1
|
Alikhani MS, Nazari M, Hatamkhani S. Enhancing antibiotic therapy through comprehensive pharmacokinetic/pharmacodynamic principles. Front Cell Infect Microbiol 2025; 15:1521091. [PMID: 40070375 PMCID: PMC11893874 DOI: 10.3389/fcimb.2025.1521091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Antibiotic therapy relies on understanding both pharmacokinetics (PK) and pharmacodynamics (PD), which respectively address drug absorption, distribution, and elimination, and the relationship between drug concentration and antimicrobial efficacy. This review synthesizes decades of research, drawing from in-vitro studies, in-vivo models, and clinical observations, to elucidate the temporal dynamics of antibiotic activity. We explore how these dynamics, including concentration-effect relationships and post antibiotic effects, inform the classification of antibiotics based on their PD profiles. Additionally, we discuss the pivotal role of PK/PD principles in determining optimal dosage regimens. By providing a comprehensive overview of PK/PD principles in antibiotic therapy, this review aims to enhance understanding and improve treatment outcomes in clinical practice.
Collapse
Affiliation(s)
| | - Mohsen Nazari
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shima Hatamkhani
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Doura Alomari H, Alsayed Tolibah Y, Kouchaji C. Efficacy of BioMin F and NovaMin toothpastes against streptococcus mutans: an in vitro study. BDJ Open 2024; 10:20. [PMID: 38467637 PMCID: PMC10928140 DOI: 10.1038/s41405-024-00202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
OBJECTIVE This in vitro study was accomplished to demonstrate the antibacterial efficacy of BioMin F and NovaMin toothpastes against the recently-isolated Streptococcus Mutans in comparison with a commonly used fluoride toothpaste. MATERIALS AND METHODS Dental plaque collection method was adopted to isolate streptococcus mutans in children with dental caries. Then an ideal Streptococcus Mutans colony was incubated in 20 Petri dishes that contained Mueller-Hinton medium. Each dish had 3 wells; one well for each toothpaste (BioMin F, NovMin, and Signal) to perform the agar diffusion test. After incubating for 24 hours, the inhabitation zone around each well of each Petri dish was noticed and measured. Statistical Analysis was achieved using a statistical package, SPSS Windows version 17, by applying Kruskal-Wallis with Mann-Whitney U test (α = 0.05). RESULTS BioMin F showed the highest mean of inhibition zone diameter (x ¯ = 2.67 mm) in compared with NovaMin and Signal (x ¯ = 0.39 mm andx ¯ = 2.19 mm; p < 0.001 in each pairwise comparison). CONCLUSION BioMin F toothpaste showed superior antibacterial effect against Streptococcus mutans to Signal and NovaMin toothpastes. Novamin showed the lowest antibacterial effect. This in vitro study suggests that BioMin F toothpaste shows encouraging potential to be recommended as a preventive measure to reduce the caries risk.
Collapse
Affiliation(s)
- Haya Doura Alomari
- Department of Pediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic
| | - Yasser Alsayed Tolibah
- Department of Pediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic.
| | - Chaza Kouchaji
- Department of Pediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic
| |
Collapse
|
3
|
Fırlak Demirkan M, Öztürk D, Çifçibaşı ZS, Ertan F, Hardy JG, Nurşeval Oyunlu A, Darıcı H. Controlled Sr(ii) ion release from in situ crosslinking electroactive hydrogels with potential for the treatment of infections. RSC Adv 2024; 14:4324-4334. [PMID: 38304567 PMCID: PMC10828636 DOI: 10.1039/d3ra07061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
The development of electrochemical stimuli-responsive drug delivery systems is of both academic and industrial interest due to the ease with which it is possible to trigger payload release, providing drug delivery in a controllable manner. Herein, the preparation of in situ forming hydrogels including electroactive polypyrrole nanoparticles (PPy-NPs) where Sr2+ ions are electrochemically loaded for electrically triggered release of Sr2+ ions is reported. The hydrogels were characterized by a variety of techniques including Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), cyclic voltammetry (CV), etc. The cytocompatibility towards human mesenchymal stem cells (MSCs) and fibroblasts were also studied. The Sr2+ ion loaded PEC-ALD/CS/PPy-NPs hydrogel showed no significant cytotoxicity towards human mesenchymal stem cells (MSCs) and fibroblasts. Sr2+ ions were electrochemically loaded and released from the electroactive hydrogels, and the application of an electrical stimulus enhanced the release of Sr2+ ions from gels by ca. 2-4 fold relative to the passive release control experiment. The antibacterial activity of Sr2+ ions against E. coli and S. aureus was demonstrated in vitro. Although these prototypical examples of Sr2+ loaded electroactive gels don't release sufficient Sr2+ ions to show antibacterial activity against E. coli and S. aureus, we believe future iterations with optimised physical properties of the gels will be capable of doing so.
Collapse
Affiliation(s)
| | - Dilek Öztürk
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | - Fatma Ertan
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | | | - Hakan Darıcı
- HD Bioink Biotechnology Corp. İstanbul Turkey
- 3D Bioprinting Design & Prototyping R&D Center, Istinye University Istanbul Turkey
- Faculty of Medicine, Dept. of Histology & Embryology, Istinye University Istanbul Turkey
- Stem Cell, and Tissue Engineering R&D Center, Istinye University Istanbul Turkey
| |
Collapse
|
4
|
Yang H, Ma R, Chen J, Xie Q, Luo W, Sun P, Liu Z, Guo J. Discovery of Melittin as Triple-Action Agent: Broad-Spectrum Antibacterial, Anti-Biofilm, and Potential Anti-Quorum Sensing Activities. Molecules 2024; 29:558. [PMID: 38338303 PMCID: PMC10856726 DOI: 10.3390/molecules29030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The development of antibiotic-resistant microorganisms is a major global health concern. Recently, there has been an increasing interest in antimicrobial peptides as a therapeutic option. This study aimed to evaluate the triple-action (broad-spectrum antibacterial, anti-biofilm, and anti-quorum sensing activities) of melittin, a membrane-active peptide present in bee venom. The minimum inhibitory concentration and minimum bactericidal concentration of the melittin were determined using the microdilution method and agar plate counting. Growth curve analysis revealed that melittin showed a concentration-dependent antibacterial activity. Scanning electron microscope analysis revealed that melittin treatment altered the morphology. Confocal laser scanning microscope revealed that melittin increased the membrane permeability and intracellular ROS generation in bacteria, all of which contribute to bacterial cell death. In addition, the crystal violet (CV) assay was used to test the anti-biofilm activity. The CV assay demonstrated that melittin inhibited biofilm formation and eradicated mature biofilms. Biofilm formation mediated by quorum sensing (QS) plays a major role in this regard, so molecular docking and molecular dynamics analysis confirmed that melittin interacts with LasR receptors through hydrogen bonds, and further evaluates the anti-QS activity of melittin through the production of virulence factors (pyocyanin, elastase, and rhamnolipid), exopolysaccharides secretion, and bacterial motility, that may be the key to inhibiting the biofilm formation mechanism. The present findings highlight the promising role of melittin as a broad-spectrum antibacterial, anti-biofilm agent, and potential QS inhibitor, providing a new perspective and theoretical basis for the development of alternative antibiotics.
Collapse
Affiliation(s)
- Hongyan Yang
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Rong Ma
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Jiarou Chen
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Qian Xie
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Wenhui Luo
- Guangdong Yifang Pharmaceutical Co., Ltd., Foshan 528244, China;
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan 528000, China (J.C.); (Q.X.)
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
5
|
Balcha ES, Gómez F, Gemeda MT, Bekele FB, Abera S, Cavalazzi B, Woldesemayat AA. Shotgun Metagenomics-Guided Prediction Reveals the Metal Tolerance and Antibiotic Resistance of Microbes in Poly-Extreme Environments in the Danakil Depression, Afar Region. Antibiotics (Basel) 2023; 12:1697. [PMID: 38136731 PMCID: PMC10740858 DOI: 10.3390/antibiotics12121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The occurrence and spread of antibiotic resistance genes (ARGs) in environmental microorganisms, particularly in poly-extremophilic bacteria, remain underexplored and have received limited attention. This study aims to investigate the prevalence of ARGs and metal resistance genes (MRGs) in shotgun metagenome sequences obtained from water and salt crust samples collected from Lake Afdera and the Assale salt plain in the Danakil Depression, northern Ethiopia. Potential ARGs were characterized by the comprehensive antibiotic research database (CARD), while MRGs were identified by using BacMetScan V.1.0. A total of 81 ARGs and 39 MRGs were identified at the sampling sites. We found a copA resistance gene for copper and the β-lactam encoding resistance genes were the most abundant the MRG and ARG in the study area. The abundance of MRGs is positively correlated with mercury (Hg) concentration, highlighting the importance of Hg in the selection of MRGs. Significant correlations also exist between heavy metals, Zn and Cd, and ARGs, which suggests that MRGs and ARGs can be co-selected in the environment contaminated by heavy metals. A network analysis revealed that MRGs formed a complex network with ARGs, primarily associated with β-lactams, aminoglycosides, and tetracyclines. This suggests potential co-selection mechanisms, posing concerns for both public health and ecological balance.
Collapse
Affiliation(s)
- Ermias Sissay Balcha
- School of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, Hawassa P.O. Box 1560, Ethiopia;
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia;
| | - Felipe Gómez
- Centro de Astrobiología (INTA-CSIC) Crtera, Ajalvir km 4 Torrejón de Ardoz, P.O. Box 28850 Madrid, Spain;
| | - Mesfin Tafesse Gemeda
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia;
| | - Fanuel Belayneh Bekele
- School of Public Health, College of Medicine and Health Sciences, Hawassa University, Hawassa P.O. Box 1560, Ethiopia;
| | - Sewunet Abera
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands;
- Institute of Biology, Leiden University, P.O. Box 9500, 2300 RA Leiden, The Netherlands
- Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa P.O. Box 2003, Ethiopia
| | - Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, 40100 Bologna, Italy;
- Department of Geology, University of Johannesburg, Johannesburg P.O. Box 524, South Africa
| | - Adugna Abdi Woldesemayat
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia;
| |
Collapse
|
6
|
Merino N, Berdejo D, Pagán E, Girard C, Kerros S, Spinozzi E, Pagán R, García-Gonzalo D. Phenotypic and Genotypic Comparison of Antimicrobial-Resistant Variants of Escherichia coli and Salmonella Typhimurium Isolated from Evolution Assays with Antibiotics or Commercial Products Based on Essential Oils. Pharmaceuticals (Basel) 2023; 16:1443. [PMID: 37895914 PMCID: PMC10610042 DOI: 10.3390/ph16101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
On account of the widespread development and propagation of antimicrobial-resistant (AMR) bacteria, essential oils (EOs) have emerged as potential alternatives to antibiotics. However, as already observed for antibiotics, recent studies have raised concerns regarding the potential emergence of resistant variants (RVs) to EOs. In this study, we assessed the emergence of RVs in Escherichia coli and Salmonella enterica Typhimurium after evolution assays under extended exposure to subinhibitory doses of two commercial EOs (AEN and COLIFIT) as well as to two antibiotics (amoxicillin and colistin). Phenotypic characterization of RVs from evolution assays with commercial EOs yielded no relevant increases in the minimum inhibitory concentration (MIC) of E. coli and did not even modify MIC values in S. Typhimurium. Conversely, RVs of E. coli and S. Typhimurium isolated from evolution assays with antibiotics showed increased resistance. Genotypic analysis demonstrated that resistance to commercial EOs was associated with enhanced protection against oxidative stress and redirection of cell energy toward efflux activity, while resistance to antibiotics was primarily linked to modifications in the cell binding sites of antibiotics. These findings suggest that AEN and COLIFIT could serve as safe alternatives to antibiotics in combating the emergence and dissemination of antimicrobial resistance within the agrifood system.
Collapse
Affiliation(s)
- Natalia Merino
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Elisa Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | | | | | - Eleonora Spinozzi
- Chemistry Interdiscplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
7
|
Cardoso BD, Castanheira EMS, Lanceros‐Méndez S, Cardoso VF. Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Adv Healthc Mater 2023; 12:e2202936. [PMID: 36898671 PMCID: PMC11468737 DOI: 10.1002/adhm.202202936] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/27/2023] [Indexed: 03/12/2023]
Abstract
The clinical translations of drugs and nanomedicines depend on coherent pharmaceutical research based on biologically accurate screening approaches. Since establishing the 2D in vitro cell culture method, the scientific community has improved cell-based drug screening assays and models. Those advances result in more informative biochemical assays and the development of 3D multicellular models to describe the biological complexity better and enhance the simulation of the in vivo microenvironment. Despite the overall dominance of conventional 2D and 3D cell macroscopic culture methods, they present physicochemical and operational challenges that impair the scale-up of drug screening by not allowing a high parallelization, multidrug combination, and high-throughput screening. Their combination and complementarity with microfluidic platforms enable the development of microfluidics-based cell culture platforms with unequivocal advantages in drug screening and cell therapies. Thus, this review presents an updated and consolidated view of cell culture miniaturization's physical, chemical, and operational considerations in the pharmaceutical research scenario. It clarifies advances in the field using gradient-based microfluidics, droplet-based microfluidics, printed-based microfluidics, digital-based microfluidics, SlipChip, and paper-based microfluidics. Finally, it presents a comparative analysis of the performance of cell-based methods in life research and development to achieve increased precision in the drug screening process.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
| | - Senentxu Lanceros‐Méndez
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science ParkLeioa48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Vanessa F. Cardoso
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| |
Collapse
|
8
|
Khelaifia S, Virginie P, Belkacemi S, Tassery H, Terrer E, Aboudharam G. Culturing the Human Oral Microbiota, Updating Methodologies and Cultivation Techniques. Microorganisms 2023; 11:microorganisms11040836. [PMID: 37110259 PMCID: PMC10143722 DOI: 10.3390/microorganisms11040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Recent years have been marked by a paradigm shift in the study of the human microbiota, with a re-emergence of culture-dependent approaches. Numerous studies have been devoted to the human microbiota, while studies on the oral microbiota still remain limited. Indeed, various techniques described in the literature may enable an exhaustive study of the microbial composition of a complex ecosystem. In this article, we report different methodologies and culture media described in the literature that can be applied to study the oral microbiota by culture. We report on specific methodologies for targeted culture and specific culture techniques and selection methodologies for cultivating members of the three kingdoms of life commonly found in the human oral cavity, namely, eukaryota, bacteria and archaea. This bibliographic review aims to bring together the various techniques described in the literature, enabling a comprehensive study of the oral microbiota in order to demonstrate its involvement in oral health and diseases.
Collapse
Affiliation(s)
- Saber Khelaifia
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Pilliol Virginie
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Souad Belkacemi
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Herve Tassery
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Elodie Terrer
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Gérard Aboudharam
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| |
Collapse
|
9
|
Songnaka N, Lertcanawanichakul M, Hutapea AM, Krobthong S, Yingchutrakul Y, Atipairin A. Purification and Characterization of Novel Anti-MRSA Peptides Produced by Brevibacillus sp. SPR-20. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238452. [PMID: 36500545 PMCID: PMC9738727 DOI: 10.3390/molecules27238452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is listed as a high-priority pathogen because its infection is associated with a high mortality rate. It is urgent to search for new agents to treat such an infection. Our previous study isolated a soil bacterium (Brevibacillus sp. SPR-20), showing the highest antimicrobial activity against S. aureus TISTR 517 and MRSA strains. The present study aimed to purify and characterize anti-MRSA substances produced by SPR-20. The result showed that five active substances (P1-P5) were found, and they were identified by LC-MS/MS that provided the peptide sequences of 14-15 residues. Circular dichroism showed that all peptides contained β-strand and disordered conformations as the major secondary structures. Only P1-P4 adopted more α-helix conformations when incubated with 50 mM SDS. These anti-MRSA peptides could inhibit S. aureus and MRSA in concentrations of 2-32 μg/mL. P1 (NH2-VVVNVLVKVLPPPVV-COOH) had the highest activity and was identified as a novel antimicrobial peptide (AMP). The stability study revealed that P1 was stable in response to temperature, proteolytic enzymes, surfactant, and pH. The electron micrograph showed that P1 induced bacterial membrane damage when treated at 1× MIC in the first hour of incubation. The killing kinetics of P1 was dependent on concentration and time. Mechanisms of P1 on tested pathogens involved membrane permeability, leakage of genetic material, and cell lysis. The P1 peptide at a concentration up to 32 μg/mL showed hemolysis of less than 10%, supporting its safety for human erythrocytes. This study provides promising anti-MRSA peptides that might be developed for effective antibiotics in the post-antibiotic era.
Collapse
Affiliation(s)
- Nuttapon Songnaka
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | | | - Albert M. Hutapea
- Faculty of Science, Universitas Advent Indonesia, Bandung 40559, Indonesia
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Omics Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand
- Drug and Cosmetics Excellence Center, Walailak University, Nakhon Si Thammarat 80161, Thailand
- Correspondence: ; Tel.: +66-7567-2832; Fax: +66-7567-2814
| |
Collapse
|
10
|
Kazmi SSUH, Warren A, Zhong X, Xu H. Effects of nitrofurazone on ecosystem function in marine environments: A case study on microbial fauna. MARINE POLLUTION BULLETIN 2022; 184:114216. [PMID: 36215761 DOI: 10.1016/j.marpolbul.2022.114216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
To evaluate the effects of nitrofurazone on functional processes in marine ecosystems, periphytic protozoan communities were exposed to different concentrations of the antibiotic for a 10-day duration. Species trait distributions in the tested communities were observed during exposure to five concentrations of nitrofurazone. A fuzzy coding system with seven traits and seventeen categories was used to summarize the changes in functional patterns of the test organisms. Nitrofurazone had a significant influence on the function process of the periphytic ciliate communities. Bacterivores with flattened bodies were sensitive to the toxicant whereas sessile and cylindrical raptors showed a high tolerance to nitrofurazone, invariably dominating communities exposed to high concentrations. Bootstrapped-average analysis demonstrated a significant change in functional patterns at highest nitrofurazone concentrations (8 mg l-1). Based on these findings, it is suggested that nitrofurazone may negatively influence ecosystem function in marine environments.
Collapse
Affiliation(s)
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Xiaoxiao Zhong
- College of Chemical Engineering Qingdao University of Science and Technology, Qingdao 266042, China
| | - Henglong Xu
- Department of Microbial Ecology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Erythromycin Formulations—A Journey to Advanced Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102180. [PMID: 36297615 PMCID: PMC9608461 DOI: 10.3390/pharmaceutics14102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Erythromycin (ERY) is a macrolide compound with a broad antimicrobial spectrum which is currently being used to treat a large number of bacterial infections affecting the skin, respiratory tract, intestines, bones and other systems, proving great value from a clinical point of view. It became popular immediately after its discovery in 1952, due to its therapeutic effect against pathogens resistant to other drugs. Despite this major advantage, ERY exhibits several drawbacks, raising serious clinical challenges. Among them, the very low solubility in water and instability under acidic conditions cause a limited efficacy and bioavailability. Apart from this, higher doses promote drug resistance and undesirable effects. In order to overcome these disadvantages, during the past decades, a large variety of ERY formulations, including nanoparticles, have emerged. Despite the interest in ERY-(nano)formulations, a review on them is lacking. Therefore, this work was aimed at reviewing all efforts made to encapsulate ERY in formulations of various chemical compositions, sizes and morphologies. In addition, their preparation/synthesis, physico-chemical properties and performances were carefully analysed. Limitations of these studies, particularly the quantification of ERY, are discussed as well.
Collapse
|
12
|
Henriques TM, Rito B, Proença DN, Morais PV. Application of an Ultrasonic Nebulizer Closet in the Disinfection of Textiles and Footwear. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10472. [PMID: 36078188 PMCID: PMC9518335 DOI: 10.3390/ijerph191710472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The emergence of the coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of disinfection processes in health safety. Textiles and footwear have been identified as vectors for spreading infections. Therefore, their disinfection can be crucial to controlling pathogens' dissemination. The present work aimed to evaluate the effectiveness of a commercial disinfectant aerosolized by an ultrasonic nebulizer closet as an effective method for disinfecting textiles and footwear. The disinfection was evaluated in three steps: suspension tests; nebulization in a 0.08 m3 closet; nebulization in the upscaled 0.58 m3 closet. The disinfection process of textiles and footwear was followed by the use of bacteriophages, bacterial spores, and bacterial cells. The disinfection in the 0.58 m3 closet was efficient for textiles (4 log reduction) when bacteriophage Lambda, Pseudomonas aeruginosa, and Bacillus subtilis were used. The footwear disinfection was achieved (4 log reduction) in the 0.08 m3 closet for Escherichia coli and Staphylococcus aureus. Disinfection in an ultrasonic nebulization closet has advantages such as being quick, not wetting, being efficient on porous surfaces, and is performed at room temperature. Ultrasonic nebulization disinfection in a closet proves to be useful in clothing and footwear stores to prevent pathogen transmission by the items' widespread handling.
Collapse
Affiliation(s)
- Tiago M. Henriques
- UCCCB—University of Coimbra Bacteria Culture Collection, Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
- IATV—Instituto do Ambiente Tecnologia e Vida, 3030-790 Coimbra, Portugal
| | - Beatriz Rito
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Diogo N. Proença
- UCCCB—University of Coimbra Bacteria Culture Collection, Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Paula V. Morais
- UCCCB—University of Coimbra Bacteria Culture Collection, Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
13
|
Najar IN, Das S, Kumar S, Sharma P, Mondal K, Sherpa MT, Thakur N. Coexistence of Heavy Metal Tolerance and Antibiotic Resistance in Thermophilic Bacteria Belonging to Genus Geobacillus. Front Microbiol 2022; 13:914037. [PMID: 36110304 PMCID: PMC9469766 DOI: 10.3389/fmicb.2022.914037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Hot springs are thought to be potential repositories for opportunistic infections, such as antibiotic-resistant strains. However, there is a scarcity of information on the mechanisms of antibiotic resistance gene (ARG) uptake, occurrence, and expression in thermophilic bacteria. Furthermore, because the genesis and proliferation of ARGs in environmental microorganisms are unknown, the research on antibiotic resistance profiles and probable mechanisms in thermophilic bacteria will become increasingly important. The goals of this study are to explore bacterial diversity, antibiotic and heavy metal resistance, and the prevalence and presence of ARG and metal resistance gene (MRG) in Geobacillus species. The 16S rRNA sequencing was used to determine the culturable bacterium diversity of 124 isolates. Standard Kirby Bauer Disc Diffusion and tube dilution procedures were used to determine antibiotic sensitivity and minimum inhibitory concentration (MIC). The tube dilution method was also used to check metal tolerance. To detect ARG and heavy MRG (HMRG), whole genome sequencing studies of the type species of the genus Geobacillus and five randomly selected Geobacillus species were performed. Graph Pad Prism and XLSTAT were used to perform statistical analyses such as ANOVA, EC50 analysis, and principal component analysis (PCA). The phylum Firmicutes and the genus Geobacillus dominated the culture-dependent bacterial diversity. Surprisingly, all thermophilic isolates, i.e., Geobacillus species, were sensitive to at least 10 different antibiotics, as evidenced by the lack of ARGs in whole genome sequencing analysis of numerous Geobacillus species. However, some of these isolates were resistant to at least five different heavy metals, and whole genome sequencing revealed the presence of MRGs in these thermophilic bacteria. The thermophilic genus Geobacillus is generally antibiotic sensitive, according to this study. In contrast, heavy metal is tolerated by them. As a result, it is possible that ARGs and MRGs do not coexist in these bacteria living in hot springs.
Collapse
Affiliation(s)
| | - Sayak Das
- Department of Microbiology, Sikkim University, Gangtok, India
| | - Santosh Kumar
- Department of Microbiology, Sikkim University, Gangtok, India
| | - Prayatna Sharma
- Department of Microbiology, Sikkim University, Gangtok, India
| | | | | | - Nagendra Thakur
- Department of Microbiology, Sikkim University, Gangtok, India
- *Correspondence: Nagendra Thakur
| |
Collapse
|
14
|
Das S, Bombaywala S, Srivastava S, Kapley A, Dhodapkar R, Dafale NA. Genome plasticity as a paradigm of antibiotic resistance spread in ESKAPE pathogens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40507-40519. [PMID: 35349073 DOI: 10.1007/s11356-022-19840-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The major reason behind the spread of antibiotic resistance genes (ARGs) is persistent selective pressure in the environment encountered by bacteria. Genome plasticity plays a crucial role in dissemination of antibiotic resistance among bacterial pathogens. Mobile genetic elements harboring ARGs are reported to dodge bacterial immune system and mediate horizontal gene transfer (HGT) under selective pressure. Residual antibiotic pollutants develop selective pressures that force the bacteria to lose their defense mechanisms (CRISPR-cas) and acquire resistance. The present study targets the ESKAPE organisms (namely, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) causing various nosocomial infections and emerging multidrug-resistant species. The role of CRISPR-cas systems in inhibition of HGT in prokaryotes and its loss due to presence of various stressors in the environment is also focused in the study. IncF and IncH plasmids were identified in all strains of E. faecalis and K. pneumoniae, carrying Beta-lactam and fluoroquinolone resistance genes, whereas sal3, phiCTX, and SEN34 prophages harbored aminoglycoside resistance genes (aadA, aac). Various MGEs present in selected environmental niches that aid the bacterial genome plasticity and transfer of ARGs contributing to its spread are also identified.
Collapse
Affiliation(s)
- Sanchita Das
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sakina Bombaywala
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 20, India
| | - Shweta Srivastava
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 20, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Rita Dhodapkar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 20, India.
| |
Collapse
|
15
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
16
|
Wiggers HJ, Chevallier P, Copes F, Simch FH, da Silva Veloso F, Genevro GM, Mantovani D. Quercetin-Crosslinked Chitosan Films for Controlled Release of Antimicrobial Drugs. Front Bioeng Biotechnol 2022; 10:814162. [PMID: 35360400 PMCID: PMC8963995 DOI: 10.3389/fbioe.2022.814162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Natural polymer-based films, due to their favorable biological and mechanical properties, have demonstrated great potential as coatings for biomedical applications. Among them, chitosan films have been widely studied both as coating materials and as controlled drug release systems. Crosslinkers are often used to tune chitosan’s crosslinking degree and thus to control the drug release kinetics. For this purpose, quercetin, a plant-derived natural polyphenol, has gained attention as a crosslinker, mainly for its intrinsic anti-inflammatory, antioxidant, and antibacterial features. In this study, chitosan films crosslinked with three different concentrations of quercetin (10, 20, and 30% w/w) have been used as controlled release systems for the delivery of the antibacterial drug trimethoprim (TMP, 10% w/w). Physicochemical and antimicrobial properties were investigated. Surface wettability and composition of the films were assessed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR), respectively. The release kinetic of TMP in phosphate-buffered saline (PBS) and 2-(N-morpholino) ethanesulfonic acid (MES) was studied over time. Finally, antibacterial properties were assessed on E. coli and S. aureus through Kirby–Bauer disc diffusion and micro-dilution broth assays. Results show that quercetin, at the tested concentrations, clearly increases the crosslinking degree in a dose-dependent manner, thus influencing the release kinetic of the loaded TMP while maintaining its bactericidal effects. In conclusion, this work demonstrates that quercetin-crosslinked chitosan films represent a promising strategy for the design of antibiotic-releasing coatings for biomedical applications.
Collapse
|
17
|
Kazmi SSUH, Xu H, Warren A. A community-based approach to analyzing the ecotoxicity of nitrofurazone using periphytic protozoa. MARINE POLLUTION BULLETIN 2022; 175:113165. [PMID: 34839952 DOI: 10.1016/j.marpolbul.2021.113165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The ecotoxicity of nitrofurazone was analyzed based on a community-based approach using periphytic protozoa. Median lethal concentrations (LC50) within an exposure time of 30 min were determined by an acute toxicity test at 0, 1.5, 3, 6 and 12 mg ml-1 nitrofurazone. Toxicity curve tests demonstrated a decreasing trend with increasing exposure time and was well fitted to the toxicity equation LC50 = 32.85e-0.8143t (t = exposure time; R2 = 0.91; P < 0.05). Median inhibition concentrations (IC50) for periphytic protozoan growth rates were obtained by chronic tests at 0, 1, 2, 4 and 8 mg ml-1 nitrofurazone within 10 days exposure and were well fitted to the equation r% = 0.3686e-0.35Cnit (Cnit is the concentration of nitrofurazone; R2 = 0.92 and P < 0.05). These findings suggest that the LC50 and IC50 values of nitrofurazone can be predicted for any exposure time using periphytic protozoan communities as a bioassay model.
Collapse
Affiliation(s)
| | - Henglong Xu
- Department of Microbial Ecology, Ocean University of China, Qingdao 266003, PR China.
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
18
|
Vaikosen EN, Origbo SO, Ere D, Odaderia P. Comparative application of biological and ninhydrin- derivatized spectrophotometric assays in the evaluation and validation of amikacin sulfate injection. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
19
|
Prapaiwong T, Srakaew W, Wachirapakorn C, Jarassaeng C. Effects of hydrolyzable tannin extract obtained from sweet chestnut wood ( Castanea sativa Mill.) against bacteria causing subclinical mastitis in Thai Friesian dairy cows. Vet World 2021; 14:2427-2433. [PMID: 34840463 PMCID: PMC8613771 DOI: 10.14202/vetworld.2021.2427-2433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Aim: Hydrolyzable tannins are an important group of secondary plant metabolites, which are known for antimicrobial activity. This study aimed to assess the efficiency with which a hydrolyzable tannin extract from sweet chestnut wood (Castanea sativa Mill.) could inhibit mastitis-causing bacteria in vitro. Materials and Methods: The negative control used was sterile water, and the positive controls were penicillin and gentamicin. The treatments included five concentrations of hydrolyzable tannins (63, 190, 313, 630, and 940 mg/mL). In cows with subclinical mastitis, the bacteria causing the disease were isolated and identified. Then, the antibacterial activity of the hydrolyzable tannin extract was assessed by the disk diffusion method, by determining the minimum inhibitory concentration (MIC) and by determining the minimum bactericidal concentration (MBC). Results: Penicillin inhibited (p<0.01) the growth of Staphylococcus aureus, Streptococcus uberis, and Pseudomonas aeruginosa but could not inhibit (p>0.05) the growth of Streptococcus agalactiae, Escherichia coli, and Klebsiella pneumoniae. However, gentamicin and hydrolyzable tannins could inhibit (p<0.01) all isolated bacteria. Increasing the concentration of hydrolyzable tannin extract resulted in a quadratic increase in the inhibition zone diameter of S. aureus and S. agalactiae and a linear increase in the inhibition zone diameter of E. coli, K. pneumoniae, and P. aeruginosa. In addition, 630 and 940 mg/mL of hydrolyzable tannin extract showed the highest antibacterial activity against S. agalactiae and E. coli (p<0.01), while 940 mg/mL concentration had the highest antibacterial activity against K. pneumoniae (p<0.01). The MIC and MBC of the extract were 27.3-190 mg/mL and 58.8-235 mg/mL, respectively, with the MBC: MIC ratio being 2:1. Conclusion: The antimicrobial activity of the hydrolyzable tannin extract against subclinical mastitis bacteria was comparable to the antibiotics (positive controls) at concentrations over 630 mg/mL. Although these in vitro findings are promising, further research is needed to determine whether hydrolyzable tannins could be used to control or prevent subclinical mastitis in dairy cows.
Collapse
Affiliation(s)
- Tipwadee Prapaiwong
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wuttikorn Srakaew
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chalong Wachirapakorn
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaiwat Jarassaeng
- Division of Theriogenology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
20
|
Syafriana V, Febriani A, Suyatno S, Nurfitri N, Hamida F. Antimicrobial Activity of Ethanolic Extract of Sempur (Dillenia suffruticosa (Griff.) Martelli) Leaves against Pathogenic Microorganisms. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i2.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sempur (Dillenia suffruticosa) leaves are known as a traditional medicine for the people of Bangka-Belitung Island. The local people empirically utilize the boiled water of D. suffruticosa leaves as anti-diarrhea. However, the antimicrobial activity of the ethanol extract of D. suffruticosa leaves has not been reported. This study aims to determine the antimicrobial activity of the ethanol extract of D. suffruticosa leaves against several microorganisms: Staphylococcus aureus as Gram-positive bacteria, Escherichia coli as Gram-negative bacteria, and Candida albicans as fungi. Extraction was carried out by maceration method with 70% ethanol, then screened for phytochemical constituents. The antimicrobial test was carried out by the disc diffusion method using Nutrient Agar (NA) for bacteria, and Sabouraud Dextrose Agar (SDA) for fungi. The results of phytochemical screening showed that the ethanol extract of D. suffruticosa leaves contained alkaloids, flavonoids, tannins, and saponins. The antimicrobial test showed that the extract of D. suffruticosa leaves could inhibit the growth of S. aureus at concentrations of 10%, 20%, and 40% were 8.35±0.05; 9.34±0.32; and 10.52±0.22, respectively. The ethanol extract of D. suffruticosa leaves could inhibit the growth of S. aureus, whereas E. coli and C. albicans did not show any activity.
Collapse
|
21
|
Gautam M, Kim JO, Yong CS. Fabrication of aerosol-based nanoparticles and their applications in biomedical fields. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021; 51:361-375. [PMID: 33996174 PMCID: PMC8113021 DOI: 10.1007/s40005-021-00523-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Traditionally, nanoparticles for biomedical applications have been produced via the classical wet chemistry method, with size control remaining a major problem in drug delivery. In recent years, advances in aerosol-based technologies have led to the development of methods that enable the production of nanosized particles and have opened up new opportunities in the field of nano-drug delivery and biomedicine. Aerosol-based technologies have been constantly used to synthesize multifunctional nanoparticles with different properties, which extends their possible biological and medicinal applications. Moreover, aerosol technologies are often more beneficial than other existing approaches because of the major disadvantages of these other techniques. AREA COVERED This review provides a brief discussion of the existing aerosol-based nanotechnologies and applications of nanoparticles in a variety of diseases. Various types of nanoparticles, such as graphene oxide, Prussian blue, black phosphorous, gold, copper, silver, tellurium, iron oxide, titania, magnesium oxide, and zinc oxide nanoparticles, prepared using aerosol technologies are discussed in this review. The different tactics used for surface modifications are also outlined. The biomedical applications of nanoparticles in chemotherapy, bacterial/fungal/viral treatment, disease diagnosis, and biological assays are also presented in this review. EXPERT OPINION Aerosol-based technologies can be used to design nanoparticles with the desired functionality. This significantly benefits the nanomedicine field, particularly as product parameters are becoming more encompassing and exacting. One of the biggest issues with conventional methods is their scale-up/scale-down and clinical translation. Aerosol-based nanoparticle synthesis helps enhance control over the product properties and facilitate their use for clinical applications.
Collapse
Affiliation(s)
- Milan Gautam
- College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyeongsan, 712-749 Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyeongsan, 712-749 Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|
22
|
Moradi M, Kousheh SA, Razavi R, Rasouli Y, Ghorbani M, Divsalar E, Tajik H, Guimarães JT, Ibrahim SA. Review of microbiological methods for testing protein and carbohydrate-based antimicrobial food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Sweet E, Yang B, Chen J, Vickerman R, Lin Y, Long A, Jacobs E, Wu T, Mercier C, Jew R, Attal Y, Liu S, Chang A, Lin L. 3D microfluidic gradient generator for combination antimicrobial susceptibility testing. MICROSYSTEMS & NANOENGINEERING 2020; 6:92. [PMID: 34567702 PMCID: PMC8433449 DOI: 10.1038/s41378-020-00200-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/25/2020] [Accepted: 08/01/2020] [Indexed: 06/13/2023]
Abstract
Microfluidic concentration gradient generators (µ-CGGs) have been utilized to identify optimal drug compositions through antimicrobial susceptibility testing (AST) for the treatment of antimicrobial-resistant (AMR) infections. Conventional µ-CGGs fabricated via photolithography-based micromachining processes, however, are fundamentally limited to two-dimensional fluidic routing, such that only two distinct antimicrobial drugs can be tested at once. This work addresses this limitation by employing Multijet-3D-printed microchannel networks capable of fluidic routing in three dimensions to generate symmetric multidrug concentration gradients. The three-fluid gradient generation characteristics of the fabricated 3D µ-CGG prototype were quantified through both theoretical simulations and experimental validations. Furthermore, the antimicrobial effects of three highly clinically relevant antibiotic drugs, tetracycline, ciprofloxacin, and amikacin, were evaluated via experimental single-antibiotic minimum inhibitory concentration (MIC) and pairwise and three-way antibiotic combination drug screening (CDS) studies against model antibiotic-resistant Escherichia coli bacteria. As such, this 3D µ-CGG platform has great potential to enable expedited combination AST screening for various biomedical and diagnostic applications.
Collapse
Affiliation(s)
- Eric Sweet
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720 USA
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
| | - Brenda Yang
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Joshua Chen
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Reed Vickerman
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720 USA
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 USA
| | - Yujui Lin
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
| | - Alison Long
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Eric Jacobs
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Tinglin Wu
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Camille Mercier
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Ryan Jew
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720 USA
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Yash Attal
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Siyang Liu
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720 USA
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
| | - Andrew Chang
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
| | - Liwei Lin
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720 USA
- Berkeley Sensor and Actuator Center, Berkeley, CA 94720 USA
| |
Collapse
|
24
|
Maisonneuve E, Chevrier J, Dubus M, Varin J, Sergheraert J, Gangloff SC, Reffuveille F, Mauprivez C, Kerdjoudj H. Infection of Human Dental Pulp Stromal Cells by Streptococcus mutans: Shedding Light on Bacteria Pathogenicity and Pulp Inflammation. Front Cell Dev Biol 2020; 8:785. [PMID: 32984312 PMCID: PMC7487799 DOI: 10.3389/fcell.2020.00785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cariogenic Streptococcus mutans (S. mutans) is implicated in the dental pulp necrosis but also in cardiovascular tissue infections. Herein, the purpose was to elucidate how human dental pulp derived stromal cells (DPSCs) react toward a direct interaction with S. mutans. DPSCs were challenged with S. mutans. Following 3 h of interaction, DPSCs were able to internalize S. mutans (rate < 1%), and F-actin fibers played a significant role in this process. S. mutans persisted in the DPSCs for 48 h without causing a cytotoxic effect. S. mutans was, however, able to get out of the DPSCs cytoplasm and to proliferate in the extracellular environment. Yet, we noticed several adaptive responses of bacteria to the extracellular environment such as a modification of the kinetic growth, the increase in biofilm formation on type I collagen and polyester fabrics, as well as a tolerance toward amoxicillin. In response to infection, DPSCs adopted a proinflammatory profile by increasing the secretion of IL-8, lL-1β, and TNF-α, strengthening the establishment of the dental pulp inflammation. Overall, these findings showed a direct impact of S. mutans on DPSCs, providing new insights into the potential role of S. mutans in infective diseases.
Collapse
Affiliation(s)
- Elodie Maisonneuve
- Université de Reims Champagne Ardenne, EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Julie Chevrier
- Université de Reims Champagne Ardenne, EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Marie Dubus
- Université de Reims Champagne Ardenne, EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France.,Université de Reims Champagne Ardenne, UFR d'Odontologie, Reims, France
| | - Jennifer Varin
- Université de Reims Champagne Ardenne, EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Johan Sergheraert
- Université de Reims Champagne Ardenne, EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France.,Université de Reims Champagne Ardenne, UFR d'Odontologie, Reims, France.,Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Sophie C Gangloff
- Université de Reims Champagne Ardenne, EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France.,Université de Reims Champagne Ardenne, UFR de Pharmacie, Reims, France
| | - Fany Reffuveille
- Université de Reims Champagne Ardenne, EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France.,Université de Reims Champagne Ardenne, UFR de Pharmacie, Reims, France
| | - Cédric Mauprivez
- Université de Reims Champagne Ardenne, EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France.,Université de Reims Champagne Ardenne, UFR d'Odontologie, Reims, France.,Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France.,Université de Reims Champagne Ardenne, UFR d'Odontologie, Reims, France
| |
Collapse
|
25
|
Garzón V, Bustos RH, G. Pinacho D. Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring. J Pers Med 2020; 10:E147. [PMID: 32993004 PMCID: PMC7712907 DOI: 10.3390/jpm10040147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine.
Collapse
Affiliation(s)
- Vivian Garzón
- PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| | - Daniel G. Pinacho
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| |
Collapse
|
26
|
Pauter K, Szultka-Młyńska M, Buszewski B. Determination and Identification of Antibiotic Drugs and Bacterial Strains in Biological Samples. Molecules 2020; 25:E2556. [PMID: 32486359 PMCID: PMC7321139 DOI: 10.3390/molecules25112556] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Antibiotics were initially natural substances. However, nowadays, they also include synthetic drugs, which show their activity against bacteria, killing or inhibiting their growth and division. Thanks to these properties, many antibiotics have quickly found practical application in the fight against infectious diseases such as tuberculosis, syphilis, gastrointestinal infections, pneumonia, bronchitis, meningitis and septicemia. Antibiotic resistance is currently a detrimental problem; therefore, in addition to the improvement of antibiotic therapy, attention should also be paid to active metabolites in the body, which may play an important role in exacerbating the existing problem. Taking into account the clinical, cognitive and diagnostic purposes of drug monitoring, it is important to select an appropriate analytical method that meets all the requirements. The detection and identification of the microorganism responsible for the infection is also an essential factor in the implementation of appropriate antibiotic therapy. In recent years, clinical microbiology laboratories have experienced revolutionary changes in the way microorganisms are identified. The MALDI-TOF MS technique may be interesting, especially in some areas where a quick analysis is required, as is the case with clinical microbiology. This method is not targeted, which means that no prior knowledge of the infectious agent is required, since identification is based on a database match.
Collapse
Affiliation(s)
- Katarzyna Pauter
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (K.P.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (K.P.); (B.B.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (K.P.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
27
|
Sanz CG, Serrano SHP, Brett CMA. Electroanalysis of Cefadroxil Antibiotic at Carbon Nanotube/Gold Nanoparticle Modified Glassy Carbon Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Caroline G. Sanz
- University of Coimbra, CEMMPREFaculty of Sciences and Technology, Department of Chemistry 3004-535 Coimbra Portugal
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of São Paulo 05508-000 São Paulo/SP Brazil
| | - Silvia H. P. Serrano
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of São Paulo 05508-000 São Paulo/SP Brazil
| | - Christopher M. A. Brett
- University of Coimbra, CEMMPREFaculty of Sciences and Technology, Department of Chemistry 3004-535 Coimbra Portugal
| |
Collapse
|
28
|
Najar IN, Sherpa MT, Das S, Das S, Thakur N. Diversity analysis and metagenomic insights into antibiotic and metal resistance among Himalayan hot spring bacteriobiome insinuating inherent environmental baseline levels of antibiotic and metal tolerance. J Glob Antimicrob Resist 2020; 21:342-352. [PMID: 32344121 DOI: 10.1016/j.jgar.2020.03.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Mechanisms of occurrence and expression of antibiotic resistance genes (ARGs) in thermophilic bacteria are still unknown owing to limited research and data. In this research, comparative profiling of ARGs and metal tolerance genes among thermophilic bacteria has been done by functional metagenomic methods. METHODS Shotgun metagenomic sequence data were generated using Illumina HiSeq 4000. Putative ARGs from the PROKKA predicted genes were identified with the ardbAnno V.1.0 script available from the ARDB (Antibiotic Resistance Genes Database) consortium using the non-redundant resistance genes as a reference. Putative metal resistance genes (MRGs) were identified by using BacMetScan V.1.0. The whole-genome sequencing for bacterial isolates was performed using Illumina HiSeq 4000 sequencing technology with a paired-end sequencing module. RESULTS Metagenomic analysis showed the dominance of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes in two hot springs of Sikkim. ARG analysis through shotgun gene sequencing was found to be negative in the case of thermophilic bacteria. However, few genes were detected but they showed maximum similarity with mesophilic bacteria. Concurrently, MRGs were also detected in the metagenome sequence of isolates from hot springs. Detection of MRGs and absence of ARGs investigated by whole-genome sequencing in the reference genome sequence of thermophilic Geobacillus also conveyed the same message. CONCLUSION The study of ARGs and MRGs (Heavy metal resistance gene) among culturable and non-culturable bacteria from the hot springs of Sikkim via metagenomics showed a preferential selection of MRGs over ARGs. The absence of ARGs also does not support the co-selection of ARGs and MRGs in these environments. This evolutionary selection of metal resistance over antibiotic genes may have been necessary to survive in the geological craters which have an abundance of different metals from earth sediments rather than antibiotics. Furthermore, the selection could be environment driven depending on the susceptibility of ARGs in a thermophilic environments as it reduces the chances of horizontal gene transfer.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India.
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India.
| | - Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India.
| | - Saurav Das
- Panhandle Research and Extension Center, University of Nebraska, Lincoln, NE, USA.
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India.
| |
Collapse
|
29
|
Dafale NA, Srivastava S, Purohit HJ. Zoonosis: An Emerging Link to Antibiotic Resistance Under "One Health Approach". Indian J Microbiol 2020; 60:139-152. [PMID: 32255846 DOI: 10.1007/s12088-020-00860-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Current scenario in communicable diseases has generated new era that identifies the "One health" approach to understand the sharing and management of etiological agents with its impact on ecosystem. Under this context the relevance of zoonotic diseases generates major concern. The indiscriminate and higher use of antibiotics in animal husbandry creates substantial pressure on the gut microbiome for development of resistance due to shorter generation time and high density. Thus, gut works as a bioreactor for the breeding of ARBs in this scenario and are continuously released in different niches. These ARBs transfer resistance genes among native flora through horizontal gene transfer events, vectors and quorum sensing. About 60% of infectious diseases in human are caused by zoonotic pathogens have potential to carry ARGs which could be transmitted to humans. The well documented zoonotic diseases are anthrax cause by Bacillus anthracis, bovine tuberculosis by Mycobacterium tuberculosis, brucellosis by Brucella abortus, and hemorrhagic colitis by Escherichia coli. Similarly, most of the antibiotics are not completely metabolized and released in unmetabolized forms which enters the food chain and affect various ecological niches through bioaccumulation. The persistence period of antibiotics ranges from < 1 to 3466 days in environment. The consequences of misusing the antibiotic in livestock and their fate in various ecological niches have been discussed in this review. Further the light sheds on antibiotics persistence and it biodegradation through different abiotic and biotic approaches in environment. The knowledge on personnel hygiene and strong surveillance system for zoonotic disease including ARBs transmission, prevention and control measures should be established to regulate the spread of AMR in the environment and subsequently to the human being through a food web.
Collapse
Affiliation(s)
- Nishant A Dafale
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020 India
| | - Shweta Srivastava
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020 India
| | - Hemant J Purohit
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020 India
| |
Collapse
|
30
|
Hu Y, Wang J, Shen Y. Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121335. [PMID: 31590081 DOI: 10.1016/j.jhazmat.2019.121335] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic fermentation residues is a hazardous waste due to the existence of residual antibiotics and antibiotic resistance genes (ARGs), probably leading to the induction and spread of antibiotic resistant bacteria (ARB) in the environment, which could pose potential harm to the ecosystem and human health. It is urgent to develop an effective technology to remove the residual antibiotics and ARGs. In this study, the anaerobic digestion combined with gamma irradiation was applied for the disposal and utilization of cephalosporin C fermentation residues. The experimental results showed that the antibacterial activities of cephalosporin C against Staphylococcus aureus were significantly decreased after anaerobic digestion. The removal of tolC, a multidrug resistant gene, was improved up to 100% by the combination of gamma irradiation and anaerobic digestion compared to solely anaerobic digestion process, which may be due to the changes of microbial community structures induced by gamma irradiation.
Collapse
Affiliation(s)
- Yuming Hu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Company, Ltd., Xinjiang, 835007, PR China; School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| |
Collapse
|
31
|
Orszulik ST. Quality and suitability of antimicrobial discs: theoretical and practical sources of error and variability. Expert Rev Mol Diagn 2020; 20:277-283. [PMID: 31955633 DOI: 10.1080/14737159.2020.1719070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The use of antimicrobial discs remains one of the main methods for assessing antibiotic activity. Most discs are made to one of three main standards (FDA, WHO, DIN); these all describe an assay method for assessing the quality of discs using a linear method. Theory predicts a curved relationship, and this is backed up in many cases in practice. In such cases, the assays are potentially invalid. Other sources of uncertainty arising from the manufacturing processes employed are also discussed.Areas covered: This includes error arising from applying FDA, WHO, and DIN standards, the manufacturing techniques employed, and variation in the materials used in production. The need for a specification that relates directly to the use of the discs is also discussed.Expert opinion: Manufactured discs, some of which may be out of specification due to curvature and other sources of error, have been used to establish quality zone sizes. Quality zone sizes have then been used to measure the quality of discs. This circular quality system where there is no quantitative check is potentially unsafe. In the many decades of their use, there has been no comprehensive check on the quality of manufactured discs using quantitative, validated assays.
Collapse
|
32
|
Avianto P, Mahfudz, Suharjono, Isnaeni, Alderman CP. In vitro equivalence of generic and branded amoxicillin tablet by microbiological assay method. J Basic Clin Physiol Pharmacol 2020; 30:/j/jbcpp.2019.30.issue-6/jbcpp-2019-0247/jbcpp-2019-0247.xml. [PMID: 31939272 DOI: 10.1515/jbcpp-2019-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/22/2019] [Indexed: 11/15/2022]
Abstract
Background Indonesian Ministry of Health advocate doctors, especially in government-owned healthcare facility, to prescribe generic drugs including amoxicillin. Although BPOM (the National Agency of Drug and Food Control) already guarantees that the generic amoxicillin and the branded one were interchangeable, lack of confidence in generic drugs still remains among patients, pharmacists, and doctors. This issue supported by lack of publication confirmed the therapeutic equivalence of branded and generic drugs. This study aims to evaluate and compare the in vitro microbiological assay of different generic and branded amoxicillin that are available in Indonesian market, especially those used in government-owned healthcare facilities. Methods Microbiological assays for five samples of amoxicillin tablet containing 500 mg amoxicillin available in Indonesia were determined using a method from Indonesia Pharmacopeia. Samples were coded as Products A to E. The assay was carried out by measuring the diameter of the inhibition zones in the plate agar incubated with Escherichia coli and Staphylococcus aureus. The obtained data were evaluated to determine the sample potency and compared with the amoxicillin reference standard. Results Minor and insignificant differences (p > 0.05) were found in the diameters of the inhibition zones. Potency ratio measured both in E. coli and S. aureus were all between 95% and 105%. The lowest of the tested samples were from Product C, which resulted to ratio potencies of 96.3% and 95.5% in E. coli and S. aureus, respectively. Conclusions All five samples were in the range of the acceptance criteria. Therefore, from the view of the microbiological assay, these products are in equivalence in quality and are interchangeable.
Collapse
Affiliation(s)
- Primadi Avianto
- Faculty of Pharmacy, Universitas Airlangga, Master Program in Clinical Pharmacy, Department of Clinical Pharmacy, Kampus C, UNAIR, Mulyorejo Rd. Surabaya, Indonesia
| | - Mahfudz
- Faculty of Pharmacy, Universitas Airlangga, Master Program in Clinical Pharmacy, Department of Clinical Pharmacy, Kampus C, UNAIR, Mulyorejo Rd. Surabaya, Indonesia.,Pharmacy Section, Bangka Tengah District Health Office, Bangka Belitung, Indonesia
| | - Suharjono
- Faculty of Pharmacy, Universitas Airlangga, Department of Clinical Pharmacy, Kampus C, UNAIR, Mulyorejo Rd. Surabaya, Indonesia
| | - Isnaeni
- Faculty of Pharmacy, Universitas Airlangga, Department of Pharmaceutical Chemistry, Kampus C, UNAIR, Mulyorejo Rd. Surabaya, Indonesia
| | - Christopher Paul Alderman
- Faculty of Pharmacy, Universitas Airlangga, Department of Clinical Pharmacy, Kampus C, UNAIR, Mulyorejo Rd. Surabaya, Indonesia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
33
|
Vukomanovic M, Torrents E. High time resolution and high signal-to-noise monitoring of the bacterial growth kinetics in the presence of plasmonic nanoparticles. J Nanobiotechnology 2019; 17:21. [PMID: 30709404 PMCID: PMC6357367 DOI: 10.1186/s12951-019-0459-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Emerging concepts for designing innovative drugs (i.e., novel generations of antimicrobials) frequently include nanostructures, new materials, and nanoparticles (NPs). Along with numerous advantages, NPs bring limitations, partly because they can limit the analytical techniques used for their biological and in vivo validation. From that standpoint, designing innovative drug delivery systems requires advancements in the methods used for their testing and investigations. Considering the well-known ability of resazurin-based methods for rapid detection of bacterial metabolisms with very high sensitivity, in this work we report a novel optimization for tracking bacterial growth kinetics in the presence of NPs with specific characteristics, such as specific optical properties. RESULTS Arginine-functionalized gold composite (HAp/Au/arginine) NPs, used as the NP model for validation of the method, possess plasmonic properties and are characterized by intensive absorption in the UV/vis region with a surface plasmon resonance maximum at 540 nm. Due to the specific optical properties, the NP absorption intensively interferes with the light absorption measured during the evaluation of bacterial growth (optical density; OD600). The results confirm substantial nonspecific interference by NPs in the signal detected during a regular turbidity study used for tracking bacterial growth. Instead, during application of a resazurin-based method (Presto Blue), when a combination of absorption and fluorescence detection is applied, a substantial increase in the signal-to-noise ratio is obtained that leads to the improvement of the accuracy of the measurements as verified in three bacterial strains tested with different growth rates (E. coli, P. aeruginosa, and S. aureus). CONCLUSIONS Here, we described a novel procedure that enables the kinetics of bacterial growth in the presence of NPs to be followed with high time resolution, high sensitivity, and without sampling during the kinetic study. We showed the applicability of the Presto Blue method for the case of HAp/Au/arginine NPs, which can be extended to various types of metallic NPs with similar characteristics. The method is a very easy, economical, and reliable option for testing NPs designed as novel antimicrobials.
Collapse
Affiliation(s)
- Marija Vukomanovic
- Bacterial Infections: Antimicrobial Therapies, Institute for Bioengineering of Catalonia (IBEC), The Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain.
- Advanced Materials Department, Institute Jozef Stefan, Jamova 39, Ljubljana, Slovenia.
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies, Institute for Bioengineering of Catalonia (IBEC), The Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain.
| |
Collapse
|
34
|
Parmar KM, Dafale NA, Tikariha H, Purohit HJ. Genomic characterization of key bacteriophages to formulate the potential biocontrol agent to combat enteric pathogenic bacteria. Arch Microbiol 2018; 200:611-622. [PMID: 29330592 DOI: 10.1007/s00203-017-1471-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022]
Abstract
Combating bacterial pathogens has become a global concern especially when the antibiotics and chemical agents are failing to control the spread due to its resistance. Bacteriophages act as a safe biocontrol agent by selectively lysing the bacterial pathogens without affecting the natural beneficial microflora. The present study describes the screening of prominent enteric pathogens NDK1, NDK2, NDK3, and NDK4 (Escherichia, Klebsiella, Enterobacter, and Serratia) mostly observed in domestic wastewater; against which KNP1, KNP2, KNP3, and KNP4 phages were isolated. To analyze their potential role in eradicating enteric pathogens and toxicity issue, these bacteriophages were sequenced using next-generation sequencing and characterized based on its genomic content. The isolated bacteriophages were homologous to Escherichia phage (KNP1), Klebsiella phage (KNP2), Enterobacter phage (KNP3), Serratia phage (KNP4), and belonged to Myoviridae family of Caudovirales except for the unclassified KNP4 phage. Draft genome analysis revealed the presence of lytic enzymes such as holing and lysozyme in KNP1 phage, endolysin in KNP2 phage, and endopeptidase with holin in KNP3 phage. The absence of any lysogenic and virulent genes makes this bacteriophage suitable candidate for preparation of phage cocktail to combat the pathogens present in wastewater. However, KNP4 contained a virulent gene rendering it unsuitable to be used as a biocontrol agent. These findings make the phages (KNP1-KNP3) as a promising alternative for the biocontrol of pathogens in wastewater which is the main culprit to spread these dominated pathogens in different natural water bodies. This study also necessitates for genomic screening of bacteriophages for lysogenic and virulence genes prior to its use as a biocontrol agent.
Collapse
Affiliation(s)
- Krupa M Parmar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| | - Hitesh Tikariha
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| |
Collapse
|
35
|
Kemme M, Heinzel-Wieland R. Quantitative Assessment of Antimicrobial Activity of PLGA Films Loaded with 4-Hexylresorcinol. J Funct Biomater 2018; 9:E4. [PMID: 29324696 PMCID: PMC5872090 DOI: 10.3390/jfb9010004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/17/2022] Open
Abstract
Profound screening and evaluation methods for biocide-releasing polymer films are crucial for predicting applicability and therapeutic outcome of these drug delivery systems. For this purpose, we developed an agar overlay assay embedding biopolymer composite films in a seeded microbial lawn. By combining this approach with model-dependent analysis for agar diffusion, antimicrobial potency of the entrapped drug can be calculated in terms of minimum inhibitory concentrations (MICs). Thus, the topical antiseptic 4-hexylresorcinol (4-HR) was incorporated into poly(lactic-co-glycolic acid) (PLGA) films at different loadings up to 3.7 mg/cm² surface area through a solvent casting technique. The antimicrobial activity of 4-HR released from these composite films was assessed against a panel of Gram-negative and Gram-positive bacteria, yeasts and filamentous fungi by the proposed assay. All the microbial strains tested were susceptible to PLGA-4-HR films with MIC values down to 0.4% (w/w). The presented approach serves as a reliable method in screening and quantifying the antimicrobial activity of polymer composite films. Moreover, 4-HR-loaded PLGA films are a promising biomaterial that may find future application in the biomedical and packaging sector.
Collapse
Affiliation(s)
- Michael Kemme
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt, University of Applied Sciences, Stephanstrasse 7, 64295 Darmstadt, Germany.
| | - Regina Heinzel-Wieland
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt, University of Applied Sciences, Stephanstrasse 7, 64295 Darmstadt, Germany.
| |
Collapse
|
36
|
Ko HHT, Lareu RR, Dix BR, Hughes JD. Statins: antimicrobial resistance breakers or makers? PeerJ 2017; 5:e3952. [PMID: 29085751 PMCID: PMC5659212 DOI: 10.7717/peerj.3952] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
Introduction The repurposing of non-antibiotic drugs as adjuvant antibiotics may help break antimicrobial resistance (AMR). Statins are commonly prescribed worldwide to lower cholesterol. They also possess qualities of AMR “breakers”, namely direct antibacterial activity, synergism with antibiotics, and ability to stimulate the host immune system. However, statins’ role as AMR breakers may be limited. Their current extensive use for cardiovascular protection might result in selective pressures for resistance, ironically causing statins to be AMR “makers” instead. This review examines statins’ potential as AMR breakers, probable AMR makers, and identifies knowledge gaps in a statin-bacteria-human-environment continuum. The most suitable statin for repurposing is identified, and a mechanism of antibacterial action is postulated based on structure-activity relationship analysis. Methods A literature search using keywords “statin” or “statins” combined with “minimum inhibitory concentration” (MIC) was performed in six databases on 7th April 2017. After screening 793 abstracts, 16 relevant studies were identified. Unrelated studies on drug interactions; antifungal or antiviral properties of statins; and antibacterial properties of mevastatin, cerivastatin, antibiotics, or natural products were excluded. Studies involving only statins currently registered for human use were included. Results Against Gram-positive bacteria, simvastatin generally exerted the greatest antibacterial activity (lowest MIC) compared to atorvastatin, rosuvastatin, and fluvastatin. Against Gram-negative bacteria, atorvastatin generally exhibited similar or slightly better activity compared to simvastatin, but both were more potent than rosuvastatin and fluvastatin. Discussion Statins may serve as AMR breakers by working synergistically with existing topical antibiotics, attenuating virulence factors, boosting human immunity, or aiding in wound healing. It is probable that statins’ mechanism of antibacterial activity involves interference of bacterial cell regulatory functions via binding and disrupting cell surface structures such as wall teichoic acids, lipoteichoic acids, lipopolysaccharides, and/or surface proteins. The widespread use of statins for cardiovascular protection may favor selective pressures or co-selection for resistance, including dysbiosis of the human gut microbiota, sublethal plasma concentrations in bacteremic patients, and statin persistence in the environment, all possibly culminating in AMR. Conclusion Simvastatin appears to be the most suitable statin for repurposing as a novel adjuvant antibiotic. Current evidence better supports statins as potential AMR breakers, but their role as plausible AMR makers cannot be excluded. Elucidating the mechanism of statins’ antibacterial activity is perhaps the most important knowledge gap to address as this will likely clarify statins’ role as AMR breakers or makers.
Collapse
Affiliation(s)
- Humphrey H T Ko
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia.,Curtin Health Innovation Research Institute (CHIRI) Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Ricky R Lareu
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia.,Curtin Health Innovation Research Institute (CHIRI) Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Brett R Dix
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Jeffery D Hughes
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
37
|
Hong Y, Tan Y, Meng Y, Yang H, Zhang Y, Warren A, Li J, Lin X. Evaluation of biomarkers for ecotoxicity assessment by dose-response dynamic models: Effects of nitrofurazone on antioxidant enzymes in the model ciliated protozoan Euplotes vannus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:552-559. [PMID: 28688356 DOI: 10.1016/j.ecoenv.2017.06.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
Understanding dose-responses is crucial for determining the utility of biomarkers in ecotoxicity assessment. Nitrofurazone is a broad-spectrum antibiotic that is widely used in the aquaculture industry in China despite its detrimental effects on ecosystems. Potential dose-response models were examined for the effect of nitrofurazone on two antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GPx), in the ciliated protozoan Euplotes vannus. This was achieved by measuring enzyme activity and gene expression profiling of SOD and GPx in ciliate cells exposed to nitrofurazone at doses ranging from 0 to 180mgl-1 for 6h, 12h, 18h and 24h. Dose-response dynamics were characterized by mathematical models. Results showed that: 1) dose-response patterns differed significantly among the tested endpoints, nitrofurazone concentrations and durations of exposure; 2) GPx activity was the best candidate biomarker because of its linear dose-response relationship; 3) SOD activity and mRNA relative expression levels of GPx and SOD are also candidate biomarkers but their dose-responses were non-linear and therefore more difficult to interpret; 4) partitioning the dose-response dynamic model by piecewise function can help to clarify the relationships between biological endpoints. This study demonstrates the utility of dynamic model analysis and the potential of antioxidant enzymes, in particular GPx activity, as a candidate biomarkers for environmental monitoring and risk assessment of nitrofurazone in the aquaculture industry.
Collapse
Affiliation(s)
- Yazhen Hong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Yalin Tan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Yang Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Hao Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Yu Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jiqiu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China.
| | - Xiaofeng Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
38
|
Purohit HJ, Kapley A, Khardenavis A, Qureshi A, Dafale NA. Insights in Waste Management Bioprocesses Using Genomic Tools. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:121-170. [PMID: 27926430 DOI: 10.1016/bs.aambs.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial capacities drive waste stabilization and resource recovery in environmental friendly processes. Depending on the composition of waste, a stress-mediated selection process ensures a scenario that generates a specific enrichment of microbial community. These communities dynamically change over a period of time while keeping the performance through the required utilization capacities. Depending on the environmental conditions, these communities select the appropriate partners so as to maintain the desired functional capacities. However, the complexities of these organizations are difficult to study. Individual member ratios and sharing of genetic intelligence collectively decide the enrichment and survival of these communities. The next-generation sequencing options with the depth of structure and function analysis have emerged as a tool that could provide the finer details of the underlying bioprocesses associated and shared in environmental niches. These tools can help in identification of the key biochemical events and monitoring of expression of associated phenotypes that will support the operation and maintenance of waste management systems. In this chapter, we link genomic tools with process optimization and/or management, which could be applied for decision making and/or upscaling. This review describes both, the aerobic and anaerobic, options of waste utilization process with the microbial community functioning as flocs, granules, or biofilms. There are a number of challenges involved in harnessing the microbial community intelligence with associated functional plasticity for efficient extension of microbial capacities for resource recycling and waste management. Mismanaged wastes could lead to undesired genotypes such as antibiotic/multidrug-resistant microbes.
Collapse
Affiliation(s)
- H J Purohit
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Kapley
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Khardenavis
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Qureshi
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - N A Dafale
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| |
Collapse
|
39
|
Parmar KM, Hathi ZJ, Dafale NA. Control of Multidrug-Resistant Gene Flow in the Environment Through Bacteriophage Intervention. Appl Biochem Biotechnol 2016; 181:1007-1029. [PMID: 27723009 DOI: 10.1007/s12010-016-2265-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
Abstract
The spread of multidrug-resistant (MDR) bacteria is an emerging threat to the environment and public wellness. Inappropriate use and indiscriminate release of antibiotics in the environment through un-metabolized form create a scenario for the emergence of virulent pathogens and MDR bugs in the surroundings. Mechanisms underlying the spread of resistance include horizontal and vertical gene transfers causing the transmittance of MDR genes packed in different host, which pass across different food webs. Several controlling agents have been used for combating pathogens; however, the use of lytic bacteriophages proves to be one of the most eco-friendly due to their specificity, killing only target bacteria without damaging the indigenous beneficial flora of the habitat. Phages are part of the natural microflora present in different environmental niches and are remarkably stable in the environment. Diverse range of phage products, such as phage enzymes, phage peptides having antimicrobial properties, and phage cocktails also have been used to eradicate pathogens along with whole phages. Recently, the ability of phages to control pathogens has extended from the different areas of medicine, agriculture, aquaculture, food industry, and into the environment. To avoid the arrival of pre-antibiotic epoch, phage intervention proves to be a potential option to eradicate harmful pathogens generated by the MDR gene flow which are uneasy to cure by conventional treatments.
Collapse
Affiliation(s)
- Krupa M Parmar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Zubeen J Hathi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| |
Collapse
|