1
|
Deng Y, Lei J, Luo X, Wang SP, Tan HM, Zhang JY, Wu DT. Prospects of Ganoderma polysaccharides: Structural features, structure-function relationships, and quality evaluation. Int J Biol Macromol 2025; 309:142836. [PMID: 40187470 DOI: 10.1016/j.ijbiomac.2025.142836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Polysaccharides, the primary bioactive compounds found in Ganoderma, are responsible for a multitude of biological activities. The bioactivity of Ganoderma polysaccharides (GPs) closely correlates to their physicochemical properties. Consequently, the accurate characterization and quantification of GPs are essential for the quality control of these compounds. Regrettably, the complex structural features of GPs have limited research on the relationships between their structures and bioactivities. In addition, a lack of appropriate quality assessment methods has impeded the regulation and application of GPs and related products. Therefore, it is essential to conduct extensive studies to develop reliable for quality control methods based on their pharmacological activities. This review aims to comprehensively and systematically outline the structural features, structure-activity relationships and quality control methods of GPs, thereby supporting their potential value in pharmaceuticals and functional foods. The insights presented in this review will significantly contribute to the research and potential applications of GPs.
Collapse
Affiliation(s)
- Yong Deng
- School of pharmacy, Zunyi Medical University, Zunyi 563000, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Jing Lei
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu 610045, Sichuan, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Huai-Mei Tan
- Department of Pharmacy, Zunyi Medical And Pharmaceutical College, Zunyi 563006, China
| | - Jian-Yong Zhang
- School of pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
2
|
Yang Y, Yang Y, Wang W, Chang Y, Zhu Y, Cheng Y, Yang B, Jia X, Feng L. Evolutionary research trends of polysaccharides from Polygonatum genus: A comprehensive review of its isolation, structure, health benefits, and applications. Int J Biol Macromol 2025; 306:141566. [PMID: 40023421 DOI: 10.1016/j.ijbiomac.2025.141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Polygonatum sibiricum, valued both as a medicinal and nutritional plant, has long been recognized for its health benefits. Increasing evidence highlights its polysaccharides (PSPs) as key components. As research into the structural characteristics and biological activity of PSPs continues to grow, there is rising interest in developing functional foods that harness their therapeutic potential. However, existing studies on PSPs remain fragmented, lacking a comprehensive framework for their application in functional food development and drug delivery. This review aims to fill that gap by systematically summarizing the purification, structural characterization, and diverse biological activities of PSPs. We also explore the significant potential of these polysaccharides in functional food development and their promising applications as natural, eco-friendly drug carriers. Furthermore, we address the key challenges and limitations in this field, offering insights into future research trends and opportunities for advancing PSPs in areas such as sustainable materials, functional foods, and therapeutic innovations.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yufei Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Weilin Wang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yukun Chang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yiyang Zhu
- Macau University of Science and Technology, Weilong Road, taichai, Macao 999078, PR China
| | - Yue Cheng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Niu B, Zhang L, Chen B, Liu X, Yang F, Ren Y, Xiang H, Wang P, Li J. Extraction, purification, structural characteristics, biological activities, modifications, and applications from Hericium erinaceus polysaccharides: A review. Int J Biol Macromol 2025; 291:138932. [PMID: 39706449 DOI: 10.1016/j.ijbiomac.2024.138932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Hericium erinaceus (Bull.) Pers. is a respected medicinal and edible fungus known for its outstanding nutritional profile. In traditional Chinese medicine, it is viewed as a valuable medicinal resource offering various benefits, such as liver protection, spleen fortification, stomach nourishment, and improved digestion. The primary active ingredient, H. erinaceus polysaccharides (HEPs), exhibits diverse biological activities, including immunomodulatory, gastrointestinal protective, regulation of intestinal flora, anti-Alzheimer's, and antioxidant activities. These activities underscore the significant potential of HEPs for treating various diseases and developing HEPs-based pharmaceuticals. For instance, HEPs can exert immunomodulatory effects through the TLR4/NFκB/MyD88/MAPK/PI3K/Akt signaling pathways. Additionally, HEPs achieve immunomodulatory, gastrointestinal protection, and anti-inflammatory and anti-cancer effects by modulating intestinal microbiota. This review systematically summarizes the past five years' research on the extraction, purification, structural characteristics, pharmacological properties, structure-activity relationships, structural modifications, toxicological effects, and potential applications of HEPs. It highlights the diverse biological activities of HEPs in vivo and in vitro and discusses structural modification methods and their broad application prospects in food, medicine, industry, and other fields. These studies will enhance the understanding of HEPs and promote further exploration and innovation in the field of biological activity research and the development of potential applications.
Collapse
Affiliation(s)
- Ben Niu
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Lei Zhang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bodong Chen
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xianglong Liu
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Feng Yang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yongyong Ren
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Honglu Xiang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Peilin Wang
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jin Li
- Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
4
|
Wang T, Zhu B, Zhao J, Li S. Research progress in methods of acquisition, structure elucidation, and quality control of Chinese herbal polysaccharides. Chin J Nat Med 2025; 23:143-157. [PMID: 39986691 DOI: 10.1016/s1875-5364(25)60819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 08/04/2024] [Indexed: 02/24/2025]
Abstract
The therapeutic efficacy of traditional Chinese medicine has been widely acknowledged due to its extensive history of clinical effectiveness. However, the precise active components underlying each prescription remain incompletely understood. Polysaccharides, as a major constituent of water decoctions-the most common preparation method for Chinese medicinals-may provide a crucial avenue for deepening our understanding of the efficacy principles of Chinese medicine and establishing a framework for its modern development. The structural complexity and diversity of Chinese herbal polysaccharides present significant challenges in their separation and analysis compared to small molecules. This paper aims to explore the potential of Chinese herbal polysaccharides efficiently by briefly summarizing recent advancements in polysaccharide chemical research, focusing on methods of acquisition, structure elucidation, and quality control.
Collapse
Affiliation(s)
- Tingting Wang
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, Macao SAR 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Baojie Zhu
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, Macao SAR 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Jing Zhao
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, Macao SAR 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Shaoping Li
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, Macao SAR 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; Macao Centre for Testing of Chinese Medicine, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
5
|
Peipei L, Qinghong Z, Yin C, Pengfei H, Junjie Z. Structure and anticoagulant activity of a galactoarabinan sulfate polysaccharide and its oligosaccharide from the green algae, Codium fragile. Int J Biol Macromol 2024; 279:135255. [PMID: 39236965 DOI: 10.1016/j.ijbiomac.2024.135255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
A polysaccharide, CZS-0-1, was obtained from the marine green algae Codium fragile using ion-exchange and size-exclusion chromatography. Composition and characteristics analyses showed CZS-0-1 was a sulfated galactoarabinan consisting of arabinose, galactose and a small amount of glucose in a ratio of 9:2:1 with 21% sulfate content and a molecular weight of 810 kDa. Structural properties were determined using desulfation and methylation analyses combined with instrument analysis. The results showed that the backbone of CZS-0-1 was (1 → 3)-β-L-Arap. Its O-4 and/or O-2 positions showed sulfate modification; additionally, it had 10% of (1 → 3)-β-D-Galp branches at the O-4 position of the (1 → 3)-β-L-Arap. The galactose side chains also had sulfate modification at the O-4 or O-6 position. The structure of CZS-0-1 was further confirmed by Top-down analysis of the oligosaccharides after oxidated hydrolysis by mass spectrometry. CZS-0-1 exhibited significant heparin-like anticoagulant activity. It exerted anticoagulant effects by inhibiting FIIa and FXa activities with the presence of heparin cofactors. The anticoagulant activity of CSZ-0-1 was closely related to the molecular weight, and the reduction of molecular weight may lead to a significant decrease in the anticoagulant activity. This study demonstrated that the green algae, Codium fragile can be considered as a useful resource for bioactive polysaccharides.
Collapse
Affiliation(s)
- Li Peipei
- Zhejiang Marine Fisheries Research Institute, 28 Tiyu Road, Zhoushan 316021, Zhejiang, China.
| | - Zhang Qinghong
- Zhejiang Marine Ecology and Environment Monitoring Center, Tiyu Road 20, Zhoushan 316021, Zhejiang, China
| | - Chen Yin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, 316000 Zhoushan, Zhejiang, China.
| | - He Pengfei
- Zhejiang Marine Fisheries Research Institute, 28 Tiyu Road, Zhoushan 316021, Zhejiang, China
| | - Zeng Junjie
- Zhejiang Marine Fisheries Research Institute, 28 Tiyu Road, Zhoushan 316021, Zhejiang, China
| |
Collapse
|
6
|
Ma Y, Zhang L, Ma X, Bai K, Tian Z, Wang Z, Muratkhan M, Wang X, Lü X, Liu M. Saccharide mapping as an extraordinary method on characterization and identification of plant and fungi polysaccharides: A review. Int J Biol Macromol 2024; 275:133350. [PMID: 38960255 DOI: 10.1016/j.ijbiomac.2024.133350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/26/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Saccharide mapping was a promising scheme to unveil the mystery of polysaccharide structure by analysis of the fragments generated from polysaccharide decomposition process. However, saccharide mapping was not widely applied in the polysaccharide analysis for lacking of systematic introduction. In this review, a detailed description of the establishment process of saccharide mapping, the pros and cons of downstream technologies, an overview of the application of saccharide mapping, and practical strategies were summarized. With the updating of the available downstream technologies, saccharide mapping had been expanding its scope of application to various kinds of polysaccharides. The process of saccharide mapping analysis included polysaccharides degradation and hydrolysates analysis, and the degradation process was no longer limited to acid hydrolysis. Some downstream technologies were convenient for rapid qualitative analysis, while others could achieve quantitative analysis. For the more detailed structure information could be provided by saccharide mapping, it was possible to improve the quality control of polysaccharides during preparation and application. This review filled the blank of basic information about saccharide mapping and was helpful for the establishment of a professional workflow for the saccharide mapping application to promote the deep study of polysaccharide structure.
Collapse
Affiliation(s)
- Yuntian Ma
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lichen Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhuoer Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhangyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Marat Muratkhan
- Department of Food Technology and Processing Products, Technical Faculty, Saken Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Shaanxi, China; Northwest A&F University Shen Zhen Research Institute, Shenzhen, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Shaanxi, China; Northwest A&F University Shen Zhen Research Institute, Shenzhen, China.
| | - Manshun Liu
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Su H, He L, Yu X, Wang Y, Yang L, Wang X, Yao X, Luo P, Zhang Z. Structural characterization and mechanisms of macrophage immunomodulatory activity of a novel polysaccharide with a galactose backbone from the processed Polygonati Rhizoma. J Pharm Anal 2024; 14:100974. [PMID: 39185336 PMCID: PMC11342111 DOI: 10.1016/j.jpha.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 08/27/2024] Open
Abstract
A purified polysaccharide with a galactose backbone (SPR-1, Mw 3,622 Da) was isolated from processed Polygonati Rhizoma with black beans (PRWB) and characterized its chemical properties. The backbone of SPR-1 consisted of [(4)-β-D-Galp-(1]9 → 4,6)-β-D-Galp-(1 → 4)-α-D-GalpA-(1 → 4)-α-D-GalpA-(1 → 4)-α-D-Glcp-(1 → 4,6)-α-D-Glcp-(1 → 4)-α/β-D-Glcp, with a branch chain of R1: β-D-Galp-(1 → 3)-β-D-Galp-(1→ connected to the →4,6)-β-D-Galp-(1→ via O-6, and a branch chain of R2: α-D-Glcp-(1 → 6)-α-D-Glcp-(1→ connected to the →4,6)-α-D-Glcp-(1→ via O-6. Immunomodulatory assays showed that the SPR-1 significantly activated macrophages, and increased secretion of NO and cytokines (i.e., IL-1β and TNF-α), as well as promoted the phagocytic activities of cells. Furthermore, isothermal titration calorimetry (ITC) analysis and molecular docking results indicated high-affinity binding between SPR-1 and MD2 with the equilibrium dissociation constant (K D) of 18.8 μM. It was suggested that SPR-1 activated the immune response through Toll-like receptor 4 (TLR4) signaling and downstream responses. Our research demonstrated that the SPR-1 has a promising candidate from PRWB for the TLR4 agonist to induce immune response, and also provided an easily accessible way that can be used for PR deep processing.
Collapse
Affiliation(s)
- Hongna Su
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lili He
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xina Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yue Wang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| | - Li Yang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaorui Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, 999078, China
| | - Pei Luo
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Zhifeng Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| |
Collapse
|
8
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Fan J, Zhu J, Zhu H, Zhang Y, Xu H. Potential therapeutic target for polysaccharide inhibition of colon cancer progression. Front Med (Lausanne) 2024; 10:1325491. [PMID: 38264044 PMCID: PMC10804854 DOI: 10.3389/fmed.2023.1325491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
In recent years, colon cancer has become one of the most common malignant tumors worldwide, posing a great threat to human health. Studies have shown that natural polysaccharides have rich biological activities and medicinal value, such as anti-inflammatory, anti-cancer, anti-oxidation, and immune-enhancing effects, especially with potential anti-colon cancer mechanisms. Natural polysaccharides can not only protect and enhance the homeostasis of the intestinal environment but also exert a direct inhibition effect on cancer cells, making it a promising strategy for treating colon cancer. Preliminary clinical experiments have demonstrated that oral administration of low and high doses of citrus pectin polysaccharides can reduce tumor volume in mice by 38% (p < 0.02) and 70% (p < 0.001), respectively. These results are encouraging. However, there are relatively few clinical studies on the effectiveness of polysaccharide therapy for colon cancer, and ensuring the effective bioavailability of polysaccharides in the body remains a challenge. In this article, we elucidate the impact of the physicochemical factors of polysaccharides on their anticancer effects and then reveal the anti-tumor effects and mechanisms of natural polysaccharides on colon cancer. Finally, we emphasize the challenges of using polysaccharides in the treatment of colon cancer and discuss future applications.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Rosdan Bushra SM, Nurul AA. Bioactive mushroom polysaccharides: The structure, characterization and biological functions. J LIQ CHROMATOGR R T 2023. [DOI: 10.1080/10826076.2023.2182317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|