1
|
Wang C, Li Q, Hou Y, Sun M, Sun J, Lou Z, Li Y. The interaction of cinchonine and immunoglobulin G and the development of a nanocomplex with improved anti-breast cancer activity. Int J Biol Macromol 2025; 287:138152. [PMID: 39613056 DOI: 10.1016/j.ijbiomac.2024.138152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In this study we evaluated the interaction of cinchonine (Cin) and immunoglobulin G (IgG). Then, Cin-IgG nanoparticles (NPs) were synthesized and characterized. Finally, the anticancer effects of free Cin and Cin-IgG NPs on MCF-7 breast cancer (BC) cells were evaluated. The results of spectroscopy measurements show that the IgG-Cin complex's quenching mechanism is static and the structure of IgG was partially changed following interaction with Cin. The prepared Cin-IgG NPs display a hydrodynamic size of 190 nm with a PDI of 0.269, a zeta potential of -38.05 mV, an EE% of 72.38 %, a LC% of 5.41 %, and a pH-sensitive drug release behavior. In the cellular assay, it was found that the calculated IC50 concentrations of Cin, IgG NPs, and Cin-IgG NPs are 66.4 ± 5.39, >100, and 29.2 ± ± 4.11 μM, respectively, in MCF-7 BC cells. Finally, Cin-IgG NPs induce a greater effect on the overexpression of the Bax/Bcl-2 ratio and downregulation of PI3K/p-AKT compared to the free drug. In conclusion, this study shows that Cin has the potential to bind IgG as a human plasma protein, and its complexation into a NP form with IgG can boost its anti-BC effects.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qiaobei Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuxin Hou
- Department of Ultrasonic Diagnosis, The Benxi Hospital of China Medical University, Benxi 117000, China
| | - Minglu Sun
- Department of Ultrasonic Diagnosis, The Cancer Hospital of China Medical University, Shenyang 110044, China
| | - Jun Sun
- Department of Intervention, the Fourth Hospital of China Medical University, Shenyang 110036, China
| | - Zhe Lou
- Department of Cardiovascular Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Nunes PP, Almeida MR, Pacheco FG, Fantini C, Furtado CA, Ladeira LO, Jorio A, Júnior APM, Santos RL, Borges ÁM. Detection of carbon nanotubes in bovine raw milk through Fourier transform Raman spectroscopy. J Dairy Sci 2024; 107:2681-2689. [PMID: 37923204 DOI: 10.3168/jds.2023-23481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The potential use of carbon-based methodologies for drug delivery and reproductive biology in cows raises concerns about residues in milk and food safety. This study aimed to assess the potential of Fourier transform Raman spectroscopy and discriminant analysis using partial least squares (PLS-DA) to detect functionalized multiwalled carbon nanotubes (MWCNT) in bovine raw milk. Oxidized MWCNT were diluted in milk at different concentrations from 25.00 to 0.01 µg/mL. Raman spectroscopy measurements and PLS-DA were performed to identify low concentrations of MWCNT in milk samples. The PLS-DA model was characterized by the analysis of the variable importance in projection (VIP) scores. All the training samples were correctly classified by the model, resulting in no false-positive or false-negative classifications. For test samples, only one false-negative result was observed, for 0.01 µg/mL MWCNT dilution. The association between Raman spectroscopy and PLS-DA was able to identify MWCNT diluted in milk samples up to 0.1 µg/mL. The PLS-DA model was built and validated using a set of test samples and spectrally interpreted based on the highest VIP scores. This allowed the identification of the vibrational modes associated with the D and G bands of MWCNT, as well as the milk bands, which were the most important variables in this analysis.
Collapse
Affiliation(s)
- Philipe P Nunes
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Mariana R Almeida
- Department of Chemistry, Institute of Exact Science, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Flávia G Pacheco
- Laboratory of Carbon Nanostructure Chemistry, Nuclear Technology Development Center, Belo Horizonte, MG 31270-901, Brazil
| | - Cristiano Fantini
- Department of Physics, Institute of Exact Science, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Clascídia A Furtado
- Laboratory of Carbon Nanostructure Chemistry, Nuclear Technology Development Center, Belo Horizonte, MG 31270-901, Brazil
| | - Luiz O Ladeira
- Department of Physics, Institute of Exact Science, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ado Jorio
- Department of Physics, Institute of Exact Science, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Antônio P M Júnior
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Renato L Santos
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Álan M Borges
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
3
|
Yadav N, Mor S, Venkatesu P. The attenuating ability of deep eutectic solvents towards the carboxylated multiwalled carbon nanotubes induced denatured β-lactoglobulin structure. Phys Chem Chem Phys 2023. [PMID: 37470288 DOI: 10.1039/d3cp02908e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The stabilization of proteins has been a major challenge for their practical utilization in industrial applications. Proteins can easily lose their native conformation in the presence of denaturants, which unfolds the protein structure. Since the introduction of deep eutectic solvents (DESs), there are numerous studies in which DESs act as promising co-solvents that are biocompatible with biomolecules. DESs have emerged as sustainable biocatalytic media and an alternative to conventional organic solvents and ionic liquids (ILs). However, the superiority of DESs over the deleterious influence of denaturants on proteins is often neglected. To address this, we present the counteracting ability of biocompatible DESs, namely, choline chloride-glycerol (DES-1) and choline chloride-urea (DES-2), against the structural changes induced in β-lactoglobulin (Blg) by carboxylated multiwalled carbon nanotubes (CA-MWCNTs). The work is substantiated with various spectroscopic and thermal studies. The spectroscopic results revealed that the fluorescence emission intensity enhances for the protein in DESs. Contrary to this, the emission intensity extremely quenches in the presence of CA-MWCNTs. However, in the mixture of DESs and CA-MWCNTs, there was a slight increase in the fluorescence intensity. Circular dichroism spectral studies reflect the reappearance of the native band that was lost in the presence of CA-MWCNTs, which is a good indicator of the counteraction ability of DESs. Further, thermal fluorescence studies showed that the protein exhibited extremely great thermal stability in both DESs as well as in the mixture of DES-CA-MWCNTs compared to the protein in buffer. This study is also supported by dynamic light scattering and zeta potential measurements; the results reveal that DESs were successfully able to maintain the protein structure. The addition of CA-MWCNTs results in complex formation with the protein, which is indicated by the increased hydrodynamic size of the protein. The presence of DESs in the mixture of CA-MWCNTs and DESs was quite successful in eliminating the negative impact of CA-MWCNTs on protein structural alteration. DES-1 proved to be superior to DES-2 over counteraction against CA-MWCNTs and maintained the native conformation of the protein. Overall, both DESs act as recoiling media for both native and unfolded (denatured by CA-MWCNTs) Blg structures. Both the DESs can be described as potential co-solvents for Blg with increased structural and thermal stability of the protein. To the best of our knowledge, this study for the first time has demonstrated the role of choline-based DESs in the mixture with CA-MWCNTs in the structural transition of Blg. The DESs in the mixture successfully enhance the stability of the protein by reducing the perturbation caused by CA-MWCNTs and then amplifying the advantages of the DESs present in the mixture. Overall, these results might find implications for understanding the role of DES-CA-MWCNT mixtures in protein folding/unfolding and pave a new direction for the development of eco-friendly protein-protective solvents.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Sanjay Mor
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
4
|
Khan S, Cho WC, Hussain A, Azimi S, Babadaei MMN, Bloukh SH, Edis Z, Saeed M, Ten Hagen TLM, Ahmadi H, Ale-Ebrahim M, Jaragh-Alhadad LA, Khan RH, Falahati M, Zhang X, Bai Q. The interaction mechanism of plasma iron transport protein transferrin with nanoparticles. Int J Biol Macromol 2023; 240:124441. [PMID: 37060978 DOI: 10.1016/j.ijbiomac.2023.124441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
In the biological systems, exposure to nanoparticles (NPs) can cause complicated interactions with proteins, the formation of protein corona and structural changes to proteins. These changes depend not only on NP physicochemical properties, but also on the intrinsic stability of protein molecules. Although, the formation of protein corona on the surface of NPs and the underlying mechanisms have been fully explored in various studies, no comprehensive review has discussed the direct biochemical and biophysical interactions between NPs and blood proteins, particularly transferrin. In this review, we first discussed the interaction of NPs with proteins to comprehend the effects of physicochemical properties of NPs on protein structure. We then overviewed the transferrin structure and its direct interaction with NPs to explore transferrin stability and its iron ion (Fe3+) release behavior. Afterwards, we surveyed the various biological functions of transferrin, such as Fe3+ binding, receptor binding, antibacterial activity, growth, differentiation, and coagulation, followed by the application of transferrin-modified NPs in the development of drug delivery systems for cancer therapy. We believe that this study can provide useful insight into the design and development of bioconjugates containing NP-transferrin for potential biomedical applications.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Medical Lab Technology, The University of Haripur, Pakistan
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Sadaf Azimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands
| | - Hosein Ahmadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002, India.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Xiaoju Zhang
- Department of Respiratory and Clinical Care Medicine, Henan Provisional People's Hospital, Zhengzhou, China.
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Zarghami Dehaghani M, Yousefi F, Seidi F, Sajadi SM, Rabiee N, Habibzadeh S, Esmaeili A, Hamed Mashhadzadeh A, Spitas C, Mostafavi E, Saeb MR. Dynamics of Antimicrobial Peptide Encapsulation in Carbon Nanotubes: The Role of Hydroxylation. Int J Nanomedicine 2022; 17:125-136. [PMID: 35058692 PMCID: PMC8765279 DOI: 10.2147/ijn.s335380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/05/2021] [Indexed: 12/28/2022] Open
Affiliation(s)
- Maryam Zarghami Dehaghani
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Farrokh Yousefi
- Department of Physics, University of Zanjan, Zanjan, 45195-313, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, Soran, Iraq
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591639675, Iran
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, College of the North Atlantic — Qatar, Doha, Qatar
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
- Correspondence: Amin Hamed Mashhadzadeh Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan Email ;
| | - Christos Spitas
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Ebrahim Mostafavi Stanford Cardiovascular Institute, Stanford University School of Medicine, Biomedical Innovation Building, 240 Pasteur Drive, Palo Alto, Stanford, CA94304, USA Email ;
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| |
Collapse
|
6
|
Oladipo AO, Modibedi LG, Iku SI, de Bruyn K, Nkambule TT, Mamba BB, Msagati TA. Physico-chemical dynamics of protein corona formation on 3D-bimetallic Au@Pd nanodendrites and its implications on biocompatibility. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Kumar S, Kumar K, Yadav R, Kukutla P, Devunuri N, Deenadayalu N, Venkatesu P. Understanding the close encounter of heme proteins with carboxylated multiwalled carbon nanotubes: a case study of contradictory stability trend for hemoglobin and myoglobin. Phys Chem Chem Phys 2021; 23:19740-19751. [PMID: 34525143 DOI: 10.1039/d1cp02167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes (CNTs) are one of the unique and promising nanomaterials that possess plenty of applications, such as biosensors, advanced drug delivery systems and biotechnology. CNTs bind rapidly with proteins, which result in the formation of a protein coating layer known as a "protein corona" around the surface of the nanomaterial. This hinders their applications as a drug carrier and influences the properties of biological macromolecules. The present work focuses on studying the thermal stability and molecular level interactions of two heme proteins, hemoglobin (Hb) and myoglobin (Mb), in the presence of carboxylated functionalized multi-walled CNTs (CA-MWCNTs). Through the current study, the following steps have been taken to distinguish the biocompatibility of the hydrophilic surface CA-MWCNTs for heme proteins via a series of spectroscopic techniques and differential scanning calorimetry (DSC). UV-Visible and steady-state fluorescence spectroscopy were used to reveal changes in the aromatic amino acid residues of heme proteins upon the addition of CA-MWCNTs. Circular dichroism spectroscopy (CD) shows the alteration in the native structure of proteins in the presence of the nanomaterial. A tremendous increase in the size of the protein CA-MWCNTs system is observed in dynamic light scattering (DLS), which clearly manifests the protein corona formation. Unexpectedly, both proteins interact differently with CA-MWCNTs, which is observed in CD spectroscopy and DSC. In the presence of CA-MWCNTs, an increase in the transition temperature (Tm) was observed for Hb, while the Tm value decreases for Mb. Different interactions with proteins at the molecular scale may be the reason for this unexpected behavior. Henceforth, the present results can help in the design of the next-generation drug carrier nanomaterials with the idea of the heme protein corona formation prior to development.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Ritu Yadav
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Prasanna Kukutla
- Department of Chemistry, University of Delhi, Delhi-110 007, India. .,Vignan's Foundation for Science, Technology and Research (VFSTR) Deemed to be University, Vadlamudi, Guntur-522 213, Andhra Pradesh, India
| | - Nagaraju Devunuri
- Vignan's Foundation for Science, Technology and Research (VFSTR) Deemed to be University, Vadlamudi, Guntur-522 213, Andhra Pradesh, India
| | - Nirmala Deenadayalu
- Department of Chemistry, Durban University of Technology, Durban-4000, South Africa
| | | |
Collapse
|
8
|
Yu X, Zheng X, Yang B, Wang J. Investigating the interaction of CdTe quantum dots with plasma protein transferrin and their interacting consequences at the molecular and cellular level. Int J Biol Macromol 2021; 185:434-440. [PMID: 34197848 DOI: 10.1016/j.ijbiomac.2021.06.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
This study investigated the interacting mechanism of CdTe quantum dots (QDs) with typical plasma protein transferrin (TF) as well as the impact of the formation of QDs-TF complex on the structure of TF and the cytotoxicity of mouse primary kidney cells. Dialysis experiments and cell viability assays revealed that the formation of QDs-TF complex reduced the contents of Cd released from CdTe QDs and thus counteracted the cytotoxicity of CdTe QDs. The assay of isothermal titration calorimetry found that CdTe QDs complexed with TF majorly through hydrophobic interaction. Multi-spectroscopic measurements showed that CdTe QDs caused the loosening of polypeptide chain, the changes of secondary and tertiary structures as well as the attenuated aggregation of TF molecule. Moreover, these structural and conformational changes were attributed to the nano-effects of CdTe QDs rather than the released Cd. This study is of great significance for fully evaluating the biocompatibility of Cd-QDs and comprehensively understanding the mechanism of Cd-QDs toxicity at the molecular and cellular level.
Collapse
Affiliation(s)
- Xinping Yu
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Xiaolin Zheng
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Bin Yang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China.
| |
Collapse
|
9
|
Shahabadi N, Zendehcheshm S, Khademi F. Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. ACTA ACUST UNITED AC 2021; 30:e00615. [PMID: 33948440 PMCID: PMC8080047 DOI: 10.1016/j.btre.2021.e00615] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022]
Abstract
Spherical SeNPs with average size 134 nm were synthesized employing Vitamin C. The synthesized SeNPs represented great antioxidant and anticancer activity. The interaction of SeNPs with ct-DNA, HSA, HHb and Cyt c was investigated. Nano-selenium can bind to ct-DNA through partial intercalation binding mode. HSA, HHb and Cyt c could keep their biological activity even in the presence of Nano-selenium.
The aim of this study was the synthesis of selenium nanoparticles (SeNPs) employing vitamin C as a biocompatible and low toxic reducing agent. The synthesized selenium nanoparticles were characterized by using UV–vis, FT-IR, SEM-EDX, TEM, DLS, and zeta potential measurements. The results of the DPPH free radical scavenging assay demonstrate that this synthesized nano-selenium has strong potentials to scavenge the free radicals and cytotoxicity against MCF-7 and Raji Burkitt's lymphoma cancer cell lines. The interaction of calf thymus DNA (ct-DNA) with SeNPs indicated that the anticancer activity might be associated with the DNA-binding properties of nano-selenium. Finally, it was found that the synthesized nano-selenium can bind to the most important blood proteins such as human serum albumin (HSA), human hemoglobin (HHb), and Cytochrome c (Cyt c). The results showed that the secondary structure of these proteins remains unchanged, suggesting that the synthesized nano-selenium could be employed as a carrier in the drug delivery system without any cytotoxicity effect.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Center of Medical Biology Research (MBRC) Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Zendehcheshm
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Center of Medical Biology Research (MBRC) Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khademi
- Center of Medical Biology Research, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
|
11
|
The effect of aluminum oxide on red blood cell integrity and hemoglobin structure at nanoscale. Int J Biol Macromol 2019; 138:800-809. [DOI: 10.1016/j.ijbiomac.2019.07.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 01/07/2023]
|
12
|
Wu Q, Zhao H, Chen X, Cai Z. Interaction of bisphenol A 3, 4-quinone metabolite with human hemoglobin, human serum albumin and cytochrome c in vitro. CHEMOSPHERE 2019; 220:930-936. [PMID: 33395814 DOI: 10.1016/j.chemosphere.2018.12.194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 06/12/2023]
Abstract
Since covalent protein-bisphenol A adducts generated by the interaction of protein nucleophiles with bisphenol A quinone affect the physicochemical properties of proteins in functional foods and biological tissues, it has become a hot topic nowadays. Therefore, we investigated the interaction of several different biomacromolecules such as hemoglobin, human serum albumin and cytochrome c with bisphenol A 3, 4-quinone (BPAQ). The effects of binding on changes in biomolecular structure were determined by various spectroscopic methods. BPAQ effects were investigated by using the UV-Vis spectroscopy and the quenching phenomenon from fluorescence emission. It proved that the formation of bio-complex and their aromatic micro-environment was likely to be disturbed with as well. Changes observed in circular dichroism (CD) spectroscopy confirmed the quantitative loss of the alpha-helical structure. Further studies with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOFMS) and molecular docking indicated combining ratio and binding sites between proteins and BPAQ. The in vitro data of BPAQ-proteins adducts may provide a valuable theoretical basis for the elucidation of the toxicological mechanisms of BPAQ adducts in biological systems and environments.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
13
|
Babadaei MMN, Moghaddam MF, Solhvand S, Alizadehmollayaghoob E, Attar F, Rajabbeigi E, Akhtari K, Sari S, Falahati M. Biophysical, bioinformatical, cellular, and molecular investigations on the effects of graphene oxide nanosheets on the hemoglobin structure and lymphocyte cell cytotoxicity. Int J Nanomedicine 2018; 13:6871-6884. [PMID: 30498348 PMCID: PMC6207253 DOI: 10.2147/ijn.s174048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Implementations of nanoparticles have been receiving great interest in medicine and technology due to their unique characteristics. However, their toxic impacts on the biological system are not well explored. AIM This study aims to investigate the influence of fabricated nano graphene oxide (NGO) sheets on the secondary and quaternary structural alterations of human hemoglobin (Hb) and cytotoxicity against lymphocyte cells. MATERIALS AND METHODS Different spectroscopic methods, such as extrinsic and synchronous fluorescence spectroscopy and far circular dichroism (CD) spectroscopy, molecular docking investigation, cellular assays (trypan blue exclusion, cellular uptake, ROS, cell cycle, and apoptosis), and molecular assay (fold changes in anti/proapoptotic genes [B-cell lymphoma-2 {BCL2}/BAX] expression levels) were used in this study. RESULTS Transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and zeta potential investigations revealed the nano-sized nature of NGOs with good colloidal stability. Extrinsic fluorescence spectroscopy by using 8-anilinonaphthalene-1 -sulfonic acid and synchronous fluorescence spectroscopy showed that NGOs can unfold the quaternary structure of Hb in the vicinity of Tyr residues. The CD investigation demonstrated that the α-helicity of Hb experienced substantial alteration upon interaction with increasing concentrations of NGOs. The molecular docking study showed that NGOs interacted with polar residues of Hb. Cellular and molecular assays revealed that NGOs lead to ROS formation, cell cycle arrest, and apoptosis through the BAX and BCL2 pathway. CONCLUSION These data reveal that NGOs can induce some protein structural changes and stimulate cytotoxicity against normal cell targets. Therefore, their applications in healthy systems should be limited.
Collapse
Affiliation(s)
- Mohammad Mahdi Nejadi Babadaei
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| | - Mina Feli Moghaddam
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| | - Sara Solhvand
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| | - Ehsan Alizadehmollayaghoob
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Elham Rajabbeigi
- Department of Biochemistry, Faculty of Advance Science and Technology, Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| |
Collapse
|
14
|
Azimipour S, Ghaedi S, Mehrabi Z, Ghasemzadeh SA, Heshmati M, Barikrow N, Attar F, Falahati M. Heme degradation and iron release of hemoglobin and oxidative stress of lymphocyte cells in the presence of silica nanoparticles. Int J Biol Macromol 2018; 118:800-807. [DOI: 10.1016/j.ijbiomac.2018.06.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
|
15
|
Eskandari N, Nejadi Babadaei MM, Nikpur S, Ghasrahmad G, Attar F, Heshmati M, Akhtari K, Rezayat Sorkhabadi SM, Mousavi SE, Falahati M. Biophysical, docking, and cellular studies on the effects of cerium oxide nanoparticles on blood components: in vitro. Int J Nanomedicine 2018; 13:4575-4589. [PMID: 30127607 PMCID: PMC6091479 DOI: 10.2147/ijn.s172162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction The application of nanoparticles (NPs) in medicine and biology has received great interest due to their novel features. However, their adverse effects on the biological system are not well understood. Materials and methods This study aims to evaluate the effect of cerium oxide nanoparticles (CNPs) on conformational changes of human hemoglobin (HHb) and lymphocytes by different spectroscopic (intrinsic and synchronous fluorescence spectroscopy and far and near circular dichroism [CD] spectroscopy), docking and cellular (MTT and flow cytometry) investigations. Results and discussion Transmission electron microscopy (TEM) showed that CNP diameter is ~30 nm. The infrared spectrum demonstrated a strong band around 783 cm−1 corresponding to the CNP stretching bond. Fluorescence data revealed that the CNP is able to quench the intrinsic fluorescence of HHb through both dynamic and static quenching mechanisms. The binding constant (Kb), number of binding sites (n), and thermodynamic parameters over three different temperatures indicated that hydrophobic interactions might play a considerable role in the interaction of CNPs with HHb. Synchronous fluorescence spectroscopy indicated that microenvironmental changes around Trp and Tyr residues remain almost unchanged. CD studies displayed that the regular secondary structure of HHb had no significant changes; however, the quaternary structure of protein is subjected to marginal structural changes. Docking studies showed the larger CNP cluster is more oriented toward experimental data, compared with smaller counterparts. Cellular assays revealed that CNP, at high concentrations (>50 µg/mL), initiated an antiproliferative response through apoptosis induction on lymphocytes. Conclusion The findings may exhibit that, although CNPs did not significantly perturb the native conformation of HHb, they can stimulate some cellular adverse effects at high concentrations that may limit the medicinal and biological application of CNPs. In other words, CNP application in biological systems should be done at low concentrations.
Collapse
Affiliation(s)
- Neda Eskandari
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Sanaz Nikpur
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Ghazal Ghasrahmad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | | | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| |
Collapse
|
16
|
Vishalakshi GJ, Hemshekhar M, Kemparaju K, Girish KS. Para-tertiary butyl catechol induces eryptosis in vitro via oxidative stress and hemoglobin leakage in human erythrocytes. Toxicol In Vitro 2018; 52:286-296. [PMID: 30016652 DOI: 10.1016/j.tiv.2018.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022]
Abstract
Exposure of human population to industrial chemicals is believed as a significant contributing factor to the outgrowth of occupational diseases especially in developing countries due to improper safety measures and sanitary conditions. Para-tertiary butylcatechol (PTBC) widely employed in petrochemical, thermofax and phototypesetting industries, induces melanocytotoxicity and contact dermatitis leading to occupational leukoderma/vitiligo. Few vitiligo patients were reported for oxidative stress-induced hemolytic anemia and thrombocytopenia, however its impact on blood components is still not clear. Erythrocytes are the major cell population in circulation and play a prominent role in various diseases. In this work, the effect of PTBC on human erythrocytes is evaluated in vitro. PTBC induces oxidative stress-mediated eryptosis (erythrocyte death) causing detrimental changes such as depleted antioxidant levels, altered surface morphology, hemoglobin denaturation and heinz body formation. These findings validate that PTBC could induce toxic effects on human erythrocytes. Exposure of humans to toxic chemicals constitutes an important issue in various industries; one such issue is the exposure of PTBC at work place resulting in a spectrum of dermal complications. Therefore, it is imperative to appraise the long-term toxicities in order to further delineate the mechanisms of resultant disorders associated with PTBC and to establish the therapeutic interventions.
Collapse
Affiliation(s)
| | - Mahadevappa Hemshekhar
- DOS in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570 006, India; Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg R3E3P4, Canada
| | - Kempaiah Kemparaju
- DOS in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570 006, India.
| | - Kesturu S Girish
- DOS in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570 006, India; Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, India.
| |
Collapse
|
17
|
Mobasherat Jajroud SY, Falahati M, Attar F, Khavari-Nejad RA. Human hemoglobin adsorption onto colloidal cerium oxide nanoparticles: a new model based on zeta potential and spectroscopy measurements. J Biomol Struct Dyn 2017; 36:2908-2916. [DOI: 10.1080/07391102.2017.1371645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branches, Islamic Azad University of Tehran (IAUPS), Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Ramazan Ali Khavari-Nejad
- Department of Biology, Faculty of Basic Science, Research and Science Branch, Islamic Azad University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
A highly sensitive “turn-on” fluorescent probe with an aggregation-induced emission characteristic for quantitative detection of γ-globulin. Biosens Bioelectron 2017; 92:536-541. [DOI: 10.1016/j.bios.2016.10.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/22/2016] [Indexed: 12/22/2022]
|
19
|
Pishkar L, Taheri S, Makarem S, Alizadeh Zeinabad H, Rahimi A, Saboury AA, Falahati M. Studies on the interaction between nanodiamond and human hemoglobin by surface tension measurement and spectroscopy methods. J Biomol Struct Dyn 2016; 35:603-615. [DOI: 10.1080/07391102.2016.1155172] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Leila Pishkar
- Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Saba Taheri
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Somayeh Makarem
- Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Hojjat Alizadeh Zeinabad
- Department of Nanotechnology, Faculty of Advance Science and Technology, Islamic Azad University of Pharmaceutical Sciences (IAUPS), Tehran, Iran
| | - Arash Rahimi
- Faculty of Basic Science, Department of Biophysics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Islamic Azad University of Pharmaceutical Sciences (IAUPS), Tehran, Iran
| |
Collapse
|
20
|
Wang Y, Zhang H, Kang Y, Fei Z, Cao J. The interaction of perfluorooctane sulfonate with hemoglobin: Influence on protein stability. Chem Biol Interact 2016; 254:1-10. [DOI: 10.1016/j.cbi.2016.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/13/2016] [Accepted: 05/15/2016] [Indexed: 11/30/2022]
|
21
|
Zeinabad HA, Kachooei E, Saboury AA, Kostova I, Attar F, Vaezzadeh M, Falahati M. Thermodynamic and conformational changes of protein toward interaction with nanoparticles: a spectroscopic overview. RSC Adv 2016. [DOI: 10.1039/c6ra16422f] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nanoparticles (NPs) in different forms have been widely used in medicine and pharmaceutics for diagnosis and drug delivery.
Collapse
Affiliation(s)
- Hojjat Alizadeh Zeinabad
- Department of Nanotechnology
- Faculty of Advance Science and Technology
- Pharmaceutical Sciences Branch
- Islamic Azad University (IAUPS)
- Tehran
| | - Ehsan Kachooei
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| | - Irena Kostova
- Department of Chemistry
- Faculty of Pharmacy
- Medical University
- Sofia 1000
- Bulgaria
| | - Farnoosh Attar
- Department of Biology
- Faculty of Food Industry & Agriculture
- Standard Research Institute (SRI)
- Karaj
- Iran
| | - Mahsa Vaezzadeh
- Department of Biology
- Research and Science Branch
- Islamic Azad University
- Tehran
- Iran
| | - Mojtaba Falahati
- Department of Nanotechnology
- Faculty of Advance Science and Technology
- Pharmaceutical Sciences Branch
- Islamic Azad University (IAUPS)
- Tehran
| |
Collapse
|