1
|
The Effective Analysis for Blue Honeysuckle Extract in the Treatment of Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9601020. [PMID: 36212967 PMCID: PMC9536902 DOI: 10.1155/2022/9601020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
To further determine how BHE affected the growth of HCC cells, the proportion of each cell cycle phase was explored in HCC cells by flow cytometry. Blue honeysuckle (Lonicera caerulea L.) is a species of bush that grows in eastern Russia. Blue honeysuckle extract (BHE) is rich in bioactive phytochemicals which can inhibit the proliferation of tumor cells. The mechanism underlying the anticancer activity of BHE in primary liver cancer is poorly understood. The purpose of this study was to evaluate the growth inhibition mechanism of bioactive substances from blue honeysuckle on hepatocellular carcinoma (HCC) cells and to explore its protein and gene targets. The compounds in BHE were determined by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). Cell counting kit-8 (CCK8) assay was used to evaluate the effects of BHE on HCC cell proliferation, and flow cytometry assay (FCA) was used to determine how BHE arrested the proportion of each cell cycle phase in HCC cells. Western blot (WB) was performed to determine the expression of cell cycle-related proteins in HCC cells treated with different concentrations of BHE. The xenograft tumor animal models were established by HCC cell implantation. The results showed that cyanidin-3-o-glucoside and cyanidin-3-o-sophoroside which are the main biologically active components were detected in BHE. BHE is highly effective in inhibiting the proliferation of HCC cells by arresting the HCC cell cycle in the G2/M phase. BHE also downregulated the expression of conventional or classical dendritic cells-2 (cDC2) and cyclin B1 by promoting the expression of myelin transcription factor 1 (MyT1) in HCC cells. The weight and volume of xenografts were significantly decreased in the BHE treated groups when compared to the control group. BHE increased the expression of MyT1 in xenograft tissues. These findings showed that blue honeysuckle extract inhibits proliferation in vivo and in vitro by downregulating the expression of cDC2 and cyclin B1 and upregulating the expression of MyT1 in HCC cells.
Collapse
|
2
|
Cheng Z, Bao Y, Li Z, Wang J, Wang M, Wang S, Wang Y, Wang Y, Li B. Lonicera caerulea ( Haskap berries): a review of development traceability, functional value, product development status, future opportunities, and challenges. Crit Rev Food Sci Nutr 2022; 63:8992-9016. [PMID: 35435788 DOI: 10.1080/10408398.2022.2061910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lonicera caerulea is a honeysuckle plant with a long development history. It is defined as a "homology of medicine and food" fruit because it is rich in bioactive substances. By-products (such as pomace, leaves, stems, and flowers), which also have beneficial values, will be produced during processing. Nevertheless, the reuse of derivatives and the further development of new products of Lonicera caerulea are still a challenge. Firstly, this paper traced the development history of Lonicera caerulea and summarized its primary nutrients and bioactive substances, subsequently discussed the research progress and underlying molecular mechanisms of its functional properties, and introduced the application and potential of Lonicera caerulea in the fields of food, health products, cosmetics, medicine, and materials. Finally, this paper put forward the future research direction to promote the development of the Lonicera caerulea industry. To sum up, Lonicera caerulea, as a potential raw material, can be used to produce more functional products. Besides, more in-depth clinical trials are needed to clarify the specific molecular mechanism of the practical components of Lonicera caerulea and improve the rate of development and utilization.HighlightsThe original species of Lonicera caerulea subgroup had appeared on the earth as early as the end of the third century.Lonicera caerulea has been introduced into North America since the 18th century, but the introduction process has not ended until now.Lonicera caerulea widely exists in Eurasia and North America and it has excellent cold tolerance, early maturity and ornamental.The fruits, stems, leaves and flowers of Lonicera caerulea all have bioactive value, but the specific molecular mechanism and utilization need to be improved.Lonicera caerulea has been widely used in food, medicine, health products, cosmetics and materials, but there are still great challenges.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Jiaxin Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Mingshuang Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Sihang Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Yuanyuan Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Lee HJ, Lee DY, Chun YS, Kim JK, Lee JO, Ku SK, Shim SM. Effects of blue honeysuckle containing anthocyanin on anti-diabetic hypoglycemia and hyperlipidemia in ob/ob mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
4
|
Ge L, Xie Q, Jiang Y, Xiao L, Wan H, Zhou B, Wu S, Tian J, Zeng X. Genus Lonicera: New drug discovery from traditional usage to modern chemical and pharmacological research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153889. [PMID: 35026509 DOI: 10.1016/j.phymed.2021.153889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lonicera Linn. belonging to the family Caprifoliaceae, the largest genus in the plant family, includes about more than 200 species, which are mainly distributed in northern Africa, North America, Europe and Asia. Some species of this genus have been usually used in traditional Chinese medicine as well as functional foods, cosmetics and other applications, such as L. japonica Thunb. Bioactive components and pharmacological activities of the genus Lonicera plants have received an increasing interest from the scientific community. Thus, a comprehensive and systematic review on their traditional usage in China, chemical components, and their pharmacological properties of their whole plants, bioactive extracts, and bioactive isolates including partial structure-activity relationships from the genus is indispensable. METHODS Information on genus Lonicera of this systematic electronic literature search was gathered via the published articles, patents, clinical trials website (https://clinicaltrials.gov/) and several online bibliographic databases (PubMed, Sci Finder, Research Gate, Science Direct, CNKI, Web of Science and Google Scholar). The following keywords were used for the online search: Lonicera, phytochemical composition, Lonicerae japonica, Lonicera review articles, bioactivities of Lonicera, anti-inflammatory, antiviral, antimicrobial, anticancer, hepatoprotective, antioxidant, neuroprotective, anti-diabetic, and clinical trials. This review paper consists of a total of 225 papers covering the Lonicera genus from 1800 to 2021, including research articles, reviews, patents, and book chapters. RESULTS In this review (1800s-2021), about 420 components from the genus of Lonicera Linn. including 87 flavonoids, 222 terpenoids, 51 organic acids, and other compounds, together with their pharmacological activities including anti-inflammatory, antiviral, antimicrobial, anticancer, hepatoprotective, antioxidant, neuroprotective, antidiabetic, anti-allergic, immunomodulatory effects, and toxicity were summarized. CONCLUSION The relationship is discussed among their traditional usage, their pharmacological properties, and their chemical components, which indicate the genus Lonicera have a large prospect in terms of new drug exploitation, especially in COVID-19 treatment.
Collapse
Affiliation(s)
- Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Qiujie Xie
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Yuanyuan Jiang
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Lingyun Xiao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Haoqiang Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Boping Zhou
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Shipin Wu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong 518037, China.
| |
Collapse
|
5
|
Carrara M, Kelly MT, Roso F, Larroque M, Margout D. Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7268-7284. [PMID: 34180235 DOI: 10.1021/acs.jafc.1c00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Current trends toward naturally occurring compounds of therapeutic interest have contributed to an increasing number of studies on olive oil phenolics in the treatment of diseases with oxidative and inflammatory origins. Recent focus has been on olive oil wastewater, which is richer in phenolic compounds than olive oil itself. In this review, we present findings demonstrating the potential use of olive mill wastewater in dermatology. Particular attention is given to compounds with proven benefits in topical pharmacology: caffeic and ferulic acids, tyrosol and hydroxytyrosol, verbascoside, and oleuropein. The review is divided into different sections: inflammatory skin diseases, microbial effects, wound healing in addition to the antimelanoma properties of olive mill waste phenolics, and their potential in sun protection agents. There is strong evidence to support further studies into the valorization of this abundant and sustainable source of phenolic compounds for use in dermatology and dermo-cosmetic preparations.
Collapse
Affiliation(s)
- Morgane Carrara
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Mary T Kelly
- Faculté de Pharmacie, Université Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Florence Roso
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Michel Larroque
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Delphine Margout
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| |
Collapse
|
6
|
Akhter KF, Mumin MA, Lui EMK, Charpentier PA. Transdermal nanotherapeutics: Panax quinquefolium polysaccharide nanoparticles attenuate UVB-induced skin cancer. Int J Biol Macromol 2021; 181:221-231. [PMID: 33774070 DOI: 10.1016/j.ijbiomac.2021.03.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Ultraviolet (UV) radiation is known to cause an imbalance of the endogenous antioxidant system leading to an increase in skin cancer. Panax quinquefolium (American ginseng) polysaccharides (GPS) can inhibit such an imbalance due to its anti-oxidative and anti-inflammatory properties. The aim of this study was to investigate the therapeutic effects of topical formulations containing GPS nanoparticles (NPs) to inhibit UVB induced oxidative damage and skin cancer. Photoaging was conducted under UVB irradiation with a dose of 300 mJ/cm2 on SKH1 hairless mice. The treatment groups (n = 5) were as follows: sham control, native GPS, GPS NPs and fluorescent labeled GPS NPs. To compare the photoprotective performance, the topical formulations were applied before and after UVB induction (pre-treatment and post-treatment), followed by sacrificing the animals. Then, skin and blood samples were collected, and inflammatory cytokines production was measured using ELISA. Compared to the sham control, GPS NPs pre-treated mice skin and blood samples exhibited a significant lowering in all cytokine production. In addition, skin histology analysis showed that pre-treatment of GPS NPs prevented epidermal damage and proliferation. The results support that topical formulation containing GPS NPs can inhibit UVB induced oxidative damage and skin cancer.
Collapse
Affiliation(s)
- Kazi Farida Akhter
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Md Abdul Mumin
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Edmund M K Lui
- Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Paul A Charpentier
- Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Biomedical Engineering, University of Western Ontario, London, Ontario N6A 3K7, Canada.
| |
Collapse
|
7
|
Sharma A, Lee HJ. Lonicera caerulea: An updated account of its phytoconstituents and health-promoting activities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Amararathna M, Hoskin DW, Rupasinghe HPV. Cyanidin-3- O-Glucoside-Rich Haskap Berry Administration Suppresses Carcinogen-Induced Lung Tumorigenesis in A/JCr Mice. Molecules 2020; 25:E3823. [PMID: 32842605 PMCID: PMC7503524 DOI: 10.3390/molecules25173823] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 01/23/2023] Open
Abstract
In our previous study, we demonstrated that cyanidin-3-O-glucoside (C3G)-rich haskap (Lonicera caerulea L.) berry extracts can attenuate the carcinogen-induced DNA damage in normal lung epithelial cells in vitro. Here, the efficacy of lyophilized powder of whole haskap berry (C3G-HB) in lowering tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, (NNK)-induced lung tumorigenesis in A/JCr mice was investigated. Three weeks after daily oral administration of C3G-HB (6 mg of C3G in 0.2 g of C3G-HB/mouse/day), lung tumors were initiated by a single intraperitoneal injection of NNK. Dietary C3G-HB supplementation was continued, and 22 weeks later, mice were euthanized. Lung tumors were visualized through positron emission tomography (PET) and magnetic resonance imaging (MRI) 19 weeks after NNK injection. Dietary supplementation of C3G-HB significantly reduced the NNK-induced lung tumor multiplicity and tumor area but did not affect tumor incidence. Immunohistochemical analysis showed reduced expression of proliferative cell nuclear antigen (PCNA) and Ki-67 in lung tissues. Therefore, C3G-HB has the potential to reduce the lung tumorigenesis, and to be used as a source for developing dietary supplements or nutraceuticals for reducing the risk of lung cancer among high-risk populations.
Collapse
Affiliation(s)
- Madumani Amararathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Truro, NS B2N 5E3, Canada;
| | - David W. Hoskin
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
9
|
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:1-22. [PMID: 32188958 DOI: 10.5507/bp.2020.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.
Collapse
Affiliation(s)
- Denisa Skarupova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Alena Rajnochova Svobodova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
10
|
Obrenovich ME, Jaskiw GE, Mana TSC, Bennett CP, Cadnum J, Donskey CJ. Urinary Metabolites of Green Tea as Potential Markers of Colonization Resistance to Pathogenic Gut Bacteria in Mice. Pathog Immun 2019; 4:271-293. [PMID: 31773068 PMCID: PMC6863553 DOI: 10.20411/pai.v4i2.335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022] Open
Abstract
Background The gut microbiome (GMB) generates numerous chemicals that are absorbed systemically and excreted in urine. Antibiotics can disrupt the GMB ecosystem and weaken its resistance to colonization by enteric pathogens such as Clostridium difficile. If the changes in GMB composition and metabolism are sufficiently large, they can be reflected in the urinary metabo-lome. Characterizing these changes could provide a potentially valuable biomarker of the status of the GMB. While preliminary studies suggest such a possibility, the high level of data variance presents a challenge to translational applications. Since many GMB-generated chemicals are derived from the biotransformation of plant-derived dietary polyphenols, administering an oral precursor challenge should amplify GMB-dependent changes in urinary metabolites. Methods A course of antibiotics (clindamycin, piperacillin/tazobactam, or aztreonam) was administered SC daily (days 1 and 2) to mice receiving polyphenol-rich green tea in drinking water. Urine was collected at baseline as well as days 3, 7, and 11. Levels of pyrogallol and pyrocatechol, two phenolic molecules unequivocally GMB-dependent in humans but that had not been similarly examined in mice, were quantified. Results In confirmation of our hypothesis, differential changes in murine urinary pyrogallol levels identified the treatments (clindamycin, piperacillin/tazobactam) previously associated with a weakening of colonization resistance to Clostridium difficile. The changes in pyrocatechol levels did not withstand corrections for multiple comparisons. Conclusions In the mouse, urinary pyrogallol and, in all likelihood, pyrocatechol levels, are GMB-dependent and, in combination with precursor challenge, deserve further consideration as potential metabolomic biomarkers for the health and dysbiotic vulnerability of the GMB.
Collapse
Affiliation(s)
- Mark E Obrenovich
- Pathology and Laboratory Medicine Service; Veterans Affairs Northeast Ohio Healthcare System (VANEOHS); Cleveland, Ohio.,Research Service; VANEOHS; Cleveland, Ohio.,Department of Chemistry; Case Western Reserve University; Cleveland, Ohio.,Department of Medicinal and Biological Chemistry; University of Toledo; Toledo, Ohio
| | - George E Jaskiw
- Psychiatry Service; VANEOHS; Cleveland, Ohio.,School of Medicine; Case Western Reserve University; Cleveland, Ohio
| | | | | | | | - Curtis J Donskey
- School of Medicine; Case Western Reserve University; Cleveland, Ohio.,Geriatric Research, Education and Clinical Center; VANEOHS; Cleveland, Ohio
| |
Collapse
|
11
|
Liu S, Sui Q, Zhao Y, Chang X. Lonicera caerulea Berry Polyphenols Activate SIRT1, Enhancing Inhibition of Raw264.7 Macrophage Foam Cell Formation and Promoting Cholesterol Efflux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7157-7166. [PMID: 31146527 DOI: 10.1021/acs.jafc.9b02045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lonicera caerulea berry polyphenols (LCBP) are known to reduce cholesterol accumulation. Currently, it is unknown whether LCBP can activate Sirtuin 1 (SIRT1) to regulate the formation of RAW264.7 macrophage foam cells. In this study, the effect of LCBP on lipid accumulation in macrophages was evaluated. Fluorescently labeled ox-LDL and 25-NBD cholesterol were used to detect the ox-LDL uptake and cholesterol outflow rate from macrophages. Gene silencing was performed using siRNA to detect changes in the expression of the ATP-binding cassette transporter A1 (ABCA1), sterol regulatory element-binding protein 2 (SREBP2), and SIRT1 proteins using Western blotting, and changes in the expression of miR-33 were detected by real-time polymerase chain reaction. The results showed that treatment with 80 μg/mL LCBP significantly inhibited the accumulation of lipids in RAW264.7 macrophages induced by ox-LDL and reduced intracellular cholesterol levels by activating SIRT1 to enhance the expression of ABCA1, a cholesterol efflux gene, but not independent effect. Of the three key LCBP components investigated, chlorogenic acid was found to activate SIRT1 and regulate the expression of the cholesterol-related factors ABCA1, SREBP2, and miR-33; cyanidin-3-glucoside and catechins were effective to a lesser extent. Our results suggest a novel hypolipidemic mechanism of LCBP.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Qianqian Sui
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Yanxue Zhao
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Xuedong Chang
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
- Hebei Yanshan Special Industrial Technology Research Institute , Qinhuangdao , Hebei 066004 , China
| |
Collapse
|
12
|
Sharma A, Kim JW, Ku SK, Choi JS, Lee HJ. Anti-diabetic effects of blue honeyberry on high-fed-diet-induced type II diabetic mouse. Nutr Res Pract 2019; 13:367-376. [PMID: 31583055 PMCID: PMC6760985 DOI: 10.4162/nrp.2019.13.5.367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/02/2019] [Accepted: 04/02/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND/OBJECTIVE The blue honeysuckle berry (Lonicera caerulea var. edulis L.) is a small deciduous shrub belonging to the Caprifoliaceae family that is native to Russia, China, Japan, and Korea. The berry of this shrub is edible, sweet and juicy and is commonly known as the blue honeyberry (BHB). This study examined the anti-diabetic potential of BHB on high-fat-diet-induced mild diabetic mice. The hypoglycemic, and nephroprotective effects of the 12-week oral administration of blue honeyberry extract were analyzed. MATERIALS/METHODS The hypoglycemic effects were based on the observed changes in insulin, blood glucose, and glycated hemoglobin (HbA1c). Furthermore, the changes in the weight of the pancreas, including its histopathology and immunohistochemical investigation were also performed. Moreover, the nephroprotective effects were analyzed by observing the changes in kidney weight, its histopathology, blood urea nitrogen (BUN), and serum creatinine levels. RESULTS The results showed that the high-fat diet (HFD)-induced control mice showed a noticeable increase in blood glucose, insulin, HbA1c, BUN, and creatinine levels. Furthermore, growth was observed in lipid droplet deposition related to the degenerative lesions in the vacuolated renal tubules with the evident enlargement and hyperplasia of the pancreatic islets. In addition, in the endocrine pancreas, there was an increase in the insulin-and glucagon-producing cells, as well as in the insulin/glucagon cell ratios. On the other hand, compared to the HFD-treated mice group, all these diabetic and related complications were ameliorated significantly in a dose-dependent manner after 84 days of the continuous oral administration of BHBe at 400, 200 and 100 mg/kg, and a dramatic resettlement in the hepatic glucose-regulating enzyme activities was observed. CONCLUSIONS By assessing the key parameters for T2DM, the present study showed that the BHBe could act as a potential herbal agent to cure diabetes (type II) and associated ailments in HFD-induced mice.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Joo Wan Kim
- Aribio Co. Ltd., #2-301, Pangyo Seven Venture Valley, Gyeonggi 13487, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongbuk 38610, Republic of Korea
| | - Jae-Suk Choi
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700beon-gil, Sasang-gu, Busan 46958, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
13
|
Lee Y, Cho IJ, Kim JW, Lee M, Ku SK, Choi J, Lee H. Hepatoprotective effects of blue honeysuckle on CCl 4-induced acute liver damaged mice. Food Sci Nutr 2019; 7:322-338. [PMID: 30680187 PMCID: PMC6341158 DOI: 10.1002/fsn3.893] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to evaluate the hepatoprotective effects of blue honeysuckle (BH) on carbon tetrachloride (CCl4)-induced acute hepatic damage in mice. The experiment used a total of 60 ICR mice, which were divided into six groups. Except for the intact control groups, all groups received a single intraperitoneal injection of CCl4 after a 7 day pre-treatment period with distilled water, BH extracts, or silymarin. Twenty-four hours after the CCl4 injection, the following observations, representative of classical oxidative stress-mediated centrolobular necrotic acute liver injuries, were observed: decreased body weight; small nodule formation and enlargement on the gross inspections with related liver weight increase; elevation of serum AST and ALT, increases in hepatic lipid peroxidation and related depletion of endogenous antioxidants and antioxidative enzymes; centrolobular necrosis; increases in apoptotic markers, lipid peroxidation markers, and oxidative stress markers. However, liver damage was significantly inhibited by the pre-treatment with BH extracts. The present study demonstrated that oral administration of BH extracts prior to exposure to CCl4 conferred favorable hepatoprotective effects. These results demonstrated that BHe possessed suitable properties for use as a potent hepatoprotective medicinal food.
Collapse
Affiliation(s)
- You‐Suk Lee
- Department of Food and NutritionCollege of BioNano TechnologyGachon UniversitySeongnam‐siGyeonggi‐doKorea
| | - Il Je Cho
- The Medical Research Center for Globalization of Herbal FormulationDepartment of Herbal FormulationCollege of Oriental MedicineDaegu Haany UniversityGyeongsan‐siGyeongdanuk‐doKorea
| | | | - Min‐Ki Lee
- Department of Physical EducationKongju National UniversityKongju‐siChngcheongnam‐doKorea
| | - Sae Kwang Ku
- Department of Anatomy and HistologyCollege of Korean MedicineDaegu Haany UniversityGyeongsan‐siGyeongdanuk‐doKorea
| | - Jae‐Suk Choi
- Division of BioindustryCollege of Medical and Life SciencesSilla UniversityBusanKorea
| | - Hae‐Jeung Lee
- Department of Food and NutritionCollege of BioNano TechnologyGachon UniversitySeongnam‐siGyeonggi‐doKorea
| |
Collapse
|
14
|
Lee YS, Cho IJ, Kim JW, Lee SK, Ku SK, Lee HJ. Evaluation of in vitro anti-oxidant and anti-inflammatory activities of Korean and Chinese Lonicera caerulea. Nutr Res Pract 2018; 12:486-493. [PMID: 30515276 PMCID: PMC6277309 DOI: 10.4162/nrp.2018.12.6.486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/22/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES The honeysuckle berry (HB) contains ascorbic acid and phenolic components, especially anthocyanins, flavonoids, and low-molecular-weight phenolic acids. In order to examine the potential of HB as a hepatoprotective medicinal food, we evaluated the in vitro anti-oxidant and anti-inflammatory activities of Korean HB (HBK) and Chinese HB (HBC). MATERIALS/METHODS Antioxidant and anti-inflammatory effects of the extracts were examined in HepG2 and RAW 264.7 cells, respectively. The anti-oxidant capacity was determined by DPPH, SOD, CAT, and ARE luciferase activities. The production of nitric oxide (NO) as an inflammatory marker was also evaluated. The Nrf2-mediated mRNA levels of heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase [quinone] 1 (Nqo1), and glutamate-cysteine ligase catalytic subunit (Gclc) were measured. The concentrations of HB extracts used were 3, 10, 30, 100, and 300 µg/mL. RESULTS The radical scavenging activity of all HB extracts increased in a concentration-dependent manner (P < 0.01 or P < 0.05). SOD (P < 0.05) and CAT (P < 0.01) activities were increased by treatment with 300 µg/mL of each HB extract, when compared to those in the control. NO production was observed in cells pretreated with 100 or 300 µg/mL of HBC and HBK (P < 0.01). Treatment with 300 µg/mL of HBC significantly increased Nqo1 (P < 0.01) and Gclc (P < 0.05) mRNA levels compared to those in the control. Treatment with 300 µg/mL of HBK (P < 0.05) and HBC (P < 0.01) also significantly increased the HO-1 mRNA level compared to that in the control. CONCLUSIONS Thus, the Korean and Chinese HBs were found to possess favorable in vitro anti-oxidant and anti-inflammatory activities. Nrf2 and its related anti-oxidant genes were associated with both anti-oxidant and anti-inflammatory activities in HB-treated cells. Further studies are needed to confirm these in vivo effects.
Collapse
Affiliation(s)
- You-Suk Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi 13120, Korea
| | - Il Je Cho
- The Medical Research Center for Globalization of Herbal Formulation and Department of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Gyeongbuk 38610, Korea
| | - Joo Wan Kim
- Department of Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sun-Kyoung Lee
- Department of Life Physical Education, Myongji University, Seoul 03674, Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan, Gyeongbuk 38610, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi 13120, Korea
| |
Collapse
|
15
|
Kim JW, Lee YS, Seol DJ, Cho IJ, Ku SK, Choi JS, Lee HJ. Anti-obesity and fatty liver-preventing activities of Lonicera caerulea in high-fat diet-fed mice. Int J Mol Med 2018; 42:3047-3064. [PMID: 30221679 PMCID: PMC6202101 DOI: 10.3892/ijmm.2018.3879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Blue honeysuckle (BH, Lonicera caerulea) is used as a traditional medicine in Russia, Japan and China, but is not commonly considered as an edible berry in Europe, USA or Korea. BH has been revealed to decrease serum cholesterol and triacylglycerol (triglyceride or TG) levels through the activation of AMP-activated protein kinase (AMPK), thus it is expected to be a health functional food and pharmaceutical agent for the prevention of non-alcoholic liver damage, in addition to effects as a suppressor of hyperlipidemia and as an anti-obesity agent. In the present study, the pharmacological activity of BH extract (BHe) was observed in high-fat diet (HFD)-fed mice. Significant increases in fat pad weight, body weight, fat accumulation (body and abdominal fat density, and thickness of the periovarian and abdominal wall) and serum biochemical levels (aspartate transaminase, alanine amino-transferase, alkaline phosphatase, lactate dehydrogenase, γ-glutamyltransferase, total cholesterol, low-density lipoprotein and TG, with the exception of high-density lipoprotein) were observed in HFD-fed mice. In addition, increases in adipocyte hypertrophy, the area of steatohepatitis and hepatocyte hypertrophy were observed, whereas decreased zymogen content was identified upon histopathological observation. Increased deterioration of the endogenous antioxidant defense system (liver catalase, glutathione and superoxide dismutase) and hepatic lipid peroxidation was observed. In addition, there were decreases in hepatic glucokinase activity, AMPKα1 and AMPKα2 mRNA expression, adipose tissue uncoupling protein 2 expression, and adiponectin mRNA expression, increases in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activity, hepatic acetyl-CoA carboxylase 1 mRNA expression, and the expression of leptin, CCAAT/enhancer-binding protein (C/EBP) α, C/EBPβ and sterol-regulatory-element-binding protein 1c mRNA in the periovarian tissue. Furthermore, non-alcoholic fatty liver disease (NAFLD) and obesity were significantly inhibited by the continuous administration of BHe for 84 days. These results revealed that BHe may be a promising novel drug or functional food candidate for the treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- Joo Wan Kim
- Aribio Co. Ltd., Seongnam, Gyeonggi 13487, Republic of Korea
| | - You-Suk Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Du Jin Seol
- Aribio Co. Ltd., Seongnam, Gyeonggi 13487, Republic of Korea
| | - Il Je Cho
- The Medical Research Center for Globalization of Herbal Formulation and Department of Herbal Formulation, College of Oriental Medicine, Gyeongsan, Gyeongsangbuk 38610, Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk 38610, Republic of Korea
| | - Jae-Suk Choi
- Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang, Busan 46958, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
16
|
Liu M, Tan J, He Z, He X, Hou DX, He J, Wu S. Inhibitory effect of blue honeysuckle extract on high-fat-diet-induced fatty liver in mice. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:288-293. [PMID: 30175257 PMCID: PMC6116862 DOI: 10.1016/j.aninu.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Blue honeysuckle is rich in polyphenols, and recently receiving attention because of its potential antioxidant and anti-inflammatory properties. Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease that develops hepatic inflammation and metabolic syndrome. The present study aims to study the effect of blue honeysuckle extract (BHE) on fat deposition and hepatic lipid peroxidation in a high-fat-diet (HFD)-induced mouse model. Mice were fed a normal diet (ND) or a HFD containing 0.5% or 1% of BHE or not for 45 d. Liver sections were stained by hematoxylin-eosin staining. Serum lipids were measured by a clinical analyzer. Insulin was examined by ELISA, and hepatic proteins were detected by Western blotting. Dietary supplementation of BHE dose-dependently suppressed HFD-induced obesity and hepatic fat deposition. Moreover, BHE improved glucose metabolism by increasing insulin sensitivity and attenuated oxidative stress potentially by up-regulating nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated pathway.
Collapse
Affiliation(s)
- Ming Liu
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Jijun Tan
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Ziyu He
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Xi He
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - De-Xing Hou
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Jianhua He
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Shusong Wu
- Core Research Program 1515, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
17
|
Anti-tumor properties of anthocyanins from Lonicera caerulea 'Beilei' fruit on human hepatocellular carcinoma: In vitro and in vivo study. Biomed Pharmacother 2018; 104:520-529. [PMID: 29800916 DOI: 10.1016/j.biopha.2018.05.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, the anthocyanin from Lonicera caerulea 'Beilei' fruit (ABL) was extracted and purified. The purified component (ABL-2) was then evaluated for its anti-tumor properties on human hepatoma cells (SMMC-7721) in vitro and the murine hepatoma cells (H22) in vivo. In vitro, ABL-2 not only significantly inhibited the growth of SMMC-7721 cells, but also remarkably blocked the cells' cycle in G2/M phase, inducing DNA damage and eventually leading to apoptosis. In vivo, ABL also killed tumor cells, inhibited tumor growth, and improved the survival status of H22 tumor-bearing mice. These effects were associated with an increase in the activities of antioxidase and a decrease in the level of lipid peroxidation, as evidenced by changes in SOD, GSH-Px, GSH, and MDA levels. In addition, ABL-2 also regulated the levels of immune cytokines including IL-2, IFN-γ, and TNF-α. These results revealed that ABL-2 exerts an effective anti-tumor effect by dynamically adjusting the REDOX balance and improving the immunoregulatory activity of H22 tumor-bearing mice. High performance liquid chromatography (HPLC) analysis revealed that cyanidin-3,5-diglucoside (8.16 mg/g), cyanidin-3-glucoside (387.60 mg/g), cyanidin-3-rutinoside (23.62 mg/g), and peonidin-3-glucoside (22.20 mg/g) were the main components in ABL-2, which may contribute to its anti-tumor activity.
Collapse
|
18
|
Rupasinghe HV, Arumuggam N, Amararathna M, De Silva A. The potential health benefits of haskap ( Lonicera caerulea L.): Role of cyanidin-3- O -glucoside. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Hossy BH, Leitão AADC, Torres RB, Ramos-E-Silva M, Miguel NCDO, de Pádula M. Histological observation of hairless mice skin after exposure to Simulated Solar Light: Comparison between the histological findings with different methodologies and 3R principle correlations. Burns 2017; 44:359-369. [PMID: 29032978 DOI: 10.1016/j.burns.2017.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Albino hairless mouse (AHM) has been used as a biological model in photodermatology. However, the experimental landscape is diverse to follow and need particular attention. PURPOSE Irradiation parameters were investigated for the development of a protocol to assess alterations in the AHM skin using Simulated Solar Light (SSL). The present study was compared with published articles (last 15 years) according to irradiation protocols, morphological findings to minimize animal suffering and UV exposure. MATERIALS AND METHODS Three groups: Control (G1), experimental - sunburn (G2) and skin photodamage assay (G3). G2 were immobilized and exposed to SSL once for 15, 30 and 45min. G3 were exposed to SSL, without immobilization, for 15min once a day for one week. The dorsal skin was analyzed using hematoxylin and eosin technique. RESULTS G2 displayed different sunburn degrees. Based on the profile of the observed morphological alterations, a 15min irradiation was chosen as the exposure time to expose G3, without immobilization, for 5 consecutive days. CONCLUSION These conditions produced the same morphological changes in the AHM with a shorter solar exposure time, without immobilizing the animals but using environmental exposure fluences, conforming to 3R (reduction - refinement - replacement) recommendations.
Collapse
Affiliation(s)
- Bryan Hudson Hossy
- Programa de Pós Graduação em Clínica Médica, Faculdade de Medicina - Serviço de Dermatologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alvaro Augusto da Costa Leitão
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Bosco Torres
- Laboratório de Microbiologia e Avaliação Genotóxica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Federal, Rio de Janeiro, Brazil
| | - Marcia Ramos-E-Silva
- Programa de Pós Graduação em Clínica Médica, Faculdade de Medicina - Serviço de Dermatologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nádia Campos de Oliveira Miguel
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Federal, Rio de Janeiro, Brazil.
| | - Marcelo de Pádula
- Laboratório de Microbiologia e Avaliação Genotóxica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
He Y, Hu Y, Jiang X, Chen T, Ma Y, Wu S, Sun J, Jiao R, Li X, Deng L, Bai W. Cyanidin-3-O-glucoside inhibits the UVB-induced ROS/COX-2 pathway in HaCaT cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 177:24-31. [PMID: 29031211 DOI: 10.1016/j.jphotobiol.2017.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/22/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022]
Abstract
Ultraviolet (UV) radiation from sunlight, especially UVB (290-320nm), is one of the most important environmental factors that destroys the integrity of the skin and causes epidermal cell apoptosis, potentially even leading to skin cancer. UVB irradiation can cause skin damage by stimulating inflammatory and apoptotic pathways. Anthocyanins are flavonoids that are common in many vegetable foods, and have also demonstrated chemopreventive effects. Cyanidin-3-O-glucoside, as a typical anthocyanin, exhibits anti-inflammatory and anti-oxidant effects. This study aimed to investigate the effects, as well as the underlying mechanisms, of treating UVB-exposed HaCaT cells with Cyanidin-3-O-glucoside. We demonstrated that Cyanidin-3-O-glucoside could effectively prevent the UVB-induced apoptosis of HaCaT cells. This protective effect can be explained by the scavenging of ROS and the suppression of COX-2 expression by interaction with the MAPK and Akt signaling pathways. Furthermore, we used Celecoxib as a positive control, and results showed that Cyanidin-3-O-glucoside was more effective at decreasing EGFR phosphorylation than Celecoxib, which translated into a stronger inhibitory effect against the downstream elements p38, ERK, and JNK. Taken together, these results indicate that Cyanidin-3-O-glucoside can protect HaCaT cells against UVB radiation, which could provide a basis for the development of a potent nutritional therapy for UVB-induced skin disorders.
Collapse
Affiliation(s)
- Yong He
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Yunfeng Hu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Tianfeng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yuetang Ma
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Shi Wu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Rui Jiao
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaoling Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Liehua Deng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China.
| | - Weibin Bai
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
21
|
Wang Y, Li B, Lin Y, Ma Y, Zhang Q, Meng X. Effects of Lonicera caerulea berry extract on lipopolysaccharide-induced toxicity in rat liver cells: Antioxidant, anti-inflammatory, and anti-apoptotic activities. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
22
|
Wang Y, Li B, Ma Y, Wang X, Zhang X, Zhang Q, Meng X. Lonicera caerulea berry extract attenuates lipopolysaccharide induced inflammation in BRL-3A cells: Oxidative stress, energy metabolism, hepatic function. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
23
|
Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts. Food Chem 2016; 197:522-9. [DOI: 10.1016/j.foodchem.2015.11.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 11/21/2022]
|
24
|
Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int J Mol Sci 2016; 17:160. [PMID: 26901191 PMCID: PMC4783894 DOI: 10.3390/ijms17020160] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/05/2016] [Accepted: 01/14/2016] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract.
Collapse
Affiliation(s)
- Magdalena Działo
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Justyna Mierziak
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Urszula Korzun
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Marta Preisner
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Jan Szopa
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
- Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363 Wroclaw, Poland.
| | - Anna Kulma
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
25
|
Caprioli G, Iannarelli R, Innocenti M, Bellumori M, Fiorini D, Sagratini G, Vittori S, Buccioni M, Santinelli C, Bramucci M, Quassinti L, Lupidi G, Vitali LA, Petrelli D, Beghelli D, Cavallucci C, Bistoni O, Trivisonno A, Maggi F. Blue honeysuckle fruit (Lonicera caerulea L.) from eastern Russia: phenolic composition, nutritional value and biological activities of its polar extracts. Food Funct 2016; 7:1892-903. [DOI: 10.1039/c6fo00203j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We conducted a chemical and biological investigation of blue honeysuckle growing in eastern Russia.
Collapse
Affiliation(s)
| | | | - Marzia Innocenti
- Department of NEUROFARBA
- Division of Pharmaceutical and Nutraceutical Sciences
- University of Florence
- Italy
| | - Maria Bellumori
- Department of NEUROFARBA
- Division of Pharmaceutical and Nutraceutical Sciences
- University of Florence
- Italy
| | - Dennis Fiorini
- School of Science and Technology
- University of Camerino
- Camerino
- Italy
| | | | - Sauro Vittori
- School of Pharmacy
- University of Camerino
- Camerino
- Italy
| | | | | | | | | | - Giulio Lupidi
- School of Pharmacy
- University of Camerino
- Camerino
- Italy
| | | | - Dezemona Petrelli
- School of Bioscience and Veterinary Medicine
- University of Camerino
- Camerino
- Italy
| | - Daniela Beghelli
- School of Bioscience and Veterinary Medicine
- University of Camerino
- Camerino
- Italy
| | - Clarita Cavallucci
- School of Bioscience and Veterinary Medicine
- University of Camerino
- Camerino
- Italy
| | - Onelia Bistoni
- Department of Medicine
- Rheumatology Unit
- University of Perugia
- Perugia
- Italy
| | | | - Filippo Maggi
- School of Pharmacy
- University of Camerino
- Camerino
- Italy
| |
Collapse
|
26
|
Wang Y, Li B, Zhu J, Zhang Q, Zhang X, Li L, Ma Y, Meng X. Lonicera caerulea berry extract suppresses lipopolysaccharide-induced inflammation via Toll-like receptor and oxidative stress-associated mitogen-activated protein kinase signaling. Food Funct 2016; 7:4267-4277. [DOI: 10.1039/c6fo00627b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The protective effects of Lonicera caerulea berry extract (LCBE) against hepatic inflammation and the underlying mechanisms were investigated in a rat model of lipopolysaccharide (LPS)-induced chronic liver inflammation.
Collapse
Affiliation(s)
- Yuehua Wang
- Shenyang Agricultural University
- Shenyang
- China
| | - Bin Li
- Shenyang Agricultural University
- Shenyang
- China
| | - Jinyan Zhu
- Shenyang Agricultural University
- Shenyang
- China
- Food Inspection Monitoring Center of Zhuanghe
- Dalian
| | - Qi Zhang
- Shenyang Agricultural University
- Shenyang
- China
| | | | - Li Li
- Shenyang Agricultural University
- Shenyang
- China
| | - Yan Ma
- Shenyang Normal University
- Shenyang
- China
| | | |
Collapse
|
27
|
Popoola OK, Marnewick JL, Rautenbach F, Iwuoha EI, Hussein AA. Acylphloroglucinol Derivatives from the South African Helichrysum niveum and Their Biological Activities. Molecules 2015; 20:17309-24. [PMID: 26393563 PMCID: PMC6332446 DOI: 10.3390/molecules200917309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/26/2022] Open
Abstract
Phytochemical investigation of aerial parts of Helichrysum niveum (H. niveum) using different chromatographic methods including semi-preparative HPLC afforded three new (1–3) and six known (4–10) acylphloroglucinols alongside a known dialcohol triterpene (11). The structures of the isolated compounds were characterized accordingly as 1-benzoyl-3 (3-methylbut-2-enylacetate)-phloroglucinol (helinivene A, 1), 1-benzoyl-3 (2S-hydroxyl-3-methylbut-3-enyl)-phloroglucinol (helinivene B, 2), 8-(2-methylpropanone)-3S,5,7-trihydroxyl-2,2-dimethoxychromane (helinivene C, 3), 1-(2-methylbutanone)-4-O-prenyl-phloroglucinol (4), 1-(2-methylpropanone)-4-O-prennyl-phloroglucinol (5), 1-(butanone)-3-prenyl-phloroglucinol (6), 1-(2-methylbutanone)-3-prenyl-phloroglucinol (7), 1-butanone-3-(3-methylbut-2-enylacetate)-phloroglucinol (8), 1-(2-methylpropanone)-3-prenylphloroglucinol (9), caespitate (10), and 3β-24-dihydroxyterexer-14-ene (11). Excellent total antioxidant capacities were demonstrated by helinivenes A and B (1 and 2) when measured as oxygen radicals absorbance capacity (ORAC), ferric-ion reducing antioxidant power (FRAP), trolox equivalent absorbance capacity (TEAC) and including the inhibition of Fe2+-induced lipid peroxidation (IC50 = 5.12 ± 0.90; 3.55 ± 1.92) µg/mL, while anti-tyrosinase activity at IC50 = 35.63 ± 4.67 and 26.72 ± 5.05 µg/mL were also observed for 1 and 2, respectively. This is the first chemical and in vitro biological study on H. niveum. These findings underpin new perspectives for the exploitation of these natural phenolic compounds in applications such as in the natural cosmeceutical and pharmaceutical sectors.
Collapse
Affiliation(s)
- Olugbenga K Popoola
- Chemistry Department, University of Western Cape, Private Bag X17, Bellville 7535, South Africa.
| | - Jeanine L Marnewick
- Oxidative Stress Research Centre, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, P. O. BOX 1906, Bellville 7535, South Africa.
| | - Fanie Rautenbach
- Oxidative Stress Research Centre, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, P. O. BOX 1906, Bellville 7535, South Africa.
| | - Emmanuel I Iwuoha
- Chemistry Department, University of Western Cape, Private Bag X17, Bellville 7535, South Africa.
| | - Ahmed A Hussein
- Chemistry Department, University of Western Cape, Private Bag X17, Bellville 7535, South Africa.
| |
Collapse
|
28
|
Kim HS, Park SI, Choi SH, Song CH, Park SJ, Shin YK, Han CH, Lee YJ, Ku SK. Single oral dose toxicity test of blue honeysuckle concentrate in mice. Toxicol Res 2015; 31:61-8. [PMID: 25874034 PMCID: PMC4395656 DOI: 10.5487/tr.2015.31.1.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to obtain single oral dose toxicity information for concentrated and lyophilized powder of blue honeysuckle (Lonicera caerulea L., Caprifoliaceae; BHcL) in female and male ICR mice to aid in the process of developing natural origin medicinal ingredients or foods following proximate analysis and phytochemical profile measurement. The proximate analysis revealed that BHcL had an energy value of 3.80 kcal/g and contained 0.93 g/g of carbohydrate, 0.41 g/g of sugar, 0.02 g/g of protein, and 0.20 mg/g of sodium. BHcL did not contain lipids, including saturated lipids, trans fats, or cholesterols. Further, BHcL contained 4.54% of betaine, 210.63 mg/g of total phenols, 159.30 mg/g of total flavonoids, and 133.57 mg/g of total anthocyanins. Following administration of a single oral BHcL treatment, there were no treatment-related mortalities, changes in body weight (bw) or organ weight, clinical signs, necropsy or histopathological findings up to 2,000 mg/kg bw, the limited dosage for rodents of both sexes. We concluded that BHcL is a practically non-toxic material in toxicity potency.
Collapse
Affiliation(s)
- Hyung-Soo Kim
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea
| | - Sang-In Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea ; The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| | - Seung-Hoon Choi
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea ; The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| | - Soo-Jin Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea ; The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| | - Yong-Kook Shin
- Department of Natural Medicine Resources, Semyung University, Hecheon, Korea
| | - Chang-Hyun Han
- Department of Medical History & Literature Group, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Young Joon Lee
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea ; The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| |
Collapse
|