1
|
Qi W, Liu H, Liu H, Guo Y, Wu L, Bao C, Liu X. Synergistical Induction of Apoptosis via Cold Atmospheric Plasma and Nanohydroxyapatite for Selective Inhibition of Oral Squamous Cell Carcinoma in Tumour Microenvironment. Cell Prolif 2025:e70041. [PMID: 40298279 DOI: 10.1111/cpr.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/27/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Surgical resection, radiotherapy and chemotherapy are the primary strategies of treating cancers globally. However, the current treatment methods bring new disease burdens to patients due to postoperative complications and multiple side effects, especially in surface tumours such as oral squamous cell carcinoma (OSCC). In this study, we developed a microwave cold atmospheric plasma (CAP) device in conjunction with tumour microenvironment-responsive nanohydroxyapatite (nHA) for the first time. The synergistic effects of CAP and nHA combined application on OSCC were evaluated in both in vitro and in vivo experiments. The synergistic effects of CAP and pH-responsive NH2-nHA on the apoptosis, intracellular reactive oxygen species (ROS) and calcium ion concentration of OSCC cells were investigated in vitro. The synergistic induction of CAP with NH2-nHA exhibited optimal tumour-specific inhibitory effects on OSCC. The results revealed that the combined application of CAP with NH2-nHA induced apoptosis of tumour cells in vitro and killed 84.0% of tumours in vivo. Mechanistically, CAP enhances extracellular ROS production, while NH2-nHA amplifies intracellular calcium ion (Ca2+) concentrations, synergistically increasing intracellular ROS levels to provoke oxidative stress in OSCC cells, ultimately triggering the mitochondrial apoptosis pathway. In conclusion, the combined utilisation of CAP and NH2-nHA presents a promising avenue as a novel, selective, and non-invasive strategy in the management of OSCC.
Collapse
Affiliation(s)
- Wenting Qi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Huaze Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuxuan Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Wu
- Institute of Applied Electromagnetics, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Sun Y, Chen Y, Zhang Y. Interaction Mechanisms of Cold Atmospheric Plasmas with HIV Capsid Protein by Reactive Molecular Dynamics Simulation. Molecules 2024; 30:101. [PMID: 39795158 PMCID: PMC11722045 DOI: 10.3390/molecules30010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, plasma medicine has developed rapidly as a new interdisciplinary discipline. However, the key mechanisms of interactions between cold atmospheric plasma (CAP) and biological tissue are still in the exploration stage. In this study, by introducing the reactive molecular dynamics (MD) simulation, the capsid protein (CA) molecule of HIV was selected as the model to investigate the reaction process upon impact by reactive oxygen species (ROS) from CAP and protein molecules at the atomic level. The simulation results show that ground-state oxygen atoms can abstract hydrogen atoms from protein chains and break hydrogen bonds, leading to the destruction of the disulfide bonds, C-C bonds, and C-N bonds. Furthermore, the generation of alcohol-based groups resulting from the impact of ROS can alter the hydrophobicity of molecules and induce damage to the primary, secondary, and tertiary structures of proteins. The dosage effects on the reaction processes and products induced by CAP are also explored with varying numbers of ROS in the simulation box, and the influences on the broken C-H, N-H, and C-N bonds are discussed. In this study, the computational data suggest that severe damage can be caused to CA upon the impact of ROS by revealing the reaction processes and products.
Collapse
Affiliation(s)
| | | | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China; (Y.S.)
| |
Collapse
|
3
|
Bai F, Deng Y, Li L, Lv M, Razzokov J, Xu Q, Xu Z, Chen Z, Chen G, Chen Z. Advancements and challenges in brain cancer therapeutics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230177. [PMID: 39713205 PMCID: PMC11655316 DOI: 10.1002/exp.20230177] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/24/2024]
Abstract
Treating brain tumors requires a nuanced understanding of the brain, a vital and delicate organ. Location, size, tumor type, and surrounding tissue health are crucial in developing treatment plans. This review comprehensively summarizes various treatment options that are available or could be potentially available for brain tumors, including physical therapies (radiotherapy, ablation therapy, photodynamic therapy, tumor-treating field therapy, and cold atmospheric plasma therapy) and non-physical therapies (surgical resection, chemotherapy, targeted therapy, and immunotherapy). Mechanisms of action, potential side effects, indications, and latest developments, as well as their limitations, are highlighted. Furthermore, the requirements for personalized, multi-modal treatment approaches in this rapidly evolving field are discussed, emphasizing the balance between efficacy and patient safety.
Collapse
Affiliation(s)
- Fan Bai
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
| | - Yueyang Deng
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Long Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
| | - Ming Lv
- Department of Medical EngineeringMedical Supplies Center of Chinese PLA General HospitalBeijingChina
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied ResearchNational Research University TIIAMETashkentUzbekistan
- Laboratory of Experimental BiophysicsCentre for Advanced TechnologiesTashkentUzbekistan
- Department of Biomedical EngineeringTashkent State Technical UniversityTashkentUzbekistan
| | - Qingnan Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhen Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhaowei Chen
- Institute of Food Safety and Environment MonitoringMOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhouChina
| | - Guojun Chen
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Zhitong Chen
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
- Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhenChina
| |
Collapse
|
4
|
Bakhtiyari-Ramezani M, Nohekhan M, Akbari ME, Abbasvandi F, Bayat M, Akbari A, Nasiri M. Comparative assessment of direct and indirect cold atmospheric plasma effects, based on helium and argon, on human glioblastoma: an in vitro and in vivo study. Sci Rep 2024; 14:3578. [PMID: 38347045 PMCID: PMC10861458 DOI: 10.1038/s41598-024-54070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 02/15/2024] Open
Abstract
Recent research has highlighted the promising potential of cold atmospheric plasma (CAP) in cancer therapy. However, variations in study outcomes are attributed to differences in CAP devices and plasma parameters, which lead to diverse compositions of plasma products, including electrons, charged particles, reactive species, UV light, and heat. This study aimed to evaluate and compare the optimal exposure time, duration, and direction-dependent cellular effects of two CAPs, based on argon and helium gases, on glioblastoma U-87 MG cancer cells and an animal model of GBM. Two plasma jets were used as low-temperature plasma sources in which helium or argon gas was ionized by high voltage (4.5 kV) and frequency (20 kHz). In vitro assessments on human GBM and normal astrocyte cell lines, using MTT assays, flow cytometry analysis, wound healing assays, and immunocytochemistry for Caspase3 and P53 proteins, demonstrated that all studied plasma jets, especially indirect argon CAP, selectively induced apoptosis, hindered tumor cell growth, and inhibited migration. These effects occurred concurrently with increased intracellular levels of reactive oxygen species and decreased total antioxidant capacity in the cells. In vivo results further supported these findings, indicating that single indirect argon and direct helium CAP therapy, equal to high dose Temozolomide treatment, induced tumor cell death in a rat model of GBM. This was concurrent with a reduction in tumor size observed through PET-CT scan imaging and a significant increase in the survival rate. Additionally, there was a decrease in GFAP protein levels, a significant GBM tumor marker, and an increase in P53 protein expression based on immunohistochemical analyses. Furthermore, Ledge beam test analysis revealed general motor function improvement after indirect argon CAP therapy, similar to Temozolomide treatment. Taken together, these results suggest that CAP therapy, using indirect argon and direct helium jets, holds great promise for clinical applications in GBM treatment.
Collapse
Affiliation(s)
- Mahdiyeh Bakhtiyari-Ramezani
- Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14399-53991, Tehran, Iran.
| | - Mojtaba Nohekhan
- Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14399-53991, Tehran, Iran
| | | | - Fereshteh Abbasvandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Research Institute, ACECR, Tehran, Iran
| | - Mahdis Bayat
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Research Institute, ACECR, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Nasiri
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
5
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
6
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
7
|
Moszczyńska J, Roszek K, Wiśniewski M. Non-Thermal Plasma Application in Medicine-Focus on Reactive Species Involvement. Int J Mol Sci 2023; 24:12667. [PMID: 37628848 PMCID: PMC10454508 DOI: 10.3390/ijms241612667] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Non-thermal plasma (NTP) application in medicine is a dynamically developing interdisciplinary field. Despite the fact that basics of the plasma phenomenon have been known since the 19th century, growing scientific attention has been paid in recent years to the use of plasma in medicine. Three most important plasma-based effects are pivotal for medical applications: (i) inactivation of a broad spectrum of microorganisms, (ii) stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity, and (iii) inactivation of cells by initialization of cell death with higher plasma intensity. In this review, we explain the underlying chemical processes and reactive species involvement during NTP in human (or animal) tissues, as well as in bacteria inactivation, which leads to sterilization and indirectly supports wound healing. In addition, plasma-mediated modifications of medical surfaces, such as surgical instruments or implants, are described. This review focuses on the existing knowledge on NTP-based in vitro and in vivo studies and highlights potential opportunities for the development of novel therapeutic methods. A full understanding of the NTP mechanisms of action is urgently needed for the further development of modern plasma-based medicine.
Collapse
Affiliation(s)
- Julia Moszczyńska
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Marek Wiśniewski
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| |
Collapse
|
8
|
Mumtaz S, Rana JN, Lim JS, Javed R, Choi EH, Han I. Effect of Plasma On-Time with a Fixed Duty Ratio on Reactive Species in Plasma-Treated Medium and Its Significance in Biological Applications. Int J Mol Sci 2023; 24:ijms24065289. [PMID: 36982365 PMCID: PMC10049170 DOI: 10.3390/ijms24065289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Optimizing the therapeutic range of nonthermal atmospheric pressure plasma (NTAPP) for biomedical applications is an active research topic. For the first time, we examined the effect of plasma on-times in this study while keeping the duty ratio and treatment time fixed. We have evaluated the electrical, optical, and soft jet properties for two different duty ratios of 10% and 36%, using the plasma on-times of 25, 50, 75, and 100 ms. Furthermore, the influence of plasma on-time on reactive oxygen and nitrogen species (ROS/RNS) levels in plasma treated medium (PTM) was also investigated. Following treatment, the characteristics of (DMEM media) and PTM (pH, EC, and ORP) were also examined. While EC and ORP rose by raising plasma on-time, pH remained unchanged. Finally, the PTM was used to observe the cell viability and ATP levels in U87-MG brain cancer cells. We found it interesting that, by increasing the plasma on-time, the levels of ROS/RNS dramatically increased in PTM and significantly affected the viability and ATP levels of the U87-MG cell line. The results of this study provide a significant indication of advancement by introducing the optimization of plasma on-time to increase the efficacy of the soft plasma jet for biomedical applications.
Collapse
Affiliation(s)
- Sohail Mumtaz
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea; (S.M.); (J.S.L.); (E.H.C.)
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea; (J.N.R.); (R.J.)
| | - Juie Nahushkumar Rana
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea; (J.N.R.); (R.J.)
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jun Sup Lim
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea; (S.M.); (J.S.L.); (E.H.C.)
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea; (J.N.R.); (R.J.)
| | - Rida Javed
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea; (J.N.R.); (R.J.)
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea; (S.M.); (J.S.L.); (E.H.C.)
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea; (J.N.R.); (R.J.)
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea; (J.N.R.); (R.J.)
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Correspondence: ; Tel.: +82-2-940-5666; Fax: +82-2-940-5664
| |
Collapse
|
9
|
Xu W, Xie X, Wu H, Wang X, Cai J, Xu Z, E S. Pulsed electromagnetic therapy in cancer treatment: Progress and outlook. VIEW 2022. [DOI: 10.1002/viw.20220029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wenjun Xu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| | - Xinjun Xie
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| | - Hanyang Wu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| | - Xiaolin Wang
- College of Mathematical Medicine Zhejiang Normal University Jinhua People's Republic of China
| | - Jiancheng Cai
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| | - Zisheng Xu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| | - Shiju E
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| |
Collapse
|
10
|
Wang Y, Mang X, Li X, Cai Z, Tan F. Cold atmospheric plasma induces apoptosis in human colon and lung cancer cells through modulating mitochondrial pathway. Front Cell Dev Biol 2022; 10:915785. [PMID: 35959493 PMCID: PMC9360593 DOI: 10.3389/fcell.2022.915785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cold atmospheric plasma (CAP) is an emerging and promising oncotherapy with considerable potential and advantages that traditional treatment modalities lack. The objective of this study was to investigate the effect and mechanism of plasma-inhibited proliferation and plasma-induced apoptosis on human lung cancer and colon cancer cells in vitro and in vivo. Piezobrush® PZ2, a handheld CAP unit based on the piezoelectric direct discharge technology, was used to generate and deliver non-thermal plasma. Firstly, CAPPZ2 treatment inhibited the proliferation of HT29 colorectal cancer cells and A549 lung cancer cells using CCK8 assay, caused morphological changes at the cellular and subcellular levels using transmission electron microscopy, and suppressed both types of tumor cell migration and invasion using the Transwell migration and Matrigel invasion assay. Secondly, we confirmed plasma-induced apoptosis in the HT29 and A549 cells using the AO/EB staining coupled with flow cytometry, and verified the production of apoptosis-related proteins, such as cytochrome c, PARP, cleaved caspase-3 and caspase-9, Bcl-2 and Bax, using western blotting. Finally, the aforementioned in vitro results were tested in vivo using cell-derived xenograft mouse models, and the anticancer effect was confirmed and attributed to CAP-mediated apoptosis. The immunohistochemical analysis revealed that the expression of cleaved caspase-9, caspase-3, PARP and Bax were upregulated whereas that of Bcl-2 downregulated after CAP treatment. These findings collectively suggest that the activation of the mitochondrial pathway is involved during CAPPZ2-induced apoptosis of human colon and lung cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yanhong Wang
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuran Li
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengyu Cai
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
| |
Collapse
|
11
|
Limanowski R, Yan D, Li L, Keidar M. Preclinical Cold Atmospheric Plasma Cancer Treatment. Cancers (Basel) 2022; 14:cancers14143461. [PMID: 35884523 PMCID: PMC9316208 DOI: 10.3390/cancers14143461] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cold atmospheric plasma (CAP) is generated in a rapid yet low-energy input streamer-discharge process at atmospheric pressure conditions. CAP is an ionized gas with a low ionization level and plenty of reactive species and radicals. These reactive components, and their near-room temperature nature, make CAP a powerful tool in medical applications, particularly cancer therapy. Here, we summarized the latest development and status of preclinical applications of CAP in cancer therapy, which may guide further clinical studies of CAP-based cancer therapy. Abstract CAP is an ionized gas generated under atmospheric pressure conditions. Due to its reactive chemical components and near-room temperature nature, CAP has promising applications in diverse branches of medicine, including microorganism sterilization, biofilm inactivation, wound healing, and cancer therapy. Currently, hundreds of in vitro demonstrations of CAP-based cancer treatments have been reported. However, preclinical studies, particularly in vivo studies, are pivotal to achieving a final clinical application. Here, we comprehensively introduced the research status of the preclinical usage of CAP in cancer treatment, by primarily focusing on the in vivo studies over the past decade. We summarized the primary research strategies in preclinical and clinical studies, including transdermal CAP treatment, post-surgical CAP treatment, CAP-activated solutions treatment, and sensitization treatment to drugs. Finally, the underlying mechanism was discussed based on the latest understanding.
Collapse
Affiliation(s)
- Ruby Limanowski
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA;
| | - Dayun Yan
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
- Correspondence: (D.Y.); (M.K.)
| | - Lin Li
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
- Correspondence: (D.Y.); (M.K.)
| |
Collapse
|
12
|
Jiang C, Oshin EA, Guo S, Scott M, Li X, Mangiamele C, Heller R. Synergistic effects of an atmospheric pressure plasma jet and pulsed electric field on cells and skin. IEEE TRANSACTIONS ON PLASMA SCIENCE. IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY 2021; 49:3317-3324. [PMID: 34898731 PMCID: PMC8653988 DOI: 10.1109/tps.2021.3113260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nonthermal atmospheric pressure plasmas produce reactive plasma species including charged particles and reactive oxygen nitrogen species, which are known to induce oxidative stress in living cells in liquid or tissue. In the meantime, pulsed electric fields have been widely used in reversible or irreversible electropermeabilization for either the delivery of plasmid DNA or inactivation of cancer cells. This work discusses the synergistic effects of nanosecond pulsed plasma jets and pulsed electric field on inactivation of pancreatic cancer cells in vitro and enhancement of plasmid DNA delivery to guinea pig skin in vivo. Higher inactivation rates of the cancer cells in suspension were obtained with combined treatment of 300-ns 50 kV/cm pulsed electric field and a 1-min exposure of a nanosecond pulsed, 250-μm plasma jet. Increased efficiency of gene electrotransfer to skin was also observed after a 3-min treatment of a nanosecond pulsed, 1-mm plasma jet. Application of the plasma alone at the same dosage did not have significant effect on gene delivery. These findings signify the dosage-dependent cell-response to both the electric fields and plasma. Importantly, the use of cold plasma to increase the sensitization of the biological cells in response to pulsed electric fields could be an effective approach to enhance the desired effects in electroporation-based applications.
Collapse
Affiliation(s)
- Chunqi Jiang
- Frank Reidy Research Center for Bioelectrics and the Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 USA
| | - Edwin A Oshin
- Frank Reidy Research Center for Bioelectrics and the Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 USA
| | - Siqi Guo
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529 USA
| | - Megan Scott
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529 USA
| | - Xi Li
- Frank Reidy Research Center for Bioelectrics and the Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 USA
| | - Cathryn Mangiamele
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529 USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612 USA
| |
Collapse
|
13
|
Abstract
Cold atmospheric plasma (CAP) is an ionized gas, the product of a non-equilibrium discharge at atmospheric conditions. Both chemical and physical factors in CAP have been demonstrated to have unique biological impacts in cancer treatment. From a chemical-based perspective, the anti-cancer efficacy is determined by the cellular sensitivity to reactive species. CAP may also be used as a powerful anti-cancer modality based on its physical factors, mainly EM emission. Here, we delve into three CAP cancer treatment approaches, chemically based direct/indirect treatment and physical-based treatment by discussing their basic principles, features, advantages, and drawbacks. This review does not focus on the molecular mechanisms, which have been widely introduced in previous reviews. Based on these approaches and novel adaptive plasma concepts, we discuss the potential clinical application of CAP cancer treatment using a critical evaluation and forward-looking perspectives.
Collapse
|
14
|
He Z, Xu Q, Newland B, Foley R, Lara-Sáez I, Curtin JF, Wang W. Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. J Mater Chem B 2021; 9:6326-6346. [PMID: 34304256 DOI: 10.1039/d1tb00728a] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are generated in cellular metabolism and are essential for cellular signalling networks and physiological functions. However, the functions of ROS are 'double-edged swords' to living systems that have a fragile redox balance between ROS generation and elimination. A modest increase of ROS leads to enhanced cell proliferation, survival and benign immune responses, whereas ROS stress that overwhelms the cellular antioxidant capacity can damage nucleic acids, proteins and lipids, resulting in oncogenic mutations and cell death. ROS are therefore involved in many pathological conditions. On the other hand, ROS present selective toxicity and have been utilised against cancer and pathogens, thus also acting as a double-edged sword in the healthcare field. Injectable antioxidative hydrogels are gel precursors that form hydrogel constructs in situ upon delivery in vivo to maintain an antioxidative capacity. These hydrogels have been developed to counter ROS-induced pathological conditions, with significant advantages of biocompatibility, excellent moldability, and minimally invasive delivery. The intrinsic, readily controllable ROS-scavenging ability of the functionalised hydrogels overcomes many drawbacks of small molecule antioxidants. This review summarises the roles of ROS under pathological conditions and describes the state-of-the-art of injectable antioxidative hydrogels. A particular emphasis is also given to current ROS-producing therapeutic interventions, enabling potential application of injectable antioxidant hydrogels to prevent the adverse effects of many cancer and infection treatments.
Collapse
Affiliation(s)
- Zhonglei He
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Dose-Dependent Effects of Cold Atmospheric Argon Plasma on the Mesenchymal Stem and Osteosarcoma Cells In Vitro. Int J Mol Sci 2021; 22:ijms22136797. [PMID: 34202684 PMCID: PMC8269077 DOI: 10.3390/ijms22136797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 01/07/2023] Open
Abstract
The antimicrobial, anti-inflammatory and tissue-stimulating effects of cold argon atmospheric plasma (CAAP) accelerate its use in various fields of medicine. Here, we investigated the effects of CAAP at different radiation doses on mesenchymal stem cells (MSCs) and human osteosarcoma (MNNG/HOS) cells. We observed an increase in the growth rate of MSCs at sufficiently low irradiation doses (10–15 min) of CAAP, while the growth of MNNG/HOS cells was slowed down to 41% at the same irradiation doses. Using flow cytometry, we found that these effects are associated with cell cycle arrest and extended death of cancer cells by necrosis. Reactive oxygen species (ROS) formation was detected in both types of cells after 15 min of CAAP treatment. Evaluation of the genes’ transcriptional activity showed that exposure to low doses of CAAP activates the expression of genes responsible for proliferation, DNA replication, and transition between phases of the cell cycle in MSCs. There was a decrease in the transcriptional activity of most of the studied genes in MNNG/HOS osteosarcoma cancer cells. However, increased transcription of osteogenic differentiation genes was observed in normal and cancer cells. The selective effects of low and high doses of CAAP treatment on cancer and normal cells that we found can be considered in terms of hormesis. The low dose of cold argon plasma irradiation stimulated the vital processes in stem cells due to the slight generation of reactive oxygen species. In cancer cells, the same doses evidently lead to the formation of oxidative stress, which was accompanied by a proliferation inhibition and cell death. The differences in the cancer and normal cells’ responses are probably due to different sensitivity to exogenous oxidative stress. Such a selective effect of CAAP action can be used in the combined therapy of oncological diseases such as skin neoplasms, or for the removal of remaining cancer cells after surgical removal of a tumor.
Collapse
|
16
|
Kenari AJ, Siadati SN, Abedian Z, Sohbatzadeh F, Amiri M, Gorji KE, Babapour H, Zabihi E, Ghoreishi SM, Mehraeen R, Monfared AS. Therapeutic effect of cold atmospheric plasma and its combination with radiation as a novel approach on inhibiting cervical cancer cell growth (HeLa cells). Bioorg Chem 2021; 111:104892. [PMID: 33894430 DOI: 10.1016/j.bioorg.2021.104892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023]
Abstract
Cervical cancer is one of the important cancers in women. Research on novel treatment approach can reduce the mortality and burden. Although radiotherapy is a common treatment, its negative side effects have concerned physician. In our study, we studied impact of cold atmospheric pressure plasma on the Hela cancer cells, as an alternative treatment. The effect of three different types of such plasma; dielectric barrier discharge (DBD), plasma jet, and afterglow plasma, on the cancer cells were studied. Moreover, some effective operating parameters such as exposure time, applied voltage, composition of working gas in plasma treatment were investigated on the survival of the afterglow plasma. Finally, treatments by the afterglow plasma, gamma radiation (1 Gy), and combination of both were compared. Analysis showed that DBD and plasma jet (direct exposure) effectively killed the cancer cells, even by a minimum applied voltage. But a fraction of the cells survived after the exposure of indirect diffused afterglow plasma. In the case of this plasma, we realized that higher applied voltage and exposure time led to less cell viability. Fewer fractions of survival cells were detected in the case of argon afterglow plasma comparing to oxygen afterglow. Cold atmospheric plasma and its combination with radiation therapy showed a significant decrease in viability of the cells, comparing to the radiation alone. Our research showed that plasma and its combination with radiation therapy have superiority over radiation therapy.
Collapse
Affiliation(s)
- Ali Jamaati Kenari
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 267/2, 611 37 Brno, Czech Republic; Atomic and Molecular Physics Department, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Seyedeh Neda Siadati
- Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz-Maragheh Road, 53714-161 Tabriz, Iran
| | - Zeinab Abedian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farshad Sohbatzadeh
- Atomic and Molecular Physics Department, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mehrangiz Amiri
- Department of Nuclear Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Hamed Babapour
- Department of Radiotherapy Physics, Guilan Oncology Hospital, Rasht, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyedeh Masoumeh Ghoreishi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Rahele Mehraeen
- Departeman of Radiology, Babol University of Medical Sciences, Babol, Iran
| | - Ali Shabestani Monfared
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
17
|
Zimmermann T, Gebhardt LA, Kreiss L, Schneider C, Arndt S, Karrer S, Friedrich O, Fischer MJM, Bosserhoff AK. Acidified Nitrite Contributes to the Antitumor Effect of Cold Atmospheric Plasma on Melanoma Cells. Int J Mol Sci 2021; 22:ijms22073757. [PMID: 33916572 PMCID: PMC8038463 DOI: 10.3390/ijms22073757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cold atmospheric plasma (CAP) is partially ionized gas near room temperature with previously reported antitumor effects. Despite extensive research and growing interest in this technology, active components and molecular mechanisms of CAP are not fully understood to date. We used Raman spectroscopy and colorimetric assays to determine elevated nitrite and nitrate levels after treatment with a MiniFlatPlaster CAP device. Previously, we demonstrated CAP-induced acidification. Cellular effects of nitrite and strong extracellular acidification were assessed using live-cell imaging of intracellular Ca2+ levels, cell viability analysis as well as quantification of p21 and DNA damage. We further characterized these observations by analyzing established molecular effects of CAP treatment. A synergistic effect of nitrite and acidification was found, leading to strong cytotoxicity in melanoma cells. Interestingly, protein nitration and membrane damage were absent after treatment with acidified nitrite, thereby challenging their contribution to CAP-induced cytotoxicity. Further, phosphorylation of ERK1/2 was increased after treatment with both acidified nitrite and indirect CAP. This study characterizes the impact of acidified nitrite on melanoma cells and supports the importance of RNS during CAP treatment. Further, it defines and evaluates important molecular mechanisms that are involved in the cancer cell response to CAP.
Collapse
Affiliation(s)
- Tom Zimmermann
- Emil-Fischer-Center, Institute of Biochemistry, University of Erlangen-Nuernberg, 91054 Erlangen, Germany; (T.Z.); (C.S.)
| | - Lisa A. Gebhardt
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuernberg, 91054 Erlangen, Germany; (L.A.G.); (M.J.M.F.)
| | - Lucas Kreiss
- Department of Medicine I, University Clinics Erlangen, 91054 Erlangen, Germany;
- Institute of Medical Biotechnology, University of Erlangen-Nuernberg, 91052 Erlangen, Germany;
| | - Christin Schneider
- Emil-Fischer-Center, Institute of Biochemistry, University of Erlangen-Nuernberg, 91054 Erlangen, Germany; (T.Z.); (C.S.)
| | - Stephanie Arndt
- Department of Dermatology, University Hospital of Regensburg, 93053 Regensburg, Germany; (S.A.); (S.K.)
| | - Sigrid Karrer
- Department of Dermatology, University Hospital of Regensburg, 93053 Regensburg, Germany; (S.A.); (S.K.)
| | - Oliver Friedrich
- Institute of Medical Biotechnology, University of Erlangen-Nuernberg, 91052 Erlangen, Germany;
| | - Michael J. M. Fischer
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuernberg, 91054 Erlangen, Germany; (L.A.G.); (M.J.M.F.)
- Institute of Physiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Anja-Katrin Bosserhoff
- Emil-Fischer-Center, Institute of Biochemistry, University of Erlangen-Nuernberg, 91054 Erlangen, Germany; (T.Z.); (C.S.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
18
|
Mateu-Sanz M, Tornín J, Ginebra MP, Canal C. Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy. J Clin Med 2021; 10:893. [PMID: 33672274 PMCID: PMC7926371 DOI: 10.3390/jcm10040893] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| |
Collapse
|
19
|
Akter M, Lim JS, Choi EH, Han I. Non-Thermal Biocompatible Plasma Jet Induction of Apoptosis in Brain Cancer Cells. Cells 2021; 10:cells10020236. [PMID: 33530311 PMCID: PMC7911799 DOI: 10.3390/cells10020236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant and rapidly advancing astrocytic brain tumor in adults. Current therapy possibilities are chemotherapy, surgical resection, and radiation. The complexity of drug release through the blood-brain barrier, tumor reaction to chemotherapy, and the inherent resistance of tumor cells present challenges. New therapies are needed for individual use or combination with conventional methods for more effective treatment and improved survival for patients. GBM is difficult to treat because it grows quickly, spreads finger-shaped tentacles, and creates an irregular margin of normal tissue surrounding the tumor. Non-thermal biocompatible plasma (NBP) has recently been shown to selectively target cancer cells with minimal effects on regular cells, acting by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS). We applied a soft jet plasma device with a syringe shape to U87 MG cells and astrocytes. Our results show that NBP-J significantly inhibits cell proliferation and changes morphology, induces cell cycle arrest, inhibits the survival pathway, and induces apoptosis. Our results indicate that NBP-J may be an efficient and safe clinical device for brain cancer therapy.
Collapse
Affiliation(s)
- Mahmuda Akter
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea;
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
| | - Jun Sup Lim
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Eun Ha Choi
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea;
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (E.H.C.); (I.H.); Tel.: +82-2-940-5666 (I.H.); Fax: +82-2-940-5664 (I.H.)
| | - Ihn Han
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea;
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
- Correspondence: (E.H.C.); (I.H.); Tel.: +82-2-940-5666 (I.H.); Fax: +82-2-940-5664 (I.H.)
| |
Collapse
|
20
|
Comprehensive biomedical applications of low temperature plasmas. Arch Biochem Biophys 2020; 693:108560. [PMID: 32857998 PMCID: PMC7448743 DOI: 10.1016/j.abb.2020.108560] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
The main component of plasma medicine is the use of low-temperature plasma (LTP) as a powerful tool for biomedical applications. LTP generates high reactivity at low temperatures and can be activated with noble gases with molecular mixtures or compressed air. LTP reactive species are quickly produced, and are a remarkably good source of reactive oxygen and nitrogen species including singlet oxygen (O2), ozone (O3), hydroxyl radicals (OH), nitrous oxide (NO), and nitrogen dioxide (NO2). Its low gas temperature and highly reactive non-equilibrium chemistry make it appropriate for the alteration of inorganic surfaces and delicate biological systems. Treatment of oral biofilm-related infections, treatment of wounds and skin diseases, assistance in cancer treatment, treatment of viruses' infections (e.g. herpes simplex), and optimization of implants surfaces are included among the extensive plasma medicine applications. Each of these applications will be discussed in this review article.
Collapse
|
21
|
Vaid A, Patil C, Sanghariyat A, Rane R, Visani A, Mukherjee S, Joseph A, Ranjan M, Augustine S, Sooraj KP, Rathore V, Nema SK, Agraj A, Garg G, Sharma A, Sharma M, Pansare K, Krishna CM, Banerjee J, Chandra S. Emerging Advanced Technologies Developed by IPR for Bio Medical Applications ‑.A Review. Neurol India 2020; 68:26-34. [PMID: 32129239 DOI: 10.4103/0028-3886.279707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Over the last decade, research has intensified worldwide on the use of low-temperature plasmas in medicine and healthcare. Researchers have discovered many methods of applying plasmas to living tissues to deactivate pathogens; to end the flow of blood without damaging healthy tissue; to sanitize wounds and accelerate its healing; and to selectively kill malignant cancer cells. This review paper presents the latest development of advanced and plasma-based technologies used for applications in neurology in particular. Institute for Plasma Research (IPR), an aided institute of the Department of Atomic Energy (DAE), has also developed various technologies in some of these areas. One of these is an Atmospheric Pressure Plasma Jet (APPJ). This device is being studied to treat skin diseases, for coagulation of blood at faster rates and its interaction with oral, lung, and brain cancer cells. In certain cases, in-vitro studies have yielded encouraging results and limited in-vivo studies have been initiated. Plasma activated water has been produced in the laboratory for microbial disinfection, with potential applications in the health sector. Recently, plasmonic nanoparticle arrays which allow detection of very low concentrations of chemicals is studied in detail to allow early-stage detection of diseases. IPR has also been developing AI-based software called DeepCXR and AIBacilli for automated, high-speed screening and detection of footprints of tuberculosis (TB) in Chest X-ray images and for recognizing single/multiple TB bacilli in sputum smear test images, respectively. Deep Learning systems are increasingly being used around the world for analyzing electroencephalogram (EEG) signals for emotion recognition, mental workload, and seizure detection.
Collapse
Affiliation(s)
- A Vaid
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - C Patil
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - A Sanghariyat
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - R Rane
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - A Visani
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - S Mukherjee
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | | | - M Ranjan
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - S Augustine
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - K P Sooraj
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - V Rathore
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - S K Nema
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - A Agraj
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - G Garg
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - A Sharma
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - M Sharma
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - K Pansare
- Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - C Murali Krishna
- Advanced Centre for Treatment, Research and Education in Cancer, TMC, Mumbai, Maharashtra, India
| | | | - Sarat Chandra
- Advanced Centre for Treatment, Research and Education in Cancer, TMC, Mumbai, Maharashtra, India
| |
Collapse
|
22
|
Akter M, Jangra A, Choi SA, Choi EH, Han I. Non-Thermal Atmospheric Pressure Bio-Compatible Plasma Stimulates Apoptosis via p38/MAPK Mechanism in U87 Malignant Glioblastoma. Cancers (Basel) 2020; 12:E245. [PMID: 31963881 PMCID: PMC7016658 DOI: 10.3390/cancers12010245] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/18/2022] Open
Abstract
Nonthermal plasma is a promising novel therapy for the alteration of biological and clinical functions of cells and tissues, including apoptosis and inhibition of tumor progression. This therapy generates reactive oxygen and nitrogen species (RONS), which play a major role in anticancer effects. Previous research has verified that plasma jets can selectively induce apoptosis in various cancer cells, suggesting that it could be a potentially effective novel therapy in combination with or as an alternative to conventional therapeutic methods. In this study, we determined the effects of nonthermal air soft plasma jets on a U87 MG brain cancer cell line, including the dose- and time-dependent effects and the physicochemical and biological correlation between the RONS cascade and p38/mitogen-activated protein kinase (MAPK) signaling pathway, which contribute to apoptosis. The results indicated that soft plasma jets efficiently inhibit cell proliferation and induce apoptosis in U87 MG cells but have minimal effects on astrocytes. These findings revealed that soft plasma jets produce a potent cytotoxic effect via the initiation of cell cycle arrest and apoptosis. The production of reactive oxygen species (ROS) in cells was tested, and an intracellular ROS scavenger, N-acetyl cysteine (NAC), was examined. Our results suggested that soft plasma jets could potentially be used as an effective approach for anticancer therapy.
Collapse
Affiliation(s)
- Mahmuda Akter
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea; (M.A.); (E.H.C.)
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea
| | - Anshika Jangra
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 01897, Korea; (A.J.); (S.A.C.)
| | - Seung Ah Choi
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 01897, Korea; (A.J.); (S.A.C.)
| | - Eun Ha Choi
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea; (M.A.); (E.H.C.)
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea
- Department of Electronic and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Ihn Han
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea; (M.A.); (E.H.C.)
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|
23
|
Khalili M, Daniels L, Lin A, Krebs FC, Snook AE, Bekeschus S, Bowne WB, Miller V. Non-Thermal Plasma-Induced Immunogenic Cell Death in Cancer: A Topical Review. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2019; 52:423001. [PMID: 31485083 PMCID: PMC6726388 DOI: 10.1088/1361-6463/ab31c1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recent advances in biomedical research in cancer immunotherapy have identified the use of an oxidative stress-based approach to treat cancers, which works by inducing immunogenic cell death (ICD) in cancer cells. Since the anti-cancer effects of non-thermal plasma (NTP) are largely attributed to the reactive oxygen and nitrogen species that are delivered to and generated inside the target cancer cells, it is reasonable to postulate that NTP would be an effective modality for ICD induction. NTP treatment of tumors has been shown to destroy cancer cells rapidly and, under specific treatment regimens, this leads to systemic tumor-specific immunity. The translational benefit of NTP for treatment of cancer relies on its ability to enhance the interactions between NTP-exposed tumor cells and local immune cells which initiates subsequent protective immune responses. This review discusses results from recent investigations of NTP application to induce immunogenic cell death in cancer cells. With further optimization of clinical devices and treatment protocols, NTP can become an essential part of the therapeutic armament against cancer.
Collapse
Affiliation(s)
- Marian Khalili
- Division of Surgery Oncology, Department of Surgery, Drexel University College of Medicine, Philadelphia, PA
| | - Lynsey Daniels
- Division of Surgery Oncology, Department of Surgery, Drexel University College of Medicine, Philadelphia, PA
| | - Abraham Lin
- Plasma, Laser Ablation, and Surface Modeling (PLASMANT) Group, Department of Chemistry, University of Antwerp
- Center for Oncological Research (CORE), University of Antwerp
| | - Fred C. Krebs
- Department of Microbiology and Immunology, and Institute for Molecular Medicine &. Infectious Disease, Drexel University College of Medicine, Philadelphia, PA
| | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Sander Bekeschus
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str.2, 17489 Greifswald, Germany
| | - Wilbur B. Bowne
- Division of Surgery Oncology, Department of Surgery, Drexel University College of Medicine, Philadelphia, PA
| | - Vandana Miller
- Division of Surgery Oncology, Department of Surgery, Drexel University College of Medicine, Philadelphia, PA
- Department of Microbiology and Immunology, and Institute for Molecular Medicine &. Infectious Disease, Drexel University College of Medicine, Philadelphia, PA
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str.2, 17489 Greifswald, Germany
| |
Collapse
|
24
|
Bernhardt T, Semmler ML, Schäfer M, Bekeschus S, Emmert S, Boeckmann L. Plasma Medicine: Applications of Cold Atmospheric Pressure Plasma in Dermatology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3873928. [PMID: 31565150 PMCID: PMC6745145 DOI: 10.1155/2019/3873928] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022]
Abstract
The ability to produce cold plasma at atmospheric pressure conditions was the basis for the rapid growth of plasma-related application areas in biomedicine. Plasma comprises a multitude of active components such as charged particles, electric current, UV radiation, and reactive gas species which can act synergistically. Anti-itch, antimicrobial, anti-inflammatory, tissue-stimulating, blood flow-enhancing, and proapoptotic effects were demonstrated in in vivo and in vitro experiments, and until now, no resistance of pathogens against plasma treatment was observed. The combination of the different active agents and their broad range of positive effects on various diseases, especially easily accessible skin diseases, renders plasma quite attractive for applications in medicine. For medical applications, two different types of cold plasma appear suitable: indirect (plasma jet) and direct (dielectric barrier discharge-DBD) plasma sources. The DBD device PlasmaDerm® VU-2010 (CINOGY Technologies GmbH), the atmospheric pressure plasma jet (APPJ) kINPen® MED (INP Greifswald/neoplas tools GmbH), and the SteriPlas (Adtec Ltd., London, United Kingdom) are CE-certified as a medical product to treat chronic wounds in humans and showed efficacy and a good tolerability. Recently, the use of plasma in cancer research and oncology is of particular interest. Plasma has been shown to induce proapoptotic effects more efficiently in tumor cells compared with the benign counterparts, leads to cellular senescence, and-as shown in vivo-reduces skin tumors. To this end, a world-wide first Leibniz professorship for plasmabiotechnology in dermatology has been introduced to establish a scientific network for the investigation of the efficacy and safety of cold atmospheric plasma in dermatooncology. Hence, plasma medicine especially in dermatology holds great promise.
Collapse
Affiliation(s)
- Thoralf Bernhardt
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock 18057, Germany
| | - Marie Luise Semmler
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock 18057, Germany
| | - Mirijam Schäfer
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock 18057, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald 17489, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock 18057, Germany
| | - Lars Boeckmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
25
|
Bekeschus S, Seebauer C, Wende K, Schmidt A. Physical plasma and leukocytes - immune or reactive? Biol Chem 2019; 400:63-75. [PMID: 30030959 DOI: 10.1515/hsz-2018-0224] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Leukocytes are professionals in recognizing and removing pathogenic or unwanted material. They are present in virtually all tissues, and highly motile to enter or leave specific sites throughout the body. Less than a decade ago, physical plasmas entered the field of medicine to deliver their delicate mix of reactive species and other physical agents for mainly dermatological or oncological therapy. Plasma treatment thus affects leukocytes via direct or indirect means: immune cells are either present in tissues during treatment, or infiltrate or exfiltrate plasma-treated areas. The immune system is crucial for human health and resolution of many types of diseases. It is therefore vital to study the response of leukocytes after plasma treatment in vitro and in vivo. This review gathers together the major themes in the plasma treatment of innate and adaptive immune cells, and puts these into the context of wound healing and oncology, the two major topics in plasma medicine.
Collapse
Affiliation(s)
- Sander Bekeschus
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK plasmatis, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| | - Christian Seebauer
- Greifswald University Medical Center, Department of Oral and Maxillofacial Surgery/Plastic Surgery, Ferdinand-Sauerbruch-Str. DZ 7, D-17475 Greifswald, Germany
| | - Kristian Wende
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK plasmatis, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| | - Anke Schmidt
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK plasmatis, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| |
Collapse
|
26
|
Schneider C, Arndt S, Zimmermann JL, Li Y, Karrer S, Bosserhoff AK. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells. Biol Chem 2019; 400:111-122. [PMID: 29908123 DOI: 10.1515/hsz-2018-0193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
Plasma oncology is a relatively new field of research. Recent developments have indicated that cold atmospheric plasma (CAP) technology is an interesting new therapeutic approach to cancer treatment. In this study, p53 wildtype (LoVo) and human p53 mutated (HT29 and SW480) colorectal cancer cells were treated with the miniFlatPlaSter - a device particularly developed for the treatment of tumor cells - that uses the Surface Micro Discharge (SMD) technology for plasma production in air. The present study analyzed the effects of plasma on colorectal cancer cells in vitro and on normal colon tissue ex vivo. Plasma treatment had strong effects on colon cancer cells, such as inhibition of cell proliferation, induction of cell death and modulation of p21 expression. In contrast, CAP treatment of murine colon tissue ex vivo for up to 2 min did not show any toxic effect on normal colon cells compared to H2O2 positive control. In summary, these results suggest that the miniFlatPlaSter plasma device is able to kill colorectal cancer cells independent of their p53 mutation status. Thus, this device presents a promising new approach in colon cancer therapy.
Collapse
Affiliation(s)
- Christin Schneider
- Institute of Biochemistry (Emil-Fischer-Center), University of Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany
| | | | - Yangfang Li
- Terraplasma GmbH, Lichtenbergstrasse 8, D-85748 Garching, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Center), University of Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| |
Collapse
|
27
|
Kramer A, Conway BR, Meissner K, Scholz F, Rauch BH, Moroder A, Ehlers A, Meixner AJ, Heidecke CD, Partecke LI, Kietzmann M, Assadian O. Cold atmospheric pressure plasma for treatment of chronic wounds: drug or medical device? J Wound Care 2019; 26:470-475. [PMID: 28795892 DOI: 10.12968/jowc.2017.26.8.470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The use of cold atmospheric pressure plasma (CAPP) as a new therapeutic option to aid the healing of chronic wounds appears promising. Currently, uncertainty exists regarding their classification as medical device or medical drug. Because the classification of CAPP has medical, legal, and economic consequences as well as implications for the level of preclinical and clinical testing, the correct classification is not an academic exercise, but an ethical need. METHOD A multidisciplinary team of physicians, surgeons, pharmacists, physicists and lawyers has analysed the physical and technical characteristics as well as legal conditions of the biological action of CAPP. RESULTS It was concluded that the mode of action of the locally generated CAPP, with its main active components being different radicals, is pharmacological and not physical in nature. CONCLUSION Depending on the intended use, CAPP should be classified as a drug, which is generated by use of a medical device directly at the point of therapeutic application.
Collapse
Affiliation(s)
- A Kramer
- Consultant Clinical Microbiology and Infection Control, Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Germany
| | - B R Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, United Kingdom; Institute of Skin Integrity and Infection Prevention, School for Human and Health Sciences, University of Huddersfield
| | - K Meissner
- Anesthetist, Intensive Care Specialist, Department of Anesthesiology and Intensive Medicine, University Medicine, Greifswald, Germany
| | - F Scholz
- Biochemist, Institute of Biochemistry, University of Greifswald, Germany
| | - B H Rauch
- Medical Pharmacology and Toxicology, Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Germany
| | - A Moroder
- Lawyer, Ehlers, Ehlers & Partner Healthcare Law Firm Munich, Germany
| | - A Ehlers
- Lawyer, Ehlers, Ehlers & Partner Healthcare Law Firm Munich, Germany
| | - A J Meixner
- Physicist, Institute of Physical and Theoretical Chemistry Tübingen, Germany
| | - C-D Heidecke
- General Surgeon, Department of Surgery, University Medicine Greifswald, Germany
| | - L I Partecke
- General Surgeon, Department of Surgery, University Medicine Greifswald, Germany
| | - M Kietzmann
- Veterinary Medicine, Pharmacologist, Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - O Assadian
- Consultant Clinical Microbiology and Infection Control, Consultant Infectious Diseases and Tropical Medicine, Institute for Hospital Epidemiology and Infection Control, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Assadian O, Ousey KJ, Daeschlein G, Kramer A, Parker C, Tanner J, Leaper DJ. Effects and safety of atmospheric low-temperature plasma on bacterial reduction in chronic wounds and wound size reduction: A systematic review and meta-analysis. Int Wound J 2018; 16:103-111. [PMID: 30311743 PMCID: PMC7379569 DOI: 10.1111/iwj.12999] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022] Open
Abstract
The use of atmospheric low‐temperature plasma (AP) on chronic wounds and its effect on microbial bioburden in open wounds has not been explored with a systematic review and meta‐analysis. PRISMA guidelines were followed and PubMed, Embase, CENTRAL, and CINAHL databases searched for randomised controlled trials (RCTs), which compared AP with no AP for the management of open, chronic wounds. The primary outcomes of reduction of bioburden or wound size were included. Meta‐analyses were performed; odds ratio (OR) and 95% confidence intervals (CIs) were extracted and pooled in a random effects model. Four RCTs investigated the effect of AP on chronic wound healing. Chronic wounds treated with AP did not show a significant improvement in healing (AP vs control: OR = 1.46; 95% CI = 0.89‐2.38; P = 0.13). Five further RCTs investigated the reduction of bioburden in wounds, but AP demonstrated no significant reduction of bioburden (AP vs control: OR = 0.85; 95% CI = 0.45‐1.62; P = 0.63). All nine RCTs recorded the presence of any severe adverse events (SAEs) in the 268 patients studied, with only one unrelated SAE identified in each group (AP vs control: OR = 1.00; 95% CI = 0.05‐19.96; P = 1.00). Use of AP in wound care is safe, but the retrieved evidence and meta‐analysis show that there is no clinical benefit of AP in chronic open wounds using currently available AP device settings.
Collapse
Affiliation(s)
- Ojan Assadian
- Department for Hospital Epidemiology and Infection Control, Medical University of Vienna, Vienna General Hospital, Vienna, Austria.,Institute for Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| | - Karen J Ousey
- Institute for Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| | - George Daeschlein
- Department of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christina Parker
- School of Nursing, Queensland University of Technology, Brisbane, Australia
| | - Judith Tanner
- Division of Nursing, School of Health Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - David J Leaper
- Institute for Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
29
|
Lin AG, Xiang B, Merlino DJ, Baybutt TR, Sahu J, Fridman A, Snook AE, Miller V. Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors. Oncoimmunology 2018; 7:e1484978. [PMID: 30228954 PMCID: PMC6140551 DOI: 10.1080/2162402x.2018.1484978] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
Immunogenic cell death is characterized by the emission of danger signals that facilitate activation of an adaptive immune response against dead-cell antigens. In the case of cancer therapy, tumor cells undergoing immunogenic death promote cancer-specific immunity. Identification, characterization, and optimization of stimuli that induce immunogenic cancer cell death has tremendous potential to improve the outcomes of cancer therapy. In this study, we show that non-thermal, atmospheric pressure plasma can be operated to induce immunogenic cell death in an animal model of colorectal cancer. In vitro, plasma treatment of CT26 colorectal cancer cells induced the release of classic danger signals. Treated cells were used to create a whole-cell vaccine which elicited protective immunity in the CT26 tumor mouse model. Moreover, plasma treatment of subcutaneous tumors elicited emission of danger signals and recruitment of antigen presenting cells into tumors. An increase in T cell responses targeting the colorectal cancer-specific antigen guanylyl cyclase C (GUCY2C) were also observed. This study provides the first evidence that non-thermal plasma is a bone fide inducer of immunogenic cell death and highlights its potential for clinical translation for cancer immunotherapy.
Collapse
Affiliation(s)
- Abraham G. Lin
- C. & J. Nyheim Plasma Institute, Drexel University, Camden, NJ, USA
| | - Bo Xiang
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dante J. Merlino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Trevor R. Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joya Sahu
- Cutaneous Lymphoma Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | | | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vandana Miller
- C. & J. Nyheim Plasma Institute, Drexel University, Camden, NJ, USA
| |
Collapse
|
30
|
Mizuno K, Shirakawa Y, Sakamoto T, Ishizaki H, Nishijima Y, Ono R. Plasma-Induced Suppression of Recurrent and Reinoculated Melanoma Tumors in Mice. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2018.2809673] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Xu D, Xu Y, Cui Q, Liu D, Liu Z, Wang X, Yang Y, Feng M, Liang R, Chen H, Ye K, Kong MG. Cold atmospheric plasma as a potential tool for multiple myeloma treatment. Oncotarget 2018; 9:18002-18017. [PMID: 29719586 PMCID: PMC5915053 DOI: 10.18632/oncotarget.24649] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
Multiple myeloma (MM) is a fatal and incurable hematological malignancy thus new therapy need to be developed. Cold atmospheric plasma, a new technology that could generate various active species, could efficiently induce various tumor cells apoptosis. More details about the interaction of plasma and tumor cells need to be addressed before the application of gas plasma in clinical cancer treatment. In this study, we demonstrate that He+O2 plasma could efficiently induce myeloma cell apoptosis through the activation of CD95 and downstream caspase cascades. Extracellular and intracellular reactive oxygen species (ROS) accumulation is essential for CD95-mediated cell apoptosis in response to plasma treatment. Furthermore, p53 is shown to be a key transcription factor in activating CD95 and caspase cascades. More importantly, we demonstrate that CD95 expression is higher in tumor cells than in normal cells in both MM cell lines and MM clinical samples, which suggests that CD95 could be a favorable target for plasma treatment as it could selectively inactivate myeloma tumor cells. Our results illustrate the molecular details of plasma induced myeloma cell apoptosis and it shows that gas plasma could be a potential tool for myeloma therapy in the future.
Collapse
Affiliation(s)
- Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China.,The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Yujing Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Qingjie Cui
- The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Zhijie Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Yanjie Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Miaojuan Feng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Rong Liang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Hailan Chen
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Kai Ye
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China.,First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Michael G Kong
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China.,Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| |
Collapse
|
32
|
Gjika E, Pal-Ghosh S, Tang A, Kirschner M, Tadvalkar G, Canady J, Stepp MA, Keidar M. Adaptation of Operational Parameters of Cold Atmospheric Plasma for in Vitro Treatment of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9269-9279. [PMID: 29473408 PMCID: PMC5954411 DOI: 10.1021/acsami.7b18653] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cold atmospheric plasma (CAP), an ionized gas operated at near-ambient temperatures, has been introduced as a new therapeutic opportunity for treating cancers. The effectiveness of the therapy has been linked to CAP-generated reactive oxygen and nitrogen species such as hydrogen peroxide and nitrite. In this study, we monitor in real-time cancer cell response to CAP over the course of 48 h. The results demonstrate a correlation between cell viability, exposure time (30, 60, 90, and 180 s), and discharge voltage (3.16 and 3.71 kV), while stressing the likely therapeutic role of plasma-generated reactive species. A 30-60 s increase in CAP exposure time and/or a discharge voltage adjustment from 3.16 to 3.71 kV is consistently accompanied by a significant reduction in cell viability. Comparably, levels of hydrogen peroxide and nitrite vary as a function of voltage with elevated levels detected at the highest tested voltage condition of 3.71 kV. CAP ultimately initiates a reduction in cell viability and triggers apoptosis via damage to the mitochondrial membrane, while also deregulating protein synthesis. The findings presented in this study are discussed in the context of facilitating the development of an adaptive CAP platform which could improve treatment outcomes.
Collapse
Affiliation(s)
- Eda Gjika
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, George Washington University, Washington, D.C. 20052, United States
- Corresponding Authors: (E.G.)., (M.K.)
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, D.C. 20052, United States
| | - Anna Tang
- Department of Biotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Megan Kirschner
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, George Washington University, Washington, D.C. 20052, United States
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, D.C. 20052, United States
| | - Jerome Canady
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, US Medical Innovation LLC, Takoma Park, Maryland 20912, United States
| | - Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, D.C. 20052, United States
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, George Washington University, Washington, D.C. 20052, United States
- Corresponding Authors: (E.G.)., (M.K.)
| |
Collapse
|
33
|
Xu D, Xu Y, Ning N, Cui Q, Liu Z, Wang X, Liu D, Chen H, Kong MG. Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells. Cancer Cell Int 2018; 18:42. [PMID: 29568236 PMCID: PMC5859683 DOI: 10.1186/s12935-018-0541-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
Background Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet. Methods In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma treatment. Results By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas plasma treatment of cancer cells. Conclusions Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment. Electronic supplementary material The online version of this article (10.1186/s12935-018-0541-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dehui Xu
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Yujing Xu
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Ning Ning
- 2The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Qingjie Cui
- 2The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Zhijie Liu
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Xiaohua Wang
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Dingxin Liu
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China
| | - Hailan Chen
- 3Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| | - Michael G Kong
- 1State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi People's Republic of China.,3Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA.,4Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|
34
|
Bekeschus S, Mueller A, Miller V, Gaipl U, Weltmann KD. Physical Plasma Elicits Immunogenic Cancer Cell Death and Mitochondrial Singlet Oxygen. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2017.2766027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 2017; 8:15977-15995. [PMID: 27845910 PMCID: PMC5362540 DOI: 10.18632/oncotarget.13304] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/29/2016] [Indexed: 01/01/2023] Open
Abstract
Over the past decade, cold atmospheric plasma (CAP), a near room temperature ionized gas has shown its promising application in cancer therapy. Two CAP devices, namely dielectric barrier discharge and plasma jet, show significantly anti-cancer capacity over dozens of cancer cell lines in vitro and several subcutaneous xenograft tumors in vivo. In contrast to conventional anti-cancer approaches and drugs, CAP is a selective anti-cancer treatment modality. Thus far establishing the chemical and molecular mechanism of the anti-cancer capacity of CAP is far from complete. In this review, we provide a comprehensive introduction of the basics of CAP, state of the art research in this field, the primary challenges, and future directions to cancer biologists.
Collapse
Affiliation(s)
- Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Jonathan H Sherman
- Department of Neurological Surgery, The George Washington University,Washington, DC, USA
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
36
|
The Specific Vulnerabilities of Cancer Cells to the Cold Atmospheric Plasma-Stimulated Solutions. Sci Rep 2017; 7:4479. [PMID: 28667316 PMCID: PMC5493667 DOI: 10.1038/s41598-017-04770-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/18/2017] [Indexed: 01/02/2023] Open
Abstract
Cold atmospheric plasma (CAP), a novel promising anti-cancer modality, has shown its selective anti-cancer capacity on dozens of cancer cell lines in vitro and on subcutaneous xenograft tumors in mice. Over the past five years, the CAP-stimulated solutions (PSS) have also shown their selective anti-cancer effect over different cancers in vitro and in vivo. The solutions used to make PSS include several bio-adaptable solutions, mainly cell culture medium and simple buffered solutions. Both the CAP-stimulated medium (PSM) and the CAP-stimulated buffered solution (PSB) are able to significantly kill cancer cells in vitro. In this study, we systematically compared the anti-cancer effect of PSM and PSB over pancreatic adenocarcinoma cells and glioblastoma cells. We demonstrated that pancreatic cancer cells and glioblastoma cells were specifically vulnerable to PSM and PSB, respectively. The specific response such as the rise of intracellular reactive oxygen species of two cancer cell lines to the H2O2-containing environments might result in the specific vulnerabilities to PSM and PSB. In addition, we demonstrated a basic guideline that the toxicity of PSS on cancer cells could be significantly modulated through controlling the dilutability of solution.
Collapse
|
37
|
Application of Cold Atmospheric Plasma (CAP) in Cancer Therapy: A Review. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcp.8728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Binenbaum Y, Ben-David G, Gil Z, Slutsker YZ, Ryzhkov MA, Felsteiner J, Krasik YE, Cohen JT. Cold Atmospheric Plasma, Created at the Tip of an Elongated Flexible Capillary Using Low Electric Current, Can Slow the Progression of Melanoma. PLoS One 2017; 12:e0169457. [PMID: 28103270 PMCID: PMC5245832 DOI: 10.1371/journal.pone.0169457] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Introduction Cold Atmospheric Plasma Jet (CAPJ), with ion temperature close to room temperature, has tremendous potential in biomedical engineering, and can potentially offer a therapeutic option that allows cancer cell elimination without damaging healthy tissue. We developed a hand-held flexible device for the delivery of CAPJ to the treatment site, with a modified high-frequency pulse generator operating at a RMS voltage of <1.2 kV and gas flow in the range 0.3–3 l/min. The aims of our study were to characterize the CAPJ emitted from the device, and to evaluate its efficacy in elimination of cancer cells in-vitro and in-vivo. Methods and Results The power delivered by CAPJ was measured on a floating or grounded copper target. The power did not drastically change over distances of 0–14 mm, and was not dependent on the targets resistance. Temperature of CAPJ-treated target was 23°-36° C, and was dependent on the voltage applied. Spectroscopy indicated that excited OH- radicals were abundant both on dry and wet targets, placed at different distances from the plasma gun. An in-vitro cell proliferation assay demonstrated that CAPJ treatment of 60 seconds resulted in significant reduction in proliferation of all cancer cell lines tested, and that CAPJ activated medium was toxic to cancer cells. In-vivo, we treated cutaneous melanoma tumors in nude mice. Tumor volume was significantly decreased in CAPJ-treated tumors relatively to controls, and high dose per fraction was more effective than low dose per fraction treatment. Importantly, pathologic examination revealed that normal skin was not harmed by CAPJ treatment. Conclusion This preliminary study demonstrates the efficacy of flexible CAPJ delivery system against melanoma progression both in-vitro and in-vivo. It is envisioned that adaptation of CAPJ technology for different kinds of neoplasms use may provide a new modality for the treatment of solid tumors.
Collapse
Affiliation(s)
- Y. Binenbaum
- Laboratory of Applied Cancer Research, Rambam Healthcare Campus, Haifa, Israel
| | - G. Ben-David
- Laboratory of Applied Cancer Research, Rambam Healthcare Campus, Haifa, Israel
| | - Z. Gil
- Laboratory of Applied Cancer Research, Rambam Healthcare Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ya. Z. Slutsker
- Laboratory of Plasma Physics, Physics Department, Technion-Israel Institute of Technology, Haifa, Israel
| | - M. A. Ryzhkov
- Laboratory of Plasma Physics, Physics Department, Technion-Israel Institute of Technology, Haifa, Israel
| | - J. Felsteiner
- Laboratory of Plasma Physics, Physics Department, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ya. E. Krasik
- Laboratory of Plasma Physics, Physics Department, Technion-Israel Institute of Technology, Haifa, Israel
| | - J. T. Cohen
- Laboratory of Applied Cancer Research, Rambam Healthcare Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
39
|
Takeda S, Yamada S, Hattori N, Nakamura K, Tanaka H, Kajiyama H, Kanda M, Kobayashi D, Tanaka C, Fujii T, Fujiwara M, Mizuno M, Hori M, Kodera Y. Intraperitoneal Administration of Plasma-Activated Medium: Proposal of a Novel Treatment Option for Peritoneal Metastasis From Gastric Cancer. Ann Surg Oncol 2017; 24:1188-1194. [PMID: 28058557 DOI: 10.1245/s10434-016-5759-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The administration of fluid irradiated with non-equilibrium atmospheric pressure plasma (NEAPP) has attracted much interest as a novel therapeutic method for cancer. The authors previously reported on the efficacy of plasma-activated medium (PAM) for treating cancer cell lines through the induction of apoptosis. In this study, the therapeutic effect of PAM was evaluated in vivo using a peritoneal metastasis mouse model. METHODS Two gastric cancer cell lines were used in proliferation assays performed to optimize the production of PAM by changing the distance between the plasma source and the medium surface and by altering the volume of irradiated medium. Wound-healing and adhesion assays were conducted to determine the effect of PAM therapy on cell migration and adhesion capacity in vitro. Finally, a mouse model established by the intraperitoneal injection of enhanced green fluorescent protein-tagged gastric cancer cells was used to explore the efficacy of PAM administered intraperitoneally in inhibiting peritoneal metastasis formation. RESULTS Shorter distances between the plasma source and the medium surface and smaller volumes of treated medium increased the anti-tumor effect of PAM. The PAM treatment attenuated gastric cancer cell migration and adhesion in vitro. The intraperitoneal administration of PAM decreased the formation of peritoneal metastatic nodules by 60% in the mouse model, and no adverse events were observed. CONCLUSIONS Plasma-activated liquids may represent a novel therapeutic method for the treatment of peritoneal metastases in gastric cancer.
Collapse
Affiliation(s)
- Shigeomi Takeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Norifumi Hattori
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Tanaka
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaru Hori
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
40
|
Cheng X, Rajjoub K, Shashurin A, Yan D, Sherman JH, Bian K, Murad F, Keidar M. Enhancing cold atmospheric plasma treatment of cancer cells by static magnetic field. Bioelectromagnetics 2016; 38:53-62. [DOI: 10.1002/bem.22014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 09/26/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoqian Cheng
- Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonDistrict of Columbia
| | - Kenan Rajjoub
- Columbian College of Arts and SciencesThe George Washington UniversityWashingtonDistrict of Columbia
| | | | - Dayun Yan
- Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonDistrict of Columbia
| | - Jonathan H. Sherman
- Department of Neurological SurgeryThe George Washington UniversityWashingtonDistrict of Columbia
| | - Ka Bian
- Department of Biochemistry and Molecular MedicineThe George Washington UniversityWashingtonDistrict of Columbia
| | - Ferid Murad
- Department of Biochemistry and Molecular MedicineThe George Washington UniversityWashingtonDistrict of Columbia
| | - Michael Keidar
- Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonDistrict of Columbia
- Department of Neurological SurgeryThe George Washington UniversityWashingtonDistrict of Columbia
| |
Collapse
|
41
|
Jalili A, Irani S, Mirfakhraie R. Combination of cold atmospheric plasma and iron nanoparticles in breast cancer: gene expression and apoptosis study. Onco Targets Ther 2016; 9:5911-5917. [PMID: 27729800 PMCID: PMC5047723 DOI: 10.2147/ott.s95644] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Current cancer treatments have unexpected side effects of which the death of normal cells is one. In some cancers, iron nanoparticles (NPs) can be subjected to diagnosis and passive targeting treatment. Cold atmospheric plasma (CAP) has a proven induction of selective cell death ability. In this study, we have attempted to analyze the synergy between CAP and iron NPs in human breast adenocarcinoma cells (MCF-7). Materials and methods In vitro cytotoxicity of CAP treatment and NPs in cells measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell death was shown by 4′,6-diamidino-2-phenylindole and annexin V staining. Fluctuations in BAX and BCL-2 gene expression were investigated by means of real-time polymerase chain reaction. Results MTT assay results showed that combination of plasma and iron NPs decreased the viability of cancer cells significantly (P<0.05). Real-time analysis showed that the combination therapy induced shifting the BAX/BCL-2 ratio in favor of apoptosis. Conclusion Our data indicate that synergy between CAP and iron NPs can be applied in breast cancer treatment selectively.
Collapse
Affiliation(s)
- Azam Jalili
- Department of Biology, Science and Research Branch, Islamic Azad University
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University
| | - Reza Mirfakhraie
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer. Adv Ther 2016; 33:894-909. [PMID: 27142848 PMCID: PMC4920838 DOI: 10.1007/s12325-016-0338-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 01/12/2023]
Abstract
Plasma-based electrosurgical devices have long been employed for tissue coagulation, cutting, desiccation, and cauterizing. Despite their clinical benefits, these technologies involve tissue heating and their effects are primarily heat-mediated. Recently, there have been significant developments in cold atmospheric pressure plasma (CAP) science and engineering. New sources of CAP with well-controlled temperatures below 40 °C have been designed, permitting safe plasma application on animal and human bodies. In the last decade, a new innovative field, often referred to as plasma medicine, which combines plasma physics, life science, and clinical medicine has emerged. This field aims to exploit effects of mild plasma by controlling the interactions between plasma components (and other secondary species that can be formed from these components) with specific structural elements and functionalities of living cells. Recent studies showed that CAP can exert beneficial effects when applied selectively in certain pathologies with minimal toxicity to normal tissues. The rapid increase in new investigations and development of various devices for CAP application suggest early adoption of cold plasma as a new tool in the biomedical field. This review explores the latest major achievements in the field, focusing on the biological effects, mechanisms of action, and clinical evidence of CAP applications in areas such as skin disinfection, tissue regeneration, chronic wounds, and cancer treatment. This information may serve as a foundation for the design of future clinical trials to assess the efficacy and safety of CAP as an adjuvant therapy for skin cancer.
Collapse
|
43
|
Tabuchi Y, Uchiyama H, Zhao QL, Yunoki T, Andocs G, Nojima N, Takeda K, Ishikawa K, Hori M, Kondo T. Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma. Int J Mol Med 2016; 37:1706-14. [PMID: 27121589 DOI: 10.3892/ijmm.2016.2574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present study, we examined the effects of nitrogen (N2) on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon (Ar)-CAP. Enormous amounts of hydroxyl (·OH) radicals in aqueous solution were produced using Ar‑CAP generated using a 20 kHz low frequency at 18 kV with a flow rate of 2 l/min. The increase in the levels of ·OH radicals was significantly attenuated by the addition of N2 to Ar gas. On the other hand, the level of total nitrate/nitrite in the supernatant was significantly elevated in the Ar + N2-CAP‑exposed U937 cells. When the cells were exposed to Ar‑CAP, a significant increase in apoptosis was observed, whereas apoptosis was markedly decreased in the cells exposed to Ar + N2-CAP. Microarray and pathway analyses revealed that a newly identified gene network containing a number of heat shock proteins (HSPs), anti-apoptotic genes, was mainly associated with the biological function of the prevention of apoptosis. Quantitative PCR revealed that the expression levels of HSPs were significantly elevated in the cells exposed to Ar + N2-CAP than those exposed to Ar‑CAP. These results indicate that N2 gas in Ar‑CAP modifies the ratio of ROS to RNS, and suppresses the apoptosis induced by Ar‑CAP. The modulation of gaseous conditions in CAP may thus prove to be useful for future clinical applications, such as for switching from a sterilizing mode to cytocidal effect for cancer cells.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | | | - Qing-Li Zhao
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Tatsuya Yunoki
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Gabor Andocs
- Tateyama Machine Co., Ltd., Toyama 930-1305, Japan
| | | | - Keigo Takeda
- Plasma Nanotechnology Research Center, Nagoya University, Nagoya 464-8601, Japan
| | - Kenji Ishikawa
- Plasma Nanotechnology Research Center, Nagoya University, Nagoya 464-8601, Japan
| | - Masaru Hori
- Plasma Nanotechnology Research Center, Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
44
|
Xu D, Luo X, Xu Y, Cui Q, Yang Y, Liu D, Chen H, Kong MG. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma. Biochem Biophys Res Commun 2016; 473:1125-1132. [PMID: 27067049 DOI: 10.1016/j.bbrc.2016.04.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 01/25/2023]
Abstract
Cold atmospheric plasma was shown to induce cell apoptosis in numerous tumor cells. Recently, some other biological effects, such as induction of membrane permeation and suppression of migration, were discovered by plasma treatment in some types of tumor cells. In this study, we investigated the biological effects of plasma treatment on multiple myeloma cells. We detected the detachment of adherent myeloma cells by plasma, and the detachment area was correlated with higher density of hydroxyl radical in the gas phase of the plasma. Meanwhile, plasma could promote myeloma differentiation by up-regulating Blimp-1 and XBP-1 expression. The migration ability was suppressed by plasma treatment through decreasing of MMP-2 and MMP-9 secretion. In addition, plasma could increase bortezomib sensitivity and induce myeloma cell apoptosis. Taking together, combination with plasma treatment may enhance current chemotherapy and probably improve the outcomes.
Collapse
Affiliation(s)
- Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China; Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| | - Xiaohui Luo
- Department of Urinary Surgery, Central Hospital of Baoji, Bao Ji City, Shaanxi 721000, PR China
| | - Yujing Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China; Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Qingjie Cui
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China; Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yanjie Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China; Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Hailan Chen
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Michael G Kong
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China; Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China; Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
45
|
Van der Paal J, Neyts EC, Verlackt CCW, Bogaerts A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem Sci 2016; 7:489-498. [PMID: 28791102 PMCID: PMC5518669 DOI: 10.1039/c5sc02311d] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022] Open
Abstract
We performed molecular dynamics simulations to investigate the effect of lipid peroxidation products on the structural and dynamic properties of the cell membrane. Our simulations predict that the lipid order in a phospholipid bilayer, as a model system for the cell membrane, decreases upon addition of lipid peroxidation products. Eventually, when all phospholipids are oxidized, pore formation can occur. This will allow reactive species, such as reactive oxygen and nitrogen species (RONS), to enter the cell and cause oxidative damage to intracellular macromolecules, such as DNA or proteins. On the other hand, upon increasing the cholesterol fraction of lipid bilayers, the cell membrane order increases, eventually reaching a certain threshold, from which cholesterol is able to protect the membrane against pore formation. This finding is crucial for cancer treatment by plasma technology, producing a large number of RONS, as well as for other cancer treatment methods that cause an increase in the concentration of extracellular RONS. Indeed, cancer cells contain less cholesterol than their healthy counterparts. Thus, they will be more vulnerable to the consequences of lipid peroxidation, eventually enabling the penetration of RONS into the interior of the cell, giving rise to oxidative stress, inducing pro-apoptotic factors. This provides, for the first time, molecular level insight why plasma can selectively treat cancer cells, while leaving their healthy counterparts undamaged, as is indeed experimentally demonstrated.
Collapse
Affiliation(s)
- Jonas Van der Paal
- Research Group PLASMANT , Department of Chemistry , University of Antwerp , Universiteitsplein 1 , B-2610 Wilrijk , Antwerp , Belgium .
| | - Erik C Neyts
- Research Group PLASMANT , Department of Chemistry , University of Antwerp , Universiteitsplein 1 , B-2610 Wilrijk , Antwerp , Belgium .
| | - Christof C W Verlackt
- Research Group PLASMANT , Department of Chemistry , University of Antwerp , Universiteitsplein 1 , B-2610 Wilrijk , Antwerp , Belgium .
| | - Annemie Bogaerts
- Research Group PLASMANT , Department of Chemistry , University of Antwerp , Universiteitsplein 1 , B-2610 Wilrijk , Antwerp , Belgium .
| |
Collapse
|
46
|
Joslin JM, McCall JR, Bzdek JP, Johnson DC, Hybertson BM. Aqueous Plasma Pharmacy: Preparation Methods, Chemistry, and Therapeutic Applications. PLASMA MEDICINE 2016; 6:135-177. [PMID: 28428835 DOI: 10.1615/plasmamed.2016018618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plasma pharmacy is a subset of the broader field of plasma medicine. Although not strictly defined, the term aqueous plasma pharmacy (APP) is used to refer to the generation and distribution of reactive plasma-generated species in an aqueous solution followed by subsequent administration for therapeutic benefits. APP attempts to harness the therapeutic effects of plasma-generated oxidant species within aqueous solution in various applications, such as disinfectant solutions, cell proliferation related to wound healing, and cancer treatment. The subsequent use of plasma-generated solutions in the APP approach facilitates the delivery of reactive plasma species to internal locations within the body. Although significant efforts in the field of plasma medicine have concentrated on employing direct plasma plume exposure to cells or tissues, here we focus specifically on plasma discharge in aqueous solution to render the solution biologically active for subsequent application. Methods of plasma discharge in solution are reviewed, along with aqueous plasma chemistry and the applications for APP. The future of the field also is discussed regarding necessary research efforts that will enable commercialization for clinical deployment.
Collapse
Affiliation(s)
- Jessica M Joslin
- Symbios Technologies, Inc., 3185 Rampart Road, Bldg. A, Colorado State University Research Innovation Center, Fort Collins, CO 80523
| | - James R McCall
- Symbios Technologies, Inc., 3185 Rampart Road, Bldg. A, Colorado State University Research Innovation Center, Fort Collins, CO 80523
| | - Justin P Bzdek
- Symbios Technologies, Inc., 3185 Rampart Road, Bldg. A, Colorado State University Research Innovation Center, Fort Collins, CO 80523
| | - Derek C Johnson
- Symbios Technologies, Inc., 3185 Rampart Road, Bldg. A, Colorado State University Research Innovation Center, Fort Collins, CO 80523
| | - Brooks M Hybertson
- Symbios Technologies, Inc., 3185 Rampart Road, Bldg. A, Colorado State University Research Innovation Center, Fort Collins, CO 80523.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
47
|
Uchiyama H, Zhao QL, Hassan MA, Andocs G, Nojima N, Takeda K, Ishikawa K, Hori M, Kondo T. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu. PLoS One 2015; 10:e0136956. [PMID: 26318000 PMCID: PMC4552761 DOI: 10.1371/journal.pone.0136956] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 08/12/2015] [Indexed: 01/10/2023] Open
Abstract
Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an intracellular milieu is discussed.
Collapse
Affiliation(s)
| | - Qing-Li Zhao
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mariame Ali Hassan
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Gabor Andocs
- Tateyama Machine Co., Ltd., Toyama 930-1305, Japan
| | | | - Keigo Takeda
- Plasma Nanotechnology Research Center Nagoya University, Nagoya 464-8601, Japan
| | - Kenji Ishikawa
- Plasma Nanotechnology Research Center Nagoya University, Nagoya 464-8601, Japan
| | - Masaru Hori
- Plasma Nanotechnology Research Center Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
48
|
Abstract
Cold atmospheric plasma (CAP) is an emerging modality for the treatment of solid tumors. In-vitro experiments have demonstrated that with increasing doses of plasma, tumor cells assays display decreased cell viability. CAP is theorized to induce tumor cells into apoptosis via multiple pathways including reactive oxygen and nitrogen species as well as cell cycle disruption. Studies have shown CAP treatment can decrease mouse model glioblastoma multiforme tumor volume by 56%, increase life span by 60%, and maintain up to 85% viability of normal cells. Emerging evidence suggests that CAP is a viable in-vivo treatment for a number of tumors, including glioblastoma, as it appears to selectively induce tumor cell death while noncancerous cells remain viable.
Collapse
|
49
|
Recek N, Cheng X, Keidar M, Cvelbar U, Vesel A, Mozetic M, Sherman J. Effect of cold plasma on glial cell morphology studied by atomic force microscopy. PLoS One 2015; 10:e0119111. [PMID: 25803024 PMCID: PMC4372419 DOI: 10.1371/journal.pone.0119111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/28/2015] [Indexed: 01/12/2023] Open
Abstract
The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment.
Collapse
Affiliation(s)
- Nina Recek
- Department of Surface Engineering and Optoelectronics, Plasma laboratory, Institute Jozef Stefan, Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Xiaoqian Cheng
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, D.C., United States of America
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, D.C., United States of America
- Department of Neurosurgery, The George Washington University, Washington, D.C., United States of America
- * E-mail:
| | - Uros Cvelbar
- Department of Surface Engineering and Optoelectronics, Plasma laboratory, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Plasma laboratory, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Miran Mozetic
- Department of Surface Engineering and Optoelectronics, Plasma laboratory, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Jonathan Sherman
- Department of Neurosurgery, The George Washington University, Washington, D.C., United States of America
| |
Collapse
|
50
|
Benabbas MT, Sahli S, Benhamouda A, Rebiai S. Effects of the electrical excitation signal parameters on the geometry of an argon-based non-thermal atmospheric pressure plasma jet. NANOSCALE RESEARCH LETTERS 2014; 9:2416. [PMID: 26088991 PMCID: PMC4494020 DOI: 10.1186/1556-276x-9-697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
A non-thermal atmospheric pressure argon plasma jet for medical applications has been generated using a high-voltage pulse generator and a homemade dielectric barrier discharge (DBD) reactor with a cylindrical configuration. A plasma jet of about 6 cm of length has been created in argon gas at atmospheric pressure with an applied peak to peak voltage and a frequency of 10 kV and 50 kHz, respectively. The length and the shape of the created plasma jet were found to be strongly dependent on the electrode setup and the applied voltage and the signal frequency values. The length of the plasma jet increases when the applied voltage and/or its frequency increase, while the diameter at its end is significantly reduced when the applied signal frequency increases. For an applied voltage of 10 kV, the plasma jet diameter decreases from near 5 mm for a frequency of 10 kHz to less than 1 mm at a frequency of 50 kHz. This obtained size of the plasma jet diameter is very useful when the medical treatment must be processed in a reduced space. PACS 2008: 52.50.Dg; 52.70.-m; 52.80.-s.
Collapse
Affiliation(s)
- Mohamed Tahar Benabbas
- Microsystems and Instrumentation Laboratory, Department of Electronics, Faculty of Sciences of Technology, University of Constantine 1, 25017 Constantine, Algeria
| | - Salah Sahli
- Microsystems and Instrumentation Laboratory, Department of Electronics, Faculty of Sciences of Technology, University of Constantine 1, 25017 Constantine, Algeria
| | - Abdallah Benhamouda
- Microsystems and Instrumentation Laboratory, Department of Electronics, Faculty of Sciences of Technology, University of Constantine 1, 25017 Constantine, Algeria
| | - Saida Rebiai
- Microsystems and Instrumentation Laboratory, Department of Electronics, Faculty of Sciences of Technology, University of Constantine 1, 25017 Constantine, Algeria
| |
Collapse
|