of California San Francisco, San Francisco, CA, United States
| | - Jessica Koach
- University of California San Francisco, San Francisco, CA, United States
| | - Erin Nekritz
- University of California San Francisco, San Francisco, CA, United States
| | - Sucheta Mukherjee
- University of California San Francisco, San Francisco, CA, United States
| | - Benjamin S. Braun
- University of California San Francisco, San Francisco, CA, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, United States
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Nicole Nasholm
- University of California San Francisco, San Francisco, CA, United States
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Katherine K. Matthay
- University of California San Francisco, San Francisco, CA, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, United States
| | - William A. Weiss
- University of California San Francisco, San Francisco, CA, United States
- University of California San Francisco, Departments of Neurology, Neurosurgery, and Brain Tumor Research Center, San Francisco, CA, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, United States
| | - Clay Gustafson
- University of California San Francisco, San Francisco, CA, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, United States
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, United States
| |
Collapse
|
3
|
Batra V, Samanta M, Makvandi M, Groff D, Martorano P, Elias J, Ranieri P, Tsang M, Hou C, Li Y, Pawel B, Martinez D, Vaidyanathan G, Carlin S, Pryma DA, Maris JM. Preclinical Development of [211At]meta- astatobenzylguanidine ([211At]MABG) as an Alpha Particle Radiopharmaceutical Therapy for Neuroblastoma. Clin Cancer Res 2022; 28:4146-4157. [PMID: 35861867 PMCID: PMC9475242 DOI: 10.1158/1078-0432.ccr-22-0400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE [131I]meta-iodobenzylguanidine ([131I]MIBG) is a targeted radiotherapeutic administered systemically to deliver beta particle radiation in neuroblastoma. However, relapses in the bone marrow are common. [211At]meta-astatobenzylguanidine ([211At] MABG) is an alpha particle emitter with higher biological effectiveness and short path length which effectively sterilizes microscopic residual disease. Here we investigated the safety and antitumor activity [211At]MABG in preclinical models of neuroblastoma. EXPERIMENTAL DESIGN We defined the maximum tolerated dose (MTD), biodistribution, and toxicity of [211At]MABG in immunodeficient mice in comparison with [131I]MIBG. We compared the antitumor efficacy of [211At]MABG with [131I]MIBG in three murine xenograft models. Finally, we explored the efficacy of [211At]MABG after tail vein xenografting designed to model disseminated neuroblastoma. RESULTS The MTD of [211At]MABG was 66.7 MBq/kg (1.8 mCi/kg) in CB17SC scid-/- mice and 51.8 MBq/kg (1.4 mCi/kg) in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Biodistribution of [211At]MABG was similar to [131I]MIBG. Long-term toxicity studies on mice administered with doses up to 41.5 MBq/kg (1.12 mCi/kg) showed the radiotherapeutic to be well tolerated. Both 66.7 MBq/kg (1.8 mCi/kg) single dose and fractionated dosing 16.6 MBq/kg/fraction (0.45 mCi/kg) × 4 over 11 days induced marked tumor regression in two of the three models studied. Survival was significantly prolonged for mice treated with 12.9 MBq/kg/fraction (0.35 mCi/kg) × 4 doses over 11 days [211At]MABG in the disseminated disease (IMR-05NET/GFP/LUC) model (P = 0.003) suggesting eradication of microscopic disease. CONCLUSIONS [211At]MABG has significant survival advantage in disseminated models of neuroblastoma. An alpha particle emitting radiopharmaceutical may be effective against microscopic disseminated disease, warranting clinical development.
Collapse
Affiliation(s)
- Vandana Batra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mehran Makvandi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Paul Martorano
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jimmy Elias
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pietro Ranieri
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yimei Li
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel Martinez
- Division of Anatomic Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Sean Carlin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel A. Pryma
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Corresponding Author: John M. Maris, Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104. Phone: 215-590-5242; E-mail:
| |
Collapse
|
4
|
Kondo Y, Watanabe S, Naoe A, Takeuchi T, Niimi A, Suzuki M, Asai N, Okada S, Tsuchiya T, Murayama M, Yasui T, Inoue M, Suzuki T. Antitumor effect of polyphyllin D on liver metastases of neuroblastoma. Pediatr Surg Int 2022; 38:1157-1163. [PMID: 35699751 DOI: 10.1007/s00383-022-05146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE We previously reported that polyphyllin D, a main component of the traditional Chinese medicinal herb Paris polyphylla, exhibited anticancer effects in vitro against human neuroblastoma cells. The aims of this investigation was to examine the presence or absence of in vivo anti-metastasis effects of polyphyllin D were to establish a liver metastasis model of neuroblastoma and to evaluate the anti-metastasis effects of polyphyllin D. METHODS Subcutaneous and intraperitoneal tumors, and metastasis models were established in immune-deficient BALB/c nude and BALB/c Rag-2/Jak3 double-deficient (BRJ) mice using the human neuroblastoma cell lines IMR-32, LA-N-2, or NB-69. For evaluating polyphyllin D activity, we used a mouse model of liver metastasis with the IMR-32 cells line injected through the tail vein. We analyzed the livers number and area of liver tumors in of the phosphate buffer solution- and polyphyllin D-treated groups. RESULTS Liver metastasis and intraperitoneal dissemination models were successfully established in immune-deficient BRJ mice using the three human neuroblastoma cell lines. In the liver metastasis, the model of IMR-32 cells, we found that polyphyllin D suppressed both the number and total area of metastatic foci the average number of metastatic foci, average focus areas, and number of cleaved caspase-3-positive cells were significantly lower in the polyphyllin D group (p = 0.016, 0.020, 0.043, respectively). CONCLUSIONS We developed a mouse models of neuroblastoma metastasis and demonstrated for the first time that polyphyllin D has an antitumor effect on neuroblastoma liver metastases.
Collapse
Affiliation(s)
- Yasuhiro Kondo
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan.
| | - Shunsuke Watanabe
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Atsuki Naoe
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Toshiyuki Takeuchi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Atsuko Niimi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Motoshi Suzuki
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University, Toyoake, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomonori Tsuchiya
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Mika Murayama
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Toshihiro Yasui
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Mikihiro Inoue
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Tatsuya Suzuki
- Department of Pediatric Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
5
|
Pottoo FH, Barkat MA, Harshita, Ansari MA, Javed MN, Sajid Jamal QM, Kamal MA. Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. Semin Cancer Biol 2021; 69:100-108. [PMID: 31562954 DOI: 10.1016/j.semcancer.2019.09.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/29/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023]
Abstract
Neuroblastoma (NB) is a widely diagnosed cancer in children, characterized by amplification of the gene encoding the MYCN transcription factor, which is highly predictive of poor clinical outcome and metastatic disease. microRNAs (a class of small non-coding RNAs) are regulated by MYCN transcription factor in neuroblastoma cells. The current research is focussed on identifying differential role of miRNAs and their interactions with signalling proteins, which are intricately linked with cellular processes like apoptosis, proliferation or metastasis. However, the therapeutic success of miRNAs is limited by pharmaco-technical issues which are well counteracted by nanotechnological advancements. The nanoformulated miRNAs unload anti-cancer drugs in a controlled and prespecified manner at target sites, to influence the activity of target protein in amelioration of NB. Recent advances and developments in the field of miRNAs-based systems for clinical management of NBs and the role of nanotechnology to overcome challenges with drug delivery of miRNAs have been reviewed in this paper.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Harshita
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India; School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India.
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
6
|
Functional Imaging Using Bioluminescent Reporter Genes in Living Subjects. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Abstract
Informative and realistic mouse models of high-risk neuroblastoma are central to understanding mechanisms of tumour initiation, progression, and metastasis. They also play vital roles in validating tumour drivers and drug targets, as platforms for assessment of new therapies and in the generation of drug sensitivity data that can inform treatment decisions for individual patients. This review will describe genetically engineered mouse models of specific subsets of high-risk neuroblastoma, the development of patient-derived xenograft models that more broadly represent the diversity and heterogeneity of the disease, and models of primary and metastatic disease. We discuss the research applications, advantages, and limitations of each model type, the importance of model repositories and data standards for supporting reproducible, high-quality research, and potential future directions for neuroblastoma mouse models.
Collapse
Affiliation(s)
- Alvin Kamili
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Caroline Atkinson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia. .,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
8
|
Ngoune R, Contini C, Hoffmann MM, von Elverfeldt D, Winkler K, Putz G. Optimizing Antitumor Efficacy and Adverse Effects of Pegylated Liposomal Doxorubicin by Scheduled Plasmapheresis: Impact of Timing and Dosing. Curr Drug Deliv 2018; 15:1261-1270. [PMID: 29779479 PMCID: PMC6327121 DOI: 10.2174/1567201815666180518125839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/11/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022]
Abstract
Background: Nanoscale drug delivery systems accumulate in solid tumors preferentially by the enhanced permeation and retention effect (EPR-effect). Nevertheless, only a miniscule fraction of a given dosage reaches the tumor, while >90% of the given drug ends up in otherwise healthy tissues, lead-ing to the severe toxic reactions observed during chemotherapy. Once accumulation in the tumor has reached its maximum, extracorporeal elimination of circulating nanoparticles by plasmapheresis can dimin-ish toxicities. Objective: In this study, we investigated the effect of dosing and plasmapheresis timing on adverse events and antitumor efficacy in a syngeneic rat tumor model. Methods: MAT-B-III cells transfected with a luciferase reporter plasmid were inoculated into female Fisher rats, and pegylated liposomal doxorubicin (PLD) was used for treatment. Plasmapheresis was performed in a discontinuous manner via centrifugation and subsequent filtration of isolated plasma. Results: Bioluminescence measurements of tumor growth could not substitute caliper measurements of tumor size. In the control group, raising the dosage above 9 mg PLD/kg body weight did not increase therapeutic efficacy in our fully immunocompetent animal model. Plasmapheresis was best done 36 h after injecting PLD, leading to similar antitumor efficacy with significantly less toxicity. Plasmapheresis 24 h after injection interfered with therapeutic efficacy, while plasmapheresis after 48 h led to fewer side effects but also to increased weight loss. Conclusion: Long-circulating nanoparticles offer the unique possibility to eliminate the excess of circulat-ing particles after successful accumulation in tumors by EPR, thereby reducing toxicities and likely toxici-ty-related therapeutic limitations
Collapse
Affiliation(s)
- Romeo Ngoune
- Medical Center - University of Freiburg, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Freiburg, Germany
| | - Christine Contini
- Medical Center - University of Freiburg, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Freiburg, Germany
| | - Michael M Hoffmann
- Medical Center - University of Freiburg, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Freiburg, Germany
| | - Dominik von Elverfeldt
- Medical Center - University of Freiburg, Faculty of Medicine, Department of Diagnostic Radiology Medical Physics, Freiburg, Germany
| | - Karl Winkler
- Medical Center - University of Freiburg, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Freiburg, Germany
| | - Gerhard Putz
- Medical Center - University of Freiburg, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Freiburg, Germany
| |
Collapse
|
9
|
Curtin C, Nolan JC, Conlon R, Deneweth L, Gallagher C, Tan YJ, Cavanagh BL, Asraf AZ, Harvey H, Miller-Delaney S, Shohet J, Bray I, O'Brien FJ, Stallings RL, Piskareva O. A physiologically relevant 3D collagen-based scaffold-neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomater 2018; 70:84-97. [PMID: 29447961 DOI: 10.1016/j.actbio.2018.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/18/2022]
Abstract
3D scaffold-based in vitro cell culturing is a recent technological advancement in cancer research bridging the gap between conventional 2D culture and in vivo tumours. The main challenge in treating neuroblastoma, a paediatric cancer of the sympathetic nervous system, is to combat tumour metastasis and resistance to multiple chemotherapeutic drugs. The aim of this study was to establish a physiologically relevant 3D neuroblastoma tissue-engineered system and explore its therapeutic relevance. Two neuroblastoma cell lines, chemotherapeutic sensitive Kelly and chemotherapeutic resistant KellyCis83 were cultured in a 3D in vitro model on two collagen-based scaffolds containing either glycosaminoglycan (Coll-GAG) or nanohydroxyapatite (Coll-nHA) and compared to 2D cell culture and an orthotopic murine model. Both neuroblastoma cell lines actively infiltrated the scaffolds and proliferated displaying >100-fold increased resistance to cisplatin treatment when compared to 2D cultures, exhibiting chemosensitivity similar to orthotopic xenograft in vivo models. This model demonstrated its applicability to validate miRNA-based gene delivery. The efficacy of liposomes bearing miRNA mimics uptake and gene knockdown was similar in both 2D and 3D in vitro culturing models highlighting the proof-of-principle for the applicability of 3D collagen-based scaffolds cell system for validation of miRNA function. Collectively, this data shows the successful development and characterisation of a physiologically relevant, scaffold-based 3D tissue-engineered neuroblastoma cell model, strongly supporting its value in the evaluation of chemotherapeutics, targeted therapies and investigation of neuroblastoma pathogenesis. While neuroblastoma is the specific disease being focused upon, the platform may have multi-functionality beyond this tumour type. STATEMENT OF SIGNIFICANCE Traditional 2D cell cultures do not completely capture the 3D architecture of cells and extracellular matrix contributing to a gap in our understanding of mammalian biology at the tissue level and may explain some of the discrepancies between in vitro and in vivo results. Here, we demonstrated the successful development and characterisation of a physiologically relevant, scaffold-based 3D tissue-engineered neuroblastoma cell model, strongly supporting its value in the evaluation of chemotherapeutics, targeted therapies and investigation of neuroblastoma pathogenesis. The ability to test drugs in this reproducible and controllable tissue-engineered model system will help reduce the attrition rate of the drug development process and lead to more effective and tailored therapies. Importantly, such 3D cell models help to reduce and replace animals for pre-clinical research addressing the principles of the 3Rs.
Collapse
Affiliation(s)
- C Curtin
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - J C Nolan
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - R Conlon
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - L Deneweth
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - C Gallagher
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Y J Tan
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - B L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - A Z Asraf
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - H Harvey
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - S Miller-Delaney
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, TX, United States
| | - I Bray
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - F J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - R L Stallings
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - O Piskareva
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.
| |
Collapse
|
10
|
Najem S, Langemann D, Appl B, Trochimiuk M, Hundsdoerfer P, Reinshagen K, Eschenburg G. Smac mimetic LCL161 supports neuroblastoma chemotherapy in a drug class-dependent manner and synergistically interacts with ALK inhibitor TAE684 in cells with ALK mutation F1174L. Oncotarget 2018; 7:72634-72653. [PMID: 27655666 PMCID: PMC5341933 DOI: 10.18632/oncotarget.12055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/27/2016] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor during infancy and childhood. Outcome of high-risk and late-stage disease remains poor despite intensive treatment regimens. Suppressing inhibitor of apoptosis proteins (IAPs) using Smac mimetics (SM) significantly sensitizes neuroblastoma (NB) cells for chemotherapy, however strongly dependent on the cytotoxic drug combined with SM. Therefore, a systematic analysis of the impact of SM in combination with different classes of chemotherapeutics was of crucial importance. Treatment of NB cell lines with SM LCL161 and vinca alkaloids revealed a strong synergistic inhibition of proliferation and significant induction of apoptosis in virtually all established and de novo NB cell lines (n=8). In contrast, combination of anthracyclines or topoisomerase inhibitors with LCL161 showed a synergism for single drugs and/or cell lines only. Furthermore, we could show that insensibility to LCL161-mediated sensitization for chemotherapeutics is associated with aberrant activation of anaplastic lymphoma kinase (ALK) by common mutation F1174L. Inhibition of ALK using TAE684 is able to overcome this resistance in a synergistic fashion, a finding that could be highly relevant for improvement of neuroblastoma therapy.
Collapse
Affiliation(s)
- Safiullah Najem
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doerte Langemann
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Eschenburg
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Borriello L, Nakata R, Sheard MA, Fernandez GE, Sposto R, Malvar J, Blavier L, Shimada H, Asgharzadeh S, Seeger RC, DeClerck YA. Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells. Cancer Res 2017; 77:5142-5157. [PMID: 28687621 DOI: 10.1158/0008-5472.can-16-2586] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/30/2017] [Accepted: 06/29/2017] [Indexed: 11/16/2022]
Abstract
Cancer-associated fibroblasts (CAF) have been suggested to originate from mesenchymal stromal cells (MSC), but their relationship with MSCs is not clear. Here, we have isolated from primary human neuroblastoma tumors a population of αFAP- and FSP-1-expressing CAFs that share phenotypic and functional characteristics with bone marrow-derived MSCs (BM-MSC). Analysis of human neuroblastoma tumors also confirmed the presence of αFAP- and FSP-1-positive cells in the tumor stroma, and their presence correlated with that of M2 tumor-associated macrophages. These cells (designated CAF-MSCs) enhanced in vitro neuroblastoma cell proliferation, survival, and resistance to chemotherapy and stimulated neuroblastoma tumor engraftment and growth in immunodeficient mice, indicating an effect independent of the immune system. The protumorigenic activity of MSCs in vitro and in xenografted mice was dependent on the coactivation of JAK2/STAT3 and MEK/ERK1/2 in neuroblastoma cells. In a mouse model of orthotopically implanted neuroblastoma cells, inhibition of JAK2/STAT3 and MEK/ERK/1/2 by ruxolitinib and trametinib potentiated tumor response to etoposide and increased overall survival. These data point to a new type of protumorigenic CAF in the tumor microenvironment of neuroblastoma and to STAT3 and ERK1/2 as mediators of their activity. Cancer Res; 77(18); 5142-57. ©2017 AACR.
Collapse
Affiliation(s)
- Lucia Borriello
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Rie Nakata
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Michael A Sheard
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - G Esteban Fernandez
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Richard Sposto
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jemily Malvar
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Laurence Blavier
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Hiroyuki Shimada
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Robert C Seeger
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Yves A DeClerck
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Keck School of Medicine of the University of Southern California, Los Angeles, California. .,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
12
|
Yang J, Milasta S, Hu D, AlTahan AM, Interiano RB, Zhou J, Davidson J, Low J, Lin W, Bao J, Goh P, Nathwani AC, Wang R, Wang Y, Ong SS, Boyd VA, Young B, Das S, Shelat A, Wu Y, Li Z, Zheng JJ, Mishra A, Cheng Y, Qu C, Peng J, Green DR, White S, Guy RK, Chen T, Davidoff AM. Targeting Histone Demethylases in MYC-Driven Neuroblastomas with Ciclopirox. Cancer Res 2017; 77:4626-4638. [PMID: 28684529 DOI: 10.1158/0008-5472.can-16-0826] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 11/28/2016] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Histone lysine demethylases facilitate the activity of oncogenic transcription factors, including possibly MYC. Here we show that multiple histone demethylases influence the viability and poor prognosis of neuroblastoma cells, where MYC is often overexpressed. We also identified the approved small-molecule antifungal agent ciclopirox as a novel pan-histone demethylase inhibitor. Ciclopirox targeted several histone demethylases, including KDM4B implicated in MYC function. Accordingly, ciclopirox inhibited Myc signaling in parallel with mitochondrial oxidative phosphorylation, resulting in suppression of neuroblastoma cell viability and inhibition of tumor growth associated with an induction of differentiation. Our findings provide new insights into epigenetic regulation of MYC function and suggest a novel pharmacologic basis to target histone demethylases as an indirect MYC-targeting approach for cancer therapy. Cancer Res; 77(17); 4626-38. ©2017 AACR.
Collapse
Affiliation(s)
- Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Sandra Milasta
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Dongli Hu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alaa M AlTahan
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rodrigo B Interiano
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Junfang Zhou
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jesse Davidson
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ju Bao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pollyanna Goh
- Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Amit C Nathwani
- Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Ruoning Wang
- Department of Pediatrics, The Ohio State University School of Medicine, The Research Institute at Nationwide Children's Hospital, Center for Childhood Cancer and Blood Disease, Columbus, Ohio
| | - Yingdi Wang
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut
| | - Su Sien Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Vincent A Boyd
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yinan Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhenmei Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jie J Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ashutosh Mishra
- Department of Structural Biology, Department of Developmental Neurobiology and St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Junmin Peng
- Department of Structural Biology, Department of Developmental Neurobiology and St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
13
|
Bahmani P, Hosseinkhani S. Increase of segmental mobility through insertion of a flexible linker in split point of firefly luciferase. Int J Biol Macromol 2017; 94:762-770. [DOI: 10.1016/j.ijbiomac.2016.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
|
14
|
Milani M, Laranjeira ABA, de Vasconcellos JF, Brandalise SR, Nowill AE, Yunes JA. Plasma Hsp90 Level as a Marker of Early Acute Lymphoblastic Leukemia Engraftment and Progression in Mice. PLoS One 2015; 10:e0129298. [PMID: 26068922 PMCID: PMC4466233 DOI: 10.1371/journal.pone.0129298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/08/2015] [Indexed: 11/29/2022] Open
Abstract
Current monitoring of acute lymphoblastic leukemia (ALL) in living mice is based on FACS analysis of blood hCD45+ cells. In this work, we evaluated the use of human IGFBP2, B2M or Hsp90 as soluble markers of leukemia. ELISA for B2M and IGFBP2 resulted in high background levels in healthy animals, precluding its use. Conversely, plasma levels of Hsp90 showed low background and linear correlation to FACS results. In another experiment, we compared Hsp90 levels with percentage of hCD45+ cells in blood, bone marrow, liver and spleen of animals weekly sacrificed. Hsp90 levels proved to be a superior method for the earlier detection of ALL engraftment and correlated linearly to ALL burden and progression in all compartments, even at minimal residual disease levels. Importantly, the Hsp90/hCD45+ ratio was not altered when animals were treated with dexamethasone or a PI3K inhibitor, indicating that chemotherapy does not directly interfere with leukemia production of Hsp90. In conclusion, plasma Hsp90 was validated as a soluble biomarker of ALL, useful for earlier detection of leukemia engraftment, monitoring leukemia kinetics at residual disease levels, and pre-clinical or mouse avatar evaluations of anti-leukemic drugs.
Collapse
Affiliation(s)
- Mateus Milani
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, SP, Brazil
| | | | | | | | - Alexandre Eduardo Nowill
- Centro Integrado de Pesquisas Oncohematologicas da Infância (CIPOI), Faculdade de Ciências Médicas (FCM), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - José Andrés Yunes
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, SP, Brazil
- Departamento de Genética Médica, FCM, UNICAMP, Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
15
|
O'Farrell AC, Shnyder SD, Marston G, Coletta PL, Gill JH. Non-invasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol 2014; 169:719-35. [PMID: 23488622 DOI: 10.1111/bph.12155] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/02/2013] [Accepted: 02/10/2013] [Indexed: 12/18/2022] Open
Abstract
Molecular and non-invasive imaging are rapidly emerging fields in preclinical cancer drug discovery. This is driven by the need to develop more efficacious and safer treatments, the advent of molecular-targeted therapeutics, and the requirements to reduce and refine current preclinical in vivo models. Such bioimaging strategies include MRI, PET, single positron emission computed tomography, ultrasound, and optical approaches such as bioluminescence and fluorescence imaging. These molecular imaging modalities have several advantages over traditional screening methods, not least the ability to quantitatively monitor pharmacodynamic changes at the cellular and molecular level in living animals non-invasively in real time. This review aims to provide an overview of non-invasive molecular imaging techniques, highlighting the strengths, limitations and versatility of these approaches in preclinical cancer drug discovery and development.
Collapse
Affiliation(s)
- A C O'Farrell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | |
Collapse
|
16
|
Tumor dosimetry using [124I]m-iodobenzylguanidine microPET/CT for [131I]m-iodobenzylguanidine treatment of neuroblastoma in a murine xenograft model. Mol Imaging Biol 2013; 14:735-42. [PMID: 22382618 DOI: 10.1007/s11307-012-0552-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE [(124)I]m-iodobenzylguanidine ((124)I-mIBG) provides a quantitative tool for pretherapy tumor imaging and dosimetry when performed before [(131)I]m-iodobenzylguanidine ((131)I-mIBG) targeted radionuclide therapy of neuroblastoma. (124)I (T (1/2) = 4.2 days) has a comparable half-life to that of (131)I (T (1/2) = 8.02 days) and can be imaged by positron emission tomography (PET) for accurate quantification of the radiotracer distribution. We estimated expected radiation dose in tumors from (131)I-mIBG therapy using (124)I-mIBG microPET/CT imaging data in a murine xenograft model of neuroblastoma transduced to express high levels of the human norepinephrine transporter (hNET). PROCEDURES In order to enhance mIBG uptake for in vivo imaging and therapy, NB 1691-luciferase (NB1691) human neuroblastoma cells were engineered to express high levels of hNET protein by lentiviral transduction (NB1691-hNET). Both NB1691 and NB1691-hNET cells were implanted subcutaneously and into renal capsules in athymic mice. (124)I-mIBG (4.2-6.5 MBq) was administered intravenously for microPET/CT imaging at 5 time points over 95 h (0.5, 3-5, 24, 48, and 93-95 h median time points). In vivo biodistribution data in normal organs, tumors, and whole-body were collected from reconstructed PET images corrected for photon attenuation using the CT-based attenuation map. Organ and tumor dosimetry were determined for (124)I-mIBG. Dose estimates for (131)I-mIBG were made, assuming the same in vivo biodistribution as (124)I-mIBG. RESULTS All NB1691-hNET tumors had significant uptake and retention of (124)I-mIBG, whereas unmodified NB1691 tumors did not demonstrate quantifiable mIBG uptake in vivo, despite in vitro uptake. (124)I-mIBG with microPET/CT provided an accurate three-dimensional tool for estimating the radiation dose that would be delivered with (131)I-mIBG therapy. For example, in our model system, we estimated that the administration of (131)I-mIBG in the range of 52.8-206 MBq would deliver 20 Gy to tumors. CONCLUSIONS The overexpression of hNET was found to be critical for (124)I-mIBG uptake and retention in vivo. The quantitative (124)I-mIBG PET/CT is a promising new tool to predict tumor radiation doses with (131)I-mIBG therapy of neuroblastoma. This methodology may be applied to tumor dosimetry of (131)I-mIBG therapy in human subjects using (124)I-mIBG pretherapy PET/CT data.
Collapse
|
17
|
Mouse model of lymph node metastasis via afferent lymphatic vessels for development of imaging modalities. PLoS One 2013; 8:e55797. [PMID: 23405215 PMCID: PMC3565997 DOI: 10.1371/journal.pone.0055797] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 01/02/2013] [Indexed: 11/19/2022] Open
Abstract
Animal studies of lymph node metastasis are constrained by limitations in the techniques available for noninvasive monitoring of the progression of lymph node metastasis, as well as difficulties in the establishment of appropriate animal models. To overcome these challenges, this study has developed a mouse model of inter-lymph-node metastasis via afferent lymphatic vessels for use in the development of imaging modalities. We used 14- to 18-week-old MRL/MpJ−/lpr/lpr (MRL/lpr) mice exhibiting remarkable systemic lymphadenopathy, with proper axillary lymph nodes (proper-ALNs) and subiliac lymph nodes (SiLNs) that are 6 to 12 mm in diameter (similar in size to human lymph nodes). When KM-Luc/GFP malignant fibrous histiocytoma-like cells stably expressing the firefly luciferase gene were injected into the SiLN, metastasis could be detected in the proper-ALN within 3 to 9 days, using in vivo bioluminescence imaging. The metastasis route was found to be via the efferent lymphatic vessels of the SiLN, and metastasis incidence depended on the number of cells injected, the injection duration and the SiLN volume. Three-dimensional contrast-enhanced high-frequency ultrasound imaging showed that the blood vessel volume and density in the metastasized proper-ALN significantly increased at 14 days after tumor cell inoculation into the SiLN. The present metastasis model, with lymph nodes similar in size to those of humans, has potential use in the development of ultrasound imaging with high-precision and high-sensitivity as well as other imaging modalities for the detection of blood vessels in lymph nodes during the progression of metastasis.
Collapse
|
18
|
Li L, Mori S, Kodama M, Sakamoto M, Takahashi S, Kodama T. Enhanced sonographic imaging to diagnose lymph node metastasis: importance of blood vessel volume and density. Cancer Res 2013; 73:2082-92. [PMID: 23333937 DOI: 10.1158/0008-5472.can-12-4200] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lymph node size is an important variable in ultrasound diagnosis of lymph node metastasis. However, the size criterion often leads to oversight of tumor-positive lymph nodes within the range of "normal" size, such that more accurate diagnostic criteria for lymph node metastasis are required. In this study, we show how diagnosis of lymph node metastasis can be improved by evaluating changes in blood vessel volume and density using a novel contrast-enhanced high-frequency ultrasound (CE-HFUS) system with Sonazoid. An MRL/MpJ-lpr/lpr (MRL/lpr) mouse model of lymph node metastasis was used in which lymph nodes are similar in size to humans. Metastasis via lymphatic vessels to proper axillary lymph nodes (proper ALN) was induced by injection of tumor cells into the subiliac lymph nodes. Within 21 days of injection, significant increases in blood vessel volume and density, but no increases in the size of the proper ALNs, were observed. The increase in blood vessel density was confirmed with immunohistochemical analysis and was positively related to tumor cell proliferation as measured using bioluminescence imaging. Together, our results showed that alterations in blood vessel volume and density precede alterations in lymph node size in the early stages of lymph node metastasis. Detection of these changes by ultrasonography may offer new criteria for early diagnosis of lymph node metastasis.
Collapse
Affiliation(s)
- Li Li
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Hartwich JE, Orr WS, Ng CY, Spence Y, McLaughlin JM, Furman WL, McGregor LM, Davidoff AM. Rapamycin increases neuroblastoma xenograft and host stromal derived osteoprotegerin inhibiting osteolytic bone disease in a bone metastasis model. J Pediatr Surg 2013; 48:47-55. [PMID: 23331792 PMCID: PMC3584337 DOI: 10.1016/j.jpedsurg.2012.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/13/2012] [Indexed: 11/30/2022]
Abstract
PURPOSE Osteoprotegerin (OPG) is a decoy receptor for the Receptor of NF-κB (RANK) ligand that can inhibit osteoclastogenesis. Previous studies have suggested that Mammalian Target of Rapamycin (mTOR) inhibition upregulates OPG production. We tested the hypothesis that the mTOR inhibitor rapamycin could inhibit neuroblastoma bone metastases through its action on OPG. EXPERIMENTAL DESIGN An orthotopic model of bone metastasis was established. Mice with established disease were subsequently treated with rapamycin (5mg/kg IP daily) or vehicle control (DMSO 1:1000). X-rays were obtained twice a week to detect pathologic fractures. Serum OPG levels were measured by ELISA after two weeks of treatment. RESULTS Mice with bone disease receiving rapamycin had increased serum levels of OPG in the CHLA-20 mice compared to controls (36.89 pg/mL ± 3.90 vs 18.4 pg/mL ± 1.67, p=0.004) and NB1691 tumor-bearing groups (46.03 ± 2.67 pg/mL vs 17.96 ± 1.84pg/mL, p=0.001), and a significantly longer median time to pathologic fractures with CHLA-20 (103 days vs 74.5 days, p=0.014) and NB1691 xenografts. CONCLUSION In a xenograft model, increased OPG expression correlated with a delay to pathologic fracture suggesting a potential role for mTOR inhibitors in the treatment of neuroblastoma bone metastases.
Collapse
Affiliation(s)
- Joseph E. Hartwich
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23284, USA,Department of Surgery, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - W. Shannon Orr
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA,Department of Surgery, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Catherine Y. Ng
- Department of Surgery, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yunyu Spence
- Department of Surgery, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Wayne L. Furman
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lisa M. McGregor
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrew M. Davidoff
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA,Department of Surgery, St Jude Children’s Research Hospital, Memphis, TN 38105, USA,Corresponding author. Department of Surgery, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Tennessee 38105. Tel.: +1 901 595 4060; fax: +1 901 595 6621. (A.M. Davidoff)
| |
Collapse
|
20
|
Moradi M, Hosseinkhani S, Emamzadeh R. Implication of an unfavorable residue (Thr346) in intrinsic flexibility of firefly luciferase. Enzyme Microb Technol 2012; 51:186-92. [DOI: 10.1016/j.enzmictec.2012.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/09/2012] [Accepted: 06/12/2012] [Indexed: 11/25/2022]
|
21
|
Ryan J, Tivnan A, Fay J, Bryan K, Meehan M, Creevey L, Lynch J, Bray IM, O'Meara A, Tracey L, Davidoff AM, Stallings RL. MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome. Br J Cancer 2012; 107:967-76. [PMID: 22892391 PMCID: PMC3464768 DOI: 10.1038/bjc.2012.356] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Neuroblastoma remains a major cause of cancer-linked mortality in children. miR-204 has been used in microRNA expression signatures predictive of neuroblastoma patient survival. The aim of this study was to explore the independent association of miR-204 with survival in a neuroblastoma cohort, and to investigate the phenotypic effects mediated by miR-204 expression in neuroblastoma. Methods: Neuroblastoma cell lines were transiently transfected with miR-204 mimics and assessed for cell viability using MTS assays. Apoptosis levels in cell lines were evaluated by FACS analysis of Annexin V-/propidium iodide-stained cells transfected with miR-204 mimics and treated with chemotherapy drug or vehicle control. Potential targets of miR-204 were validated using luciferase reporter assays. Results: miR-204 expression in primary neuroblastoma tumours was predictive of patient event-free and overall survival, independent of established known risk factors. Ectopic miR-204 expression significantly increased sensitivity to cisplatin and etoposide in vitro. miR-204 direct targeting of the 3′ UTR of BCL2 and NTRK2 (TrkB) was confirmed. Conclusion: miR-204 is a novel predictor of outcome in neuroblastoma, functioning, at least in part, through increasing sensitivity to cisplatin by direct targeting and downregulation of anti-apoptotic BCL2. miR-204 also targets full-length NTRK2, a potent oncogene involved with chemotherapy drug resistance in neuroblastoma.
Collapse
Affiliation(s)
- J Ryan
- Department of Molecular and Cellular Therapeutics, Cancer Genetics Research Group, Royal College of Surgeons in Ireland, York House, York Street, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tivnan A, Orr WS, Gubala V, Nooney R, Williams DE, McDonagh C, Prenter S, Harvey H, Domingo-Fernández R, Bray IM, Piskareva O, Ng CY, Lode HN, Davidoff AM, Stallings RL. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One 2012; 7:e38129. [PMID: 22662276 PMCID: PMC3360657 DOI: 10.1371/journal.pone.0038129] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/04/2012] [Indexed: 12/25/2022] Open
Abstract
Background Neuroblastoma is one of the most challenging malignancies of childhood, being associated with the highest death rate in paediatric oncology, underlining the need for novel therapeutic approaches. Typically, patients with high risk disease undergo an initial remission in response to treatment, followed by disease recurrence that has become refractory to further treatment. Here, we demonstrate the first silica nanoparticle-based targeted delivery of a tumor suppressive, pro-apoptotic microRNA, miR-34a, to neuroblastoma tumors in a murine orthotopic xenograft model. These tumors express high levels of the cell surface antigen disialoganglioside GD2 (GD2), providing a target for tumor-specific delivery. Principal Findings Nanoparticles encapsulating miR-34a and conjugated to a GD2 antibody facilitated tumor-specific delivery following systemic administration into tumor bearing mice, resulted in significantly decreased tumor growth, increased apoptosis and a reduction in vascularisation. We further demonstrate a novel, multi-step molecular mechanism by which miR-34a leads to increased levels of the tissue inhibitor metallopeptidase 2 precursor (TIMP2) protein, accounting for the highly reduced vascularisation noted in miR-34a-treated tumors. Significance These novel findings highlight the potential of anti-GD2-nanoparticle-mediated targeted delivery of miR-34a for both the treatment of GD2-expressing tumors, and as a basic discovery tool for elucidating biological effects of novel miRNAs on tumor growth.
Collapse
Affiliation(s)
- Amanda Tivnan
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
| | - Wayne Shannon Orr
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Vladimir Gubala
- Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | - Robert Nooney
- Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | - David E. Williams
- Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | - Colette McDonagh
- Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | - Suzanne Prenter
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
| | - Harry Harvey
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
| | - Raquel Domingo-Fernández
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
| | - Isabella M. Bray
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
| | - Olga Piskareva
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
| | - Catherine Y. Ng
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Holger N. Lode
- Department of Paediatrics and Paediatric Haematology/Oncology, University of Greifswald, Greifswald, Germany
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Raymond L. Stallings
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
- * E-mail:
| |
Collapse
|
23
|
Miyama N, Dua MM, Schultz GM, Kosuge H, Terashima M, Pisani LJ, Dalman RL, McConnell MV. Bioluminescence and Magnetic Resonance Imaging of Macrophage Homing to Experimental Abdominal Aortic Aneurysms. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macrophage infiltration is a prominent feature of abdominal aortic aneurysm (AAA) progression. We used a combined imaging approach with bioluminescence (BLI) and magnetic resonance imaging (MRI) to study macrophage homing and accumulation in experimental AAA disease. Murine AAAs were created via intra-aortic infusion of porcine pancreatic elastase. Mice were imaged over 14 days after injection of prepared peritoneal macrophages. For BLI, macrophages were from transgenic mice expressing luciferase. For MRI, macrophages were labeled with iron oxide particles. Macrophage accumulation during aneurysm progression was observed by in situ BLI and by in vivo 7T MRI. Mice were sacrificed after imaging for histologic analysis. In situ BLI ( n = 32) demonstrated high signal in the AAA by days 7 and 14, which correlated significantly with macrophage number and aortic diameter. In vivo 7T MRI ( n = 13) at day 14 demonstrated T2* signal loss in the AAA and not in sham mice. Immunohistochemistry and Prussian blue staining confirmed the presence of injected macrophages in the AAA. BLI and MRI provide complementary approaches to track macrophage homing and accumulation in experimental AAAs. Similar dual imaging strategies may aid the study of AAA biology and the evaluation of novel therapies.
Collapse
Affiliation(s)
- Noriyuki Miyama
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Monica M. Dua
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Geoffrey M. Schultz
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Hisanori Kosuge
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Masahiro Terashima
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Laura J. Pisani
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Ronald L. Dalman
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Michael V. McConnell
- From the Divisions of Vascular Surgery and Cardiovascular Medicine and the Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
24
|
Iochmann S, Lerondel S, Bléchet C, Lavergne M, Pesnel S, Sobilo J, Heuzé-Vourc'h N, Le Pape A, Reverdiau P. Monitoring of tumour progression using bioluminescence imaging and computed tomography scanning in a nude mouse orthotopic model of human small cell lung cancer. Lung Cancer 2012; 77:70-6. [PMID: 22321610 DOI: 10.1016/j.lungcan.2012.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/23/2011] [Accepted: 01/15/2012] [Indexed: 11/18/2022]
Abstract
Human small cell lung carcinoma (SCLC) is the most aggressive type of lung cancer but no clinically relevant animal model has been developed to date. Such a model would be valuable to study the molecular aspects of tumour progression and to test the effectiveness of new treatment agents. We generated a reproducible and reliable nude mouse orthotopic model of human SCLC with NCI-H209 tumour cells genetically modified to express firefly luciferase. Cells were analysed for long-term stability of bioluminescence and a clone was passaged twice subcutaneously to enhance tumorigenicity. Cells resuspended in Matrigel and/or EDTA RPMI medium containing a (99m)Tc-labelled tin colloid used as tracer were implanted intrabronchially with a catheter inserted into the trachea and positioned in the main bronchus using X-ray-guided imaging. Deposition of cells into the lung was then assessed by scintigraphy. The growth of the primary tumour was sensitively and non-invasively followed by bioluminescence imaging that allowed real-time monitoring of tumour progression in the same animals over a 2-12-week period. Additional 3D bioluminescence imaging and computed tomography scanning were used to document tumour location and measurements that were confirmed by histological analyses. In conclusion, this original nude mouse orthotopic model resembles various stages of human small cell lung cancer, and therefore could be used to evaluate new treatment strategies.
Collapse
Affiliation(s)
- Sophie Iochmann
- Inserm U618, Université François Rabelais, IFR 135, F-37032 Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Orr WS, Denbo JW, Saab KR, Myers AL, Ng CY, Zhou J, Morton CL, Pfeffer LM, Davidoff AM. Liposome-encapsulated curcumin suppresses neuroblastoma growth through nuclear factor-kappa B inhibition. Surgery 2012; 151:736-44. [PMID: 22284765 DOI: 10.1016/j.surg.2011.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Nuclear factor-κB (NF-κB) has been implicated in tumor cell proliferation and survival and in tumor angiogenesis. We sought to evaluate the effects of curcumin, an inhibitor of NF-κB, on a xenograft model of disseminated neuroblastoma. METHODS For in vitro studies, neuroblastoma cell lines NB1691, CHLA-20, and SK-N-AS were treated with various doses of liposomal curcumin. Disseminated neuroblastoma was established in vivo by tail vein injection of NB1691-luc cells into SCID mice, which were then treated with 50 mg/kg/day of liposomal curcumin 5 days/week intraperitoneally. RESULTS Curcumin suppressed NF-κB activation and proliferation of all neuroblastoma cell lines in vitro. In vivo, curcumin treatment resulted in a significant decrease in disseminated tumor burden. Curcumin-treated tumors had decreased NF-κB activity and an associated significant decrease in tumor cell proliferation and an increase in tumor cell apoptosis, as well as a decrease in tumor vascular endothelial growth factor levels and microvessel density. CONCLUSION Liposomal curcumin suppressed neuroblastoma growth, with treated tumors showing a decrease in NF-κB activity. Our results suggest that liposomal curcumin may be a viable option for the treatment of neuroblastoma that works via inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Wayne S Orr
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Comparison of in vivo bioluminescence imaging and lavage biomarkers to assess pulmonary inflammation. Toxicology 2011; 291:133-8. [PMID: 22133556 DOI: 10.1016/j.tox.2011.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 11/22/2022]
Abstract
Gram-negative bacterial endotoxin triggers innate immunity via TLR-4 and NF-kB signal activation. The aim of this study was to evaluate the use of transgenic mice expressing luciferase as a marker of NF-kB activation for exploring innate immune responses to pulmonary endotoxin exposure over time thus obviating the need for serial necropsies. Transgenic rNF-kB-Luc BALB/c mice were exposed to two different types of endotoxin (Neisseria meningitidis lipooligosaccharide, and Escherichia coli lipopolysaccharide) at multiple doses by nasal instillation. Bioluminescence was quantified in vivo at five time points in three separate experiments. In the fourth experiment lungs were imaged ex vivo 8h post exposure and tissue was analyzed for luciferase activity. Non-transgenic BALB/c mice were similarly exposed to lipooligosaccharide and bronchoalveolar lavage was assessed for neutrophil recruitment and IL-6. Non-transgenic BALB/c mice exhibited highly significant increases of IL-6 and neutrophils in bronchoalveolar lavage 4h after the exposure to instilled doses as low as 30EU/mouse. In contrast, luciferase imaging of NF-kB signal activation in vivo in transgenic rNF-kB-Luc mice did not show significant changes over time or over doses from 30EU to 300,000EU/mouse of nasally-instilled endotoxin. Ex vivo lung imaging 8h after endotoxin exposure to 3000EU demonstrated a strong signal. An intravenous LPS dose of 300,000EU/mouse produced a measurable luminescence signal in vivo. This non-terminal assessment method is useful only with extremely high doses of endotoxin that induce systemic injury and cannot be applied to research of occupational and environmental exposures at relevant levels of endotoxin.
Collapse
|
27
|
Hwang JE, Shim HJ, Park YK, Cho SH, Bae WK, Kim DE, Kim KK, Chung IJ. Intravenous KITENIN shRNA injection suppresses hepatic metastasis and recurrence of colon cancer in an orthotopic mouse model. J Korean Med Sci 2011; 26:1439-45. [PMID: 22065899 PMCID: PMC3207046 DOI: 10.3346/jkms.2011.26.11.1439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/05/2011] [Indexed: 12/27/2022] Open
Abstract
KITENIN (KAI1 C-terminal interacting tetraspanin) promotes invasion and metastasis in mouse colon cancer models. In the present study, we evaluated the effects of KITENIN knockdown by intravenous administration of short hairpin RNAs (shRNAs) in an orthotopic mouse colon cancer model, simulating a primary or adjuvant treatment setting. We established orthotopic models for colon cancer using BALB/c mice and firefly luciferase-expressing CT-26 (CT26/Fluc) cells. Tumor progression and response to therapy were monitored by bioluminescence imaging (BLI). In the primary therapy model, treatment with KITENIN shRNA substantially delayed tumor growth (P = 0.028) and reduced the incidence of hepatic metastasis (P = 0.046). In the adjuvant therapy model, KITENIN shRNA significantly reduced the extent of tumor recurrence (P = 0.044). Mice treated with KITENIN shRNA showed a better survival tendency than the control mice (P = 0.074). Our results suggest that shRNA targeting KITENIN has the potential to be an effective tool for the treatment of colon cancer in both adjuvant and metastatic setting.
Collapse
Affiliation(s)
- Jun-Eul Hwang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Jeong Shim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Young-Kyu Park
- Department of Surgery, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sang-Hee Cho
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Woo-Kyun Bae
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Dae-Eun Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Kyung-Keun Kim
- Department of Pharmacology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ik-Joo Chung
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
28
|
Denbo JW, Williams RF, Orr WS, Sims TL, Ng CY, Zhou J, Spence Y, Morton CL, Nathwani AC, Duntsch C, Pfeffer LM, Davidoff AM. Continuous local delivery of interferon-β stabilizes tumor vasculature in an orthotopic glioblastoma xenograft resection model. Surgery 2011; 150:497-504. [PMID: 21878236 DOI: 10.1016/j.surg.2011.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND High-grade glioblastomas have immature, leaky tumor blood vessels that impede the efficacy of adjuvant therapy. We assessed the ability of human interferon (hIFN)-β delivered locally via gene transfer to effect vascular stabilization in an orthotopic model of glioblastoma xenograft resection. METHODS Xenografts were established by injecting 3 grade IV glioblastoma cell lines (GBM6-luc, MT330-luc, and SJG2-luc) into the cerebral cortex of nude rats. Tumors underwent subtotal resection, and then had gel foam containing an adeno-associated virus vector encoding either hIFN-β or green fluorescence protein (control) placed in the resection cavity. The primary endpoint was stabilization of tumor vasculature, as evidenced by CD34, α-SMA, and CA IX staining. Overall survival was a secondary endpoint. RESULTS hIFN-β treatment altered the tumor vasculature of GBM6-luc and SJG2-luc xenografts, decreasing the density of endothelial cells, stabilizing vessels with pericytes, and decreasing tumor hypoxia. The mean survival for rats with these neoplasms was not improved, however. In rats with MT330-luc xenografts, hIFN-β resulted in tumor regression with a 6-month survival of 55% (INF-β group) and 9% (control group). CONCLUSION The use of AAV hIFN-β in our orthotopic model of glioblastoma resection stabilized tumor vasculature and improved survival in rats with MT330 xenografts.
Collapse
Affiliation(s)
- Jason W Denbo
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN; Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bray I, Tivnan A, Bryan K, Foley NH, Watters KM, Tracey L, Davidoff AM, Stallings RL. MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Lett 2011; 303:56-64. [PMID: 21310526 DOI: 10.1016/j.canlet.2011.01.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/05/2011] [Accepted: 01/19/2011] [Indexed: 01/31/2023]
Abstract
Several studies have implicated the dysregulation of microRNAs in neuroblastoma pathogenesis, an often fatal paediatric cancer arising from precursor cells of the sympathetic nervous system. Our group and others have demonstrated that lower expression of miR-542-5p is highly associated with poor patient survival, indicating a potential tumor suppressive function. Here, we demonstrate that ectopic over-expression of this miRNA decreases the invasive potential of neuroblastoma cell lines in vitro, along with primary tumor growth and metastases in an orthotopic mouse xenograft model, providing the first functional evidence for the involvement of miR-542-5p as a tumor suppressor in any type of cancer.
Collapse
Affiliation(s)
- Isabella Bray
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, York House, York Street, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Teitz T, Stanke JJ, Federico S, Bradley CL, Brennan R, Zhang J, Johnson MD, Sedlacik J, Inoue M, Zhang ZM, Frase S, Rehg JE, Hillenbrand CM, Finkelstein D, Calabrese C, Dyer MA, Lahti JM. Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS One 2011; 6:e19133. [PMID: 21559450 PMCID: PMC3084749 DOI: 10.1371/journal.pone.0019133] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/16/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Preclinical models of pediatric cancers are essential for testing new chemotherapeutic combinations for clinical trials. The most widely used genetic model for preclinical testing of neuroblastoma is the TH-MYCN mouse. This neuroblastoma-prone mouse recapitulates many of the features of human neuroblastoma. Limitations of this model include the low frequency of bone marrow metastasis, the lack of information on whether the gene expression patterns in this system parallels human neuroblastomas, the relatively slow rate of tumor formation and variability in tumor penetrance on different genetic backgrounds. As an alternative, preclinical studies are frequently performed using human cell lines xenografted into immunocompromised mice, either as flank implant or orthtotopically. Drawbacks of this system include the use of cell lines that have been in culture for years, the inappropriate microenvironment of the flank or difficult, time consuming surgery for orthotopic transplants and the absence of an intact immune system. PRINCIPAL FINDINGS Here we characterize and optimize both systems to increase their utility for preclinical studies. We show that TH-MYCN mice develop tumors in the paraspinal ganglia, but not in the adrenal, with cellular and gene expression patterns similar to human NB. In addition, we present a new ultrasound guided, minimally invasive orthotopic xenograft method. This injection technique is rapid, provides accurate targeting of the injected cells and leads to efficient engraftment. We also demonstrate that tumors can be detected, monitored and quantified prior to visualization using ultrasound, MRI and bioluminescence. Finally we develop and test a "standard of care" chemotherapy regimen. This protocol, which is based on current treatments for neuroblastoma, provides a baseline for comparison of new therapeutic agents. SIGNIFICANCE The studies suggest that use of both the TH-NMYC model of neuroblastoma and the orthotopic xenograft model provide the optimal combination for testing new chemotherapies for this devastating childhood cancer.
Collapse
Affiliation(s)
- Tal Teitz
- Department of Tumor Cell Biology, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
| | - Jennifer J. Stanke
- Department of Tumor Cell Biology, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
| | - Sara Federico
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
- Department of Hematology/Oncology, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
| | - Cori L. Bradley
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
| | - Rachel Brennan
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
| | - Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
| | - Melissa D. Johnson
- Animal Imaging Center, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Jan Sedlacik
- Department of Radiological Sciences, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
| | - Madoka Inoue
- Department of Tumor Cell Biology, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
| | - Ziwei M. Zhang
- Animal Imaging Center, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Sharon Frase
- Cell and Tissue Imaging, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Claudia M. Hillenbrand
- Department of Radiological Sciences, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
| | - David Finkelstein
- Information Sciences, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Christopher Calabrese
- Animal Imaging Center, St. Jude Children's Research Hospital,
Memphis, Tennessee, United States of America
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children's
Research Hospital, Memphis, Tennessee, United States of America
- Department of Ophthalmology, University of Tennessee Health Science
Center, Memphis, Tennessee, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of
America
| | - Jill M. Lahti
- Department of Tumor Cell Biology, St. Jude Children's Research
Hospital, Memphis, Tennessee, United States of America
- Department of Molecular Sciences, University of Tennessee Health Science
Center, Memphis, Tennessee, United States of America
| |
Collapse
|
31
|
Mueller S, Yang X, Sottero TL, Gragg A, Prasad G, Polley MY, Weiss WA, Matthay KK, Davidoff AM, DuBois SG, Haas-Kogan DA. Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: efficacy and underlying mechanisms. Cancer Lett 2011; 306:223-9. [PMID: 21497989 DOI: 10.1016/j.canlet.2011.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 03/06/2011] [Accepted: 03/16/2011] [Indexed: 11/16/2022]
Abstract
Histone deacetylase (HDAC) inhibitors can radiosensitize cancer cells. Radiation is critical in high-risk neuroblastoma treatment, and combinations of HDAC inhibitor vorinostat and radiation are proposed for neuroblastoma trials. Therefore, we investigated radiosensitizing effects of vorinostat in neuroblastoma. Treatment of neuroblastoma cell lines decreased cell viability and resulted in additive effects with radiation. In a murine metastatic neuroblastoma in vivo model vorinostat and radiation combinations decreased tumor volumes compared to single modality. DNA repair enzyme Ku-86 was reduced in several neuroblastoma cells treated with vorinostat. Thus, vorinostat potentiates anti-neoplastic effects of radiation in neuroblastoma possibly due to down-regulation of DNA repair enzyme Ku-86.
Collapse
Affiliation(s)
- Sabine Mueller
- Department of Neurology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0106, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tivnan A, Tracey L, Buckley PG, Alcock LC, Davidoff AM, Stallings RL. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 2011; 11:33. [PMID: 21266077 PMCID: PMC3038978 DOI: 10.1186/1471-2407-11-33] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 01/25/2011] [Indexed: 12/13/2022] Open
Abstract
Background Neuroblastoma is a paediatric cancer which originates from precursor cells of the sympathetic nervous system and accounts for 15% of childhood cancer mortalities. With regards to the role of miRNAs in neuroblastoma, miR-34a, mapping to a chromosome 1p36 region that is commonly deleted, has been found to act as a tumor suppressor through targeting of numerous genes associated with cell proliferation and apoptosis. Methods A synthetic miR-34a (or negative control) precursor molecule was transfected into NB1691luc and SK-N-ASluc neuroblastoma cells. Quantitative PCR was used to verify increased miR-34a levels in NB1691luc and SK-N-ASluc cell lines prior to in vitro and in vivo analysis. In vitro analysis of the effects of miR-34a over expression on cell growth, cell cycle and phosphoprotein activation in signal transduction pathways was performed. Neuroblastoma cells over expressing miR-34a were injected retroperitoneally into immunocompromised CB17-SCID mice and tumor burden was assessed over a 21 day period by measuring bioluminescence (photons/sec/cm2). Results Over expression of miR-34a in both NB1691luc and SK-N-ASluc neuroblastoma cell lines led to a significant decrease in cell number relative to premiR-negative control treated cells over a 72 hour period. Flow cytometry results indicated that miR-34a induced cell cycle arrest and subsequent apoptosis activation. Phosphoprotein analysis highlighted key elements involved in signal transduction, whose activation was dysregulated as a result of miR-34a introduction into cells. As a potential mechanism of miR-34a action on phosphoprotein levels, we demonstrate that miR-34a over-expression results in a significant reduction of MAP3K9 mRNA and protein levels. Although MAP3K9 is a predicted target of miR-34a, direct targeting could not be validated with luciferase reporter assays. Despite this fact, any functional effects of reduced MAP3K9 expression as a result of miR-34a would be expected to be similar regardless of the mechanism involved. Most notably, in vivo studies showed that tumor growth was significantly repressed after exogenous miR-34a administration in retroperitoneal neuroblastoma tumors. Conclusion We demonstrate for the first time that miR-34a significantly reduces tumor growth in an in vivo orthotopic murine model of neuroblastoma and identified novel effects that miR-34a has on phospho-activation of key proteins involved with apoptosis.
Collapse
Affiliation(s)
- Amanda Tivnan
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, York House, York Street, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
33
|
Nazari M, Hosseinkhani S. Design of disulfide bridge as an alternative mechanism for color shift in firefly luciferase and development of secreted luciferase. Photochem Photobiol Sci 2011; 10:1203-15. [DOI: 10.1039/c1pp05012e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Black PC, Shetty A, Brown GA, Esparza-Coss E, Metwalli AR, Agarwal PK, McConkey DJ, Hazle JD, Dinney CPN. Validating bladder cancer xenograft bioluminescence with magnetic resonance imaging: the significance of hypoxia and necrosis. BJU Int 2010; 106:1799-804. [PMID: 20500508 DOI: 10.1111/j.1464-410x.2010.09424.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess the correlation in orthotopic bladder xenografts of bioluminescence imaging (BLI) with tumour volume as determined by magnetic resonance imaging (MRI), and to define the potential role of hypoxia and necrosis in the relationship between BLI and tumour volume at autopsy. MATERIALS AND METHODS Orthotopic bladder tumours were established in nude mice with KU7 and 253J B-V cells expressing luciferase. BLI and MRI were performed weekly. Tumour volume was calculated from MR images at each time point. Autopsy was performed 4 weeks after inoculation and 45 min after injection of piminidazole. haematoxylin and eosin staining and immunohistochemical analysis of piminidazole adduct formation were performed on 1-mm step-sections through frozen whole bladder specimens to assess necrosis and hypoxia, respectively. CD31 staining was used to evaluate vascularity. Relative volumes of each specimen containing total tumour, hypoxic tumour and necrotic tumour were quantified. RESULTS The correlation between MRI volume and BLI was weak in KU7 xenografts (R(2) < 0.1) but strong in 253J B-V (R(2) = 0.93 at 4 weeks). KU7 xenografts had vasculature only peripherally and showed extensive hypoxic and necrotic areas. After subtraction of necrotic areas, the correlation of BLI to viable tumour volume improved (R(2) = 0.42). CONCLUSION The correlation between tumour BLI and tumour size varies by cell line and is poor in xenografts that rapidly outgrow their vascular supply and develop broad areas of hypoxia and necrosis. However, in these cases BLI does yield information about the amount of viable tumour, and should therefore still be considered as a useful imaging method.
Collapse
Affiliation(s)
- Peter C Black
- Department of Urology, University of Texas, M.D. Anderson Cancer Center, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DAH, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA. Guidelines for the welfare and use of animals in cancer research. Br J Cancer 2010; 102:1555-77. [PMID: 20502460 PMCID: PMC2883160 DOI: 10.1038/sj.bjc.6605642] [Citation(s) in RCA: 1104] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Animal experiments remain essential to understand the fundamental mechanisms underpinning malignancy and to discover improved methods to prevent, diagnose and treat cancer. Excellent standards of animal care are fully consistent with the conduct of high quality cancer research. Here we provide updated guidelines on the welfare and use of animals in cancer research. All experiments should incorporate the 3Rs: replacement, reduction and refinement. Focusing on animal welfare, we present recommendations on all aspects of cancer research, including: study design, statistics and pilot studies; choice of tumour models (e.g., genetically engineered, orthotopic and metastatic); therapy (including drugs and radiation); imaging (covering techniques, anaesthesia and restraint); humane endpoints (including tumour burden and site); and publication of best practice.
Collapse
Affiliation(s)
- P Workman
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Carcaboso AM, Elmeliegy MA, Shen J, Juel SJ, Zhang ZM, Calabrese C, Tracey L, Waters CM, Stewart CF. Tyrosine kinase inhibitor gefitinib enhances topotecan penetration of gliomas. Cancer Res 2010; 70:4499-508. [PMID: 20460504 DOI: 10.1158/0008-5472.can-09-4264] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, increases brain parenchymal extracellular fluid (ECF) accumulation of topotecan, a substrate of the ATP-binding cassette (ABC) transporters P-glycoprotein (Pgp/MDR-1) and breast cancer resistance protein (BCRP/ABCG2). The effect of modulating these transporters on topotecan penetration in gliomas has not been thoroughly studied. Thus, we performed intracerebral microdialysis on mice bearing orthotopic human gliomas (U87 and MT330) and assessed topotecan tumor ECF (tECF) penetration and the effect of gefitinib on topotecan tECF penetration and intratumor topotecan distribution. We found that topotecan penetration (P(tumor)) of U87 was 0.96 +/- 0.25 (n = 7) compared with that of contralateral brain (P(contralateral), 0.42 +/- 0.11, n = 5; P = 0.001). In MT330 tumors, P(tumor) (0.78 +/- 0.26, n = 6) and P(contralateral) (0.42 +/- 0.11, n = 5) also differed significantly (P = 0.013). Because both tumor models had disrupted blood-brain barriers and similar P(tumor) values, we used U87 and a steady-state drug administration approach to characterize the effect of gefitinib on topotecan P(tumor). At equivalent plasma topotecan exposures, we found that P(tumor) after gefitinib administration was lower. In a separate cohort of animals, we determined the volume of distribution of unbound topotecan in tumor (V(u,tumor)) and found that it was significantly higher in groups receiving gefitinib, implying that gefitinib administration leads to a greater proportion of intracellular topotecan. Our results provide crucial insights into the role that transporters play in central nervous system drug penetration and provide a better understanding of the effect of coadministration of transporter modulators on anticancer drug distribution within a tumor.
Collapse
Affiliation(s)
- Angel M Carcaboso
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
McGee MC, Hamner JB, Williams RF, Rosati SF, Sims TL, Ng CY, Gaber MW, Calabrese C, Wu J, Nathwani AC, Duntsch C, Merchant TE, Davidoff AM. Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys 2010; 76:1537-45. [PMID: 20338480 DOI: 10.1016/j.ijrobp.2009.12.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 11/16/2022]
Abstract
PURPOSE Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. METHODS AND MATERIALS Orthotopic U87 xenografts were treated with either continuous interferon-beta (IFN-beta) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. RESULTS Both IFN-beta and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-beta caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-beta or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-beta or bevacizumab or 5 days after bevacizumab. CONCLUSION Bevacizumab and continuous delivery of IFN-beta each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.
Collapse
Affiliation(s)
- Mackenzie C McGee
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Keyaerts M, Heneweer C, Gainkam LOT, Caveliers V, Beattie BJ, Martens GA, Vanhove C, Bossuyt A, Blasberg RG, Lahoutte T. Plasma Protein Binding of Luciferase Substrates Influences Sensitivity and Accuracy of Bioluminescence Imaging. Mol Imaging Biol 2010; 13:59-66. [DOI: 10.1007/s11307-010-0325-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Imani M, Hosseinkhani S, Ahmadian S, Nazari M. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity. Photochem Photobiol Sci 2010; 9:1167-77. [DOI: 10.1039/c0pp00105h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Kim T, Choi H, Ryu B, Gang G, Kim S, Koo D, Kim J, Han J, Park C, Her S, Lee D. Real-time in vivo bioluminescence imaging of lentiviral vector–mediated gene transfer in mouse testis. Theriogenology 2010; 73:129-38. [DOI: 10.1016/j.theriogenology.2009.07.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
|
41
|
AAV-mediated local delivery of interferon-beta for the treatment of retinoblastoma in preclinical models. Neuromolecular Med 2009; 11:43-52. [PMID: 19306089 DOI: 10.1007/s12017-009-8059-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/27/2009] [Indexed: 12/28/2022]
Abstract
Interferon-beta (IFN-beta) has been found to have anti-tumor properties against a variety of malignancies through different mechanisms. However, clinical trials involving systemic administration of IFN-beta have been hampered by secondary toxicity and the short half-life of IFN-beta in the circulation. In order to circumvent these limitations, we have developed an adeno-associated viral (AAV) vector gene-therapy approach to deliver IFN-beta to tumors. In this study, we tested the efficacy of AAV-mediated local delivery of IFN-beta for the treatment of retinoblastoma in preclinical models. Retinoblastoma is an ideal candidate for gene-therapy-based anti-cancer treatment because target cell transduction and, therefore, IFN-beta delivery can be contained within the ocular environment, thereby minimizing systemic toxicity. We report here that retinoblastoma cell lines exhibit pleiotropic responses to IFN-beta consistent with previous studies on a variety of tumor cell lines. Intravitreal injection of AAV-IFN-beta resulted in efficient retinal infection and sustained IFN-beta production in the eye with minimal systemic exposure. Vector spread outside of the eye was not detected. Using our orthotopic xenograft model of retinoblastoma, we found that intravitreal injection of AAV-IFN-beta had a potent anti-tumor effect in vivo. These data suggest that AAV-mediated delivery of IFN-beta may provide a complementary approach to systemic chemotherapy which is the standard of care for retinoblastoma around the world.
Collapse
|
42
|
Neural progenitor cell-mediated delivery of osteoprotegerin limits disease progression in a preclinical model of neuroblastoma bone metastasis. J Pediatr Surg 2009; 44:204-10; discussion 210-1. [PMID: 19159744 PMCID: PMC2655202 DOI: 10.1016/j.jpedsurg.2008.10.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 10/07/2008] [Indexed: 11/22/2022]
Abstract
PURPOSE Osteoprotegerin (OPG) inhibits osteoclast activation and reduces osteolysis in bone tumors. We hypothesized that tumor-tropic neural progenitor cells (NPCs) engineered to express OPG would reduce neuroblastoma disease burden in the bone. METHODS Stable expression of green fluorescent protein (NPC-GFP) and OPG (NPC-OPG) was established in human NPCs by lentivirus-mediated transduction. Bone disease was established by intrafemoral injection of luciferase-expressing human neuroblastoma (CHLA-255) cells into 20 SCID mice. Three weeks later, mice began receiving intravenous injection of 2 x 10(6) NPC-OPG or NPC-GFP (control) every 10 days x 3 doses. Disease was monitored with quantitative bioluminescence imaging and x-ray images, which were evaluated on a scale of 0 to 4. These studies were approved by the Institutional Animal Care and Use Committee. RESULTS Osteoprotegerin treatment in vitro produced no direct toxicity to tumor cells. Coculture of tumor cells with bone marrow significantly increased activation of bone marrow-derived osteoclasts as assessed by tartrate-resistant acid phosphatase staining (156 +/- 10.8 osteoclasts per well) compared to bone marrow culture alone (91.67 +/- 4.7, P = .005). This increase was abrogated by adding OPG-containing media (68.3 +/- 2.8, P = .001). NPC-OPG slowed tumor progression (108-fold increase from pretreatment) compared to mice treated with NPC-GFP (538-fold), as judged by bioluminescence imaging. X-rays subjectively demonstrated less bone disease in NPC-OPG-treated mice (2.27 +/- 0.25) compared to NPC-GFP-treated mice (3.25 +/- 0.22, P = .04). CONCLUSIONS Neural progenitor cell-mediated delivery of OPG slowed disease progression in a preclinical model of neuroblastoma bone metastasis. The decrease in bone disease was not from direct tumor cell toxicity but likely occurred indirectly through inhibition of osteoclast-directed bone resorption. Thus, targeted delivery of OPG by NPCs may be effective in the treatment of neuroblastoma bone metastasis.
Collapse
|
43
|
Rosati SF, Williams RF, Nunnally LC, McGee MC, Sims TL, Tracey L, Zhou J, Fan M, Ng CY, Nathwani AC, Stewart CF, Pfeffer LM, Davidoff AM. IFN-beta sensitizes neuroblastoma to the antitumor activity of temozolomide by modulating O6-methylguanine DNA methyltransferase expression. Mol Cancer Ther 2008; 7:3852-8. [PMID: 19056675 DOI: 10.1158/1535-7163.mct-08-0806] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although temozolomide has shown clinical activity against neuroblastoma, this activity is likely limited by the DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT). We hypothesized that IFN-beta could sensitize neuroblastoma cells to the cytotoxic effects of temozolomide through its ability to down-regulate MGMT expression. In vitro proliferation of three neuroblastoma cell lines treated with IFN-beta and temozolomide alone or in combination was examined. Antitumor activity was assessed in both localized and disseminated neuroblastoma xenografts using single-agent and combination therapy, with continuous delivery of IFN-beta being established by a liver-targeted adeno-associated virus-mediated approach. Two neuroblastoma cell lines (NB-1691 and SK-N-AS) were found to have high baseline levels of MGMT expression, whereas a third cell line (CHLA-255) had low levels. Temozolomide had little effect on in vitro proliferation of the neuroblastoma cell lines with high MGMT expression, but pretreatment with IFN-beta significantly decreased MGMT expression and cell counts (NB-1691: 36 +/- 3% of control, P = 0.0008; SK-N-AS: 54 +/- 7% control, P = 0.003). In vivo, NB-1691 tumors in CB17-SCID mice treated with the combination of IFN-beta and temozolomide had lower MGMT expression and a significantly reduced tumor burden, both localized [percent initial tumor volume: 2,516 +/- 680% (control) versus 1,272 +/- 330% (temozolomide), P = 0.01; 1,348 +/- 220%, P = 0.03 (IFN-beta); 352 +/- 110%, P = 0.0001 (combo)] and disseminated [bioluminescent signal: control (1.32e10 +/- 6.5e9) versus IFN-beta (2.78e8 +/- 3.09e8), P = 0.025, versus temozolomide (2.06e9 +/- 1.55e9), P = 0.1, versus combination (2.13e7 +/- 7.67e6), P = 0.009]. IFN-beta appears to sensitize neuroblastoma cells to the cytotoxic effects of temozolomide through attenuation of MGMT expression. Thus, IFN-beta and temozolomide may be a useful combination for treating children with this difficult disease.
Collapse
Affiliation(s)
- Shannon F Rosati
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2008; 2:183-9. [PMID: 18371439 DOI: 10.1016/j.stem.2007.11.002] [Citation(s) in RCA: 977] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/18/2007] [Accepted: 11/15/2007] [Indexed: 12/19/2022]
Abstract
The zebrafish is a useful model for understanding normal and cancer stem cells, but analysis has been limited to embryogenesis due to the opacity of the adult fish. To address this, we have created a transparent adult zebrafish in which we transplanted either hematopoietic stem/progenitor cells or tumor cells. In a hematopoiesis radiation recovery assay, transplantation of GFP-labeled marrow cells allowed for striking in vivo visual assessment of engraftment from 2 hr-5 weeks posttransplant. Using FACS analysis, both transparent and wild-type fish had equal engraftment, but this could only be visualized in the transparent recipient. In a tumor engraftment model, transplantation of RAS-melanoma cells allowed for visualization of tumor engraftment, proliferation, and distant metastases in as little as 5 days, which is not seen in wild-type recipients until 3 to 4 weeks. This transparent adult zebrafish serves as the ideal combination of both sensitivity and resolution for in vivo stem cell analyses.
Collapse
Affiliation(s)
- Richard Mark White
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Maes W, Deroose C, Reumers V, Krylyshkina O, Gijsbers R, Baekelandt V, Ceuppens J, Debyser Z, Van Gool SW. In vivo bioluminescence imaging in an experimental mouse model for dendritic cell based immunotherapy against malignant glioma. J Neurooncol 2008; 91:127-39. [PMID: 18787761 DOI: 10.1007/s11060-008-9691-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 08/25/2008] [Indexed: 02/07/2023]
Abstract
The value of bioluminescence imaging (BLI) for experimental cancer models has become firmly established. We applied BLI to the GL261 glioma model in the context of dendritic cell (DC) immunotherapy. Initial validation revealed robust linear correlations between in vivo, ex vivo and in vitro luciferase activity measurements. Ex vivo BLI demonstrated midline crossing and leakage of tumor cells. Orthotopically challenged mice followed with BLI showed an initial adaptation phase, after which imaging data correlated linearly with stereologically determined tumor dimensions. Transition from healthy to moribund state corresponded with an increasing in vivo flux but the onset of neurological deficit was clearly delayed compared to the onset of in vivo flux increase. BLI was implemented in prophylactic immunotherapy and imaging data were prognostic for therapy outcome. Three distinct response patterns were detected. Our data underscore the feasibility of in vivo BLI in an experimental immunotherapeutic setting in the GL261 glioma model.
Collapse
Affiliation(s)
- W Maes
- Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sims TL, Williams RF, Ng CY, Rosati SF, Spence Y, Davidoff AM. Bevacizumab suppresses neuroblastoma progression in the setting of minimal disease. Surgery 2008; 144:269-75. [PMID: 18656635 DOI: 10.1016/j.surg.2008.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 04/08/2008] [Indexed: 01/27/2023]
Abstract
BACKGROUND We hypothesized that vascular endothelial growth factor (VEGF) contributes to autocrine stimulation of neuroblastoma and that inhibition of its signaling pathway contributes to the anticancer activity of bevacizumab, an anti-VEGF monoclonal antibody. METHODS For in vitro studies, 2 neuroblastoma cell lines, CHLA-255 and NB1691, were treated with VEGF+/-bevacizumab. For in vivo studies, disseminated neuroblastoma was established by intravenous administration of luciferase-expressing tumor cells in SCID mice prior to bevacizumab treatment. RESULTS Exogenous VEGF increased cell counts after 48 h (NB1691: 58,878 +/- 8279 vs 137,500 +/- 13,108 cells, P < .001; CHLA: 1.56 x 10(6) +/- 866 vs 1.81 x 10(6) +/- 2550 cells, P <.001); the addition of bevacizumab abrogated this stimulation. In vivo, mice with disseminated disease treated twice weekly with intraperitoneal bevacizumab had a decreased tumor burden at day 14 and prolonged survival (NB1691: 50 +/- 2 vs 43 +/- 2 days, P < .001; CHLA: 53 +/- 3 vs 42 +/- 1 days, P = .006). Interestingly, VEGF and basic fibroblast growth factor expression was increased in treated NB1691 tumors, which likely occurred in response to VEGF signaling inhibition. CONCLUSION Our results suggest that VEGF has a role in neuroblastoma autocrine signaling. Maintenance therapy with bevacizumab may be useful for disease suppression after maximal cytoreductive therapy; however, upregulation of proangiogenic factors may provide resistance to this approach, which suggests that maximal antitumor efficacy may require combination therapy.
Collapse
Affiliation(s)
- Thomas L Sims
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
47
|
Sims TL, Hamner JB, Bush RA, Williams RF, Zhou J, Kim SU, Aboody KS, Danks MK, Davidoff AM. Neural progenitor cell-mediated delivery of interferon beta improves neuroblastoma response to cyclophosphamide. Ann Surg Oncol 2008; 15:3259-67. [PMID: 18726131 DOI: 10.1245/s10434-008-0103-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/28/2008] [Accepted: 06/29/2008] [Indexed: 01/04/2023]
Abstract
BACKGROUND We have shown that continuous systemic delivery of interferon beta (IFN-beta) remodels dysfunctional tumor vasculature, thereby improving tumor perfusion and enhancing delivery and efficacy of chemotherapeutic drugs. We hypothesized that because of their inherent tumor tropism, neural progenitor cells (NPCs) engineered to express IFN-beta could also effect maturation of tumor vasculature without generating high systemic levels of IFN-beta. METHODS Mice with luciferase-expressing disseminated human neuroblastoma were divided into four groups of equal tumor burden by bioluminescence imaging: (1) untreated controls; (2) NPC-IFN-beta only; (3) cyclophosphamide (CTX) only; and (4) NPC-IFN-beta in combination with CTX. Two million NPC-IFN-beta cells were administered twice, 7 days apart, starting 21 days after tail vein administration of tumor cells. CTX was administered every 6 days for three doses. Mice were killed at 6 weeks, livers and kidneys weighed, and tumor removed for immunohistochemical staining for endothelial cells (CD34), pericytes (alpha-SMA), apoptosis (TUNEL [terminal deoxynucleotidyl transferase dUTP nick-end labeling]), and diI-labeled NPCs. RESULTS Fluorescent-labeled NPCs confirmed localization of these cells to tumors. The alpha-SMA/CD34 ratio, a marker for vascular maturation, greatly increased in NPC-IFN-beta-treated tumors compared with controls. Bioluminescent signal from luciferase-expressing tumor cells, reflecting tumor burden, was lower with combination therapy than control or either monotherapy, and combination therapy resulted in far less tumor burden by weight in the kidneys and liver. CONCLUSIONS Targeted delivery of IFN-beta with NPCs produced low circulating levels of IFN-beta, yet the maturing effect on the tumor vasculature and the enhanced efficacy of adjuvant therapy was maintained. Thus, combination therapy of NPC-IFN-beta with CTX warrants further investigation for the treatment of high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Thomas L Sims
- Department of Surgery, University of Tennessee Health Science Center, 920 Madison Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
One enduring challenge of biological imaging is achieving depth of penetration-into cells, tissues, and animals. How deeply can we probe and with what resolution and efficacy? These are critical issues as microscopists seek to push ever deeper, while resolving structural details and observing specific molecular events. In this guide to depth-appropriate modalities, standard optical platforms such as confocal and two-photon microscopes are considered along with complementary imaging modalities that range in depth of penetration. After an introduction to basic techniques, the trade-offs and limitations that distinguish competing technologies are considered, with emphasis on the visualization of subcellular structures and dynamic events. Not surprisingly, there are differences of opinion regarding imaging technologies, as highlighted in a section on point-scanning and Nipkow-disk style confocal microscopes. Confocal microscopy is then contrasted with deconvolution and multi-photon imaging modalities. It is also important to consider the detectors used by current instruments (such as PMTs and CCD cameras). Ultimately specimen properties, in conjunction with instrumentation, determine the depth at which subcellular operations and larger-scale biological processes can be visualized. Relative advantages are mentioned in the context of experiment planning and instrument-purchase decisions. Given the rate at which new optical techniques are being invented, this report should be viewed as a snapshot of current capabilities, with the goal of providing a framework for thinking about new developments.
Collapse
|