1
|
Della Posta S, Cutè E, De Gara L, Fanali C. Deep Eutectic Solvents based green approach for bioactive molecules recovery from Spirulina. J Chromatogr A 2025; 1743:465695. [PMID: 39842147 DOI: 10.1016/j.chroma.2025.465695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Spirulina is a unicellular microalga, characterized by blue/green color, that has received significant attention for its interesting nutritional composition. Phenolic compounds and phycocyanin (PC) are responsible for the many biological activities of Spirulina. Spirulina phenolic compounds are usually extracted using organic solvents, while PC is extracted with water or phosphate buffer solution, obtaining an extract characterized by low stability and low purity. Deep Eutectic Solvents (DESs) are green solvents, widely applied for bioactive molecules extraction, composed by two or more molecules which act as hydrogen bond acceptor or hydrogen bond donor to create an eutectic mixture. A Natural Deep Eutectic Solvent (NADES), is a DES composed only by natural compounds. This work aimed to optimize a green extraction procedure based on NADES to obtain an extract rich in phenolic compounds and PC from Spirulina. The application of NADESs as extraction solvents is an important strategy for recovering phenolic compounds and to increase and stabilize the protein PC. The optimized extraction procedure involved to use a betaine-glucose NADES under the following conditions: matrix-to-solvent ratio of 1:20 (w/w), temperature of 50 °C and one hour as extraction time. The developed extraction procedure guaranteed to recover a phenolic compounds and PC quantity of 11.77 ± 1.23 mg GAE (gallic acid equivalents) and 27.56 ± 2.46 g per g of Spirulina powder respectively. PC in the NADES extract degraded more slowly than in an aqueous extract. The extract phenolic compounds profile was determined through high performance liquid chromatography coupled with mass spectrometry analysis.
Collapse
Affiliation(s)
- Susanna Della Posta
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Erica Cutè
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Laura De Gara
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Chiara Fanali
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Rome, Italy.
| |
Collapse
|
2
|
Chittapun S, Suwanmanee K, Kongsinkaew C, Pornpukdeewattana S, Chisti Y, Charoenrat T. Thermal degradation kinetics and purification of C-phycocyanin from thermophilic and mesophilic cyanobacteria. J Biotechnol 2025; 398:76-86. [PMID: 39617332 DOI: 10.1016/j.jbiotec.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
The natural blue colorant C-phycocyanin (C-PC) has many potential applications but its poor heat stability limits its commercial use. This study compares the production and thermal stability of C-PC from two cyanobacteria: the thermophilic Thermosynechococcus sp. TUBT-T01 and the mesophilic Synechococcus cedrorum TISTR8589. Thermosynechococcus sp. produced nearly 1.9-fold more C-PC than S. cedrorum. Batch adsorption using a chromatographic cationic ion exchange resin (Streamline Direct HST1) was used to effectively purify the C-PC. The equilibrium adsorption capacity (Qeq) of the resin for C-PC was the highest at pH 5. At this pH, the Qeq for the thermophilic C-PC was 5.5 ± 0.1 mg mL⁻¹ , whereas for the mesophilic C-PC it was 1.5 ± 0.2 mg mL⁻¹ . Purification increased the concentration of the thermophilic C-PC by 5.9-fold, and that of mesophilic C-PC by 4.2-fold. The purity ratios of the final products from the two cyanobacteria were similar at ∼2.2. At 60 °C and pH 7, the C-PC of Thermosynechococcus sp. had ∼12-times longer half-life than the mesophilic C-PC; however, the productivity of the thermophilic C-PC was comparatively low because of a low biomass productivity of Thermosynechococcus sp.
Collapse
Affiliation(s)
- Supenya Chittapun
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand
| | - Kattiya Suwanmanee
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand
| | - Chatchol Kongsinkaew
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand
| | | | - Yusuf Chisti
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand.
| |
Collapse
|
3
|
Liu Z, Sun J. The heat and irradiation driven degradation of the diagnostic pigments in marine phytoplankton and the compositions of special degradation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125406. [PMID: 39615568 DOI: 10.1016/j.envpol.2024.125406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Marine phytoplankton stands as one of the most crucial components of marine ecosystems, so tracking it using appropriate biomarkers holds significant meaning. Chlorins are a sort of degradation products derived from the diagnostic pigment of marine phytoplankton and serve as valuable biomarkers for describing the temporal and spatial distribution of phytoplankton. However, previous research has not qualitatively or quantitatively studied multiple Chlorins, nor has it clearly revealed the conditions of their formation. Thus, this study investigated the chemical structure and formation mechanism of Chlorins in Chlorophytes, Prochlorococcus, and Chrysophytes communities by experiencing specific heat and irradiation conditions. According to the standardized redundancy analysis results, Phytin-a and its analogues with shorter phytyl chain are sensitive to irradiation intensity, and different Phytin-a analogues represent different degradation pathway of Chl-a. The composition and concentration of Phide-a and its further degradation products emerged as the primary thermosensitive components, capable of indicating and reversing temperature fluctuations within the environment. During the degradation processes of Chl-a, the carotenoids of each phytoplankton can also affect the degradation direction of Chl-a. Phycourobilin can cause Chl-a in the Prochlorococcus group to transform into special Phide-a analogues relying on low irradiation intensity. Zeaxanthin and Diatoxanthin dominate the conversion of Chl-a in Chrysophytes, and tend to cause heat-driven degradation of pigments. Zeaxanthin and Prasinoxanthin can also mediate the degradation of Chl-a in Chlorophytes. Thus, Chlorophyll and the composition of its Chlorins briefly reveal the rates of degradation and light intensity, and the carotenoids and their Chlorins can represent the temperature condition in the environment. These results imply that Chlorins can be utilized as biomarkers to infer the distribution and abundance of phytoplankton communities, reflecting the environmental factors in which phytoplankton live.
Collapse
Affiliation(s)
- Zishi Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute of Advanced Marine Research of Geosciences, Guangzhou, Guangdong, China
| | - Jun Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute of Advanced Marine Research of Geosciences, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Dahmen I, Chtourou H, Hadrich F, Baccar N, Sayadi S, Ayadi H, Chamkha M. Phormidium versicolor PC skin cream evaluation for its stability and biological activities. Appl Microbiol Biotechnol 2024; 108:541. [PMID: 39718624 DOI: 10.1007/s00253-024-13359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 12/25/2024]
Abstract
In the present investigation, 13% ± 0.84 of the extracted and purified phycocyanin from Phormidium versicolor was obtained, with a purity of 0.69 following dialysis. FT-IR analysis of purified phycocyanin revealed stretching vibration peaks in the profiles of the functional groups of N-H, O-H, C = O, N-H, C = O, and C = NH+. The phycocyanin had a significant DPPH radical scavenging ability (IC50 = 0.6 ± 0.02 mg mL-1) confirmed with FRAP assay, and it exhibited microbiological activity between 1.25 and 2.5 mg mL-1 against Candida albicans, Klebsiella pneumoniae, and Enterococcus faecalis. Phycocyanin showed no cytotoxic and improved the viability of HEK-293. It was added to skin cream at a rate of 6 mg g-1 because of its significant yield extraction and biological activity. At 10 mg mL-1, a bactericidal activity has been noted, inhibiting the growth of bacteria responsible for inflammatory skin conditions. For 60 days, the emulsion's stability was monitored at room temperature, 25 °C, and 45 °C. The appearance of the batch kept at 45 °C was changed to beige after 7 days, while the others were kept for 15 days. Skin creams enhanced with phycocyanin were found to be stable over the course of storage at both room temperature and 25 °C, based on centrifugation stability analysis. But starting on the fifteenth day, the items kept at 45 °C were unstable. Thus, the current study's findings are in favor of using phycocyanin as an antioxidant in cosmetic products. However, further investigation is required before using it in clinical trials. KEY POINTS: • Phycocyanin extraction field (13%) is particularly significant compared to other cyanobacteria. • Phycocyanin at 0.6 μg g-1 in skin cream fights bacteria in skin inflammation. • Phycocyanin-enriched cream was stable at room temp, 25 °C, and unstable at 45 °C after day 15.
Collapse
Affiliation(s)
- Ines Dahmen
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Haifa Chtourou
- Department of Process Engineering, Higher Institute of Technological Studies of Sfax, 3099, ElbustaneSfax, Tunisia.
- Laboratory of Enzyme Engineering and Microbiology, Engineering National School of Sfax (ENIS), University of Sfax, 3038, Sfax, Tunisia.
| | - Fatma Hadrich
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Nidhal Baccar
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Habib Ayadi
- Department of Life Sciences, Laboratory of Marine Biodiversity and Environment, Unit UR 11 ES7, Faculty of Sciences, University of Sfax, 2/Street of Soukra Km 3.5, B.P. 1171, 3000, Sfax, CP, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Zhang P, Zhong D, Yu Y, Wang L, Li Y, Liang Y, Shi Y, Duan M, Li B, Niu H, Xu Y. Integration of STING activation and COX-2 inhibition via steric-hindrance effect tuned nanoreactors for cancer chemoimmunotherapy. Biomaterials 2024; 311:122695. [PMID: 38954960 DOI: 10.1016/j.biomaterials.2024.122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Integrating immunotherapy with nanomaterials-based chemotherapy presents a promising avenue for amplifying antitumor outcomes. Nevertheless, the suppressive tumor immune microenvironment (TIME) and the upregulation of cyclooxygenase-2 (COX-2) induced by chemotherapy can hinder the efficacy of the chemoimmunotherapy. This study presents a TIME-reshaping strategy by developing a steric-hindrance effect tuned zinc-based metal-organic framework (MOF), designated as CZFNPs. This nanoreactor is engineered by in situ loading of the COX-2 inhibitor, C-phycocyanin (CPC), into the framework building blocks, while simultaneously weakening the stability of the MOF. Consequently, CZFNPs achieve rapid pH-responsive release of zinc ions (Zn2+) and CPC upon specific transport to tumor cells overexpressing folate receptors. Accordingly, Zn2+ can induce reactive oxygen species (ROS)-mediated cytotoxicity therapy while synchronize with mitochondrial DNA (mtDNA) release, which stimulates mtDNA/cGAS-STING pathway-mediated innate immunity. The CPC suppresses the chemotherapy-induced overexpression of COX-2, thus cooperatively reprogramming the suppressive TIME and boosting the antitumor immune response. In xenograft tumor models, the CZFNPs system effectively modulates STING and COX-2 expression, converting "cold" tumors into "hot" tumors, thereby resulting in ≈ 4-fold tumor regression relative to ZIF-8 treatment alone. This approach offers a potent strategy for enhancing the efficacy of combined nanomaterial-based chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Yongbo Yu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yifan Li
- Department of Breast Center of the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Ye Liang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Meilin Duan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Haitao Niu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Yuanhong Xu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Yao D, Jiang Y, Daroch M, Tang J. Effect of light conditions on phycoerythrin accumulation by thermophilic cyanobacterium Leptothermofonsia sichuanensis and characterization of pigment stability. BIORESOURCE TECHNOLOGY 2024; 413:131542. [PMID: 39341424 DOI: 10.1016/j.biortech.2024.131542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Phycoerythrin (C-PE) is a cyanobacterial phycobiliprotein with extensive applications. This work sought to investigate the effects of various light conditions on C-PE accumulation by thermophilic Leptothermofonsia sichuanensis and characterize its C-PE stability and purity. Accumulation of C-PE as the predominant phycobiliprotein was significantly affected by light regime and light colours, reaching the highest C-PE accumulation (21.92 mg/gDCW) under blue light. Importantly, the results suggested the superior C-PE thermostability of Leptothermofonsia than the mesophilic counterparts and good pH stability at a range of 4 to 7. Additionally, C-PE indicated advantageous potential for preservation as revealed by photostability experiments. Moreover, sorbitol, sucrose, and NaCl can further stabilise C-PE at 60 °C, of which 10 % sorbitol is the most effective. The extraction process herein resulted in a C-PE purity of 2.68, much higher than the food grade. Collectively, this work demonstrates the Leptothermofonsia strain as a promising bioresource for thermostable C-PE production.
Collapse
Affiliation(s)
- Dan Yao
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
7
|
Buliga DI, Mocanu A, Rusen E, Diacon A, Toader G, Brincoveanu O, Călinescu I, Boscornea AC. Phycocyanin-Loaded Alginate-Based Hydrogel Synthesis and Characterization. Mar Drugs 2024; 22:434. [PMID: 39452842 PMCID: PMC11509733 DOI: 10.3390/md22100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Phycocyanin was extracted from Spirulina platensis using conventional extraction (CE), direct ultrasonic-assisted extraction (direct UAE), indirect ultrasonic-assisted extraction (indirect UAE), and microwave-assisted extraction (MAE) methods at different temperatures, extraction intervals, stirring rate, and power intensities while maintaining the same algae to solvent ratio (1:15 w/v). The optimization of the extraction parameters indicated that the direct UAE yielded the highest phycocyanin concentration (29.31 ± 0.33 mg/mL) and antioxidant activity (23.6 ± 0.56 mg TE/g algae), while MAE achieved the highest purity (Rp = 0.5 ± 0.002). Based on the RP value, phycocyanin extract obtained by MAE (1:15 w/v algae to solvent ratio, 40 min, 40 °C, and 900 rpm) was selected as active compound in an alginate-based hydrogel formulation designed as potential wound dressings. Phycocyanin extracts and loaded hydrogels were characterized by FT-IR analysis. SEM analysis confirmed a porous structure for both blank and phycocyanin loaded hydrogels, while the mechanical properties remained approximately unchanged in the presence of phycocyanin. Phycocyanin release kinetics was investigated at two pH values using Zero-order, First-order, Higuchi, and Korsmeyer-Peppas kinetics models. The Higuchi model best fitted the experimental results. The R2 value at higher pH was nearly 1, indicating a superior fit compared with lower pH values.
Collapse
Affiliation(s)
- Diana-Ioana Buliga
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Voluntari, Romania;
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (A.D.); (G.T.)
| | - Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (A.D.); (G.T.)
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Voluntari, Romania;
- Research Institute, University of Bucharest, ICUB Bucharest, 90 Panduri Rd., 5th District, 050663 Bucharest, Romania
| | - Ioan Călinescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| | - Aurelian Cristian Boscornea
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| |
Collapse
|
8
|
Duman Y, Tufan G. Chromatographic purification of C-phycocyanin from Spirulina platensis: assessing antioxidant activity and stability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7326-7334. [PMID: 38656654 DOI: 10.1002/jsfa.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/31/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The efficient separation and purification of proteins like C-phycocyanin (C-PC) from Spirulina platensis are essential for their commercialization, yet they remain challenging. This study investigated three chromatographic methods for C-PC purification: weak anion exchange chromatography (DEAE), strong anion exchange chromatography (Q Sepharose), and hydrophobic interaction chromatography (HIC). RESULTS Weak anion exchange chromatography achieved a recovery of 36.80 mg unit (57.08%) with a purity of 3.23, outperforming Q Sepharose (yield: 23.21 mg unit means that 46.33%, purity: 2.76) and HIC (yield: 22.95 mg unit means that 17.57%, purity: 3.02). The purified C-PC consisted of α and β subunits with molecular masses of 16 kDa and 17 kDa, respectively. Further assessment revealed its antioxidant capacity through a 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The stability of C-phycocyanin was tested at different pH levels and temperatures. Maximum stability was observed at pH 7, and pH 4 showed the lowest stability. Glutaraldehyde-treated C-PC (GC-PC) demonstrated gradual degradation up to 50 °C, retaining 73.25% after 30 min. Notably, GC-PC exhibited stability even at higher temperatures, with degradation rates of 57.32% at 70 °C and 50.96% at 80 °C. CONCLUSION Weak anion exchange chromatography proved superior for C-PC purification, offering higher yields and purity than Q Sepharose and HIC. The purified C-PC showed promising antioxidant capacity and stability, particularly GC-PC, which exhibited resistance to degradation, even at elevated temperatures. These findings underscore the potential of C-PC as a valuable compound for various applications, with DEAE chromatography being an efficient method for its production and commercialization. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yonca Duman
- Section of Biochemistry, Department of Chemistry, Faculty of Arts and Sciences, Kocaeli University, Umuttepe Campus, İzmit, Turkey
| | - Gamze Tufan
- Section of Biochemistry, Department of Chemistry, Faculty of Arts and Sciences, Kocaeli University, Umuttepe Campus, İzmit, Turkey
| |
Collapse
|
9
|
Minić S, Gligorijević N, Veličković L, Nikolić M. Narrative Review of the Current and Future Perspectives of Phycobiliproteins' Applications in the Food Industry: From Natural Colors to Alternative Proteins. Int J Mol Sci 2024; 25:7187. [PMID: 39000294 PMCID: PMC11241428 DOI: 10.3390/ijms25137187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Vivid-colored phycobiliproteins (PBPs) have emerging potential as food colors and alternative proteins in the food industry. However, enhancing their application potential requires increasing stability, cost-effective purification processes, and consumer acceptance. This narrative review aimed to highlight information regarding the critical aspects of PBP research that is needed to improve their food industry potential, such as stability, food fortification, development of new PBP-based food products, and cost-effective production. The main results of the literature review show that polysaccharide and protein-based encapsulations significantly improve PBPs' stability. Additionally, while many studies have investigated the ability of PBPs to enhance the techno-functional properties, like viscosity, emulsifying and stabilizing activity, texture, rheology, etc., of widely used food products, highly concentrated PBP food products are still rare. Therefore, much effort should be invested in improving the stability, yield, and sensory characteristics of the PBP-fortified food due to the resulting unpleasant sensory characteristics. Considering that most studies focus on the C-phycocyanin from Spirulina, future studies should concentrate on less explored PBPs from red macroalgae due to their much higher production potential, a critical factor for positioning PBPs as alternative proteins.
Collapse
Affiliation(s)
- Simeon Minić
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Department of Chemistry, Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Luka Veličković
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Yu Z, Zhao W, Sun H, Mou H, Liu J, Yu H, Dai L, Kong Q, Yang S. Phycocyanin from microalgae: A comprehensive review covering microalgal culture, phycocyanin sources and stability. Food Res Int 2024; 186:114362. [PMID: 38729724 DOI: 10.1016/j.foodres.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.0. However, its application is limited in scenarios involving high-temperature processing due to its sensitivity to heat and light. This comprehensive review provides insights into the efficient production of PC from microalgae, covers the metabolic engineering of microalgae to increase PC yields and discusses various strategies for enhancing its stability in food applications. In addition to the most widely used Spirulina, some red algae and Thermosynechococcus can serve as good source of PC. The genetic and metabolic manipulation of microalgae strains has shown promise in increasing PC yield and improving its quality. Delivery systems including nanoparticles, hydrogels, emulsions, and microcapsules offer a promising solution to protect and extend the shelf life of PC in food products, ensuring its vibrant color and health-promoting properties are preserved. This review highlights the importance of metabolic engineering, multi-omics applications, and innovative delivery systems in unlocking the full potential of this natural blue pigment in the realm of food applications, provides a complete overview of the entire process from production to commercialization of PC, including the extraction and purification.
Collapse
Affiliation(s)
- Zengyu Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Hui Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China.
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
11
|
Pispas K, Manthos G, Sventzouri E, Geroulia M, Mastropetros SG, Ali SS, Kornaros M. Optimizing Phycocyanin Extraction from Cyanobacterial Biomass: A Comparative Study of Freeze-Thaw Cycling with Various Solvents. Mar Drugs 2024; 22:246. [PMID: 38921557 PMCID: PMC11204620 DOI: 10.3390/md22060246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
Cyanobacterial phycocyanin pigment is widely utilized for its properties in various industries, including food, cosmetics, and pharmaceuticals. Despite its potential, challenges exist, such as extraction methods impacting yield, stability, and purity. This study investigates the impact of the number of freeze-thaw (FT) cycles on the extraction of phycocyanin from the wet biomass of four cyanobacteria species (Arthrospira platensis, Chlorogloeopsis fritschii, Phormidium sp., and Synechocystis sp.), along with the impact of five extraction solutions (Tris-HCl buffer, phosphate buffer, CaCl2, deionized water, and tap water) at various pH values. Synechocystis sp. exhibited the highest phycocyanin content among the studied species. For A. platensis, Tris-HCl buffer yielded maximum phycocyanin concentration from the first FT cycle, while phosphate buffer provided satisfactory results from the second cycle. Similarly, Tris-HCl buffer showed promising results for C. fritschii (68.5% of the maximum from the first cycle), with the highest concentration (~12% w/w) achieved during the seventh cycle, using phosphate buffer. Phormidium sp. yielded the maximum pigment concentration from the first cycle using tap water. Among species-specific optimal extraction solutions, Tris-HCl buffer demonstrated sufficient extraction efficacy for all species, from the first cycle. This study represents an initial step toward establishing a universal extraction method for phycocyanin from diverse cyanobacteria species.
Collapse
Affiliation(s)
- Konstantinos Pispas
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (K.P.); (G.M.); (E.S.); (M.G.); (S.G.M.)
| | - Georgios Manthos
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (K.P.); (G.M.); (E.S.); (M.G.); (S.G.M.)
| | - Eirini Sventzouri
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (K.P.); (G.M.); (E.S.); (M.G.); (S.G.M.)
| | - Maria Geroulia
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (K.P.); (G.M.); (E.S.); (M.G.); (S.G.M.)
| | - Savvas Giannis Mastropetros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (K.P.); (G.M.); (E.S.); (M.G.); (S.G.M.)
| | - Sameh Samir Ali
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (K.P.); (G.M.); (E.S.); (M.G.); (S.G.M.)
| |
Collapse
|
12
|
Seyedalangi M, Sari AH, Nowruzi B, Anvar SAA. The synergistic effect of dielectric barrier discharge plasma and phycocyanin on shelf life of Oncorhynchus mykiss rainbow fillets. Sci Rep 2024; 14:9174. [PMID: 38649495 PMCID: PMC11035654 DOI: 10.1038/s41598-024-59904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
This study aimed to evaluate the efficacy of dielectric barrier discharge treatment (DBD) combined with phycocyanin pigment (PC) in extending the shelf life of Oncorhynchus mykiss rainbow fillets stored at 4 ± 0.1 °C. Microbiological, physicochemical, sensory and antioxidant properties were assessed over an 18-day storage period. The combined DBD and PC treatment significantly inhibited total viable counts and Psychrotrophic bacteria counts compared to the rest of the samples throughout storage. While Total Volatile Nitrogen concentrations remained below international standard until day 18, they exceeded this threshold in control sample by day 9. DBD treatment notably reduced Trimethylamine levels compared to controls (p < 0.05). PC and DBD combined inhibited DPPH and ABTS radical scavenging capacities by 80% and 85%, respectively, while demonstrating heightened iron-reducing antioxidant activity compared to controls. Analysis of 24 fatty acids indicated that PC mitigated DBD's adverse effects, yielding superior outcomes compared to controls. The ratio of n-3 to n-6 fatty acids in all samples met or fell below international standard. Thus, the combined use of DBD and PC shows promise in extending fillet shelf life by over 15 days at 4 °C.
Collapse
Affiliation(s)
- Maedehsadat Seyedalangi
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Sari
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Xing Y, Li J, Fan Y, Lu S, Gu W. Coordination of iron ions with phycocyanin for an improved Fenton activity at weakly acidic pH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123975. [PMID: 38306924 DOI: 10.1016/j.saa.2024.123975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Development of biomolecules coordinated iron ions-based Fenton agents is highly desirable for chemodynamic therapy in term of demanded biocompatibility and enhanced Fenton activity at tumor microenvironmental pH of 6.5. Herein, phycocyanin (PC), the only FDA-approved natural coloring agent, was selected to coordinate with iron ions. The spectroscopic investigations disclosed that PC displayed pH-dependent spectral and conformational responses upon addition of Fe ions. As a result, the effective formation of Fe-PC coordination merely occurred at pH 7 due to a less folded polypeptide matrix of PC. The formed Fe-PC coordination exerted an enhanced Fenton activity at pH 6.5 as attested by 3, 3', 5, 5'-tetramethlbenzidine assay and steady-state kinetic analysis. These findings not only provide fundamental insights of Fe-PC coordination but also highlight the potential biomedical significance of Fe-PC for severing as an effective Fenton agent in chemodynamic therapy.
Collapse
Affiliation(s)
- Yixin Xing
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Jingyi Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yuanjie Fan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Shousi Lu
- School of Rehabilitation Medicine, Capital Medical University, China Rehabilitation Research Center, Beijing 100068, PR China.
| | - Wei Gu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
14
|
Gligorijević N, Jovanović Z, Cvijetić I, Šunderić M, Veličković L, Katrlík J, Holazová A, Nikolić M, Minić S. Investigation of the Potential of Selected Food-Derived Antioxidants to Bind and Stabilise the Bioactive Blue Protein C-Phycocyanin from Cyanobacteria Spirulina. Int J Mol Sci 2023; 25:229. [PMID: 38203400 PMCID: PMC10779248 DOI: 10.3390/ijms25010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Blue C-phycocyanin (C-PC), the major Spirulina protein with innumerable health-promoting benefits, is an attractive colourant and food supplement. A crucial obstacle to its more extensive use is its relatively low stability. This study aimed to screen various food-derived ligands for their ability to bind and stabilise C-PC, utilising spectroscopic techniques and molecular docking. Among twelve examined ligands, the protein fluorescence quenching revealed that only quercetin, coenzyme Q10 and resveratrol had a moderate affinity to C-PC (Ka of 2.2 to 3.7 × 105 M-1). Docking revealed these three ligands bind more strongly to the C-PC hexamer than the trimer, with the binding sites located at the interface of two (αβ)3 trimers. UV/VIS absorption spectroscopy demonstrated the changes in the C-PC absorption spectra in a complex with quercetin and resveratrol compared to the spectra of free protein and ligands. Selected ligands did not affect the secondary structure content, but they induced changes in the tertiary protein structure in the CD study. A fluorescence-based thermal stability assay demonstrated quercetin and coenzyme Q10 increased the C-PC melting point by nearly 5 °C. Our study identified food-derived ligands that interact with C-PC and improve its thermal stability, indicating their potential as stabilising agents for C-PC in the food industry.
Collapse
Affiliation(s)
- Nikola Gligorijević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, National Institute of the Republic of Serbia, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Zorana Jovanović
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| | - Ilija Cvijetić
- University of Belgrade-Faculty of Chemistry, Department of Analytical Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Miloš Šunderić
- University of Belgrade-Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11000 Belgrade, Serbia;
| | - Luka Veličković
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 84538 Bratislava, Slovakia; (J.K.); (A.H.)
| | - Alena Holazová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 84538 Bratislava, Slovakia; (J.K.); (A.H.)
| | - Milan Nikolić
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| | - Simeon Minić
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| |
Collapse
|
15
|
Zagoskin YD, Sergeeva YE, Fomina YS, Sukhinov DV, Malakhov SN, Osidak EO, Khramtsova EA, Gotovtsev PM, Chvalun SN, Grigoriev TE. Porous Polylactide Microparticles as Effective Fillers for Hydrogels. Biomimetics (Basel) 2023; 8:565. [PMID: 38132504 PMCID: PMC10741550 DOI: 10.3390/biomimetics8080565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
High-strength composite hydrogels based on collagen or chitosan-genipin were obtained via mixing using highly porous polylactide (PLA) microparticles with diameters of 50-75 µm and porosity values of over 98%. The elastic modulus of hydrogels depended on the filler concentration. The modulus increased from 80 kPa to 400-600 kPa at a concentration of porous particles of 12-15 wt.% and up to 1.8 MPa at a filling of 20-25 wt.% for collagen hydrogels. The elastic modulus of the chitosan-genipin hydrogel increases from 75 kPa to 900 kPa at a fraction of particles of 20 wt.%. These elastic modulus values cover a range of strength properties from connective tissue to cartilage tissue. It is important to note that the increase in strength in this case is accompanied by a decrease in the density of the material, that is, an increase in porosity. PLA particles were loaded with C-phycocyanin and showed an advanced release profile up to 48 h. Thus, composite hydrogels mimic the structure, biomechanics and release of biomolecules in the tissues of a living organism.
Collapse
Affiliation(s)
- Yuriy D. Zagoskin
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.D.Z.); (Y.E.S.); (Y.S.F.); (D.V.S.); (S.N.M.); (S.N.C.); (T.E.G.)
| | - Yana E. Sergeeva
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.D.Z.); (Y.E.S.); (Y.S.F.); (D.V.S.); (S.N.M.); (S.N.C.); (T.E.G.)
- Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudny, Russia
| | - Yuliya S. Fomina
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.D.Z.); (Y.E.S.); (Y.S.F.); (D.V.S.); (S.N.M.); (S.N.C.); (T.E.G.)
| | - Daniil V. Sukhinov
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.D.Z.); (Y.E.S.); (Y.S.F.); (D.V.S.); (S.N.M.); (S.N.C.); (T.E.G.)
| | - Sergey N. Malakhov
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.D.Z.); (Y.E.S.); (Y.S.F.); (D.V.S.); (S.N.M.); (S.N.C.); (T.E.G.)
| | - Egor O. Osidak
- Imtek Ltd., 121552 Moscow, Russia;
- Dmitry Rogachev National Medical Research Center of Paediatric Haematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Elena A. Khramtsova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Pavel M. Gotovtsev
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.D.Z.); (Y.E.S.); (Y.S.F.); (D.V.S.); (S.N.M.); (S.N.C.); (T.E.G.)
- Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudny, Russia
| | - Sergei N. Chvalun
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.D.Z.); (Y.E.S.); (Y.S.F.); (D.V.S.); (S.N.M.); (S.N.C.); (T.E.G.)
| | - Timofei E. Grigoriev
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.D.Z.); (Y.E.S.); (Y.S.F.); (D.V.S.); (S.N.M.); (S.N.C.); (T.E.G.)
- Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudny, Russia
| |
Collapse
|
16
|
Waters LJ, Whiteley J, Small W, Mellor S. Determining suitable surfactant concentration ranges to avoid protein unfolding in pharmaceutical formulations using UV analysis. Heliyon 2023; 9:e21712. [PMID: 37954313 PMCID: PMC10632529 DOI: 10.1016/j.heliyon.2023.e21712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Protein stability is fundamental to maintain pharmaceutical efficacy in the nascent field of biologics. One particular property that is essential for therapeutic effect is retention of the folded 3-dimensional conformation, i.e. once unfolding has occurred the biologic is often rendered inactive. In this work we propose a modified form of a recently published UV spectroscopic method that identifies protein unfolding. In this study we determine concentration limits to avoid protein unfolding of two model surfactants, namely polysorbate 20 and polysorbate 80, by correlating surfactant concentration with percentage 'unfolded' for three model proteins. For each scenario two distinct regions were observed, firstly surfactant concentrations at which no unfolding had occurred, followed by a second region whereby unfolding steadily increased with surfactant concentration. In general for the combinations analysed in this study, this second region began to appear around ten times below the critical micellar concentration of each surfactant, regardless of the protein or polysorbate chosen. It is therefore proposed that this adapted method could be used by researchers in the early stages of formulation development as a convenient and simple screening tool to confirm the 'onset of unfolding' concentration for protein-surfactant formulations, thus helping to optimise surfactant concentration selection in pharmaceutical formulations to maintain the benefits of surfactants yet avoid inadvertent unfolding.
Collapse
Affiliation(s)
- Laura J. Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Joseph Whiteley
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - William Small
- Croda Europe Ltd, Cowick Hall, Snaith, Goole, DN14 9AA, UK
| | - Steve Mellor
- Croda Europe Ltd, Cowick Hall, Snaith, Goole, DN14 9AA, UK
| |
Collapse
|
17
|
Galinytė D, Balčiūnaitė-Murzienė G, Karosienė J, Morudov D, Naginienė R, Baranauskienė D, Šulinskienė J, Kudlinskienė I, Savickas A, Savickienė N. Determination of Heavy Metal Content: Arsenic, Cadmium, Mercury, and Lead in Cyano-Phycocyanin Isolated from the Cyanobacterial Biomass. PLANTS (BASEL, SWITZERLAND) 2023; 12:3150. [PMID: 37687396 PMCID: PMC10490492 DOI: 10.3390/plants12173150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Cyano-phycocyanin (C-PC) is a light-absorbing biliprotein found in cyanobacteria, commonly known as blue-green algae. Due to its antioxidative, anti-inflammatory, and anticancer properties, this protein is a promising substance in medicine and pharmaceuticals. However, cyanobacteria tend to bind heavy metals from the environment, making it necessary to ensure the safety of C-PC for the development of pharmaceutical products, with C-PC isolated from naturally collected cyanobacterial biomass. This study aimed to determine the content of the most toxic heavy metals, arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in C-PC isolated from different cyanobacterial biomasses collected in the Kaunas Lagoon during 2019-2022, and compare them with the content of heavy metals in C-PC isolated from cultivated Spirulina platensis (S. platensis). Cyanobacteria of Aphanizomenon flos-aquae (A. flos-aquae) dominated the biomass collected in 2019, while the genus Microcystis dominated the biomasses collected in the years 2020 and 2022. Heavy metals were determined using inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS analysis revealed higher levels of the most investigated heavy metals (Pb, Cd, and As) in C-PC isolated from the biomass with the dominant Microcystis spp. compared to C-PC isolated from the biomass with the predominant A. flos-aquae. Meanwhile, C-PC isolated from cultivated S. platensis exhibited lower concentrations of As and Pb than C-PC isolated from naturally collected cyanobacterial biomass.
Collapse
Affiliation(s)
- Daiva Galinytė
- Department of Pharmacology, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| | - Gabrielė Balčiūnaitė-Murzienė
- Faculty of Pharmacy, Institute of Pharmaceutical Technologies, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| | - Jūratė Karosienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Dmitrij Morudov
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Rima Naginienė
- Laboratory of Toxicology, Neurosciences Institute, Academy of Medicine, Lithuanian University of Health Sciences, Eivenių Str. 4, 50161 Kaunas, Lithuania; (R.N.); (D.B.); (J.Š.)
| | - Dalė Baranauskienė
- Laboratory of Toxicology, Neurosciences Institute, Academy of Medicine, Lithuanian University of Health Sciences, Eivenių Str. 4, 50161 Kaunas, Lithuania; (R.N.); (D.B.); (J.Š.)
| | - Jurgita Šulinskienė
- Laboratory of Toxicology, Neurosciences Institute, Academy of Medicine, Lithuanian University of Health Sciences, Eivenių Str. 4, 50161 Kaunas, Lithuania; (R.N.); (D.B.); (J.Š.)
| | | | - Arūnas Savickas
- Department of Drug Technology and Social Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| | - Nijolė Savickienė
- Department of Pharmacology, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| |
Collapse
|
18
|
Sergeeva YE, Zakharevich AA, Sukhinov DV, Koshkalda AI, Kryukova MV, Malakhov SN, Antipova CG, Klein OI, Gotovtsev PM, Grigoriev TE. Chitosan Sponges for Efficient Accumulation and Controlled Release of C-Phycocyanin. BIOTECH 2023; 12:55. [PMID: 37606442 PMCID: PMC10443324 DOI: 10.3390/biotech12030055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
The paper proposed a new porous material for wound healing based on chitosan and C-phycocyanin (C-PC). In this work, C-PC was extracted from the cyanobacteria Arthrospira platensis biomass and purified through ammonium sulfate precipitation. The obtained C-PC with a purity index (PI) of 3.36 ± 0.24 was loaded into a chitosan sponge from aqueous solutions of various concentrations (250, 500, and 1000 mg/L). According to the FTIR study, chitosan did not form new bonds with C-PC, but acted as a carrier. The encapsulation efficiency value exceeded 90%, and the maximum loading capacity was 172.67 ± 0.47 mg/g. The release of C-PC from the polymer matrix into the saline medium was estimated, and it was found 50% of C-PC was released in the first hour and the maximum concentration was reached in 5-7 h after the sponge immersion. The PI of the released C-PC was 3.79 and 4.43 depending on the concentration of the initial solution.
Collapse
Affiliation(s)
- Yana E. Sergeeva
- Department of Biotechnology and Bioenergy, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.E.S.); (D.V.S.); (M.V.K.); (P.M.G.)
- Department of NBIC-Technologies, Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - Anastasia A. Zakharevich
- Department of Nanobiomaterials and Structures, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.A.Z.); (C.G.A.); (O.I.K.)
| | - Daniil V. Sukhinov
- Department of Biotechnology and Bioenergy, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.E.S.); (D.V.S.); (M.V.K.); (P.M.G.)
| | - Alexandra I. Koshkalda
- Faculty of Biotechnology, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Mariya V. Kryukova
- Department of Biotechnology and Bioenergy, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.E.S.); (D.V.S.); (M.V.K.); (P.M.G.)
| | - Sergey N. Malakhov
- Department for Resource Centre, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia;
| | - Christina G. Antipova
- Department of Nanobiomaterials and Structures, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.A.Z.); (C.G.A.); (O.I.K.)
| | - Olga I. Klein
- Department of Nanobiomaterials and Structures, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.A.Z.); (C.G.A.); (O.I.K.)
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, 119071 Moscow, Russia
| | - Pavel M. Gotovtsev
- Department of Biotechnology and Bioenergy, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (Y.E.S.); (D.V.S.); (M.V.K.); (P.M.G.)
- Department of NBIC-Technologies, Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - Timofei E. Grigoriev
- Department of NBIC-Technologies, Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
- Department of Nanobiomaterials and Structures, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.A.Z.); (C.G.A.); (O.I.K.)
| |
Collapse
|
19
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
20
|
Fernandes R, Campos J, Serra M, Fidalgo J, Almeida H, Casas A, Toubarro D, Barros AIRNA. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals (Basel) 2023; 16:592. [PMID: 37111349 PMCID: PMC10144176 DOI: 10.3390/ph16040592] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Large-scale production of microalgae and their bioactive compounds has steadily increased in response to global demand for natural compounds. Spirulina, in particular, has been used due to its high nutritional value, especially its high protein content. Promising biological functions have been associated with Spirulina extracts, mainly related to its high value added blue pigment, phycocyanin. Phycocyanin is used in several industries such as food, cosmetics, and pharmaceuticals, which increases its market value. Due to the worldwide interest and the need to replace synthetic compounds with natural ones, efforts have been made to optimize large-scale production processes and maintain phycocyanin stability, which is a highly unstable protein. The aim of this review is to update the scientific knowledge on phycocyanin applications and to describe the reported production, extraction, and purification methods, including the main physical and chemical parameters that may affect the purity, recovery, and stability of phycocyanin. By implementing different techniques such as complete cell disruption, extraction at temperatures below 45 °C and a pH of 5.5-6.0, purification through ammonium sulfate, and filtration and chromatography, both the purity and stability of phycocyanin have been significantly improved. Moreover, the use of saccharides, crosslinkers, or natural polymers as preservatives has contributed to the increased market value of phycocyanin.
Collapse
Affiliation(s)
- Raquel Fernandes
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Joana Campos
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Mónica Serra
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Javier Fidalgo
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Hugo Almeida
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Casas
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus No 13, 9500-321 Ponta Delgada, Portugal
| | - Ana I. R. N. A. Barros
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
21
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
22
|
Kraseasintra O, Sensupa S, Mahanil K, Yoosathaporn S, Pekkoh J, Srinuanpan S, Pathom-Aree W, Pumas C. Optimization of Melanin Production by Streptomyces antibioticus NRRL B-1701 Using Arthrospira (Spirulina) platensis Residues Hydrolysates as Low-Cost L-tyrosine Supplement. BIOTECH 2023; 12:biotech12010024. [PMID: 36975314 PMCID: PMC10046677 DOI: 10.3390/biotech12010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Melanin is a functional pigment that is used in various products. It can be produced by Streptomyces antibioticus NRRL B-1701 when supplemented with L-tyrosine. Arthrospira (Spirulina) platensis is a cyanobacterium with high protein content, including the protein phycocyanin (PC). During PC's extraction, biomass residues are generated, and these residues still contain various amino acids, especially L-tyrosine, which can be used as a low-cost supplement for melanin production. Thus, this study employed a hydrolysate of A. platensis biomass residue for L-tyrosine substitution. The effects of two drying methods, namely, lyophilization and dying via a hot air oven, on the proximate composition and content of L-tyrosine in the biomass residue were evaluated. The highest L-tyrosine (0.268 g L-tyrosine/100 g dried biomass) concentration was obtained from a hot-air-oven-dried biomass residue hydrolysate (HAO-DBRH). The HAO-DBRH was then used as a low-cost L-tyrosine supplement for maximizing melanin production, which was optimized by the response surface methodology (RSM) through central composite design (CCD). Using the RSM-CCD, the maximum level of melanin production achieved was 0.24 g/L, which is approximately four times higher than it was before optimization. This result suggests that A. platensis residue hydrolysate could be an economically feasible and low-cost alternative source of L-tyrosine for the production of melanin.
Collapse
Affiliation(s)
- Oranit Kraseasintra
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Doctor of Philosophy Program in Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sritip Sensupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanjana Mahanil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sada Yoosathaporn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
23
|
Aoude C, Grimi N, El Zakhem H, Vorobiev E. Electrowashing of microalgae Arthrospira platensis filter cake. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2189547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Christa Aoude
- Centre de recherche Royallieu, Université de Technologie de Compiégne, ESCOM, TIMR (Transformations Intérées de la Matière Renouvelable), CS 60 319 - 60 203 Compiègne Cedex, France
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, Al Koura, Lebanon
| | - Nabil Grimi
- Centre de recherche Royallieu, Université de Technologie de Compiégne, ESCOM, TIMR (Transformations Intérées de la Matière Renouvelable), CS 60 319 - 60 203 Compiègne Cedex, France
| | - Henri El Zakhem
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, Al Koura, Lebanon
| | - Eugene Vorobiev
- Centre de recherche Royallieu, Université de Technologie de Compiégne, ESCOM, TIMR (Transformations Intérées de la Matière Renouvelable), CS 60 319 - 60 203 Compiègne Cedex, France
| |
Collapse
|
24
|
Nakamoto MM, Assis M, de Oliveira Filho JG, Braga ARC. Spirulina application in food packaging: Gaps of knowledge and future trends. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
25
|
Zheng S, Zhao H, Yuan Z, Si X, Li Z, Song J, Zhu Y, Wu H. The Analysis of the Glycosyltransferase Gene Function From a Novel Granaticin Producer, Streptomyces Vilmorinianum. YP1. Curr Microbiol 2023; 80:103. [PMID: 36781498 DOI: 10.1007/s00284-023-03192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/15/2022] [Indexed: 02/15/2023]
Abstract
Glycosylation is common among the synthesis of natural product and imparts the bioactivity for natural product. As for granaticin, a natural product with great bioactivity, glycosylation is an unusual sugar attachment and remains enigmatic. Orf14 in the gra cluster is the predicted glycosyltransferase but without being identified. Recently, we isolated and identified a novel granaticin producer Streptomyces vilmorinianum YP1. Orf14 gene in gra cluster of YP1 is knocked out and complemented. The instrumental analysis of the blue product synthesized by orf14-deficient mutant exhibits the none-granaticin detection and deglycosylated intermediates accumulation. The bioactivity and stability test suggests the weaker or none antibacterial activity and cytotoxicity of this blue product with greater ultraviolet stability and thermostability than granaticin and derivatives produced by YP1. All the result indicates that orf14 encodes glycosyltransferase and glycosylation played an important role in the bioactivity of granaticin. Meanwhile, the blue pigment, deglycosylated intermediates, has favorable processing characteristics. Our finding supplies the function of orf14 and glycosylation, but also indicates a promising candidate of edible blue pigment applicated in food industry.
Collapse
Affiliation(s)
- Shenglan Zheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Hongling Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Zuoyun Yuan
- Department of Science Technology and Innovation, Future Science and Technology Park South, COFCO Nutrition and Health Research Institute, BeiQiJia, ChangPing, BeiJing, 102209, China
| | - Xuechen Si
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Zongxian Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Jingyi Song
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China
| | - Yunping Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048, China.
- College of Food and Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Hua Wu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, 100048, China
| |
Collapse
|
26
|
Martínez-Vega JE, Villafaña-Estarrón E, Escalante FME. Comparative Study of the Efficiency of Additives in the Extraction of Phycocyanin-C from Arthrospira maxima Using Ultrasonication. Molecules 2022; 28:molecules28010334. [PMID: 36615528 PMCID: PMC9822205 DOI: 10.3390/molecules28010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Several phycocyanin extraction methods have been proposed, however, most of them present economical or productive barriers. One of the most promising methods that has been suggested is ultrasonication. We have analyzed here the effect of operational conditions and additives on the extraction and purity of phycocyanin from Arthrospira maxima. We followed three experimental designs to determine the best combination of buffered pH solutions, additives, fresh and lyophilized biomass. We have found that additives such as citric acid and/or disaccharides could be beneficial to the extraction process. We concluded that the biomass-solvent ratio is a determining factor to obtain high extraction and purity ratios with short ultrasonication times.
Collapse
Affiliation(s)
- Jorge Eugenio Martínez-Vega
- Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, Lomas del Valle, Zapopan 45129, Mexico
| | - Erika Villafaña-Estarrón
- Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, Lomas del Valle, Zapopan 45129, Mexico
| | - Froylán M. E. Escalante
- Dirección de Investigación y Desarrollo Tecnológico, Universidad Autónoma de Guadalajara, Av. Patria 1201, Lomas del Valle, Zapopan 45129, Mexico
- Correspondence: or ; Tel.: +52-(33)-36488824 (ext. 35811)
| |
Collapse
|
27
|
Effect of Electrofiltration on the Dewatering Kinetics of Arthrospira platensis and Biocompound Recovery. SEPARATIONS 2022. [DOI: 10.3390/separations9120410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Arthrospira platensis (A. platensis) is a microalga with a wide range of commercial uses. One of the main concerns that needs to be addressed in microalgae biorefineries is the costs associated with the harvesting and concentration steps. Filtration has been shown to be an effective technique for concentrating microalgae and recent studies have attempted to enhance membrane filtration by applying an external electric field to the filtration cell. This study consisted of assessing the use of electrically assisted filtration (electrofiltration) at 60 A/m2 and 1 bar for the dewatering of A. platensis, as well as the effect of pretreating the microalgae with ultrasounds (US) on the filtration process. Untreated A. platensis exhibited better filtration kinetics than US-treated A. platensis, and electrofiltration was found to increase the cake dryness. More protein and pigments were present in the US-treated microalgae solution compared to the untreated microalgae, which led to the presence of higher concentrations of protein and pigments in the filtrate streams after pressure filtration at 1 bar without the application of an external electric field. Electrofiltration was found to consume less energy compared to traditional drying techniques used for A. platensis. However, electrofiltration degrades the biocompounds present in the filtrate and cake due to pH changes and other electrophoresis phenomena, which shows the need to optimize the process in future work.
Collapse
|
28
|
Narindri Rara Winayu B, Hsueh HT, Chu H. CO 2 fixation and cultivation of Thermosynechococcus sp. CL-1 for the production of phycocyanin. BIORESOURCE TECHNOLOGY 2022; 364:128105. [PMID: 36243258 DOI: 10.1016/j.biortech.2022.128105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cultivation of Cyanobacteria is preferable for CO2 fixation process due to its efficiency and production of beneficial byproducts like phycocyanin. In this study, Thermosynechococcus sp. CL-1 (TCL-1) was cultivated in a 30 L flat panel photobioreactor using a 3-fold-modified Fitzgerald medium with 113.2 mM dissolved inorganic carbon. The highest CO2 fixation rate of 21.98 ± 1.52 mg/L/h was followed by higher lipid content (49.91 % dry weight content or %dwc) than the generated carbohydrate (24.22 %dwc). TCL-1 also potentially produced phycocyanin that was dominated by C-phycocyanin (98.10 ± 6.67 mg/g) along with a lower amount of allophycocyanin and phycoerythrin under extraction using various types of solvent. Stability of phycocyanin extract was further examined during storage under various temperatures and light illuminations. Extraction with 36 % glucose solvent presented a protective effect to phycocyanin from heat and photo-damage which was proven by the kinetics study of phycocyanin degradation in this study.
Collapse
Affiliation(s)
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
29
|
Ma J, Hu J, Sha X, Meng D, Yang R. Phycobiliproteins, the pigment-protein complex form of natural food colorants and bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:2999-3017. [PMID: 36193900 DOI: 10.1080/10408398.2022.2128714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Currently, the use of synthetic pigments in foods is restricted since synthetic pigments are proven and suspected to be harmful to human health. Phycobiliproteins (PBPs), existed in phycobilisomes (PBSs) of algae, are a kind of pigment-proteins with intense color. The specific color of PBPs (red and blue) is given by the water-soluble open-chained tetrapyrrole chromophore (phycobilin) that covalently attaches to the apo-protein via thioether linkages to cysteine residues. According to the spectral characteristics of PBPs, they can be categorized as phycoerythrins (PEs), phycocyanins (PCs), allophycocyanins (APCs), and phycoerythrocyanins (PECs). PBPs can be used as natural food colorants, fluorescent substances, and bioactive ingredients in food applications owing to their color characteristics and physiological activities. This paper mainly summarizes the extraction and purification methods of the PBPs and reviews their characteristics and applications. Moreover, the use of several strategies such as additives, microencapsulation, electrospray, and cross-linking to improve the stability and bioavailability of PBPs as well as the future outlooks of PBPs as natural colorants in food commercialization are elucidated.
Collapse
Affiliation(s)
- Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jiangnan Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xinmei Sha
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
30
|
Utama-Ang N, Kuatrakul I, Walter P, Rattanapitigorn P, Kawee-Ai A. Effect of instant jasmine rice coating combining Spirulina with edible polymers on physicochemical properties, textural properties and sensory acceptance. Sci Rep 2022; 12:7699. [PMID: 35546344 PMCID: PMC9095722 DOI: 10.1038/s41598-022-11759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Coating is an effective and economic strategy to increase the functional property of food products. This study investigated the technical feasibility of adding Spirulina platensis to edible polymers, namely carboxymethyl cellulose (CMC) and maltodextrin (MD), in the coating of instant jasmine rice, using a central composite design (CCD). A total of 10 edible coating formulations comprising CMC (10-30% w/v) and MD (1-5% w/v) were evaluated to optimize the most suitable combination of physicochemical properties, textural attributes, and sensory acceptance. The resulting rice fortified with S. platensis and hydrocolloids showed improved textural and functional properties favourable for consumer acceptance. Among these, the optimum (20.0% MD, 1.0% CMC, and 2.0% S. platensis powder) increased the physicochemical properties and decreased textural properties compared with those of uncoated rice. This condition showed phycocyanin content of 1.4 mg/g, chlorophyll a of 181.5 µg/g, total phenolic compound (TPC) of 137.3 µg gallic acid equivalent (GAE)/g, and ferric reducing antioxidant power (FRAP) of 3.8 mg ferrous (Fe2+)/g with overall acceptability of 7.1 (like moderately). It can be stated that masking the colour and flavour of Spirulina with an edible coating could be a healthy alternative to commercial rice and used to fortify cereal products with algae.
Collapse
Affiliation(s)
- Niramon Utama-Ang
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Cluster of High Value Product from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, 50100, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Ittikorn Kuatrakul
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Ponjan Walter
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Panida Rattanapitigorn
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Arthitaya Kawee-Ai
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
31
|
Dranseikienė D, Balčiūnaitė-Murzienė G, Karosienė J, Morudov D, Juodžiukynienė N, Hudz N, Gerbutavičienė RJ, Savickienė N. Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine. PLANTS (BASEL, SWITZERLAND) 2022; 11:1249. [PMID: 35567250 PMCID: PMC9101960 DOI: 10.3390/plants11091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/03/2022]
Abstract
Cyano-phycocyanin is one of the active pigments of the blue-green algae and is usually isolated from the filamentous cyanobacteria Arthrospira platensis Gomont (Spirulina). Due to its multiple physiological functions and non-toxicity, cyano-phycocyanin may be a potential substance for the topical treatment of various skin diseases. Considering that the conventional medicine faces drug resistance, insufficient efficacy and side effects, the plant origin compounds can act as an alternative option. Thus, the aim of this paper was to review the wound healing, antimicrobial, antioxidative, anti-inflammatory, antimelanogenic and anticancer properties and mechanisms of cyano-phycocyanin topical activities on human skin. Moreover, possible applications and biotechnological requirements for pharmaceutical forms of cyano-phycocyanin for the treatment of various skin diseases are discussed in this review.
Collapse
Affiliation(s)
- Daiva Dranseikienė
- Department of Pharmacognosy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Gabrielė Balčiūnaitė-Murzienė
- Faculty of Pharmacy, Institute of Pharmaceutical Technologies, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Jūratė Karosienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Dmitrij Morudov
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Nomeda Juodžiukynienė
- Department of Veterinary Pathobiology, Faculty of Veterinary, Academy of Veterinary, Lithuanian University of Health Sciences, Tilzes St. 18, 47181 Kaunas, Lithuania;
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Pekarska St, 69, 79000 Lviv, Ukraine;
- Department of Pharmacy and Ecological Chemistry, University of Opole, Kopernika pl. 11a, 45-040 Opole, Poland
| | - Rima Jūratė Gerbutavičienė
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Nijolė Savickienė
- Department of Pharmacognosy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| |
Collapse
|
32
|
Utama‐ang N, Kuatrakul I, Klangpetch W, Walter P, Kawee‐ai A. Comparative evaluation of physicochemical, functional and texture properties and sensory acceptance of different instant rice varieties coated with
Spirulina
and edible polymers. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Niramon Utama‐ang
- Division of Product Development Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of High‐Value Product from Thai Rice and Plants for Health Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of Innovative Food and Agro‐industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Ittikorn Kuatrakul
- Division of Product Development Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Wannaporn Klangpetch
- Cluster of High‐Value Product from Thai Rice and Plants for Health Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of Innovative Food and Agro‐industry Chiang Mai University Chiang Mai 50100 Thailand
- Division of Food Science and Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Ponjan Walter
- Division of Product Development Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of Innovative Food and Agro‐industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Arthitaya Kawee‐ai
- Division of Product Development Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| |
Collapse
|