1
|
Mohanty S, Mehrotra N, Khan MT, Sharma S, Tripathi P. Paradoxical Effects of Erucic Acid-A Fatty Acid With Two-Faced Implications. Nutr Rev 2025:nuaf032. [PMID: 40202517 DOI: 10.1093/nutrit/nuaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Erucic acid (EA) is a monounsaturated fatty acid primarily consumed as rapeseed oil and mustard oil (MO). The consumption of EA-rich food has been reported to have adverse effects on health, particularly myocardial lipidosis and hepatic steatosis. Consequently, several countries, including the United States, European countries, New Zealand, and Australia, set limits on their daily intake. However, EA-rich MO (30%-50%) is still consumed in Asia. In contrast, limited studies on humans have reported a protective role of MO in acute myocardial infarction, ischemic heart disease, and neurologic disorders. The previous studies have shown the association of EA with both beneficial and adverse effects. Therefore, a comprehensive review of EA will help us understand its effect on health. Because EA consumption is banned in some countries, a detailed and updated review on EA might help us understand its role as a toxicant or therapeutic.
Collapse
Affiliation(s)
- Sneha Mohanty
- FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Neha Mehrotra
- FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Mohd Tauseef Khan
- FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sapna Sharma
- School of Forensic Science, Uttar Pradesh State Institute of Forensic Science, Lucknow, Uttar Pradesh 226401, India
| | - Prabhanshu Tripathi
- FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
2
|
Yu H, Guo J, Li B, Ma J, Abebe BK, Mei C, Raza SHA, Cheng G, Zan L. Erucic acid promotes intramuscular fat deposition through the PPARγ-FABP4/CD36 pathway. Int J Biol Macromol 2025; 298:140121. [PMID: 39837435 DOI: 10.1016/j.ijbiomac.2025.140121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
The regulation of intramuscular fat (IMF) accumulation plays a crucial role in determining meat quality in the beef industry. In humans, fat deposition in skeletal muscle is closely associated with insulin resistance and obesity. However, its underlying mechanisms are not fully elucidated. We previously identified erucic acid (EA) as a key metabolite that may affect IMF deposition of beef using omics strategies. By utilizing bovine intramuscular preadipocytes in vitro, the study demonstrates a dose-dependent increase in lipid storage induced by EA, along with mRNA expression levels of transporters FABP4 and CD36. At a mechanistic level, EA triggers ERK1/2 phosphorylation and enhances the expression of PPARγ, FABP4, and CD36, thereby facilitating the formation of lipid droplets within preadipocytes. In vivo experiments conducted in mice support these findings, indicating that EA stimulates fat accumulation in skeletal muscles and enhances the levels of FABP4 and CD36 proteins. These outcomes not only enhance our comprehension of the molecular mechanisms governing IMF deposition but also provide insights into potential strategies for enhancing meat quality and addressing metabolic disorders linked to fat accumulation in skeletal muscles. The findings of the study contribute to existing scholarly knowledge and lay the groundwork for future research endeavors aimed at improving meat quality and metabolic well-being.
Collapse
Affiliation(s)
- Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Bingzhi Li
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Provinc, Yangling vocational & technical college, Yangling 712100, China
| | - Jing Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; National Beef Cattle Improvement Center, Yangling 712100, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; National Beef Cattle Improvement Center, Yangling 712100, China.
| |
Collapse
|
3
|
Xi Y, Mokry RL, Armas ND, Kline I, Wegner M, Purdy JG. Human Cytomegalovirus Infection Reduces an Endogenous Antiviral Fatty Acid by Promoting Host Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646481. [PMID: 40235993 PMCID: PMC11996439 DOI: 10.1101/2025.03.31.646481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Some viruses, including human cytomegalovirus (HCMV), induce the synthesis of fatty acids and lipids to ensure that the lipid environment of infected cells supports virus replication. HCMV infection broadly reprograms metabolism to ensure central carbon metabolism provides the metabolites required for anabolic synthesis of nucleotides, proteins, and lipids while also meeting the energy demands placed on the infected cells. While HCMV infection increases the levels of most very long chain fatty acids (VLCFA), we found that the levels of erucic acid (EA), a C22:1 monounsaturated VLCFA, are reduced. Treating infected cells with EA disrupted a late step in virus replication, resulting in the release of virions with reduced infectivity. Moreover, we used lipidomics to determine that EA-treated cells had elevated levels of lipids containing a combination of a C22:1 tail and a VLC polyunsaturated fatty acid tail (VLC-PUFA). We demonstrate that fatty acid elongase 5 (ELOVL5) mediated production of VLC-PUFAs is stimulated by HCMV infection. ELOVL5 aided the increase in lipids with C22:1 plus VLC-PUFA tails following EA treatment and reduced the overall level of C22:1 in HCMV-infected cells. Moreover, we found that ELOVL5 mollified EA inhibition of HCMV replication, suggesting ELOVL5 plays a critical role in reducing the level of an endogenous FA with antiviral properties. Our study provides insight into how infection may increase the synthesis of an antiviral metabolite or FA and how the virus may evade their antiviral effect by promoting their metabolism.
Collapse
|
4
|
Xu B, Huang L, Jiang Y, Xu Y, Zhu M, Chen M. Metabolic characterizations of PFOS-induced disruptions in early embryonic development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118024. [PMID: 40068550 DOI: 10.1016/j.ecoenv.2025.118024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Perfluorooctane sulfonates (PFOS) are persistent environmental pollutants linked to developmental toxicity, but the mechanisms remain unclear. This study investigates the metabolic changes induced by PFOS exposure during early embryonic development and integrates metabolomic, transcriptomic, and molecular docking analyses to explore underlying mechanisms. METHODS Mouse embryoid bodies (mEBs) were exposed to PFOS for 2 days, 4 days and 6 days. Metabolomic profiling was conducted to identify differential metabolites. Transcriptomic data were integrated with metabolomics using Cytoscape to map metabolic pathway alterations. Molecular docking simulations were performed to assess PFOS binding to key enzymes. RESULTS PFOS exposure resulted in significant alterations in lipid (Erucic acid, L-carnitine), amino acid (L-methionine, creatine, hippuric acid, and spermine), and nucleotide metabolism (e.g., hypoxanthine). Integrated transcriptomic and metabolomic analysis revealed disrupted pathways included SLC25A20 regulated L-carnitine metabolism. Molecular docking simulations indicated that PFOS binds to methionine synthase and hypoxanthine guanine phosphoribosyl transferase, potentially inhibiting their function and disrupting metabolic homeostasis for L-methionine and hypoxanthine during embryonic development. CONCLUSION PFOS exposure disrupts key metabolic pathways critical for embryogenesis, including lipid, amino acid, and nucleotide metabolism. Molecular docking and transcriptomic integration highlight enzyme targeting as a potential mechanism of PFOS-induced developmental toxicity. These findings provide novel insights into the molecular and metabolic disruptions caused by PFOS, with implications for understanding its developmental toxicity.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lei Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingtong Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuntian Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mengyuan Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Occupational Medicine and Environmental Health, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Lei B, Mu J, Xu G, Yang X, Huang W, Hu L, Liu D, Cheng T, Ma Y, Xu L, Liang Q, Lin Y, Zhou L, Zhou C, Zhang W, Zheng Y. Jing-Yin-Gu-Biao formula protects mice from postinfluenza Staphylococcus aureus infection by ameliorating acute lung injury and improving hypercoagulable state via inhibiting NETosis. Front Immunol 2025; 16:1567522. [PMID: 40134435 PMCID: PMC11933027 DOI: 10.3389/fimmu.2025.1567522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Background Jing-Yin-Gu-Biao formula (JYGBF) is a Chinese medicine derived from Yupingfeng power, Huoxiangzhengqi powder and Yinqiao powder, and has been widely used to treat acute respiratory infections. This study aims to observe the effects of JYGBF against postinfluenza Staphylococcus aureus (S. aureus) infection. Purpose and study design A mouse model of secondary S. aureus infection following PR8 infection was established to evaluate the protective effects of JYGBF against postinfluenza Staphylococcus aureus (S. aureus) infection and related mechanisms were validated in vivo and in vitro. Results The administration of JYGBF significantly ameliorated acute lung injury (ALI) and inhibited overactivated inflammatory response (MIP-2, IL-6, etc.) in mice with postinfluenza S. aureus infection. Single cell RNA-sequencing (scRNA-seq) data indicated that neutrophils had the highest cytokine score in lungs and JYGBF inhibited neutrophil chemotaxis, reactive oxygen species (ROS) biosynthesis and ERK1/2 cascades in neutrophils. Meanwhile, JYGBF inhibited the formation of neutrophil extracellular traps (NETs) in lungs, which is characterized by the production of ROS, peptidyl arginine deiminase 4 (PAD4), citrullinated histone H3 (CitH3), myeloperoxidase (MPO), neutrophil elastase (NE), S100A8/A9 and MPO-CitH3 colocalization. Moreover, JYGBF decreased platelet counts and the expression of its activated markers (CD62P and αIIbβ3) accompanied by the drop of fibrinogen (FIB) and fibrin degradation product (FDP), accounting for alleviating hypercoagulable state. JYGBF inhibited ERK1/2 phosphorylation in neutrophils and in lungs of infected mice. Acacetin, a critical compound from JYGBF, inhibited NET formation via downregulating ERK/ROS axis. Conclusions These results indicated that JYGBF inhibited NET formation and overactivated inflammatory response by suppressing ERK/ROS axis in neutrophils, thereby mitigating ALI and improving the hypercoagulable state during postinfluenza S. aureus infection. JYGBF could be considered a potent therapeutic agent for the prevention and treatment of postinfluenza bacterial infection.
Collapse
Affiliation(s)
- Biao Lei
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingwen Mu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guihua Xu
- Department of Pulmonary Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenbo Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liang Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Liu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Cheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhe Ma
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lirong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiankun Liang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Lin
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linqiong Zhou
- Shuguang Hospital, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine Epidemic Research Center, Shanghai, China
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Respiratory and Critical Care Medicine, Shanghai, China
| | - Chunxian Zhou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhang
- Shuguang Hospital, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine Epidemic Research Center, Shanghai, China
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Respiratory and Critical Care Medicine, Shanghai, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Sidorov R, Kazakov G, Kotsuba V, Tyurina T. The Structure of Storage Triacylglycerols of Mature Seeds of Lunaria rediviva L., a Hyperaccumulator of Very Long-Chain Monounsaturated Fatty Acids, from the Perspective of Statistical Distribution Theories and New Insights Based on Simple Calculations. PLANTS (BASEL, SWITZERLAND) 2025; 14:612. [PMID: 40006871 PMCID: PMC11859942 DOI: 10.3390/plants14040612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
This article represents the first consideration of the peculiarities of the fatty acid (FAs) composition and structure of storage triacylglycerols (TAGs) of the relict plant Lunaria rediviva L. The composition of storage TAGs was found to comprise 21 individual FAs, with an unsaturated FA content of 96.8%. Additionally, monounsaturated acids with a very long chain (VLCFAs), specifically C20:1-C24:1, constituted over 60% of the total FAs. The ethylene bond position isomers of unsaturated FAs were accurately identified and the presence of unusual isomers, including 20:1Δ13, 22:1Δ15, and 24:1Δ17 acids. Furthermore, the unusual minor 24:2Δ15,18 acid was identified and characterised for the first time. The pathways of the mentioned VLCFA's biosynthesis have been proposed. The distribution of FA acyls between the sn positions of triacylglycerols was found to be highly specific. Thus, VLCFAs exclusively acylate the α positions of the carbon atoms of the glycerol residue of the TAG molecule (sn-1 and sn-3 positions), while unsaturated C18 acids exclusively acylate the β-carbon atom (sn-2 position). The composition of the molecular species of TAGs was analysed using a calculation method based on the Vander Wal model and by RP-HPLC-ESI-MS. A significant discrepancy from the statistical model was observed, indicating a preference for the formation of symmetrical TAGs, such as sn-1,3-dierucoyl-2-oleoyl-glycerol and related molecular species. This observation led to the formulation of a hypothesis regarding the potential existence of at least two specialised enzyme isoforms involved in the biosynthesis of such TAGs via the Kennedy pathway, exhibiting unusual substrate specificity. Consequently, this plant can be regarded not only as a producer of unusual molecular types of triacylglycerols but also as a source of genetic material for the search of genes encoding the aforementioned enzymes with unusual substrate specificity.
Collapse
Affiliation(s)
- Roman Sidorov
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (G.K.); (T.T.)
| | - Giorgi Kazakov
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (G.K.); (T.T.)
| | - Vasily Kotsuba
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119334, Russia;
- Institute of Comprehensive Exploitation of Mineral Resources, Russian Academy of Sciences, Kryukovsky Cul-de-Sac, Moscow 111020, Russia
| | - Tatiana Tyurina
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (G.K.); (T.T.)
| |
Collapse
|
7
|
Lei B, Su Y, Chen R, Chen Z, Liu B, Chen Y, Zhou M, Wang X, Ma Q. Uncovering the Mechanisms of BaBaoWuDanYaoMo Against Influenza A Virus and Virus-Induced Inflammation Based on Network Pharmacology and Pharmacological Evaluation. Infect Drug Resist 2025; 18:567-587. [PMID: 39902273 PMCID: PMC11789520 DOI: 10.2147/idr.s491101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/11/2025] [Indexed: 02/05/2025] Open
Abstract
Purpose The pro-inflammatory response triggered by influenza viruses can contribute to viral pneumonia, even death. The effect and mechanism of BaBaoWuDanYaoMo (BB) against influenza virus remains obscure. To predict its therapeutic targets via network pharmacology and verify the therapeutic effect and the mechanism of BB against influenza virus in vitro and in vivo. Material and Methods The potential active and underlying mechanism of BB in the treatment of influenza virus was predicted through network pharmacological strategies and Molecular Docking. The protective and anti-inflammatory effects of BB were determined by cytopathic effect (CPE), quantitative real-time PCR, mitochondrial membrane potentials and Western blotting assay in vitro. BALB/c mice were intranasally infected with A/PR/8/34 (H1N1) (PR8) and orally administrated BB (500 mg/kg, 250 mg/kg and 125 mg/kg) or oseltamivir daily. The normal group was orally administrated PBS for 5 days. Lung indexes, histological changes and cytokines were determined on the 6th day. Results BB could effectively inhibit A/Puerto Rico/8/1934 (H1N1), A/GZ/GIRD07/09 (H1N1), A/HK/Y280/97 (H9N2) and A/Aichi/68 (H3N2) with IC50 values of 116.5 ± 2.2, 59.86 ± 8.33, 102.87 ± 6.66 and 66.43 ± 6.785 μg/mL, respectively. It could inhibit PR8-induced apoptosis and inhibit the expression of apoptosis markers (cleaved PARP). BB inhibited the mRNA expression of MCP-1/CCL-2, IL-6, CXCL-8/IL-8, TNF-α and CXCL-10/IP-10, and downregulated the protein expression of phosphorylated AKT/p38 and TLR3 in vitro. BB (500 and 250 mg/kg) could improve pulmonary histopathological changes, decrease the lung index and suppress the mRNA expression of CXCL1/KC, TNF-α, CXCL9/MIG and IL-1β in vivo. Conclusion BB has a protective effect on PR8-induced acute lung injury (ALI) probably via inhibition of apoptosis process and interfering with TLR3, p38 MAPK and PI3K-AKT signaling pathways. This study provided a potential treatment for influenza from BB, and network pharmacology provided a strategy to explore active components and mechanism of TCMs against influenza virus infection.
Collapse
Affiliation(s)
- Biao Lei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yongjie Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ruihan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zexing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Bin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuou Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
- King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Meihua Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
- Institute of Integration of Traditional and Western Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
8
|
Feng A, Xu J, Fu Y, Li Z, Liu C, Luan X, Wang X, Sun Q, Yang Y, Rong R. An integrative pharmacology-based study on the efficacy and mechanism of essential oil of Chaihu Guizhi Decoction on influenza A virus induced pneumonia in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118654. [PMID: 39098621 DOI: 10.1016/j.jep.2024.118654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaihu Guizhi Decoction (CGD) has a long history of use in China for the treatment of influenza, which involves the use of a variety of aromatic herbs. Our previous studies have found that the contents of aromatic constituents in CGD affected the efficacy of treatment of influenza-infected mice, suggesting a clue that essential oil from CGD may play a relatively important role in ameliorating influenza induced pneumonia. AIM OF THE STUDY To evaluate the anti-influenza potential of essential oil derived from Chaihu Guizhi Decoction (CGD-EO), to characterize and predict the key active components in CGD-EO, and to explore the mechanism of action of CGD-EO. MATERIALS AND METHODS CGD-EO was obtained by steam distillation, and the components of the essential oil were characterized by gas chromatography-mass spectrometry (GC-MS) in conjunction with the retention index. The constituents absorbed into the blood of mice treated with CGD-EO were analyzed by headspace solid phase microextraction gas chromatography/mass spectrometry (HS-SPME-GC/MS). The potential anti-influenza active constituents and their possible action pathway were predicted by simulation using a network pharmacology approach. The protective effect of CGD-EO and its major components on H1N1/PR8-infected cells was determined using the CCK8 assay kit. Mice infected with influenza A virus H1N1/PR8 were administered different doses of CGD-EO orally and the body weights and lung weights were recorded. Mice with varying degrees of H1N1/PR8 infection were administered CGD-EO orally, and their daily weight, water consumption, and clinical indicators were recorded. Necropsies were conducted on days 3 and 5, during which lung weights were measured and lung tissues were preserved. Furthermore, the mRNA expression of the H1N1/PR8 virus and inflammatory factors in lung tissue was analyzed using RT-qPCR. RESULTS (E)-cinnamaldehyde was the most abundant compound in the CGD-EO. The results of serum medicinal chemistry combined with network pharmacological analysis indicated that (E)-cinnamaldehyde and 3-phenyl-2-propenal may be potential active components of the CGD-EO anti-influenza, and may be involved in the NF-κB signalling pathway. In vitro studies have demonstrated that both CGD-EO and cinnamaldehyde exert a protective effect on MDCK cells infected with H1N1/PR8. In a 0.5 TCID50 H1N1/PR8-induced influenza model, mice treated with CGD-EO at a dose of 63.50 μg/kg exhibited a reduction in lung index, pathological lung lesions, and H1N1/PR8 viral gene levels. In addition, CGD-EO treatment was found to regulate the levels of inflammatory cytokines, including IL-6, TNF-α, and IFN-γ. Moreover, following three days of administration, an upregulation of NF-κB mRNA levels in mouse lung tissue was observed in response to CGD-EO treatment. CONCLUSIONS The findings of our study indicate CGD-EO exerts a protective effect against H1N1-induced cytopathic lesions in vitro and is capable of alleviating H1N1-induced pneumonitis in mice. Moreover, it appears to be more efficacious in the treatment of mild symptoms of H1N1 infection. Studies have demonstrated that CGD-EO has antiviral potential to attenuate influenza-induced lung injury by modulating inflammatory cytokines and NF-κB signalling pathways during the early stages of influenza infection. It is possible that (E)-cinnamaldehyde is a potential active ingredient in the anti-influenza efficacy of CGD-EO.
Collapse
Affiliation(s)
- Anjie Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinke Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Yan Fu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhuangzhuang Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chen Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiumei Luan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yong Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Collaborative Innovation Center for Antiviral Traditional Chinese Medicine in Shandong Province, Jinan, 250355, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
9
|
Gao T, Liu J, Huang N, Zhou Y, Li C, Chen Y, Hong Z, Deng X, Liang X. Sangju Cold Granule exerts anti-viral and anti-inflammatory activities against influenza A virus in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118521. [PMID: 38969152 DOI: 10.1016/j.jep.2024.118521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sangju Cold Granule (SJCG) is a classical traditional Chinese medicine (TCM) prescription described in "Item Differentiation of Warm Febrile Diseases". Historically, SJCG was employed to treat respiratory illnesses. Despite its popular usage, the alleviating effect of SJCG on influenza A virus infection and its mechanisms have not been fully elucidated. AIM OF THE STUDY Influenza is a severe respiratory disease that threatens human health. This study aims to assess the therapeutic potential of SJCG and the possible molecular mechanism underlying its activity against influenza A virus in vitro and in vivo. MATERIALS AND METHODS Ultrahigh-performance liquid chromatography (UPLC)-Q-Exactive was used to identify the components of SJCG. The 50% cytotoxic concentration of SJCG in MDCK and A549 cells were determined using the CCK-8 assay. The activity of SJCG against influenza A virus H1N1 was evaluated in vitro using plaque reduction and progeny virus titer reduction assays. RT-qPCR was performed to obtain the expression levels of inflammatory mediators and the transcriptional regulation of RIG-I and MDA5 in H1N1-infected A549 cells. Then, the mechanism of SJCG effect on viral replication and inflammation was further explored by measuring the expressions of proteins of the RIG-I/NF-kB/IFN(I/III) signaling pathway by Western blot. The impact of SJCG was explored in vivo in an intranasally H1N1-infected BALB/c mouse pneumonia model treated with varying doses of SJCG. The protective role of SJCG in this model was evaluated by survival, body weight monitoring, lung viral titers, lung index, lung histological changes, lung inflammatory mediators, and peripheral blood leukocyte count. RESULTS The main SJCG chemical constituents were flavonoids, carbohydrates and glycosides, amino acids, peptides, and derivatives, organic acids and derivatives, alkaloids, fatty acyls, and terpenes. The CC50 of SJCG were 24.43 mg/mL on MDCK cells and 20.54 mg/mL on A549 cells, respectively. In vitro, SJCG significantly inhibited H1N1 replication and reduced the production of TNF-α, IFN-β, IL-6, IL-8, IL-13, IP-10, RANTES, TRAIL, and SOCS1 in infected A549 cells. Intracellularly, SJCG reduced the expression of RIG-I, MDA5, P-NF-κB P65 (P-P65), P-IκBα, P-STAT1, P-STAT2, and IRF9. In vivo, SJCG enhanced the survival rate and decreased body weight loss in H1N1-infected mice. Mice with H1N1-induced pneumonia treated with SJCG showed a lower lung viral load and lung index than untreated mice. SJCG effectively alleviated lung damage and reduced the levels of TNF-α, IFN-β, IL-6, IP-10, RANTES, and SOCS1 in lung tissue. Moreover, SJCG significantly ameliorated H1N1-induced leukocyte changes in peripheral blood. CONCLUSIONS SJCG significantly reduced influenza A virus and virus-mediated inflammation through inhibiting the RIG-I/NF-kB/IFN(I/III) signaling pathway. Thus, SJCG could provide an effective TCM for influenza treatment.
Collapse
Affiliation(s)
- Taotao Gao
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinbing Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, China; Department of Ultrasound Medicine, Liwan Central Hospital of Guangzhou, 35 Liwan Road, Guangzhou, 510000, Guangdong, China
| | - Nan Huang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yingxuan Zhou
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Conglin Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yintong Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zifan Hong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoyan Deng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xiaoli Liang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
10
|
Kazmi I, Afzal M, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Alzarea SI, Almalki WH, AlGhamdi AS, Alkinani KB, Sayyed N. Review of the potential pharmacological role of erucic acid: a monounsaturated omega-9 fatty acid. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3663-3674. [PMID: 38060041 DOI: 10.1007/s00210-023-02875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
This comprehensive review aims to provide an overview of the pharmacological properties of erucic acid (EA) and highlight areas that require further research. EA is an omega-9 fatty acid found in certain vegetable oil, such as rapeseed oil has demonstrated favourable effects in rodents, including ameliorating myocardial lipidosis (fat accumulation in the heart muscle), congestive heart disease, hepatic steatosis (fat accumulation in the liver), and memory impairments. These findings have prompted regulatory bodies to establish limits on EA content in food oils. The studies were performed on rodents and led to caution on ingesting the EA at high levels. Moreover, EA is frequently utilized as a nutritional supplement for the treatment of adrenoleukodystrophy, myocardial disease, and memory improvement. The review of the article indicated that EA improves cognitive function, has a part in Huntington's disease, interacts with peroxisome proliferator-activated receptors, inhibits elastase and thrombin, has anti-inflammatory, antioxidant, and anti-tumour properties, and inhibits influenza A virus. This article elucidates the pharmacological effects of EA, an omega-9 fatty acid.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Shareefa A AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Amira M Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Abeer S AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Khadijah B Alkinani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Public Health, Faculty of Health Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, 247121, India.
| |
Collapse
|
11
|
Zhang L, Zhang H, Niu X, Zhang X, Chen X, Lei S, Ma S, Sun Z. Liangxue-Qushi-Zhiyang Decoction Ameliorates DNCB-Induced Atopic Dermatitis in Mice through the MAPK Signaling Pathway Based on Network Pharmacology. ACS OMEGA 2024; 9:17931-17944. [PMID: 38680355 PMCID: PMC11044150 DOI: 10.1021/acsomega.3c09218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
The traditional prescription of Liangxue-Qushi-Zhiyang decoction (LQZ) has been demonstrated to be efficacious in treating atopic dermatitis (AD), a chronic inflammatory skin disorder marked by intense itching, redness, rashes, and skin thickening. Nevertheless, there has been an inadequate systematic exploration of the potential targets, biological processes, and pathways for AD treatment through LQZ. The study objective was to evaluate the efficacy and possible mechanism of LQZ in AD mice. In our study, we identified the primary compounds of LQZ, analyzed hub targets, and constructed a network. Subsequently, the predicted mechanisms of LQZ in AD were experimentally studied and validated in vivo, as determined by network pharmacological analysis. A total of 80 serum components of LQZ were identified through ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS), among which 49 compounds were absorbed into the bloodstream. Our results indicated that LQZ targets six putative key factors in the MAPK signaling pathway, which play essential roles in AD, namely, EGFR, p-MAPK1/3, p-MAPK14, IL-1β, IL-6, and TNF-α. We observed spleen coefficient, dermatitis scores, and ear thickness were all downregulated in 2,4-dinitrochlorobenzene (DNCB)-induced mice after LQZ treatment. Histological analysis of the dorsal and ear skin further revealed that LQZ significantly decreased skin inflammation, epidermal thickness, and mast cell numbers compared to the DNCB group. Our study demonstrated the effectiveness of LQZ in reducing epidermal and dermal damage in a mouse model of AD. Furthermore, our findings suggest that downregulating the MAPK signaling pathway could be a potential therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Lili Zhang
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Huili Zhang
- Beijing
University of Chinese Medicine Dongfang Hospital, Beijing 100078, China
| | - Xiaoyu Niu
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Xuan Zhang
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Xingtong Chen
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Shengyi Lei
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Shengnan Ma
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Zhanxue Sun
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| |
Collapse
|
12
|
Zhou B, Wang L, Yang S, Liang Y, Zhang Y, Liu X, Pan X, Li J. Pyrogallol protects against influenza A virus-triggered lethal lung injury by activating the Nrf2-PPAR-γ-HO-1 signaling axis. MedComm (Beijing) 2024; 5:e531. [PMID: 38617435 PMCID: PMC11014464 DOI: 10.1002/mco2.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024] Open
Abstract
Pyrogallol, a natural polyphenol compound (1,2,3-trihydroxybenzene), has shown efficacy in the therapeutic treatment of disorders associated with inflammation. Nevertheless, the mechanisms underlying the protective properties of pyrogallol against influenza A virus infection are not yet established. We established in this study that pyrogallol effectively alleviated H1N1 influenza A virus-induced lung injury and reduced mortality. Treatment with pyrogallol was found to promote the expression and nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Notably, the activation of Nrf2 by pyrogallol was involved in elevating the expression of PPAR-γ, both of which act synergistically to enhance heme oxygenase-1 (HO-1) synthesis. Blocking HO-1 by zinc protoporphyrin (ZnPP) reduced the suppressive impact of pyrogallol on H1N1 virus-mediated aberrant retinoic acid-inducible gene-I-nuclear factor kappa B (RIG-I-NF-κB) signaling, which thus abolished the dampening effects of pyrogallol on excessive proinflammatory mediators and cell death (including apoptosis, necrosis, and ferroptosis). Furthermore, the HO-1-independent inactivation of janus kinase 1/signal transducers and activators of transcription (JAK1/STATs) and the HO-1-dependent RIG-I-augmented STAT1/2 activation were both abrogated by pyrogallol, resulting in suppression of the enhanced transcriptional activity of interferon-stimulated gene factor 3 (ISGF3) complexes, thus prominently inhibiting the amplification of the H1N1 virus-induced proinflammatory reaction and apoptosis in interferon-beta (IFN-β)-sensitized cells. The study provides evidence that pyrogallol alleviates excessive proinflammatory responses and abnormal cell death via HO-1 induction, suggesting it could be a potential agent for treating influenza.
Collapse
Affiliation(s)
- Beixian Zhou
- The People's Hospital of GaozhouGaozhouChina
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | | | - Sushan Yang
- The People's Hospital of GaozhouGaozhouChina
| | | | | | - Xuanyu Liu
- The People's Hospital of GaozhouGaozhouChina
| | | | - Jing Li
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center of Respiratory DiseaseGuangzhou Institute of Respiratory HealthInstitute of Chinese Integrative MedicineGuangdong‐Hongkong‐Macao Joint Laboratory of Infectious Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
13
|
Guo Z, Xie Q, Ren Q, Liu Y, Li K, Li B, Li J. Enhancing immune regulation in vitro: the synergistic impact of 3'-sialyllactose and osteopontin in a nutrient blend following influenza virus infection. Front Immunol 2024; 15:1271926. [PMID: 38426086 PMCID: PMC10902112 DOI: 10.3389/fimmu.2024.1271926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Natural components of breast milk, human milk oligosaccharides (HMOs) and osteopontin (OPN) have been shown to have a variety of functional activities and are widely used in infant formulas. However, the preventive and therapeutic effects of both on influenza viruses are not known. In this study, antiviral assays using a human laryngeal carcinoma cell line (HEP-2) showed that 3'-sialyllactose (3'-SL) and OPN had the best antiviral ability with IC50 values of 33.46 μM and 1.65 μM, respectively. 3'-SL (10 μM) and OPN (4 μM) were used in combination to achieve 75% inhibition. Further studies found that the combination of 200 μg/mL of 3'-SL with 500 μg/mL of OPN exerted the best antiviral ability. The reason for this was related to reduced levels of the cytokines TNF-α, IL-6, and iNOS in relation to mRNA expression. Plaque assay and TCID50 assay found the same results and verified synergistic effects. Our research indicates that a combination of 3'-SL and OPN can effectively reduce inflammatory storms and exhibit anti-influenza virus effects through synergistic action.
Collapse
Affiliation(s)
- Zhengtao Guo
- School of Food, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qinggang Xie
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Beijing, China
| | - Qiqi Ren
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Beijing, China
| | - Yang Liu
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Beijing, China
| | - Kaifeng Li
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Beijing, China
| | - Bailiang Li
- School of Food, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jufang Li
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Beijing, China
| |
Collapse
|
14
|
Wang Y, Jin J, Wu G, Wei W, Jin Q, Wang X. Omega-9 monounsaturated fatty acids: a review of current scientific evidence of sources, metabolism, benefits, recommended intake, and edible safety. Crit Rev Food Sci Nutr 2024; 65:1857-1877. [PMID: 38343184 DOI: 10.1080/10408398.2024.2313181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Omega-9 monounsaturated fatty acids (ω-9 MUFAs) are a group of unsaturated fatty acids with a unique double bond in the 9th position at the end of the methyl group terminal, having the same double bond location but different carbon chain lengths. Although knowledge about ω-9 MUFAs is constantly being updated, problems with its integration remain in the field. The review summarizes the natural sources, biosynthesis, and catabolic properties of ω-9 MUFAs, emphasizing their positive effects on health functions as well as the active intermediates produced during their metabolic processes. Subsequently, the gap between the actual consumption and recommended intake of ω-9 MUFAs in our daily diet was calculated, and their food safety and potential challenges were discussed. Finally, the outlook of potential future applications and possible research trends are presented. The review aims to promote the rational consumption of ω-9 MUFAs, provide references for their application as functional foods and clinical auxiliary special medical foods, and propose more ideas and possibilities for future scientific research.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Yue X, Gu M, Jia T. Upregulated miR-125b mitigates inflammation, astrocyte activation, and dysfunction of spinal cord injury by inactivating the MAPK pathway. Histol Histopathol 2024; 39:225-237. [PMID: 37166139 DOI: 10.14670/hh-18-624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Since the abnormal expression of miR-125b in spinal cord injury (SCI) and the regulatory effect of miR-125b on the MAPK pathway have been expounded, we attempt to investigate whether miR-125b exerts a regulatory effect on SCI by modulating the MAPK pathway. METHOD A SCI rat model was established. The rats were treated with miR-125b antagomir or agomir, and their motor function affected by miR-125b was further detected by Basso-Beattie-Bresnahan (BBB) scoring. The histopathological changes and neuronal loss in the spinal cord were evaluated using hematoxylin-eosin and Nissl staining. Microglia-conditioned medium (MCM) was prepared and further used to treat the astrocytes, the activation of which was evaluated via immunofluorescence staining. The expressions of miR-125b, inflammation-related factors (IL-6, IL-1β, TNF-α, and IL-10), and MAPK pathway-related proteins (p38, ERK1/2, and JNK1/2 as well as their phosphorylated (p) forms) in the spinal cord, serum, and MCM-treated astrocytes of rats were determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay, and Western blot. RESULT MiR-125b was lowly expressed in SCI-modeled rats. MiR-125b downregulation aggravated the impaired motor function, the disorder within the tissue, astrocyte activation, and neuron loss in the spinal cord tissues of SCI-modeled rats, while miR-125b upregulation did oppositely. MiR-125b downregulation enhanced the levels of IL-6, IL-1β, TNF-α, p38, p-p38, p-ERK1/2, and p-JNK1/2, whilst reducing that of IL-10. Contrarily, miR-125b upregulation exerted the opposite effects in SCI-modeled rats and MCM-treated astrocytes. CONCLUSION Up-regulation of miR-125b mitigates inflammation, astrocyte activation, and dysfunction in SCI by inactivating the MAPK pathway.
Collapse
Affiliation(s)
- Xianhu Yue
- Department of Orthopedics, The 960th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Jinan City, Shandong Province, China
| | - Mingyong Gu
- Department of Orthopedics, The 960th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Jinan City, Shandong Province, China
| | - Tanghong Jia
- Department of Orthopedics, Affiliated Jinan Central Hospital of Shandong University, Jinan City, Shandong Province, China.
| |
Collapse
|
16
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
17
|
Zhang X, Xue M, Liu L, Wang H, Qiu T, Zhou Y, Shan L, Wang Z, Liu G, Hu Y, Chen J. Rhein: A potent immunomodulator empowering largemouth bass against MSRV infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109284. [PMID: 38092092 DOI: 10.1016/j.fsi.2023.109284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Micropterus salmoides rhabdovirus (MSRV) is a significant viral pathogen in largemouth bass aquaculture, causing substantial annual economic losses. However, effective prevention methods remain elusive for various reasons. Medicinal plant extracts have emerged as valuable tools in preventing and managing aquatic animal diseases. Thus, the search for immunomodulators with straightforward, safe structures in plant extracts is imperative to ensure the continued health and growth of the largemouth bass industry. In our research, we employed epithelioma papulosum cyprinid (EPC) cells and largemouth bass as models to assess the anti-MSRV properties and immunomodulatory effects of ten plant-derived bioactive compounds. Among them, rhein demonstrated noteworthy potential, exhibiting a 75 % reduction in viral replication in vitro at a concentration of 50 mg/L. Furthermore, rhein pre-treatment significantly inhibited MSRV genome replication in EPC cells, with the highest inhibition rate reaching 64.8 % after 24 h, underscoring rhein's preventive impact against MSRV. Likewise, rhein displayed remarkable therapeutic effects on EPC cells during the early stages of MSRV infection, achieving a maximum inhibition rate of 85.6 % in viral replication. Subsequent investigations unveiled that rhein, with its consistent activity, effectively mitigated cytopathic effects (CPE) and nuclear damage induced by MSRV infection. Moreover, it restrained mitochondrial membrane depolarization and reduced the apoptosis rate by 38.8 %. In vivo experiments reinforced these findings, demonstrating that intraperitoneal injection of rhein enhanced the expression levels of immune related genes in multiple organs, hindered virus replication, and curtailed the mortality rate of MSRV-infected largemouth bass by 29 %. Collectively, our study endorses the utility of rhein as an immunomodulator to combat MSRV infections in largemouth bass. This not only underscores the potential of rhein as a broad-spectrum antiviral and means to bolster the immune response but also highlights the role of apoptosis as an immunological marker, making it an invaluable addition to the armamentarium against aquatic viral pathogens.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Tianxiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Lipeng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Zixuan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Guanglu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
18
|
Deng L, Hao S, Zou W, Wei P, Sun W, Wu H, Lu W, He Y. Effects of Supplementing Growing-Finishing Crossbred Pigs with Glycerin, Vitamin C and Niacinamide on Carcass Characteristics and Meat Quality. Animals (Basel) 2023; 13:3635. [PMID: 38066986 PMCID: PMC10705760 DOI: 10.3390/ani13233635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 03/05/2024] Open
Abstract
The objective of this study was to determine the influence of supplementing the diet of growing-finishing pigs with glycerin and/or a mixture of vitamin C and niacinamide on carcass traits and pork quality. Eighty-four weaned piglets with an initial average body weight of 20.35 ± 2.14 kg were assigned, at random, to four groups for a 103-day feeding experiment: control; glycerin-supplemented group; vitamin C and niacinamide-supplemented group; and glycerin, vitamin C and niacinamide-supplemented group. At the end of the experiment, three pigs/group were randomly selected and slaughtered, and samples were collected for analysis. The results indicated that supplementing crossbred pigs with glycerin, vitamin C and niacinamide simultaneously increased the redness (a*) value (p < 0.05), glycerol content (p < 0.01) and myristoleic acid content (p < 0.01) in the longissimus dorsi and tended to increase the level of flavor amino acids, linoleic acid, linolenic acid and erucic acid, as well as the percentage and density of type I myofibers in the longissimus dorsi and the semimembranosus muscle. Glycerin had an influence (p < 0.01) on the erucic acid content in the longissimus dorsi and the semimembranosus muscle, and vitamin C and niacinamide had an interaction effect (p < 0.05) on the redness (a*) value of the longissimus dorsi. Glycerin, vitamin C and niacinamide supplementation in the diet of crossbred pigs improved the color, flavor and nutritional value of pork, which contributed to an increased intent to purchase this product.
Collapse
Affiliation(s)
- Linglan Deng
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shaobin Hao
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wanjie Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Panting Wei
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenchen Sun
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (S.H.); (W.Z.); (P.W.); (W.S.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
19
|
Zhang YN, Zhu GH, Liu W, Chen XX, Xie YY, Xu JR, Jiang MF, Zhuang XY, Zhang WD, Chen HZ, Ge GB. Discovery of the covalent SARS-CoV-2 M pro inhibitors from antiviral herbs via integrating target-based high-throughput screening and chemoproteomic approaches. J Med Virol 2023; 95:e29208. [PMID: 37947293 DOI: 10.1002/jmv.29208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 μg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.
Collapse
Affiliation(s)
- Ya-Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Xiang Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Yuan Xie
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Rong Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mei-Fang Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Yu Zhuang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Chang Y, Jiang M, Wang Y, Fu Q, Lin S, Wu J, Di W. Erucic acid improves the progress of pregnancy complicated with systemic lupus erythematosus by inhibiting the effector function of CD8 + T cells. MedComm (Beijing) 2023; 4:e382. [PMID: 37771913 PMCID: PMC10522964 DOI: 10.1002/mco2.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/30/2023] Open
Abstract
Pathogenic CD8+ T cells are pivotal contributors to the onset of systemic lupus erythematosus (SLE). Erucic acid (EA) has been proven to have anti-inflammatory activity. However, the capacity of EA to regulate pathogenic CD8+ T cells in the context of pregnancy complicated with SLE (pSLE) remains unclear. In our investigation, we observed augmented CD8+ T cell effector function juxtaposed with diminished EA levels in pSLE patients relative to healthy pregnant controls. Significantly, plasma EA levels exhibited a negative correlation with the severity of pSLE-associated complications. In blood from patients with pSLE, EA inhibited the effector function of CD8+ T cells, concurrently dampening the maintenance of stem cell-like memory CD8+ T cells. Mechanistically, EA orchestrated the inhibition of CD8+ T cell effector function by impeding signal transducer and activator of transcription 3 phosphorylation and promoting ferroptosis. Moreover, EA supplementation in pregnant MRL/lpr mice manifested as the attenuation of uterine CD8+ T cell effector function, culminating in the mitigation of placental pathological damage. Our findings uncover the immune response modulatory effects of EA upon pathogenic CD8+ cells, thereby unveiling new perspectives for therapeutic strategies targeting pSLE patients.
Collapse
Affiliation(s)
- Yanling Chang
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Meng Jiang
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - You Wang
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Qiong Fu
- Department of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of RheumatologyShanghaiChina
| | - Sihan Lin
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Jiayue Wu
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Wen Di
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
- Department of Obstetrics and Gynecology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
21
|
Sayyed N, Hafeez A, Al‐Abbasi FA, Omer AB, AlGhamdi SA, Alghamdi AM, Sheikh RA, Kazmi I. Erucic acid ameliorates the lipopolysaccharide‐induced memory deficit in rats through inhibited inflammation cytokines expression/caspase 3/NF‐κB pathways. EUR J LIPID SCI TECH 2023; 125. [DOI: 10.1002/ejlt.202200205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 01/03/2025]
Abstract
AbstractErucic acid is a single unsaturated fatty acid that falls under the omega‐9 fatty acid family. It was suggested to treat Wistar rats with lipopolysaccharide (LPS)‐induced memory impairment and minimize cognitive impairment. A total of 30 animals were randomized: group I was normally treated group, group II was administered with LPS, group III was treated with LPS along with erucic acid at the dose of 10 mg kg–1 p.o.–1, group IV was treated with LPS along with erucic acid at 20 mg kg–1 p.o.–1 and group V was the erucic acid per se group provided at the dose of 20 mg kg–1 p.o.–1 per se. Behavioral tests were evaluated by using the Morris water maze and Y‐maze. Biochemical analysis including acetylcholine esterase (AChE), choline acetyltransferase (ChAT), glutathione (GSH), catalase activity (CAT), superoxide dismutase (SOD), and nitric oxide (NO) along with proinflammatory mediators tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), caspase 3, and neuroinflammatory biomarker (nuclear factor kappa B‐NF‐κB) were measured. Erucic acid produced substantial behavioral improvement in the Y‐maze test, including spontaneous alterations and reduced latency time during acquisition, and a longer duration of time in the consolidation phase undergoing the MWM test. Furthermore, erucic acid improved the AChE, proinflammatory markers, and oxidative stress as well as restoring endogenous antioxidant levels, ChAT, caspase 3, and NF‐κB levels. Erucic acid may be a therapeutic component for conditions related to memory disorders such as memory impairment, enhances memory functioning, and protects against neuronal damage.
Collapse
Affiliation(s)
- Nadeem Sayyed
- School of Pharmacy Glocal University Saharanpur Uttar Pradesh India
| | - Abdul Hafeez
- School of Pharmacy Glocal University Saharanpur Uttar Pradesh India
| | - Fahad A. Al‐Abbasi
- Department of Biochemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Asma B Omer
- Department of Basic Health Sciences, Foundation Year for the Health Colleges Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center King Abdulaziz University Jeddah Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Rayan A. Sheikh
- Department of Biochemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
22
|
Galanty A, Grudzińska M, Paździora W, Paśko P. Erucic Acid-Both Sides of the Story: A Concise Review on Its Beneficial and Toxic Properties. Molecules 2023; 28:molecules28041924. [PMID: 36838911 PMCID: PMC9962393 DOI: 10.3390/molecules28041924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Erucic acid (EA) is monounsaturated fatty acid (22:1 n-9), synthesized in the seeds of many plants from the Brassicaceae family, with Brassica napus, B. rapa, or B. carinata considered as its richest source. As the compound has been blamed for the poisoning effect in Toxic Oil Syndrome, and some data indicated its cardiotoxicity to rats, EA has been for decades classified as toxic substance, the use of which should be avoided. However, the cardiac adverse effects of EA have not been confirmed in humans, and the experiments in animal models had many limitations. Thus, the aim of this review was to present the results of the so far published studies on both toxic, and pharmacological properties of EA, trying to answer the question on its future medicinal use. Despite the ambiguous and relatively small data on toxic and beneficial effects of EA it seems that the compound is worth investigating. Further research should be particularly directed at the verification EA toxicity, more in-depth studies on its neuroprotective and cytotoxic properties, but also its use in combination with other drugs, as well as its role as a drug carrier.
Collapse
Affiliation(s)
- Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Grudzińska
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Wojciech Paździora
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Correspondence:
| |
Collapse
|
23
|
Fumonisin B Series Mycotoxins' Dose Dependent Effects on the Porcine Hepatic and Pulmonary Phospholipidome. Toxins (Basel) 2022; 14:toxins14110803. [PMID: 36422977 PMCID: PMC9696778 DOI: 10.3390/toxins14110803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male weaned piglets n = 6/group were fed Fumonisin B1+2+3 (FBs) mycotoxins at 0, 15, or 30 mg/kg diet for 3 weeks to assess the fatty acid (FA) composition of membrane lipid classes, lipid peroxidation, and histomorphological changes in the liver and lung. Growth performance and lipid peroxidation were unaltered, but histomorphological lesion scores increased in the liver. Linear dose-response was detected in liver phosphatidylcholines for C16:1n7, C18:1n9, and total monounsaturation and in lungs for C22:6n3, total n-3 and n-3:n-6, in pulmonary phosphatidylserines C20:0 and C24:0. Alterations associated with the highest FBs dose were detected in sphingomyelins (liver: total saturation ↓, total monounsaturation ↑), phosphatidylcholines (liver: total n-6 ↓, n-6:n-3 ↑; in lungs: total monounsaturation ↑, total polyunsaturation ↑), phosphatidylethanolamines (liver: total n-3 ↓; in lungs: total monounsaturation ↑ and n-6:n-3 ↑), phosphatidylserines (liver: n-6:n-3 ↑; in lungs: total saturation ↓, total polyunsatuartion ↑, and total n-6 and its ratio to n-3 ↑), and phosphatidylinositol (n-6:n-3 ↑; lungs: C22:1n9 ↑, C22:6n3 ↓, total saturation ↓, total monounsaturaion ↑). In conclusion, FBs exposures neither impaired growth nor induced substantial lipid peroxidation, but hepatotoxicity was proven with histopathological alterations at the applied exposure period and doses. FA results imply an enzymatic disturbance in FA metabolism, agreeing with earlier findings in rats.
Collapse
|
24
|
Yang S, Wang L, Pan X, Liang Y, Zhang Y, Li J, Zhou B. 5-Methoxyflavone-induced AMPKα activation inhibits NF-κB and P38 MAPK signaling to attenuate influenza A virus-mediated inflammation and lung injury in vitro and in vivo. Cell Mol Biol Lett 2022; 27:82. [PMID: 36180831 PMCID: PMC9524045 DOI: 10.1186/s11658-022-00381-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza-related acute lung injury (ALI) is a life-threatening condition that results mostly from uncontrolled replication of influenza virus (IV) and severe proinflammatory responses. The methoxy flavonoid compound 5-methoxyflavone (5-MF) is believed to have superior biological activity in the treatment of cancer. However, the effects and underlying mechanism of 5-MF on IV-mediated ALI are still unclear. Here, we showed that 5-MF significantly improved the survival of mice with lethal IV infection and ameliorated IV-mediated lung edema, lung histological changes, and inflammatory cell lung recruitment. We found that 5-MF has antiviral activity against influenza A virus (IAV), which was probably associated with increased expression of radical S-adenosyl methionine domain containing 2 (RSAD2) and suppression of endosomal acidification. Moreover, IV-infected A549 cells with 5-MF treatment markedly reduced proinflammatory mediator expression (IL-6, CXCL8, TNF-α, CXCL10, CCL2, CCL3, CCL4, GM-CSF, COX-2, and PGE2) and prevented P-IKBα, P-P65, and P-P38 activation. Interestingly, we demonstrated that 5-MF treatment could trigger activation of AMP-activated protein kinase (AMPK)α in IV-infected A549 cells, as evidenced by activation of the AMPKα downstream molecule P53. Importantly, the addition of AMPKα blocker compound C dramatically abolished 5-MF-mediated increased levels of RSAD2, the inhibitory effects on H1N1 virus-elicited endosomal acidification, and the suppression expression of proinflammatory mediators (IL-6, TNF-α, CXCL10, COX-2 and PGE2), as well as the inactivation of P-IKBα, P-P65, and P-P38 MAPK signaling pathways. Furthermore, inhibition of AMPKα abrogated the protective effects of 5-MF on H1N1 virus-mediated lung injury and excessive inflammation in vivo. Taken together, these results indicate that 5-MF alleviated IV-mediated ALI and suppressed excessive inflammatory responses through activation of AMPKα signaling.
Collapse
Affiliation(s)
- Sushan Yang
- The People's Hospital of Gaozhou, Gaozhou, 525200, China
| | | | | | - Yueyun Liang
- The People's Hospital of Gaozhou, Gaozhou, 525200, China
| | - Yuehan Zhang
- The People's Hospital of Gaozhou, Gaozhou, 525200, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China. .,Institute of Chinese Integrative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou, 525200, China.
| |
Collapse
|
25
|
Atukuri D, M R, M C, T A, Mujavar PH. Recent Update on the Pharmacological Significance of Isatis tinctoria L. (Brassicaceae) Extracts. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1886126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dorababu Atukuri
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | - Rashmi M
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | - Chandrashekhar M
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | - Afreen T
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | | |
Collapse
|
26
|
Cheng C, Ma H, Liu G, Deng Y, Jiang J, Feng J, Guo Z. Biochemical, metabolic, and immune responses of mud crab (Scylla paramamosain) after mud crab reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:437-445. [PMID: 35779811 DOI: 10.1016/j.fsi.2022.06.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Mud crab reovirus (MCRV) is a serious pathogen that leads to large economic losses in the mud crab farming. However, the molecular mechanism of the immune response after MCRV infection is unclear. In the present study, physiological, transcriptomic, and metabolomic responses after MCRV infection were investigated. The results showed that MCRV infection could increase lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities. MCRV infection decreased antioxidant enzyme activity levels, induced oxidative stress, and caused severe histological damage. Transcriptome analysis identified 416 differentially expressed genes, including 354 up-regulated and 62 down-regulated genes. The detoxification, immune response, and metabolic processes-related genes were found. The results showed that two key pathways including phagocytosis and apoptosis played important roles in response to MCRV infection. The combination of transcriptomic and metabolomic analyses showed that related metabolic pathways, such as glycolysis, citrate cycle, lipid, and amino acid metabolism were also significantly disrupted. Moreover, the biosynthesis of unsaturated fatty acids was activated in response to MCRV infection. This study provided a novel insight into the understanding of cellular mechanisms in crustaceans against viral invasion.
Collapse
Affiliation(s)
- ChangHong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - HongLing Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - GuangXin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - YiQing Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - JianJun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - ZhiXun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| |
Collapse
|
27
|
Gono CMP, Ahmadi P, Hertiani T, Septiana E, Putra MY, Chianese G. A Comprehensive Update on the Bioactive Compounds from Seagrasses. Mar Drugs 2022; 20:md20070406. [PMID: 35877699 PMCID: PMC9324380 DOI: 10.3390/md20070406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Marine angiosperms produce a wide variety of secondary metabolites with unique structural features that have the potential to be developed as effective and potent drugs for various diseases. Recently, research trends in secondary metabolites have led to drug discovery with an emphasis on their pharmacological activity. Among marine angiosperms, seagrasses have been utilized for a variety of remedial purposes, such as treating fevers, mental disorders, wounds, skin diseases, muscle pain, and stomach problems. Hence, it is essential to study their bioactive metabolites, medical properties, and underlying mechanisms when considering their pharmacological activity. However, there is a scarcity of studies on the compilation of existing work on their pharmacological uses, pharmacological pathways, and bioactive compounds. This review aims to compile the pharmacological activities of numerous seagrass species, their secondary metabolites, pharmacological properties, and mechanism of action. In conclusion, this review highlights the potency of seagrasses as a promising source of natural therapeutical products for preventing or inhibiting human diseases.
Collapse
Affiliation(s)
| | - Peni Ahmadi
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| | - Triana Hertiani
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Eris Septiana
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| | - Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| |
Collapse
|
28
|
Hu M, Zheng H, Wu J, Sun Y, Wang T, Chen S. DDX5: an expectable treater for viral infection- a literature review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:712. [PMID: 35845539 PMCID: PMC9279824 DOI: 10.21037/atm-22-2375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Background and Objective DEAD-box protein (DDX)5 plays important roles in multiple aspects of cellular processes that require modulating RNA structure. Alongside the canonical role of DDX5 in RNA metabolism, many reports have shown that DDX5 influences viral infection by directly interacting with viral proteins. However, the functional role of DDX5 in virus-associated cancers, as well as the identity of DDX5 in virus infection-associated signaling pathways, has remained largely unexplained. Here, we further explore the precise functions of DDX5 and its potential targets for antiviral treatment. Methods We searched the PubMed and PMC databases to identify studies on role of DDXs, especially DDX5, during various viral infection published up to May 2022. Key Content and Findings DDX5 functions as both a viral infection helper and inhibitor, which depends on virus type. DDXs proteins have been identified to play roles on multiple aspects covering RNA metabolism and function. Conclusions DDX5 influences viral pathogenesis by participating in viral replication and multiple viral infection-related signaling pathways, it also plays a double-edge sword role under different viral infection conditions. Deep investigation into the mechanism of DDX5 modulating immune response in host cells revealed that it holds highly potential usage for future antiviral therapy. We reviewed current studies to provide a comprehensive update of the role of DDX5 in viral infection.
Collapse
Affiliation(s)
- Minghui Hu
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao China
| | - Hongying Zheng
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao China
| | - Jingqi Wu
- Microbiology Department, Harbin Medical University, Harbin, China
| | - Yue Sun
- School of Public Health, Harbin Medical University, Harbin, China
| | - Tianying Wang
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Shuang Chen
- Clinical Lab, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
29
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
30
|
Wong LW, Goh CBS, Tan JBL. A Systemic Review for Ethnopharmacological Studies on Isatis indigotica Fortune: Bioactive Compounds and their Therapeutic Insights. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:161-207. [PMID: 35139772 DOI: 10.1142/s0192415x22500069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isatis indigotica Fortune is a biennial Chinese woad of the Cruciferae family. It is primarily cultivated in China, where it was a staple in indigo dye manufacture till the end of the 17th century. Today, I. indigotica is used primarily as a therapeutic herb in traditional Chinese medicine (TCM). The medicinal use of the plant is separated into its leaves (Da-Qing-Ye) and roots (Ban-Lan-Gen), whereas its aerial components can be processed into a dried bluish-spruce powder (Qing-Dai), following dehydration for long-term preservation. Over the past several decades, I. indigotica has been generally utilized for its heat-clearing effects and bodily detoxification in TCM, attributed to the presence of several classes of bioactive compounds, including organic acids, alkaloids, terpenoids, and flavonoids, as well as lignans, anthraquinones, glucosides, glucosinolates, sphingolipids, tetrapyrroles, and polysaccharides. This paper aims to delineate I. indigotica from its closely-related species (Isatis tinctoria and Isatis glauca) while highlighting the ethnomedicinal uses of I. indigotica from the perspectives of modern and traditional medicine. A systematic search of PubMed, Embase, PMC, Web of Science, and Google Scholar databases was done for articles on all aspects of the plant, emphasizing those analyzing the bioactivity of constituents of the plant. The various key bioactive compounds of I. indigotica that have been found to exhibit anti-inflammatory, antimicrobial, anticancer, and anti-allergic properties, along with the protective effects against neuronal injury and bone fracture, will be discussed. Collectively, the review hopes to draw attention to the therapeutic potential of I. indigotica not only as a TCM, but also as a potential source of bioactive compounds for disease management and treatment.
Collapse
Affiliation(s)
- Li Wen Wong
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Calvin Bok Sun Goh
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| |
Collapse
|
31
|
Peng J, Li X, Zheng L, Duan L, Gao Z, Hu D, Li J, Li X, Shen X, Xiao H. Ban-Lan-Gen Granule Alleviates Dextran Sulfate Sodium-Induced Chronic Relapsing Colitis in Mice via Regulating Gut Microbiota and Restoring Gut SCFA Derived-GLP-1 Production. J Inflamm Res 2022; 15:1457-1470. [PMID: 35250294 PMCID: PMC8896204 DOI: 10.2147/jir.s352863] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/18/2022] [Indexed: 01/14/2023] Open
Abstract
Purpose GLP-1 based therapy represents a new treatment option for inflammatory bowel disease. Ban-Lan-Gen (BLG) granule, a known anti-viral TCM formulation, exhibits potential anti-inflammatory activities in treating various kinds of inflammation. However, its anti-inflammatory effect on colitis and the underlying mechanisms remain unknown. Methods Dextran sulfate sodium (DSS)-induced chronic relapsing colitis in mice was established. The disease activity index, histological sign of damage, and levels of proinflammatory cytokines were performed to assess the protective effects of BLG. Serum GLP-1 level and colonic Gcg, GPR41 and GRP43 expression, the community compositions of gut microbiota, the levels of SCFAs in the feces and GLP-1 release from primary murine colon epithelial cells were performed to characterize the effects of BLG on gut microbiota and gut SCFA derived-GLP-1 production. Results BLG treatment significantly alleviated body weight loss, DAI, colon shortening, colon tissue damage, and pro-inflammatory cytokine levels of TNF-α, IL-1β and IL-6 in the colon tissues. Moreover, BLG treatment could observably restore colonic Gcg, GPR41 and GRP43 expression and serum GLP-1 level of colitic mice, as well as correct the alteration of gut microbiota in colitic mice by increasing the abundances of SCFA-producing bacteria, eg, Akkermansia and Prevotellaceae_UCG-001, and decreasing the abundances of bacteria, eg, Eubacterium_xylanophilum_group, Ruminococcaceae_UCG-014, Intestinimonas, and Oscillibacter. Furthermore, BLG treatment could markedly increase the levels of SCFAs in feces of colitic mice. In parallel, ex vivo assay also showed that and the extract of feces from BLG-treatment mice could greatly stimulate the secretion of GLP-1 from primary murine colon epithelial cells. Conclusion These findings suggest that the anti-colitis effects of BLG are achieved at least partly by regulating gut microbiota and restoring gut SCFA derived-GLP-1 production, and BLG has the potential to be developed as a promising agent for the treatment of chronic relapsing colitis.
Collapse
Affiliation(s)
- Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Lin Zheng
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, People’s Republic of China
- School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Lifang Duan
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Zhengxian Gao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Die Hu
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Jie Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Xiangchun Shen
- School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People’s Republic of China
- Xiangchun Shen, School of Pharmacy, Guizhou Medical University, Guizhou, 550004, People’s Republic of China, Email
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- Correspondence: Haitao Xiao, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People’s Republic of China, Email
| |
Collapse
|
32
|
Chen J, Zhu Z, Gao T, Chen Y, Yang Q, Fu C, Zhu Y, Wang F, Liao W. Isatidis Radix and Isatidis Folium: A systematic review on ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114648. [PMID: 34543684 DOI: 10.1016/j.jep.2021.114648] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Isatidis Radix (called Banlangen, BLG in Chinese) and Isatidis Folium (called Daqingye, DQY in Chinese) are common traditional edible-medicinal herbs in detoxifying for thousands of years, have been traditionally applied in traditional Chinese medicine for centuries. Both of them are bitter in taste, coolness in nature, acting on the heart and stomach channels. They are often used to treat influenza and other viral infectious diseases in clinic, as well as could treat fever, dizziness, and cough and sore throat caused by lung heat. AIMS OF THE REVIEW This review aimed at summarizing the latest and comprehensive information of BLG and DQY on the ethnopharmacology, phytochemistry, pharmacology, toxicity and clinical application to explore the therapeutic potential of them. In addition, outlooks and perspective for possible future researches that related are also discussed. MATERIALS AND METHODS Related information concerning BLG and DQY were gathered from the internet database of Google Scholar, PubMed, Baidu Scholar, GeenMedical, CNKI and Web of Science, as well as other relevant textbooks, reviews, and documents (e.g., Chinese Pharmacopoeia, 2020 edition, Chinese herbal classic books and PhD and MSc thesis, etc.). Among of them with the keywords including "Isatis indigotica" "Isatidis Radix", "Isatidis Folium", "phytochemistry", "pharmacology", "toxicology", "clinical application" etc. and their combinations. RESULTS To date, 39 Chinese patent medicines containing BLG and/or DQY have been developed on basis of the data of NMPA. Besides, 304 and 142 compounds have been found in BLG and DQY, respectively. The main chemical differences between BLG and DQY were concentrated on alkaloids and lignans, such as indican, indirubin, (R, S)-epigoitrin, 4(3H)-quinazolinone, clemastanin B and isatindigotindolines A-D. In 2020 Edition ChP, (R, S)-goitrin and indirubin are now used as the official marker to monitor the quality of BLG and DQY, respectively. Modern pharmacology has mainly studied some monomer components such as 4(3H)-quinazolinone, clemastanin B, erucic acid and adenosine, etc., all of which have shown good effects. These active compounds can resist various viruses, such as influenza virus, respiratory syncytial virus, herpes simplex virus, etc.. By regulating the level of immunity and a variety of inflammatory factors, inhibit the growth and reproduction of the virus. At the same time, it is worth noting that different components of BLG and DQY lead to BLG is more powerful in antiviral and immunomodulatory activity than DQY, while DQY possesses a higher intensity than BLG in anti-oxidant activity. CONCLUSION By collecting and collating a large number of literature and various data websites, we concluded that the common compounds are mainly alkaloids. Recent findings regarding the phytochemical and pharmacological properties of BLG and DQY have confirmed their traditional uses in antiviral, antibacterial and treatment immune diseases. Without doubt, their significant differences on ethnopharmacology, phytochemistry and pharmacology can be used as evidence of separate list of BLG and DQY. For shortcomings, some comprehensive studies should be well designed for further utilization of BLG and DQY.
Collapse
Affiliation(s)
- Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Zongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Tianhui Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Qingsong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yaning Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Fang Wang
- Key Laboratory of Modern Preparation of Chinese Medicine Under Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
33
|
Zhen W, Liu Y, Shao Y, Ma Y, Wu Y, Guo F, Abbas W, Guo Y, Wang Z. Yeast β-Glucan Altered Intestinal Microbiome and Metabolome in Older Hens. Front Microbiol 2022; 12:766878. [PMID: 34975793 PMCID: PMC8718749 DOI: 10.3389/fmicb.2021.766878] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
The prebiotics- and probiotics-mediated positive modulation of the gut microbiota composition is considered a useful approach to improve gut health and food safety in chickens. This study explored the effects of yeast β-glucan (YG) supplementation on intestinal microbiome and metabolites profiles as well as mucosal immunity in older hens. A total of 256 43-week-old hens were randomly assigned to two treatments, with 0 and 200 mg/kg of YG. Results revealed YG-induced downregulation of toll-like receptors (TLRs) and cytokine gene expression in the ileum without any effect on the intestinal barrier. 16S rRNA analysis claimed that YG altered α- and β-diversity and enriched the relative abundance of class Bacilli, orders Lactobacillales and Enterobacteriales, families Lactobacillaceae and Enterobacteriaceae, genera Lactobacillus and Escherichia–Shigella, and species uncultured bacterium-Lactobacillus. Significant downregulation of cutin and suberin, wax biosynthesis, atrazine degradation, vitamin B6 metabolism, phosphotransferase system (PTS), steroid degradation, biosynthesis of unsaturated fatty acids, aminobenzoate degradation and quorum sensing and upregulation of ascorbate and aldarate metabolism, C5-branched dibasic acid metabolism, glyoxylate and dicarboxylate metabolism, pentose and glucuronate interconversions, steroid biosynthesis, carotenoid biosynthesis, porphyrin and chlorophyll metabolism, sesquiterpenoid and triterpenoid biosynthesis, lysine degradation, and ubiquinone and other terpenoid-quinone biosyntheses were observed in YG-treated hens, as substantiated by the findings of untargeted metabolomics analysis. Overall, YG manifests prebiotic properties by altering gut microbiome and metabolite profiles and can downregulate the intestinal mucosal immune response of breeder hens.
Collapse
Affiliation(s)
- Wenrui Zhen
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuchen Liu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujing Shao
- College of Biology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuanyuan Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Wang P, Liu D, Yang FH, Ge H, Zhao X, Chen HG, Du T. Identification of key gene networks controlling vernalization development characteristics of Isatis indigotica by full-length transcriptomes and gene expression profiles. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2679-2693. [PMID: 34975240 PMCID: PMC8703213 DOI: 10.1007/s12298-021-01110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Isatis indigotica Fort., as a common Chinese medicinal raw material, will lose its medicinal value if it blooms early, so it is highly valuable to clarify the induction mechanism of the vernalization of I. indigotica at low temperature. In this study, the concentrations of soluble sugar, proline, glutathione and zeatin in two germplasms of I. indigotica with different degrees of low temperature tolerance (Y1 and Y2) were determined at 10 days, 20 days and 30 days of low-temperature treatment, and the full-length transcriptome of 24 samples was sequenced by Nanopore sequencing with Oxford Nanopore Technologies (ONT). After that, the data of transcripts involved in the vernalization of I. indigotica at low temperature were obtained, and these transcripts were identified using weighted gene co-expression network analysis (WGCNA). The results revealed the massive accumulation of soluble sugar and proline in Y1 and Y2 after low temperature induction. A total of 18,385 new transcripts, 6168 transcription factors and 470 lncRNAs were obtained. Differential expression analysis showed that gibberellin, flavonoids, fatty acids and some processes related to low temperature response were significantly enriched. Eight key transcripts were identified by WGCNA, among which ONT.14640.1, ONT.9119.1, ONT.13080.2 and ONT.16007.1 encodes a flavonoid transporter, 9-cis-epoxycarotenoid dioxygenase 3 (NCED3), growth factor gene and L-aspartate oxidase in plants, respectively. It indicated that secondary metabolites such as hormones and flavonoids play an important role in the vernalization of I. indigotica. qRT-PCR proved the reliability of transcriptome results. These results provide important insights on the low-temperature vernalization of I. indigotica, and provide a research basis for analyzing the vernalization mechanism of I. indigotica. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01110-2.
Collapse
Affiliation(s)
- Pan Wang
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Dong Liu
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Fu-Hong Yang
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
- Pingliang Academy of Agricultural Sciences, Pingliang, 744000 China
| | - Hui Ge
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Xin Zhao
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Hong-Gang Chen
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Tao Du
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| |
Collapse
|
35
|
Li BH, Li ZY, Liu MM, Tian JZ, Cui QH. Progress in Traditional Chinese Medicine Against Respiratory Viruses: A Review. Front Pharmacol 2021; 12:743623. [PMID: 34531754 PMCID: PMC8438140 DOI: 10.3389/fphar.2021.743623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023] Open
Abstract
Respiratory viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-1, SARS-CoV-2, influenza A viruses, and respiratory syncytial virus, pose a serious threat to society. Based on the guiding principles of “holism” and “syndrome differentiation and treatment”, traditional Chinese medicine (TCM) has unique advantages in the treatment of respiratory virus diseases owing to the synergistic effect of multiple components and targets, which prevents drug resistance from arising. According to TCM theory, there are two main strategies in antiviral treatments, namely “dispelling evil” and “fu zheng”. Dispelling evil corresponds to the direct inhibition of virus growth and fu zheng corresponds to immune regulation, inflammation control, and tissue protection in the host. In this review, current progress in using TCMs against respiratory viruses is summarized according to modern biological theories. The prospects for developing TCMs against respiratory viruses is discussed to provide a reference for the research and development of innovative TCMs with multiple components, multiple targets, and low toxicity.
Collapse
Affiliation(s)
- Bao-Hong Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhong-Yuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao-Miao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Zhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Hua Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
36
|
Yu X, Cai T, Fan L, Liang Z, Du Q, Wang Q, Yang Z, Vlahos R, Wu L, Lin L. The traditional herbal formulation, Jianpiyifei II, reduces pulmonary inflammation induced by influenza A virus and cigarette smoke in mice. Clin Sci (Lond) 2021; 135:1733-1750. [PMID: 34236078 DOI: 10.1042/cs20210050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide chronic inflammatory lung disease, and influenza A virus (IAV) infection is a common cause of acute exacerbations of COPD (AECOPD). Therefore, targeting viral infections represents a promising strategy to prevent the occurrence and development of inflammatory flare ups in AECOPD. Jianpiyifei II (JPYFII) is a traditional herbal medicine used in China to treat patients with COPD, and its clinical indications are not well understood. However, investigation of the anti-inflammatory effects and underlying mechanism using an animal model of smoking have been reported in a previous study by our group. In addition, some included herbs, such as Radix astragali and Radix aupleuri, were reported to exhibit antiviral effects. Therefore, the aim of the present study was to investigate whether JPYFII formulation relieved acute inflammation by clearing the IAV in a mouse model that was exposed to cigarette smoke experimentally. JPYFII formulation treatment during smoke exposure and IAV infection significantly reduced the number of cells observed in bronchoalveolar lavage fluid (BALF), expression of proinflammatory cytokines, chemokines, superoxide production, and viral load in IAV-infected and smoke-exposed mice. However, JPYFII formulation treatment during smoke exposure alone did not reduce the number of cells in BALF or the expression of Il-6, Tnf-a, and Il-1β. The results demonstrated that JPYFII formulation exerted an antiviral effect and reduced the exacerbation of lung inflammation in cigarette smoke (CS)-exposed mice infected with IAV. Our results suggested that JPYFII formulation could potentially be used to treat patients with AECOPD associated with IAV infection.
Collapse
Affiliation(s)
- Xuhua Yu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Tiantian Cai
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Long Fan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ziyao Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qiuling Du
- Guangdong Key laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Lei Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Lin Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
37
|
Shi M, Peng B, Li A, Li Z, Song P, Li J, Xu R, Li N. Broad Anti-Viral Capacities of Lian-Hua-Qing-Wen Capsule and Jin-Hua-Qing-Gan Granule and Rational use Against COVID-19 Based on Literature Mining. Front Pharmacol 2021; 12:640782. [PMID: 34054522 PMCID: PMC8160462 DOI: 10.3389/fphar.2021.640782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/14/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) has become a matter of international concern as the disease is spreading exponentially. Statistics showed that infected patients in China who received combined treatment of Traditional Chinese Medicine and modern medicine exhibited lower fatality rate and relatively better clinical outcomes. Both Lian-Hua-Qing-Wen Capsule (LHQWC) and Jin-Hua-Qing-Gan Granule (JHQGG) have been recommended by China Food and Drug Administration for the treatment of COVID-19 and have played a vital role in the prevention of a variety of viral infections. Here, we desired to analyze the broad-spectrum anti-viral capacities of LHQWC and JHQGG, and to compare their pharmacological functions for rational clinical applications. Based on literature mining, we found that both LHQWC and JHQGG were endowed with multiple antiviral activities by both targeting viral life cycle and regulating host immune responses and inflammation. In addition, from literature analyzed, JHQGG is more potent in modulating viral life cycle, whereas LHQWC exhibits better efficacies in regulating host anti-viral responses. When translating into clinical applications, oral administration of LHQWC could be more beneficial for patients with insufficient immune functions or for patients with alleviated symptoms after treatment with JHQGG.
Collapse
Affiliation(s)
- Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - An Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyun Li
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Li
- Department of Nephropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Zhang X, Li X, Chen Y, Li B, Guo C, Xu P, Yu Z, Ding Y, Shi Y, Gu J. Xiao-Yin-Fang Therapy Alleviates Psoriasis-like Skin Inflammation Through Suppressing γδT17 Cell Polarization. Front Pharmacol 2021; 12:629513. [PMID: 33935720 PMCID: PMC8087247 DOI: 10.3389/fphar.2021.629513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease primarily mediated by the activation of interleukin (IL)-17-producing T cells. Traditional Chinese Medicine (TCM) represents one of the most effective complementary and alternative medicine (CAM) agents for psoriasis, which provides treasured sources for the development of anti-psoriasis medications. Xiao-Yin-Fang (XYF) is an empirically developed TCM formula that has been used to treat psoriasis patients in Shanghai Changhai Hospital for over three decades. Imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model was utilized to investigate the therapeutic effects of XYF by the assessment of disease severity and skin thickness. Flow cytometric assay was performed to explore the influence of XYF on skin-related immunocytes, primarily T cells. And, RNA sequencing analysis was employed to determine the alternation in gene expression upon XYF therapy. We discovered that XYF alleviated psoriasis-like skin inflammation mainly through suppressing dermal and draining lymph-node IL-17-producing γδT (γδT17) cell polarization. Moreover, XYF therapy ameliorated the relapse of psoriasis-like dermatitis and prohibited dermal γδT cell reactivation. Transcriptional analysis suggested that XYF might regulate various inflammatory signaling pathways and metabolic processes. In conclusion, our results clarified the therapeutic efficacy and inner mechanism of XYF therapy in psoriasis, which might promote its clinical application in psoriasis patients and facilitate the development of novel anti-psoriasis drugs based on the bioactive components of XYF.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaorui Li
- Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youdong Chen
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Li
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Peng Xu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Jun Gu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
39
|
Indole-3-carboxaldehyde regulates RSV-induced inflammatory response in RAW264.7 cells by moderate inhibition of the TLR7 signaling pathway. J Nat Med 2021; 75:602-611. [PMID: 33755912 DOI: 10.1007/s11418-021-01506-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/15/2021] [Indexed: 12/31/2022]
Abstract
Human respiratory syncytial virus (RSV) is highly contagious and the leading cause of severe respiratory tract illness in infants, elderly, and immunocompromised individuals. Toll-like receptor 7 (TLR7), a pattern recognition receptor recognising the ssRNA of RSV, activates proinflammatory pathways and triggers secretion of interferons (IFNs). On the one hand, the inflammatory responses help clear out virus. On the other hand, they lead to severe lung damage. Banlangen is a traditional Chinese herbal medicine commonly prescribed for respiratory virus infection treatment, but the mechanisms of action and active components remain largely unknown. In the present study, we investigated the effects of the main active components of total alkaloids from banlangen (epigoitrin, indole-3-carboxaldehyde, indole-3-acetonitrile and 4-methoxyindole-3-acetonitrile) on the RSV-induced inflammatory responses in mouse macrophage cells (RAW264.7). Our results demonstrated that RSV-induced IFN-α excessive secretion was moderately inhibited by indole-3-carboxaldehyde through downregulation of mRNA expression in a dose-dependent manner, in comparison, the inhibitory effects of ribavirin were too strong. Furthermore, we revealed that indole-3-carboxaldehyde suppressed transcription of IFN-α by inhibiting RSV-induced TLR7 expression in RAW264.7 cells. Additionally, indole-3-carboxaldehyde inhibited RSV-induced NF-κB signalling activation in a TLR7-MyD88-dependent manner. Together, our findings suggest that indole-3-carboxaldehyde inhibited RSV-induced inflammatory injury by moderate regulation of TLR7 signaling pathway and did not significantly affect the viral clearance competence of the innate immune system.
Collapse
|
40
|
Zheng Y, Jin D, Lin J, Zhang Y, Tian J, Lian F, Tong X. Understanding COVID-19 in Wuhan From the Perspective of Cold-Dampness: Clinical Evidences and Mechanisms. Front Med (Lausanne) 2021; 8:617659. [PMID: 33693014 PMCID: PMC7939017 DOI: 10.3389/fmed.2021.617659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Traditional Chinese medicine (TCM) has played a significant role in the treatment of coronavirus disease 2019 (COVID-19) in Wuhan City. During the epidemic, Academician Tong Xiaolin suggested a close association of COVID-19 with cold-dampness, an etiological factor in TCM, by summarizing the characteristics of the COVID-19 patients in Wuhan. and the theory of Cold-dampness Plague was proposed. Based on the Cold-dampness Plague theory, a series of TCM drugs, such as Huoxiang Zhengqi Dropping Pills, Lianhua Qingwen Granules Hanshiyi Formula, and Tongzhi Granule were developed for the different stages, namely mild, moderate, severe, recovery, of the COVID-19. In addition, clinical evidences were obtained through randomized clinical trials or retrospective cohort studies. The Anti-SARS-CoV-2 mechanism of the TCM prescriptions were then summarized from the four aspects: targeting the ACE2 and 3CLPro, targeting cytokines, targeting acute immune responses to SARS-CoV-2, and targeting pulmonary fibrosis. Despite the clinical efficacy and therapeutic pharmacology speculation, more studies such as large-scale randomized clinical trials, cell and animal experiments are needed to further verify the theory of the Cold-dampness Plague in COVID-19 patients.
Collapse
Affiliation(s)
- Yujiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaran Lin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Antiviral Activity of 3D, a Butene Lactone Derivative Against Influenza A Virus In Vitro and In Vivo. Viruses 2021; 13:v13020278. [PMID: 33670217 PMCID: PMC7916974 DOI: 10.3390/v13020278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus is a highly variable and contagious respiratory pathogen that can cause annual epidemics and it poses an enormous threat to public health. Therefore, there is an urgent need for a new generation of antiviral drugs to combat the emergence of drug-resistant strains of the influenza virus. A novel series of butene lactone derivatives were screened and the compound 3D was selected, as it exhibited in vitro potential antiviral activity against A/Weiss/43 H1N1 virus with low toxicity. In addition, 3D dose-dependently inhibited the viral replication, expression of viral mRNA and viral proteins. 3D exerted a suppressive effect on A/Virginia/ATCC2/2009 H1N1 and A/California/2/2014 H3N2 in vitro. The time-of-addition analysis indicated that 3D suppressed H1N1 in the early stage of its life cycle. A/Weiss/43 H1N1-induced apoptosis in A549 cells was reduced by 3D via the mitochondrial apoptosis pathway. 3D could decrease the production of H1N1-induced pro-inflammatory cytokines that are induced by H1N1 in vitro and in vivo. The administration of 3D reduced lung lesions and virus load in vivo. These results suggest that 3D, which is a butene lactone derivative, is a promising agent for the treatment of influenza A virus infection.
Collapse
|
42
|
Xia QD, Xun Y, Lu JL, Lu YC, Yang YY, Zhou P, Hu J, Li C, Wang SG. Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell Prolif 2020; 53:e12949. [PMID: 33140889 PMCID: PMC7705900 DOI: 10.1111/cpr.12949] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives Coronavirus disease 2019 (COVID‐19) is rapidly spreading worldwide. Lianhua Qingwen capsule (LQC) has shown therapeutic effects in patients with COVID‐19. This study is aimed to discover its molecular mechanism and provide potential drug targets. Materials and Methods An LQC target and COVID‐19–related gene set was established using the Traditional Chinese Medicine Systems Pharmacology database and seven disease‐gene databases. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein‐protein interaction (PPI) network were performed to discover the potential mechanism. Molecular docking was performed to visualize the patterns of interactions between the effective molecule and targeted protein. Results A gene set of 65 genes was generated. We then constructed a compound‐target network that contained 234 nodes of active compounds and 916 edges of compound‐target pairs. The GO and KEGG indicated that LQC can act by regulating immune response, apoptosis and virus infection. PPI network and subnetworks identified nine hub genes. The molecular docking was conducted on the most significant gene Akt1, which is involved in lung injury, lung fibrogenesis and virus infection. Six active compounds of LQC can enter the active pocket of Akt1, namely beta‐carotene, kaempferol, luteolin, naringenin, quercetin and wogonin, thereby exerting potential therapeutic effects in COVID‐19. Conclusions The network pharmacological strategy integrates molecular docking to unravel the molecular mechanism of LQC. Akt1 is a promising drug target to reduce tissue damage and help eliminate virus infection.
Collapse
Affiliation(s)
- Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Lin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Chao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Pharmacological inhibition of poly (ADP-ribose) polymerase by olaparib ameliorates influenza-virus-induced pneumonia in mice. Eur J Clin Microbiol Infect Dis 2020; 40:159-167. [PMID: 32865668 PMCID: PMC7456638 DOI: 10.1007/s10096-020-04020-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023]
Abstract
Treatments against influenza A viruses (IAV) have to be updated regularly due to antigenic drift and drug resistance. Poly (ADP-ribose) polymerases (PARPs) are considered effective therapeutic targets of acute lung inflammatory injury. This study aimed to explore the effects of PARP-1 inhibitor olaparib on IAV-induced lung injury and the underlying mechanisms. Male wild-type C57BL/6 mice were intranasally infected with IAV strain H1N1 to mimic pneumonia experimentally. Olaparib at different doses was intraperitoneally injected 2 days before and 5 consecutive days after virus stimulation. On day 6 post-infection, lung tissues as well as bronchoalveolar lavage fluid (BALF) were sampled for histological and biochemical analyses. Olaparib increased the survival rate of IAV mice dose-dependently. Olaparib remarkably reduced IAV mRNA expression, myeloperoxidase (MPO) level, and inflammatory cell infiltration in IAV lungs. Moreover, olaparib significantly reduced the level of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, and IL-4 and increased IL-10 in IAV lungs. Also, olaparib efficiently reduced IL-6, monocyte chemotactic protein (MCP)-1, granulocyte colony-stimulating factor (G-CSF), TNF-α, chemokine (C–X–C motif) ligand (CXCL)1, CXCL10, chemokine (C–C motif) ligand (CCL)3, and regulated on activation, normal T cell expressed and secreted (RANTES) release in IAV BALF. Olaparib decreased PARylated protein content and p65, IκBα phosphorylation in IAV lung tissues. This study successfully constructed the pneumonia murine model using IAV. Olaparib decreased IAV-induced mortality in mice, lung injury, and cytokine production possibly via modulation of PARP-1/NF-κB axis.
Collapse
|
44
|
Shahrajabian MH, Sun W, Cheng Q. Traditional Herbal Medicine for the Prevention and Treatment of Cold and Flu in the Autumn of 2020, Overlapped With COVID-19. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20951431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many herbs and plants included in several traditional systems have promising bioactive compounds for modern drug therapy. The second round of COVID-19 cases will be accompanied by the spread of seasonal influenza in the fall. The combination of the influenza season and the second wave of COVID-19 may lead to more confusion and put more pressure on public health systems. A literature survey was accomplished using multiple databases including PubMed, Science Direct, ISI web of knowledge, and Google Scholar. The most important antiviral herbs for cold and flu are Thymus vulgaris, honeysuckle flowers, Andrographis, yarrow, peppermint leaf and oil, and Calendula. The most important expectorant herbs for flu and cold are tulsi, snake root, licorice root, clove, slippery elm root, marshmallow osha root, and sage leaf. Immunostimulant herbs for these 2 diseases are Echinacea root, Eucalyptus, garlic, ginseng, marshmallow, slippery elm, Isatisroot, Usnea lichen, myrrh resin, and ginger root. In this mini-review, we mention the key role of some of the most important herbal plants and prescriptions against influenza and cold on the basis of traditional Asian medicine.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei, China
| |
Collapse
|
45
|
Huang ST, Lai HC, Lin YC, Huang WT, Hung HH, Ou SC, Lin HJ, Hung MC. Principles and treatment strategies for the use of Chinese herbal medicine in patients at different stages of coronavirus infection. Am J Cancer Res 2020; 10:2010-2031. [PMID: 32774998 PMCID: PMC7407358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a novel, human-infecting β-coronavirus enveloped, positive-sense single-stranded RNA viruses, similar to the severe acute respiratory syndrome (SARS) infection that emerged in November 2002. In traditional Chinese medicine (TCM), the epidemic disease concepts of "febrile epidemics" (wenyi) or "warm diseases" (wenbing) are based on geographic and cultural aspects, and Chinese herbal medicine (CHM) played an important role in the treatment of epidemic diseases. CHM was widely used to treat patients suffered with SARS almost two decades ago during outbreak of SARS, with proven safety and potential benefits. TCM has also been widely used to treat cancer patients for a long history and much of them associate with immunomodulatory activity and are used to treat coronavirus-related diseases. We propose the use of CHM treatment principles for clinical practice, based on four main stages of COVID-19 infection: early, intermediate, severe, and convalescence. We suggest corresponding decoctions that exhibit antiviral activity and anti-inflammatory effects in the early stage of infection; preventing the disease from progressing from an intermediate to severe stage of infection; restoring normal lung function and improving consciousness in the severe stage; and ameliorating pulmonary and vascular injury in the convalescent stage. We summarize the pharmaceutical mechanisms of CHM for treating coronavirus via antiviral, anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University HospitalTaichung, Taiwan
- An-Nan Hospital, China Medical UniversityTainan, Taiwan
| | - Hsiang-Chun Lai
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Yu-Chun Lin
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Wei-Te Huang
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Hao-Hsiu Hung
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Hung-Jen Lin
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
| |
Collapse
|