1
|
de Alexandria FED, Silva NC, Assis L, Filho ALMM, Kido HW, Tarocco JC, Ferreira RS, Barraviera B, Parizotto NA, Silva JF, Neto MADN, Tim CR. Diabetic rats skin wounds treated with heterologous fibrin sealant followed by photobiomodulation therapy. Lasers Med Sci 2024; 39:279. [PMID: 39542936 DOI: 10.1007/s10103-024-04229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Diabetes mellitus is characterized by elevated blood glucose levels causing sometimes impairment of the body's ability to repair itself. Promising treatments for tissue repair have included photobiomodulation therapy and heterologous fibrin biopolymer (HFB). This study aimed to evaluate the impact of photobiomodulation therapy by LED, both as a standalone treatment and in conjunction with heterologous fibrin biopolymer in treatment of skin lesions of diabetic rats. Diabetes was induced using alloxan. Full-thickness skin wounds were induced on the backs of 56 Wistar rats, which were randomly allocated into four groups: control group, heterologous fibrin biopolymer group, photobiomodulation therapy by LED group, and photobiomodulation therapy by LED combined with heterologous fibrin biopolymer group. The treatments spanned two experimental periods, lasting 7 and 14 days. Notably, the HFB group exhibited results similar to those of the LED group concerning wound regression, while demonstrating superior resistance to healing. Interestingly, the LED + HFB group showed greater skin damage at 7 days, but an improved repair process at 14 days compared to the control group. The findings indicate that combining photobiomodulation by LED with HFB did not enhance wound healing in diabetic rats beyond the effects of each treatment alone. Both treatments were effective individually, with HFB showing particular strength in promoting collagen maturation and improving tissue biomechanical properties. This study contributes to the ongoing body of research on skin repair with this innovative HFB. Future clinical trials will be essential to validate this proposition.
Collapse
Affiliation(s)
| | | | - Livia Assis
- Scientific and Technological Institute, Universidade Brasil, Sao Paulo (SP), Brazil
| | | | - Hueliton Wilian Kido
- Diretoria de Saúde III , Universidade Nove de Julho, São Bernardo do Campo (SP) , Brazil
| | | | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals , Universidade Estadual Paulista, Botucatu (SP), Brazil
| | - Benedito Barraviera
- Botucatu Medical School, Universidade Estadual Paulista, Botucatu (SP), Brazil
| | | | - José Figueiredo Silva
- Center for Research in Biotechnology and Biodiversity, Universidade Estadual do Piauí, Teresina (PI), Brazil
| | | | - Carla Roberta Tim
- Scientific and Technological Institute, Universidade Brasil, Sao Paulo (SP), Brazil.
| |
Collapse
|
2
|
Vigliar MFR, Marega LF, Duarte MAH, Alcalde MP, Rosso MPDO, Ferreira Junior RS, Barraviera B, Reis CHB, Buchaim DV, Buchaim RL. Photobiomodulation Therapy Improves Repair of Bone Defects Filled by Inorganic Bone Matrix and Fibrin Heterologous Biopolymer. Bioengineering (Basel) 2024; 11:78. [PMID: 38247955 PMCID: PMC10813421 DOI: 10.3390/bioengineering11010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Biomaterials are used extensively in graft procedures to correct bone defects, interacting with the body without causing adverse reactions. The aim of this pre-clinical study was to analyze the effects of photobiomodulation therapy (PBM) with the use of a low-level laser in the repair process of bone defects filled with inorganic matrix (IM) associated with heterologous fibrin biopolymer (FB). A circular osteotomy of 4 mm in the left tibia was performed in 30 Wistar male adult rats who were randomly divided into three groups: G1 = IM + PBM, G2 = IM + FB and G3 = IM + FB + PBM. PBM was applied at the time of the experimental surgery and three times a week, on alternate days, until euthanasia, with 830 nm wavelength, in two points of the operated site. Five animals from each group were euthanized 14 and 42 days after surgery. In the histomorphometric analysis, the percentage of neoformed bone tissue in G3 (28.4% ± 2.3%) was higher in relation to G1 (24.1% ± 2.91%) and G2 (22.2% ± 3.11%) at 14 days and at 42 days, the percentage in G3 (35.1% ± 2.55%) was also higher in relation to G1 (30.1% ± 2.9%) and G2 (31.8% ± 3.12%). In the analysis of the birefringence of collagen fibers, G3 showed a predominance of birefringence between greenish-yellow in the neoformed bone tissue after 42 days, differing from the other groups with a greater presence of red-orange fibers. Immunohistochemically, in all experimental groups, it was possible to observe immunostaining for osteocalcin (OCN) near the bone surface of the margins of the surgical defect and tartrate-resistant acid phosphatase (TRAP) bordering the newly formed bone tissue. Therefore, laser photobiomodulation therapy contributed to improving the bone repair process in tibial defects filled with bovine biomaterial associated with fibrin biopolymer derived from snake venom.
Collapse
Affiliation(s)
- Maria Fernanda Rossi Vigliar
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil; (M.F.R.V.); (D.V.B.)
| | - Lais Furlaneto Marega
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (M.A.H.D.); (M.P.A.)
| | - Murilo Priori Alcalde
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (M.A.H.D.); (M.P.A.)
| | - Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil; (R.S.F.J.); (B.B.)
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), Sao Paulo State University (UNESP–University Estadual Paulista), Botucatu 18618-687, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil; (R.S.F.J.); (B.B.)
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), Sao Paulo State University (UNESP–University Estadual Paulista), Botucatu 18618-687, Brazil
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil; (M.F.R.V.); (D.V.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil; (M.F.R.V.); (D.V.B.)
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
| |
Collapse
|
3
|
Freitas NRD, Guerrini LB, Esper LA, Sbrana MC, Santos CCVD, Almeida ALPFD. Photobiomodulation and Inorganic Bovine Bone in Guided Bone Regeneration: Histomorphometric Analysis in Rats. J Funct Biomater 2023; 14:jfb14050281. [PMID: 37233392 DOI: 10.3390/jfb14050281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
The objective of this study was to evaluate the efficacy of photobiomodulation in the bone regeneration of critical-sized defects (CSD) filled with inorganic bovine bone associated or not with collagen membranes. The study has been conducted on 40 critical defects in the calvaria of male rats, divided into four experimental groups (n = 10): (1) DBBM (deproteinized bovine bone mineral); (2) GBR (DBBM+collagen membrane); (3) DBBM+P (DBBM+photobiomodulation); and (4) GBR+P (GBR+photobiomodulation). At 30 days postoperative, the animals were euthanized, and after the tissue had been processed, histological, histometric, and statistical analyses were performed. The analyses have taken into account newly formed bone area (NBA), linear bone extension (LBE), and residual particle area (RPA) as variables. The Kruskal-Wallis test has been performed, followed by the Dwass-Steel-Critchlow-Fligner test for comparison between groups (p < 0.05). When the DBBM+P group was compared to the DBBM group, it was possible to observe significant statistical differences in all the variables analyzed (p < 0.05). The application of photobiomodulation in guided bone regeneration (GBR+P) has shown a decrease in the median value for the RPA variable (26.8) when compared to the GBR group (32.4), with a significant statistical difference; however, for NBA and LBE, the therapy has not provided significant results.
Collapse
Affiliation(s)
- Nicole Rosa de Freitas
- Postgraduate Program, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Luísa Belluco Guerrini
- Postgraduate Program, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Luis Augusto Esper
- Periodontics Sector, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru 17012-900, Brazil
| | - Michyele Cristhiane Sbrana
- Periodontics Sector, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru 17012-900, Brazil
| | | | - Ana Lúcia Pompéia Fraga de Almeida
- Periodontics Sector, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru 17012-900, Brazil
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| |
Collapse
|
4
|
Ahn SH, Suh JS, Lim GH, Kim TJ. The Potential Effects of Light Irradiance in Glaucoma and Photobiomodulation Therapy. Bioengineering (Basel) 2023; 10:bioengineering10020223. [PMID: 36829717 PMCID: PMC9952036 DOI: 10.3390/bioengineering10020223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Human vision is mediated by the retina, one of the most critical tissues in the central nervous system. Glaucoma is a complex retinal disease attributed to environmental, genetic, and stochastic factors, all of which contribute to its pathogenesis. Historically, glaucoma had been thought of primarily as a disease of the elderly; however, it is now becoming more problematic as the incidence rate increases among young individuals. In recent years, excessive light exposure has been suggested as contributing to the rise in glaucoma among the younger generation. Blue light induces mitochondrial apoptosis in retinal ganglion cells, causing optic damage; red light increases cytochrome c oxidase activity in the electron transport system, reducing inflammation and increasing antioxidant reactions to promote cell regeneration. In conclusion, the minimization of blue light exposure and the general application of red light treatment strategies are anticipated to show synergistic effects with existing treatments for retinal disease and glaucoma and should be considered a necessary prospect for the future. This review introduces the recent studies that support the relationship between light exposure and the onset of glaucoma and discusses new treatments, such as photobiomodulation therapy.
Collapse
Affiliation(s)
- Sang-Hyun Ahn
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
| | - Gah-Hyun Lim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Pusan 46241, Republic of Korea
- Correspondence: (G.-H.L.); (T.-J.K.); Tel.: +82-51-510-2261 (T.-J.K.)
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Pusan 46241, Republic of Korea
- Correspondence: (G.-H.L.); (T.-J.K.); Tel.: +82-51-510-2261 (T.-J.K.)
| |
Collapse
|
5
|
Guastaldi FPS, Matheus HR, Faloni APDS, de Almeida-Filho E, Cominotte MA, Moretti LAC, Verzola MHA, Marcantonio E, de Almeida JM, Guastaldi AC, Cirelli JA. A new multiphase calcium phosphate graft material improves bone healing-An in vitro and in vivo analysis. J Biomed Mater Res B Appl Biomater 2022; 110:2686-2704. [PMID: 35779277 DOI: 10.1002/jbm.b.35121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
This study aims to evaluate the potential of a novel biomaterial synthesized from amorphous calcium phosphate (ACP), octacalcium phosphate (OCP), and hydroxyapatite (HA) to repair critical-sized defects (CSD) in rabbit calvaria. In vitro analyses of cell viability, cell proliferation, formation of mineral nodules, and cell differentiation using qPCR were performed for comparing experimental calcium phosphate (ECP), deproteinized bovine bone (DBB), and beta-tricalcium phosphate (β-TCP). Bilateral CSDs were created in 45 rabbit calvaria. Six groups were evaluated: ECP, ECP + fibrin sealant (ECP + S), coagulum, autogenous bone, DBB, and β-TCP. Euthanasia was performed at 2, 4, and 8 weeks, followed by micro-computed tomography and histological and immunohistochemical analyses. Results from in vitro analyses revealed similar biocompatibility for all tested materials and a tendency for higher gene expression of some bone markers in the ECP group than in β-TCP and DBB groups at 7 days. In contrast to that in DBB and β-TCP groups, ECP displayed growing bone volume over total volume percentage (BV/TV%) with time in vivo. Histological analysis revealed a greater number of giant cells and reduced size of grafted particles in ECP during all periods of analysis. RUNX-2 expression was statistically lower in ECP than DBB at 2 and 4 weeks. Despite no statistical significance, ECP presented the highest absolute values for ALP-expression at 2, 4, and 8 weeks compared with other groups. Together, our findings indicate that a combination of the ACP, OCP, and HA phases into ECP is beneficial and promising for bone regeneration.
Collapse
Affiliation(s)
- Fernando Pozzi Semeghini Guastaldi
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil.,Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Henrique Rinaldi Matheus
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Ana Paula de Souza Faloni
- Department of Health Sciences, University Center of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Edson de Almeida-Filho
- Department of Physical Chemistry, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Mariana Aline Cominotte
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| | - Livia Alves Correa Moretti
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| | | | - Elcio Marcantonio
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Antonio Carlos Guastaldi
- Department of Physical Chemistry, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| |
Collapse
|
6
|
Pomini KT, Buchaim DV, Bighetti ACC, Andreo JC, Rosso MPDO, Escudero JSB, Della Coletta BB, Alcalde MP, Duarte MAH, Pitol DL, Issa JPM, Ervolino E, Moscatel MBM, Bellini MZ, de Souza AT, Soares WC, Buchaim RL. Use of Photobiomodulation Combined with Fibrin Sealant and Bone Substitute Improving the Bone Repair of Critical Defects. Polymers (Basel) 2022; 14:4170. [PMID: 36236116 PMCID: PMC9572221 DOI: 10.3390/polym14194170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this preclinical protocol, an adjunct method is used in an attempt to overcome the limitations of conventional therapeutic approaches applied to bone repair of large bone defects filled with scaffolds. Thus, we evaluate the effects of photobiomodulation therapy (PBMT) on the bone repair process on defects filled with demineralized bovine bone (B) and fibrin sealant (T). The groups were BC (blood clot), BT (B + T), BCP (BC + PBMT), and BTP (B + T + PBMT). Microtomographically, BC and BCP presented a hypodense cavity with hyperdense regions adjacent to the border of the wound, with a slight increase at 42 days. BT and BTP presented discrete hyperdensing areas at the border and around the B particles. Quantitatively, BCP and BTP (16.96 ± 4.38; 17.37 ± 4.38) showed higher mean bone density volume in relation to BC and BT (14.42 ± 3.66; 13.44 ± 3.88). Histologically, BC and BCP presented deposition of immature bone at the periphery and at 42 days new bone tissue became lamellar with organized total collagen fibers. BT and BTP showed inflammatory infiltrate along the particles, but at 42 days, it was resolved, mainly in BTP. In the birefringence analysis, BT and BTP, the percentage of red birefringence increased (9.14% to 20.98% and 7.21% to 27.57%, respectively), but green birefringence was similar in relation to 14 days (3.3% to 3.5% and 3.5% to 4.2%, respectively). The number of osteocytes in the neoformed bone matrix proportionally reduced in all evaluated groups. Immunostaining of bone morphogenetic protein (BMP—2/4), osteocalcin (OCN), and vascular endothelial growth factor (VEGF) were higher in BCP and BTP when compared to the BC and BT groups (p < 0.05). An increased number of TRAP positive cells (tartrate resistant acid phosphatase) was observed in BT and BTP. We conclude that PBMT positively influenced the repair of bone defects filled with B and T.
Collapse
Affiliation(s)
- Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Ana Carolina Cestari Bighetti
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | | | - José Stalin Bayas Escudero
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Murilo Priori Alcalde
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Dimitrius Leonardo Pitol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Ribeirão Preto 14040-904, Brazil
| | - João Paulo Mardegan Issa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Ribeirão Preto 14040-904, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16066-840, Brazil
| | | | - Márcia Zilioli Bellini
- Pro-Rectory of Research and Graduate Studies, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | | | - Wendel Cleber Soares
- Vice-Rector/President, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
7
|
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220027VRR. [PMID: 36104833 PMCID: PMC9473299 DOI: 10.1117/1.jbo.27.9.090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications. AIM We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering. APPROACH First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids. RESULTS Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined. CONCLUSIONS PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse
Affiliation(s)
- Polina Bikmulina
- Sechenov First Moscow State Medical University, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Moscow, Russia
| | - Nastasia Kosheleva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Anastasia Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Vladimir Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Russia
| | - Vladimir Gogvadze
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | - Yury Rochev
- National University of Ireland, Galway, Galway, Ireland
| | - Peter Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| |
Collapse
|
8
|
Reis CHB, Buchaim DV, Ortiz ADC, Fideles SOM, Dias JA, Miglino MA, Teixeira DDB, Pereira EDSBM, da Cunha MR, Buchaim RL. Application of Fibrin Associated with Photobiomodulation as a Promising Strategy to Improve Regeneration in Tissue Engineering: A Systematic Review. Polymers (Basel) 2022; 14:3150. [PMID: 35956667 PMCID: PMC9370794 DOI: 10.3390/polym14153150] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
Fibrin, derived from proteins involved in blood clotting (fibrinogen and thrombin), is a biopolymer with different applications in the health area since it has hemostasis, biocompatible and three-dimensional physical structure properties, and can be used as scaffolds in tissue regeneration or drug delivery system for cells and/or growth factors. Fibrin alone or together with other biomaterials, has been indicated for use as a biological support to promote the regeneration of stem cells, bone, peripheral nerves, and other injured tissues. In its diversity of forms of application and constitution, there are platelet-rich fibrin (PRF), Leukocyte- and platelet-rich fibrin (L-PRF), fibrin glue or fibrin sealant, and hydrogels. In order to increase fibrin properties, adjuvant therapies can be combined to favor tissue repair, such as photobiomodulation (PBM), by low-level laser therapy (LLLT) or LEDs (Light Emitting Diode). Therefore, this systematic review aimed to evaluate the relationship between PBM and the use of fibrin compounds, referring to the results of previous studies published in PubMed/MEDLINE, Scopus and Web of Science databases. The descriptors "fibrin AND low-level laser therapy" and "fibrin AND photobiomodulation" were used, without restriction on publication time. The bibliographic search found 44 articles in PubMed/MEDLINE, of which 26 were excluded due to duplicity or being outside the eligibility criteria. We also found 40 articles in Web of Science and selected 1 article, 152 articles in Scopus and no article selected, totaling 19 articles for qualitative analysis. The fibrin type most used in combination with PBM was fibrin sealant, mainly heterologous, followed by PRF or L-PRF. In PBM, the gallium-aluminum-arsenide (GaAlAs) laser prevailed, with a wavelength of 830 nm, followed by 810 nm. Among the preclinical studies, the most researched association of fibrin and PBM was the use of fibrin sealants in bone or nerve injuries; in clinical studies, the association of PBM with medication-related treatments osteonecrosis of the jaw (MRONJ). Therefore, there is scientific evidence of the contribution of PBM on fibrin composites, constituting a supporting therapy that acts by stimulating cell activity, angiogenesis, osteoblast activation, axonal growth, anti-inflammatory and anti-edema action, increased collagen synthesis and its maturation, as well as biomolecules.
Collapse
Affiliation(s)
- Carlos Henrique Bertoni Reis
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marilia 17525-160, Brazil;
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (J.A.D.); (D.d.B.T.); (E.d.S.B.M.P.)
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| | - Adriana de Cássia Ortiz
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.)
| | - Simone Ortiz Moura Fideles
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.)
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (J.A.D.); (D.d.B.T.); (E.d.S.B.M.P.)
- Postgraduate Program in Law, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Maria Angelica Miglino
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (J.A.D.); (D.d.B.T.); (E.d.S.B.M.P.)
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (J.A.D.); (D.d.B.T.); (E.d.S.B.M.P.)
| | | | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
| |
Collapse
|
9
|
Silva SK, Plepis AMG, Martins VDCA, Horn MM, Buchaim DV, Buchaim RL, Pelegrine AA, Silva VR, Kudo MHM, Fernandes JFR, Nazari FM, da Cunha MR. Suitability of Chitosan Scaffolds with Carbon Nanotubes for Bone Defects Treated with Photobiomodulation. Int J Mol Sci 2022; 23:6503. [PMID: 35742948 PMCID: PMC9223695 DOI: 10.3390/ijms23126503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Biomaterials have been investigated as an alternative for the treatment of bone defects, such as chitosan/carbon nanotubes scaffolds, which allow cell proliferation. However, bone regeneration can be accelerated by electrotherapeutic resources that act on bone metabolism, such as low-level laser therapy (LLLT). Thus, this study evaluated the regeneration of bone lesions grafted with chitosan/carbon nanotubes scaffolds and associated with LLLT. For this, a defect (3 mm) was created in the femur of thirty rats, which were divided into 6 groups: Control (G1/Control), LLLT (G2/Laser), Chitosan/Carbon Nanotubes (G3/C+CNTs), Chitosan/Carbon Nanotubes with LLLT (G4/C+CNTs+L), Mineralized Chitosan/Carbon Nanotubes (G5/C+CNTsM) and Mineralized Chitosan/Carbon Nanotubes with LLLT (G6/C+CNTsM+L). After 5 weeks, the biocompatibility of the chitosan/carbon nanotubes scaffolds was observed, with the absence of inflammatory infiltrates and fibrotic tissue. Bone neoformation was denser, thicker and voluminous in G6/C+CNTsM+L. Histomorphometric analyses showed that the relative percentage and standard deviations (mean ± SD) of new bone formation in groups G1 to G6 were 59.93 ± 3.04a (G1/Control), 70.83 ± 1.21b (G2/Laser), 70.09 ± 4.31b (G3/C+CNTs), 81.6 ± 5.74c (G4/C+CNTs+L), 81.4 ± 4.57c (G5/C+CNTsM) and 91.3 ± 4.81d (G6/C+CNTsM+L), respectively, with G6 showing a significant difference in relation to the other groups (a ≠ b ≠ c ≠ d; p < 0.05). Immunohistochemistry also revealed good expression of osteocalcin (OC), osteopontin (OP) and vascular endothelial growth factor (VEGF). It was concluded that chitosan-based carbon nanotube materials combined with LLLT effectively stimulated the bone healing process.
Collapse
Affiliation(s)
- Samantha Ketelyn Silva
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Ana Maria Guzzi Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
- Sao Carlos Institute of Chemistry, University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
| | | | - Marilia Marta Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary and Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil;
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | | | - Vinícius Rodrigues Silva
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Mateus Hissashi Matsumoto Kudo
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - José Francisco Rebello Fernandes
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Fabricio Montenegro Nazari
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Marcelo Rodrigues da Cunha
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
| |
Collapse
|
10
|
Reis CHB, Buchaim RL, Pomini KT, Hamzé AL, Zattiti IV, Duarte MAH, Alcalde MP, Barraviera B, Ferreira Júnior RS, Pontes FML, Grandini CR, Ortiz ADC, Fideles SOM, Eugênio RMDC, Rosa Junior GM, Teixeira DDB, Pereira EDSBM, Pilon JPG, Miglino MA, Buchaim DV. Effects of a Biocomplex Formed by Two Scaffold Biomaterials, Hydroxyapatite/Tricalcium Phosphate Ceramic and Fibrin Biopolymer, with Photobiomodulation, on Bone Repair. Polymers (Basel) 2022; 14:2075. [PMID: 35631957 PMCID: PMC9146558 DOI: 10.3390/polym14102075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022] Open
Abstract
There are several treatment methods available for bone repair, although the effectiveness becomes limited in cases of large defects. The objective of this pre-clinical protocol was to evaluate the grafting of hydroxyapatite/tricalcium phosphate (BCP) ceramic biomaterial (B; QualyBone BCP®, QualyLive, Amadora, Portugal) together with the heterologous fibrin biopolymer (FB; CEVAP/UNESP Botucatu, Brazil) and with photobiomodulation (PBM; Laserpulse®, Ibramed, Amparo, Brazil) in the repair process of bone defects. Fifty-six rats were randomly divided into four groups of seven animals each: the biomaterial group (G1/B), the biomaterial plus FB group (G2/BFB); the biomaterial plus PBM group (G3/B + PBM), and the biomaterial plus FB plus PBM group (G4/BFB + PBM). After anesthesia, a critical defect was performed in the center of the rats' parietal bones, then filled and treated according to their respective groups. The rats were euthanized at 14 and 42 postoperative days. Histomorphologically, at 42 days, the G4/BFB + PBM group showed a more advanced maturation transition, with more organized and mature bone areas forming concentric lamellae. A birefringence analysis of collagen fibers also showed a more advanced degree of maturation for the G4/BFB + PBM group. In the comparison between the groups, in the two experimental periods (14 and 42 days), in relation to the percentage of formation of new bone tissue, a significant difference was found between all groups (G1/B (5.42 ± 1.12; 21.49 ± 4.74), G2/BFB (5.00 ± 0.94; 21.77 ± 2.83), G3/B + PBM (12.65 ± 1.78; 29.29 ± 2.93), and G4/BFB + PBM (12.65 ± 2.32; 31.38 ± 2.89)). It was concluded that the use of PBM with low-level laser therapy (LLLT) positively interfered in the repair process of bone defects previously filled with the biocomplex formed by the heterologous fibrin biopolymer associated with the synthetic ceramic of hydroxyapatite and tricalcium phosphate.
Collapse
Affiliation(s)
- Carlos Henrique Bertoni Reis
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marilia 17525-160, Brazil; (C.H.B.R.); (J.P.G.P.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (K.T.P.); (A.d.C.O.); (S.O.M.F.)
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (K.T.P.); (A.d.C.O.); (S.O.M.F.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
| | - Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (K.T.P.); (A.d.C.O.); (S.O.M.F.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.d.B.T.); (E.d.S.B.M.P.); (D.V.B.)
| | - Abdul Latif Hamzé
- Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil; (A.L.H.); (I.V.Z.); (R.M.d.C.E.)
| | | | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil;
| | - Murilo Priori Alcalde
- Department of Health Science, Unisagrado University Center, Bauru 17011-160, Brazil; (M.P.A.); (G.M.R.J.)
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ Estadual Paulista, UNESP), Botucatu 18610-307, Brazil; (B.B.); (R.S.F.J.)
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP–Univ Estadual Paulista), Botucatu 18618-687, Brazil
| | - Rui Seabra Ferreira Júnior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ Estadual Paulista, UNESP), Botucatu 18610-307, Brazil; (B.B.); (R.S.F.J.)
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP–Univ Estadual Paulista), Botucatu 18618-687, Brazil
| | - Fenelon Martinho Lima Pontes
- Chemistry Department, Faculty of Science, São Paulo State University (UNESP–Univ Estadual Paulista), Bauru 17033-360, Brazil;
| | - Carlos Roberto Grandini
- Laboratório de Anelasticidade e Biomateriais, Physics Department, Faculty of Science, São Paulo State University (UNESP–Univ Estadual Paulista), Bauru 17033-360, Brazil;
| | - Adriana de Cássia Ortiz
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (K.T.P.); (A.d.C.O.); (S.O.M.F.)
| | - Simone Ortiz Moura Fideles
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (K.T.P.); (A.d.C.O.); (S.O.M.F.)
| | | | - Geraldo Marco Rosa Junior
- Department of Health Science, Unisagrado University Center, Bauru 17011-160, Brazil; (M.P.A.); (G.M.R.J.)
- Faculdade Ibero Americana de São Paulo, FIASP, Piraju 18810-818, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.d.B.T.); (E.d.S.B.M.P.); (D.V.B.)
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marília 17525-902, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.d.B.T.); (E.d.S.B.M.P.); (D.V.B.)
| | - João Paulo Galletti Pilon
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marilia 17525-160, Brazil; (C.H.B.R.); (J.P.G.P.)
- Postgraduate Program in Speech Therapy, Sao Paulo State University (UNESP—Univ Estadual Paulista), Marília 17525-900, Brazil
| | - Maria Angelica Miglino
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.d.B.T.); (E.d.S.B.M.P.); (D.V.B.)
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| |
Collapse
|
11
|
de Freitas Dutra Júnior E, Hidd SMCM, Amaral MM, Filho ALMM, Assis L, Ferreira RS, Barraviera B, Martignago CCS, Figueredo-Silva J, de Oliveira RA, Tim CR. Treatment of partial injury of the calcaneus tendon with heterologous fibrin biopolymer and/or photobiomodulation in rats. Lasers Med Sci 2022; 37:971-981. [PMID: 34041619 DOI: 10.1007/s10103-021-03341-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
The present study aimed to evaluate the new heterologous fibrin biopolymer associated, or not, with photobiomodulation therapy for application in tendon injuries, considered a serious and common orthopedic problem. Thus, 84 Rattus norvegicus had partial transection of the calcaneus tendon (PTCT) and were randomly divided into: control (CG); heterologous fibrin biopolymer (HFB); photobiomodulation (PBM); heterologous fibrin biopolymer + photobiomodulation (HFB + PBM). The animals received HFB immediately after PTCT, while PBM (660 nm, 40 mW, 0.23 J) started 24 h post injury and followed every 24 h for 7, 14, and 21 days. The results of the edema volume showed that after 24 h of PTCT, there was no statistical difference among the groups. After 7, 14, and 21 days, it was observed that the treatment groups were effective in reducing edema when compared to the control. The HFB had the highest edema volume reduction after 21 days of treatment. The treatment groups did not induce tissue necrosis or infections on the histopathological analysis. Tenocyte proliferation, granulation tissue, and collagen formation were observed in the PTCT area in the HFB and HFB + PBM groups, which culminated a better repair process when compared to the CG in the 3 experimental periods. Interestingly, the PBM group revealed, in histological analysis, major tendon injury after 7 days; however, in the periods of 14 and 21 days, the PBM had a better repair process compared to the CG. In the quantification of collagen, there was no statistical difference between the groups in the 3 experimental periods. The findings suggest that the HFB and PBM treatments, isolated or associated, were effective in reducing the volume of the edema, stimulating the repair process. However, the use of HFB alone was more effective in promoting the tendon repair process. Thus, the present study consolidates previous studies of tendon repair with this new HFB. Future clinical trials will be needed to validate this proposal.
Collapse
Affiliation(s)
- Enéas de Freitas Dutra Júnior
- Department of Biomedical Engineering, Instituto Científico E Tecnológico, University Brazil, Carolina FonsecaSão Paulo, 235, Brazil
| | | | - Marcello Magri Amaral
- Department of Biomedical Engineering, Instituto Científico E Tecnológico, University Brazil, Carolina FonsecaSão Paulo, 235, Brazil
| | | | - Livia Assis
- Department of Biomedical Engineering, Instituto Científico E Tecnológico, University Brazil, Carolina FonsecaSão Paulo, 235, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | | | | | - Rauirys Alencar de Oliveira
- Department of Health Sciences, Piauí State University (UESPI), Teresina, PI, Brazil
- Department of Physiotherapy, Faculdade Uninovafapi, Teresina, PI, Brazil
| | - Carla Roberta Tim
- Department of Biomedical Engineering, Instituto Científico E Tecnológico, University Brazil, Carolina FonsecaSão Paulo, 235, Brazil.
| |
Collapse
|
12
|
Buchaim DV, Andreo JC, Pomini KT, Barraviera B, Ferreira RS, Duarte MAH, Alcalde MP, Reis CHB, Teixeira DDB, Bueno CRDS, Detregiachi CRP, Araujo AC, Buchaim RL. A biocomplex to repair experimental critical size defects associated with photobiomodulation therapy. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210056. [PMID: 35261617 PMCID: PMC8863337 DOI: 10.1590/1678-9199-jvatitd-2021-0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/16/2021] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. METHODS A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. RESULTS The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). CONCLUSION PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.
Collapse
Affiliation(s)
- Daniela Vieira Buchaim
- Graduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
- Medical School, University Center of Adamantina (UniFAI), Adamantina, SP, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Karina Torres Pomini
- Graduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Graduate Program in Clinical Research, Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Graduate Program in Clinical Research, Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Carlos Henrique Bertoni Reis
- Graduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
| | - Daniel de Bortoli Teixeira
- Graduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
| | - Cleuber Rodrigo de Souza Bueno
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Adriano Cressoni Araujo
- Graduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
| | - Rogério Leone Buchaim
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| |
Collapse
|
13
|
Nogueira DMB, Figadoli ALDF, Alcantara PL, Pomini KT, Santos German IJ, Reis CHB, Rosa Júnior GM, Rosso MPDO, Santos PSDS, Zangrando MSR, Pereira EDSBM, de Marchi MÂ, Trazzi BFDM, Rossi JDO, Salmeron S, Pastori CM, Buchaim DV, Buchaim RL. Biological Behavior of Xenogenic Scaffolds in Alcohol-Induced Rats: Histomorphometric and Picrosirius Red Staining Analysis. Polymers (Basel) 2022; 14:584. [PMID: 35160573 PMCID: PMC8839833 DOI: 10.3390/polym14030584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
In this experimental protocol, the objective was to evaluate the biological behavior of two xenogenic scaffolds in alcohol-induced rats through histomorphometric and Picrosirius Red staining analysis of non-critical defects in the tibia of rats submitted or not to alcohol ingestion at 25% v/v. Eighty male rats were randomly divided into four groups (n = 20 each): CG/B (water diet + Bio-Oss® graft, Geistlich Pharma AG, Wolhusen, Switzerland), CG/O (water diet + OrthoGen® graft, Baumer, Mogi Mirim, Brazil), AG/B (25% v/v alcohol diet + Bio-Oss® graft), and AG/O (25% v/v alcohol diet + OrthoGen® graft). After 90 days of liquid diet, the rats were surgically obtained, with a defect in the tibia proximal epiphysis; filled in according to their respective groups; and euthanized at 10, 20, 40 and 60 days. In two initial periods (10 and 20 days), all groups presented biomaterial particles surrounded by disorganized collagen fibrils. Alcoholic animals (AG/B and AG/O) presented, in the cortical and medullary regions, a reactive tissue with inflammatory infiltrate. In 60 days, in the superficial area of the surgical cavities, particles of biomaterials were observed in all groups, with new compact bone tissue around them, without complete closure of the lesion, except in non-alcoholic animals treated with Bio-Oss® xenograft (CG/B), where the new cortical interconnected the edges of the defect. Birefringence transition was observed in the histochemical analysis of collagen fibers by Picrosirius Red, in which all groups in periods of 10 and 20 days showed red-orange birefringence, and from 40 days onwards greenish-yellow birefringence, which demonstrates the characteristic transition from the formation of thin and disorganized collagen fibers initially to more organized and thicker later. In histomorphometric analysis, at 60 days, CG/B had the highest volume density of new bone (32.9 ± 1.15) and AG/O the lowest volume density of new bone (15.32 ± 1.71). It can be concluded that the bone neoformation occurred in the defects that received the two biomaterials, in all periods, but the Bio-Oss® was superior in the results, with its groups CG/B and AG/B displaying greater bone formation (32.9 ± 1.15 and 22.74 ± 1.15, respectively) compared to the OrthoGen® CG/O and AG/O groups (20.66 ± 2.12 and 15.32 ± 1.71, respectively), and that the alcoholic diet interfered negatively in the repair process and in the percentage of new bone formed.
Collapse
Affiliation(s)
- Dayane Maria Braz Nogueira
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (D.M.B.N.); (M.S.R.Z.); (S.S.)
| | - André Luiz de Faria Figadoli
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
| | - Patrícia Lopes Alcantara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil; (P.L.A.); (P.S.d.S.S.)
| | - Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (D.V.B.)
| | - Iris Jasmin Santos German
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
- Technical Board, UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Geraldo Marco Rosa Júnior
- Anatomy Discipline, School of Dentistry, Health Sciences Center, Sacred Heart University Center (UNISAGRADO), Bauru 17011-160, Brazil;
| | - Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil; (P.L.A.); (P.S.d.S.S.)
| | - Mariana Schutzer Ragghianti Zangrando
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (D.M.B.N.); (M.S.R.Z.); (S.S.)
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (D.V.B.)
| | - Miguel Ângelo de Marchi
- Coordination of the Medical School, Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil;
| | | | - Jéssica de Oliveira Rossi
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
| | - Samira Salmeron
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (D.M.B.N.); (M.S.R.Z.); (S.S.)
| | | | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (D.V.B.)
- Teaching and Research Coordination, Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.L.d.F.F.); (K.T.P.); (I.J.S.G.); (C.H.B.R.); (M.P.d.O.R.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
| |
Collapse
|
14
|
Pandini FE, Kubo FMM, Plepis AMDG, Martins VDCA, da Cunha MR, Silva VR, Hirota VB, Lopes E, Menezes MA, Pelegrine AA, de Andrade TN, Iatecola A, Britto BDC, Fernandes VAR, Gameiro LFO, Correia RR, Teixeira ML, Duarte Júnior G, Reis CHB, Pereira EDSBM, Buchaim DV, Pomini KT, Teixeira DDB, Buchaim RL, Lourenço EA. In Vivo Study of Nasal Bone Reconstruction with Collagen, Elastin and Chitosan Membranes in Abstainer and Alcoholic Rats. Polymers (Basel) 2022; 14:188. [PMID: 35012210 PMCID: PMC8747723 DOI: 10.3390/polym14010188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to evaluate the use of collagen, elastin, or chitosan biomaterial for bone reconstruction in rats submitted or not to experimental alcoholism. Wistar male rats were divided into eight groups, submitted to chronic alcohol ingestion (G5 to G8) or not (G1 to G4). Nasal bone defects were filled with clot in animals of G1 and G5 and with collagen, elastin, and chitosan grafts in G2/G6, G3/G7, and G4/G8, respectively. Six weeks after, all specimens underwent radiographic, tomographic, and microscopic evaluations. Bone mineral density was lower in the defect area in alcoholic animals compared to the abstainer animals. Bone neoformation was greater in the abstainer groups receiving the elastin membrane and in abstainer and alcoholic rats receiving the chitosan membrane (15.78 ± 1.19, 27.81 ± 0.91, 47.29 ± 0.97, 42.69 ± 1.52, 13.81 ± 1.60, 18.59 ± 1.37, 16.54 ± 0.89, and 37.06 ± 1.17 in G1 to G8, respectively). In conclusion, osteogenesis and bone density were more expressive after the application of the elastin matrix in abstainer animals and of the chitosan matrix in both abstainer and alcoholic animals. Chronic alcohol ingestion resulted in lower bone formation and greater formation of fibrous connective tissue.
Collapse
Affiliation(s)
- Fabricio Egidio Pandini
- Department of Surgery (Otorhinolaryngology), Jundiaí Medical School, Jundiaí 13202-550, Brazil; (F.E.P.); (E.A.L.)
| | - Fabíola Mayumi Miyauchi Kubo
- Department of Implant Dentistry, Faculdade São Leopoldo Mandic, Campinas 13045-755, Brazil; (F.M.M.K.); (M.A.M.); (A.A.P.)
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (A.M.d.G.P.); (M.R.d.C.)
- São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos 13566-590, Brazil;
| | | | - Marcelo Rodrigues da Cunha
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (A.M.d.G.P.); (M.R.d.C.)
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (V.R.S.); (T.N.d.A.); (A.I.); (B.d.C.B.); (V.A.R.F.)
| | - Vinicius Rodrigues Silva
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (V.R.S.); (T.N.d.A.); (A.I.); (B.d.C.B.); (V.A.R.F.)
| | - Vinicius Barroso Hirota
- Coordination of the Physical Education Course, University Center of the Americas (FAM), São Paulo 01304-001, Brazil;
| | - Everton Lopes
- Padre Anchieta University Center, Jundiaí 13210-795, Brazil;
| | - Marcos Antonio Menezes
- Department of Implant Dentistry, Faculdade São Leopoldo Mandic, Campinas 13045-755, Brazil; (F.M.M.K.); (M.A.M.); (A.A.P.)
| | - André Antonio Pelegrine
- Department of Implant Dentistry, Faculdade São Leopoldo Mandic, Campinas 13045-755, Brazil; (F.M.M.K.); (M.A.M.); (A.A.P.)
| | - Tiago Negrão de Andrade
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (V.R.S.); (T.N.d.A.); (A.I.); (B.d.C.B.); (V.A.R.F.)
| | - Amilton Iatecola
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (V.R.S.); (T.N.d.A.); (A.I.); (B.d.C.B.); (V.A.R.F.)
| | - Bruna da Cruz Britto
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (V.R.S.); (T.N.d.A.); (A.I.); (B.d.C.B.); (V.A.R.F.)
| | - Victor Augusto Ramos Fernandes
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (V.R.S.); (T.N.d.A.); (A.I.); (B.d.C.B.); (V.A.R.F.)
| | | | - Ronny Rodrigues Correia
- Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 18618-687, Brazil;
| | | | - Getúlio Duarte Júnior
- Unimar Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marilia 17525-160, Brazil; (G.D.J.); (C.H.B.R.)
| | - Carlos Henrique Bertoni Reis
- Unimar Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marilia 17525-160, Brazil; (G.D.J.); (C.H.B.R.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil;
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (D.V.B.); (D.d.B.T.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (D.V.B.); (D.d.B.T.)
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (D.V.B.); (D.d.B.T.)
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (D.V.B.); (D.d.B.T.)
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marília 17525-902, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil;
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Edmir Américo Lourenço
- Department of Surgery (Otorhinolaryngology), Jundiaí Medical School, Jundiaí 13202-550, Brazil; (F.E.P.); (E.A.L.)
| |
Collapse
|
15
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
16
|
de Matos BTL, Buchaim DV, Pomini KT, Barbalho SM, Guiguer EL, Reis CHB, Bueno CRDS, da Cunha MR, Pereira EDSBM, Buchaim RL. Photobiomodulation Therapy as a Possible New Approach in COVID-19: A Systematic Review. Life (Basel) 2021; 11:580. [PMID: 34207199 PMCID: PMC8233727 DOI: 10.3390/life11060580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
COVID-19 is a viral disease characterized as a pandemic by the World Health Organization in March 2020. Since then, researchers from all over the world have been looking for ways to fight this disease. Many cases of complications arise from insufficient immune responses due to low immunity, with intense release of pro-inflammatory cytokines that can damage the structure of organs such as the lung. Thus, the hypothesis arises that photobiomodulation therapy (PBMT) with the use of a low-level laser (LLLT) may be an ally approach to patients with COVID-19 since it is effective for increasing immunity, helping tissue repair, and reducing pro-inflammatory cytokines. This systematic review was performed with the use of PubMed/MEDLINE, Web of Science, Scopus and Google Scholar databases with the following keywords: "low-level laser therapy OR photobiomodulation therapy AND COVID-19". The inclusion criteria were complete articles published from January 2020 to January 2021 in English. The exclusion criteria were other languages, editorials, reviews, brief communications, letters to the editor, comments, conference abstracts, and articles that did not provide the full text. The bibliographic search found 18 articles in the Pubmed/MEDLINE database, 118 articles on the Web of Science, 23 articles on Scopus, and 853 articles on Google Scholar. Ten articles were included for qualitative synthesis, of which four commentary articles discussed the pathogenesis and the effect of PBMT in COVID-19. Two in vitro and lab experiments showed the effect of PBMT on prevention of thrombosis and positive results in wound healing during viral infection, using the intravascular irradiation (ILIB) associated with Phthalomethyl D. Two case reports showed PBMT improved the respiratory indexes, radiological findings, and inflammatory markers in severe COVID-19 patients. One case series reported the clinical improvement after PBMT on 14 acute COVID-19 patients, rehabilitation on 24 patients, and as a preventive treatment on 70 people. One clinical trial of 30 patients with severe COVID-19 who require invasive mechanical ventilation, showed PBMT-static magnetic field was not statistically different from placebo for the length of stay in the Intensive Care Unit, but improved diaphragm muscle function and ventilation and decreased the inflammatory markers. This review suggests that PBMT may have a positive role in treatment of COVID-19. Still, the necessity for more clinical trials remains in this field and there is not sufficient research evidence regarding the effects of PBMT and COVID-19 disease, and there is a large gap.
Collapse
Affiliation(s)
- Brenda Thaynne Lima de Matos
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, SP, Brazil; (B.T.L.d.M.); (K.T.P.); (C.H.B.R.); (C.R.d.S.B.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
- Department of Human Anatomy and Neuroanatomy, University Center of Adamantina (UniFAI), Medical School, Adamantina 17800-000, SP, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, SP, Brazil; (B.T.L.d.M.); (K.T.P.); (C.H.B.R.); (C.R.d.S.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
- Department of Biochemistry and Nutrition, School of Food Technology of Marília, Marília 17506-000, SP, Brazil
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
- Department of Biochemistry and Nutrition, School of Food Technology of Marília, Marília 17506-000, SP, Brazil
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, SP, Brazil; (B.T.L.d.M.); (K.T.P.); (C.H.B.R.); (C.R.d.S.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
| | - Cleuber Rodrigo de Souza Bueno
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, SP, Brazil; (B.T.L.d.M.); (K.T.P.); (C.H.B.R.); (C.R.d.S.B.)
| | | | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, SP, Brazil; (B.T.L.d.M.); (K.T.P.); (C.H.B.R.); (C.R.d.S.B.)
| |
Collapse
|
17
|
Hatefi S, Alizargar J, Le Roux F, Hatefi K, Etemadi Sh M, Davids H, Hsieh NC, Smith F, Abou-El-Hossein K. Review of physical stimulation techniques for assisting distraction osteogenesis in maxillofacial reconstruction applications. Med Eng Phys 2021; 91:28-38. [PMID: 34074463 DOI: 10.1016/j.medengphy.2021.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
Distraction Osteogenesis (DO) is an emerging limb lengthening method for the reconstruction of the hard tissue and the surrounding soft tissue, in different human body zones. DO plays an important role in treating bone defects in Maxillofacial Reconstruction Applications (MRA) due to reduced side effects and better formed bone tissue compared to conventional reconstruction methods i.e. autologous bone graft, and alloplast implantation. Recently, varying techniques have been evaluated to enhance the characteristics of the newly formed tissues and process parameters. Promising results have been shown in assisting DO treatments while benefiting bone formation mechanisms by using physical stimulation techniques, including photonic, electromagnetic, electrical, and mechanical stimulation technique. Using assisted DO techniques has provided superior results in the outcome of the DO procedure compared to a standard DO procedure. However, DO methods, as well as assisting technologies applied during the DO procedure, are still emerging. Studies and experiments on developed solutions related to this field have been limited to animal and clinical trials. In this review paper, recent advances in physical stimulation techniques and their effects on the outcome of the DO treatment in MRA are surveyed. By studying the effects of using assisting techniques during the DO treatment, enabling an ideal assisted DO technique in MRA can be possible. Although mentioned techniques have shown constructive effects during the DO procedure, there is still a need for more research and investigation to be done to fully understand the effects of assisting techniques and advanced technologies for use in an ultimate DO procedure in MRA.
Collapse
Affiliation(s)
- Shahrokh Hatefi
- Precision Engineering Laboratory, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Javad Alizargar
- Research Center for Healthcare Industry Innovation, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Francis Le Roux
- Department of Mechatronics Engineering, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Katayoun Hatefi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.
| | - Milad Etemadi Sh
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hajierah Davids
- Department of Physiology, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Nan-Chen Hsieh
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Farouk Smith
- Department of Mechatronics Engineering, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Khaled Abou-El-Hossein
- Precision Engineering Laboratory, Nelson Mandela University, Port Elizabeth, South Africa.
| |
Collapse
|
18
|
Della Coletta BB, Jacob TB, Moreira LADC, Pomini KT, Buchaim DV, Eleutério RG, Pereira EDSBM, Roque DD, Rosso MPDO, Shindo JVTC, Duarte MAH, Alcalde MP, Júnior RSF, Barraviera B, Dias JA, Andreo JC, Buchaim RL. Photobiomodulation Therapy on the Guided Bone Regeneration Process in Defects Filled by Biphasic Calcium Phosphate Associated with Fibrin Biopolymer. Molecules 2021; 26:847. [PMID: 33562825 PMCID: PMC7914843 DOI: 10.3390/molecules26040847] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The aim is to evaluate the effects of photobiomodulation therapy (PBMT) on the guided bone regeneration process (GBR) in defects in the calvaria of rats filled with biphasic calcium phosphate associated with fibrin biopolymer. Thirty male Wistar rats were randomly separated: BMG (n = 10), defects filled with biomaterial and covered by membrane; BFMG (n = 10), biomaterial and fibrin biopolymer covered by membrane; and BFMLG (n = 10), biomaterial and fibrin biopolymer covered by membrane and biostimulated with PBMT. The animals were euthanized at 14 and 42 days postoperatively. Microtomographically, in 42 days, there was more evident bone growth in the BFMLG, limited to the margins of the defect with permanence of the particles. Histomorphologically, an inflammatory infiltrate was observed, which regressed with the formation of mineralized bone tissue. In the quantification of bone tissue, all groups had a progressive increase in new bone tissue with a significant difference in which the BFMLG showed greater bone formation in both periods (10.12 ± 0.67 and 13.85 ± 0.54), followed by BFMG (7.35 ± 0.66 and 9.41 ± 0.84) and BMG (4.51 ± 0.44 and 7.11 ± 0.44). Picrosirius-red staining showed greater birefringence of collagen fibers in yellow-green color in the BFMLG, showing more advanced bone maturation. PBMT showed positive effects capable of improving and accelerating the guided bone regeneration process when associated with biphasic calcium phosphate and fibrin biopolymer.
Collapse
Affiliation(s)
- Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil; (B.B.D.C.); (K.T.P.); (M.P.d.O.R.); (J.V.T.C.S.); (J.C.A.)
| | - Thiago Borges Jacob
- Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.B.J.); (L.A.d.C.M.); (D.V.B.); (R.G.E.); (E.d.S.B.M.P.); (D.D.R.)
| | - Luana Aparecida de Carvalho Moreira
- Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.B.J.); (L.A.d.C.M.); (D.V.B.); (R.G.E.); (E.d.S.B.M.P.); (D.D.R.)
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil; (B.B.D.C.); (K.T.P.); (M.P.d.O.R.); (J.V.T.C.S.); (J.C.A.)
- Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.B.J.); (L.A.d.C.M.); (D.V.B.); (R.G.E.); (E.d.S.B.M.P.); (D.D.R.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil;
| | - Daniela Vieira Buchaim
- Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.B.J.); (L.A.d.C.M.); (D.V.B.); (R.G.E.); (E.d.S.B.M.P.); (D.D.R.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil;
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil; (R.S.F.J.); (B.B.)
| | - Rachel Gomes Eleutério
- Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.B.J.); (L.A.d.C.M.); (D.V.B.); (R.G.E.); (E.d.S.B.M.P.); (D.D.R.)
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.B.J.); (L.A.d.C.M.); (D.V.B.); (R.G.E.); (E.d.S.B.M.P.); (D.D.R.)
| | - Domingos Donizeti Roque
- Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.B.J.); (L.A.d.C.M.); (D.V.B.); (R.G.E.); (E.d.S.B.M.P.); (D.D.R.)
| | - Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil; (B.B.D.C.); (K.T.P.); (M.P.d.O.R.); (J.V.T.C.S.); (J.C.A.)
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil; (B.B.D.C.); (K.T.P.); (M.P.d.O.R.); (J.V.T.C.S.); (J.C.A.)
| | - Marco Antônio Húngaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil;
| | - Murilo Priori Alcalde
- Department of Health Science, Unisagrado University Center, Bauru 17011-160, São Paulo, Brazil;
| | - Rui Seabra Ferreira Júnior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil; (R.S.F.J.); (B.B.)
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
- Graduate Program in Clinical Research, Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP–Univ Estadual Paulista), Botucatu 18610-307, São Paulo, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil; (R.S.F.J.); (B.B.)
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
- Graduate Program in Clinical Research, Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP–Univ Estadual Paulista), Botucatu 18610-307, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil;
- Postgraduate Program in Law, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil; (B.B.D.C.); (K.T.P.); (M.P.d.O.R.); (J.V.T.C.S.); (J.C.A.)
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil; (B.B.D.C.); (K.T.P.); (M.P.d.O.R.); (J.V.T.C.S.); (J.C.A.)
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil; (R.S.F.J.); (B.B.)
| |
Collapse
|
19
|
Hanna R, Dalvi S, Amaroli A, De Angelis N, Benedicenti S. Effects of photobiomodulation on bone defects grafted with bone substitutes: A systematic review of in vivo animal studies. JOURNAL OF BIOPHOTONICS 2021; 14:e202000267. [PMID: 32857463 DOI: 10.1002/jbio.202000267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
A present, photobiomodulation therapy (PBMT) effectiveness in enhancing bone regeneration in bone defects grafted with or without biomaterials is unclear. This systematic review (PROSPERO, ref. CRD 42019148959) aimed to critically appraise animal in vivo published data and present the efficacy of PBMT and its potential synergistic effects on grafted bone defects. MEDLINE, CCCT, Scopus, Science Direct, Google Scholar, EMBASE, EBSCO were searched, utilizing the following keywords: bone repair; low-level laser therapy; LLLT; light emitting diode; LEDs; photobiomodulation therapy; in vivo animal studies, bone substitutes, to identify studies between 1994 and 2019. After applying the eligibility criteria, 38 papers included where the results reported according to "PRISMA." The results revealed insufficient and incomplete PBM parameters, however, the outcomes with or without biomaterials have positive effects on bone healing. In conclusion, in vivo animal studies with a standardized protocol to elucidate the effects of PBMT on biomaterials are required initially prior to clinical studies.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Department of Oral Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur, India
| | - Andrea Amaroli
- Department of Orthopaedic Dentistry, First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Nicola De Angelis
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Faculty of Dentistry, University of Technology MARA Sungai Buloh, Shah Alam, Malaysia
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
| |
Collapse
|
20
|
Interaction between Laser Light and Osteoblasts: Photobiomodulation as a Trend in the Management of Socket Bone Preservation-A Review. BIOLOGY 2020; 9:biology9110409. [PMID: 33238412 PMCID: PMC7700402 DOI: 10.3390/biology9110409] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Dental implants are becoming an accepted tool, and thousands of implants are placed every year by specialists and general practitioners. However, more than 10% of bone surgeries and related procedures can show healing complications as a consequence of infections, tissue damage, or inadequate blood supply. In particular, a deficient blood supply impacts on the optimal healing process because of altered oxygen delivery to cells in the wound and a decrease in their energy supply. Researchers showed how red and infrared light affects key cellular pathways by interacting with specific photoacceptors located within the cell, particularly in mitochondria. Low-level laser therapy or photobiomodulation (PBM), as the recent medical subject heading defines it, is based on a light–cell interaction, which modifies cell metabolism by increasing oxygen consumption and ATP production through mitochondria. Although not all aspects of this interconnection are completely described, many in vitro and in vivo studies showed the benefit of PBM in wound defect management. For instance, treatment of bone with PBM results in a greater amount of new-formed osteoblasts and matrix, an increase in collagen synthesis, and microvascular reestablishment. In our review, we highlight the osteoblast–light interaction, and the in vivo therapeutic tool of PBM for socket preservation is discussed. Abstract Bone defects are the main reason for aesthetic and functional disability, which negatively affect patient’s quality of life. Particularly, after tooth extraction, the bone of the alveolar process resorbs, limiting the optimal prosthetic implant placement. One of the major pathophysiological events in slowly- or non-healing tissues is a blood supply deficiency, followed by a significant decrease in cellular energy amount. The literature shows that photons at the red and infrared wavelengths can interact with specific photoacceptors located within the cell. Through this mechanism, photobiomodulation (PBM) can modify cellular metabolism, by increasing mitochondrial ATP production. Here, we present a review of the literature on the effect of PBM on bone healing, for the management of socket preservation. A search strategy was developed in line with the PRISMA statement. The PubMed and Scholar electronic databases were consulted to search for in vivo studies, with restrictions on the year (<50 years-old), language (English), bone socket preservation, and PBM. Following the search strategy, we identified 269 records, which became 14, after duplicates were removed and titles, abstract and inclusion-, exclusion-criteria were screened. Additional articles identified were 3. Therefore, 17 articles were included in the synthesis. We highlight the osteoblast–light interaction, and the in vivo therapeutic tool of PBM is discussed.
Collapse
|
21
|
Munhoz MDAES, Pomini KT, Plepis AMDG, Martins VDCA, Machado EG, de Moraes R, Cunha FB, Santos Junior AR, Camargo Cardoso GB, Duarte MAH, Alcalde MP, Buchaim DV, Buchaim RL, da Cunha MR. Elastin-derived scaffolding associated or not with bone morphogenetic protein (BMP) or hydroxyapatite (HA) in the repair process of metaphyseal bone defects. PLoS One 2020; 15:e0231112. [PMID: 32310975 PMCID: PMC7170266 DOI: 10.1371/journal.pone.0231112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 02/08/2023] Open
Abstract
Tissue engineering represents a promising alternative for reconstructive surgical procedures especially for the repair of bone defects that do not regenerate spontaneously. The present study aimed to evaluate the effects of the elastin matrix (E24/50 and E96/37) incorporated with hydroxyapatite (HA) or morphogenetic protein (BMP) on the bone repair process in the distal metaphysis of rat femur. The groups were: control group (CG), hydrolyzed elastin matrix at 50°C/24h (E24/50), E24/50 + HA (E24/50/HA), E24/50 + BMP (E24/50/BMP), hydrolyzed elastin matrix at 37°C/96h (E96/37), E96/37 + HA (E96/37/HA), E96/37 + BMP (E96/37/BMP). Macroscopic and radiographic analyses showed longitudinal integrity of the femur in all groups without fractures or bone deformities. Microtomographically, all groups demonstrated partial closure by mineralized tissue except for the E96/37/HA group with hyperdense thin bridge formation interconnecting the edges of the ruptured cortical. Histologically, there was no complete cortical recovery in any group, but partial closure with trabecular bone. In defects filled with biomaterials, no chronic inflammatory response or foreign body type was observed. The mean volume of new bone formed was statistically significant higher in the E96/37/HA and E24/50 groups (71.28 ± 4.26 and 66.40 ± 3.69, respectively) than all the others. In the confocal analysis, it was observed that all groups presented new bone markings formed during the experimental period, being less evident in the CG group. Von Kossa staining revealed intense calcium deposits distributed in all groups. Qualitative analysis of collagen fibers under polarized light showed a predominance of red-orange birefringence in the newly regenerated bone with no difference between groups. It was concluded that the E24/50 and E96/37/HA groups promoted, with greater speed, the bone repair process in the distal metaphysis of rat femur.
Collapse
Affiliation(s)
- Marcelo de Azevedo e Sousa Munhoz
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo, Brazil
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru, São Paulo, Brazil
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
- São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | | | - Eduardo Gomes Machado
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo, Brazil
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Renato de Moraes
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo, Brazil
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Fernando Bento Cunha
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo, Brazil
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | | | - Guinea Brasil Camargo Cardoso
- Materials Engineering Department, Faculty of Mechanical Engineering, State University of Campinas, Campinas, São Paulo, Brazil
- University Center Nossa Senhora do Patrocínio (CEUNSP), Cruzeiro do Sul University (UNICSUL), Itu, São Paulo, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru, São Paulo, Brazil
| | - Murilo Priori Alcalde
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru, São Paulo, Brazil
- Health Sciences Center, Sacred Heart University Center (UNISAGRADO), Bauru, São Paulo, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, São Paulo, Brazil
- Medical School, University Center of Adamantina (UniFAI), Adamantina, São Paulo, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Rodrigues da Cunha
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí, São Paulo, Brazil
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
- University Center Nossa Senhora do Patrocínio (CEUNSP), Cruzeiro do Sul University (UNICSUL), Itu, São Paulo, Brazil
| |
Collapse
|
22
|
Rosso MPDO, Oyadomari AT, Pomini KT, Della Coletta BB, Shindo JVTC, Ferreira Júnior RS, Barraviera B, Cassaro CV, Buchaim DV, Teixeira DDB, Barbalho SM, Alcalde MP, Duarte MAH, Andreo JC, Buchaim RL. Photobiomodulation Therapy Associated with Heterologous Fibrin Biopolymer and Bovine Bone Matrix Helps to Reconstruct Long Bones. Biomolecules 2020; 10:383. [PMID: 32121647 PMCID: PMC7175234 DOI: 10.3390/biom10030383] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Bone defects cause aesthetic and functional changes that affect the social, economic and especially the emotional life of human beings. This complication stimulates the scientific community to investigate strategies aimed at improving bone reconstruction processes using complementary therapies. Photobiomodulation therapy (PBMT) and the use of new biomaterials, including heterologous fibrin biopolymer (HFB), are included in this challenge. The objective of the present study was to evaluate the influence of photobiomodulation therapy on bone tibial reconstruction of rats with biomaterial consisting of lyophilized bovine bone matrix (BM) associated or not with heterologous fibrin biopolymer. Thirty male rats were randomly separated into three groups of 10 animals. In all animals, after the anesthetic procedure, a noncritical tibial defect of 2 mm was performed. The groups received the following treatments: Group 1: BM + PBMT, Group 2: BM + HFB and Group 3: BM + HFB + PBMT. The animals from Groups 1 and 3 were submitted to PBMT in the immediate postoperative period and every 48 h until the day of euthanasia that occurred at 14 and 42 days. Analyses by computed microtomography (µCT) and histomorphometry showed statistical difference in the percentage of bone formation between Groups 3 (BM + HB + PBMT) and 2 (BM + HFB) (26.4% ± 1.03% and 20.0% ± 1.87%, respectively) at 14 days and at 42 days (38.2% ± 1.59% and 31.6% ± 1.33%, respectively), and at 42 days there was presence of bone with mature characteristics and organized connective tissue. The µCT demonstrated BM particles filling the defect and the deposition of new bone in the superficial region, especially in the ruptured cortical. It was concluded that the association of PBMT with HFB and BM has the potential to assist in the process of reconstructing bone defects in the tibia of rats.
Collapse
Affiliation(s)
- Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Aline Tiemi Oyadomari
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Rui Seabra Ferreira Júnior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Claudia Vilalva Cassaro
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
- Medical School, University Center of Adamantina (UniFAI), Nove de Julho Street, 730-Centro, Adamantina 17800-000, São Paulo, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
| | - Murilo Priori Alcalde
- Department of Health Science, University of the Sacred Heart (USC), Bauru 17011-160, São Paulo, Brazil;
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil;
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil;
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
| |
Collapse
|
23
|
Santos German IJ, Pomini KT, Bighetti ACC, Andreo JC, Reis CHB, Shinohara AL, Rosa Júnior GM, Teixeira DDB, Rosso MPDO, Buchaim DV, Buchaim RL. Evaluation of the Use of an Inorganic Bone Matrix in the Repair of Bone Defects in Rats Submitted to Experimental Alcoholism. MATERIALS (BASEL, SWITZERLAND) 2020; 13:695. [PMID: 32033088 PMCID: PMC7040897 DOI: 10.3390/ma13030695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
To assess the effects of chronic alcoholism on the repair of bone defects associated with xenograft. Forty male rats were distributed in: control group (CG, n = 20) and experimental group (EG, n = 20), which received 25% ethanol ad libitum after a period of adaptation. After 90 days of liquid diet, the rats were submitted to 5.0-mm bilateral craniotomy on the parietal bones, subdividing into groups: CCG (control group that received only water with liquid diet and the defect was filled with blood clot), BCG (control group that received only water with liquid diet and the defect was filled with biomaterial), CEG (alcoholic group that received only ethanol solution 25% v/v with liquid diet and the defect was filled with blood clot), and BEG (alcoholic group that received only ethanol solution 25% v/v with liquid diet and the defect was filled with biomaterial). In the analysis of body mass, the drunk animals presented the lowest averages in relation to non-drunk animals during the experimental period. Histomorphologically all groups presented bone formation restricted to the defect margins at 60 days, with bone islets adjacent to the BCG biomaterial particles. CEG showed significant difference compared to BEG only at 40 days (17.42 ± 2.78 vs. 9.59 ± 4.59, respectively). In the birefringence analysis, in early periods all groups showed red-orange birefringence turning greenish-yellow at the end of the experiment. The results provided that, regardless of clinical condition, i.e., alcoholic or non-alcoholic, in the final period of the experiment, the process of bone defect recomposition was similar with the use of xenograft or only clot.
Collapse
Affiliation(s)
- Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo 17012-901, Brazil; (I.J.S.G.); (K.T.P.); (A.C.C.B.); (J.C.A.); (A.L.S.); (M.P.d.O.R.)
- Department of Dentistry, Faculty of Health Science, Universidad Iberoamericana (UNIBE), Santo Domingo 10203, Dominican Republic
- Mother and Teacher Pontifical Catholic University (PUCMM), Santo Domingo 10203, Dominican Republic
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo 17012-901, Brazil; (I.J.S.G.); (K.T.P.); (A.C.C.B.); (J.C.A.); (A.L.S.); (M.P.d.O.R.)
| | - Ana Carolina Cestari Bighetti
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo 17012-901, Brazil; (I.J.S.G.); (K.T.P.); (A.C.C.B.); (J.C.A.); (A.L.S.); (M.P.d.O.R.)
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo 17012-901, Brazil; (I.J.S.G.); (K.T.P.); (A.C.C.B.); (J.C.A.); (A.L.S.); (M.P.d.O.R.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, São Paulo 17525-902, Brazil; (C.H.B.R.); (D.d.B.T.); (D.V.B.)
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo 17012-901, Brazil; (I.J.S.G.); (K.T.P.); (A.C.C.B.); (J.C.A.); (A.L.S.); (M.P.d.O.R.)
| | - Geraldo Marco Rosa Júnior
- University of the Ninth of July (UNINOVE), Bauru, São Paulo 17011-102, Brazil;
- University of the Sacred Heart (USC), Bauru, São Paulo 17011-160, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, São Paulo 17525-902, Brazil; (C.H.B.R.); (D.d.B.T.); (D.V.B.)
| | - Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo 17012-901, Brazil; (I.J.S.G.); (K.T.P.); (A.C.C.B.); (J.C.A.); (A.L.S.); (M.P.d.O.R.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, São Paulo 17525-902, Brazil; (C.H.B.R.); (D.d.B.T.); (D.V.B.)
- Medical School, University Center of Adamantina (UniFAI), Adamantina, São Paulo 17800-000, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo 17012-901, Brazil; (I.J.S.G.); (K.T.P.); (A.C.C.B.); (J.C.A.); (A.L.S.); (M.P.d.O.R.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, São Paulo 17525-902, Brazil; (C.H.B.R.); (D.d.B.T.); (D.V.B.)
| |
Collapse
|
24
|
Buchaim DV, Cassaro CV, Shindo JVTC, Coletta BBD, Pomini KT, Rosso MPDO, Campos LMG, Ferreira RS, Barraviera B, Buchaim RL. Unique heterologous fibrin biopolymer with hemostatic, adhesive, sealant, scaffold and drug delivery properties: a systematic review. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190038. [PMID: 31839802 PMCID: PMC6894437 DOI: 10.1590/1678-9199-jvatitd-2019-0038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
Fibrin biopolymers, previously referred as "fibrin glue" or "fibrin sealants", are natural biomaterials with diverse applications on health. They have hemostatic, adhesive, sealant, scaffold and drug delivery properties and have become widely used in medical and dental procedures. Historically, these biomaterials are produced from human fibrinogen and human or animal thrombin, and the possibility of transmission of infectious diseases by human blood is not ruled out. In the 1990s, to overcome this problem, a new heterologous biomaterial composed of a thrombin-like enzyme purified from Crotalus durissus terrificus venom and a cryoprecipitate rich in fibrinogen extracted from buffaloes Bubalus bubalis blood has been proposed. Therefore, a systematic review of studies on exclusively heterologous fibrin sealants published between 1989 and 2018 was carried out using the following databases: PubMed, SciELO and Google Scholar. The keyword used was "heterologous fibrin sealant". The search resulted in 35 scientific papers in PubMed, four in SciELO and 674 in Google Scholar. After applying the inclusion/exclusion criteria and complete reading of the articles, 30 studies were selected, which formed the basis of this systematic review. It has been observed that the only completely heterologous sealant is the one produced by CEVAP/UNESP. This heterologous biopolymer is proven effective by several studies published in refereed scientific journals. In addition, clinical trials phase I/II for the treatment of chronic venous ulcers authorized by the Brazilian Health Regulatory Agency (ANVISA) were completed. Preliminary results have indicated a safe and promising effective product. Phase III clinical trials will be proposed and required to validate these preliminary findings.
Collapse
Affiliation(s)
- Daniela Vieira Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
- Medical and Dentistry School, University of Marilia (UNIMAR), Marília, SP, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina, SP, Brazil
| | - Claudia Vilalva Cassaro
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | | | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
- Medical and Dentistry School, University of Marilia (UNIMAR), Marília, SP, Brazil
| |
Collapse
|
25
|
Cassaro CV, Justulin LA, de Lima PR, Golim MDA, Biscola NP, de Castro MV, de Oliveira ALR, Doiche DP, Pereira EJ, Ferreira RS, Barraviera B. Fibrin biopolymer as scaffold candidate to treat bone defects in rats. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190027. [PMID: 31723344 PMCID: PMC6830407 DOI: 10.1590/1678-9199-jvatitd-2019-0027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bone tissue repair remains a challenge in tissue engineering. Currently, new materials are being applied and often integrated with live cells and biological scaffolds. The fibrin biopolymer (FBP) proposed in this study has hemostatic, sealant, adhesive, scaffolding and drug-delivery properties. The regenerative potential of an association of FBP, biphasic calcium phosphate (BCP) and mesenchymal stem cells (MSCs) was evaluated in defects of rat femurs. METHODS Adult male Wistar rats were submitted to a 5-mm defect in the femur. This was filled with the following materials and/or associations: BPC; FBP and BCP; FBP and MSCs; and BCP, FBP and MSCs. Bone defect without filling was defined as the control group. Thirty and sixty days after the procedure, animals were euthanatized and subjected to computed tomography, scanning electron microscopy and qualitative and quantitative histological analysis. RESULTS It was shown that FBP is a suitable scaffold for bone defects due to the formation of a stable clot that facilitates the handling and optimizes the surgical procedures, allowing also cell adhesion and proliferation. The association between the materials was biocompatible. Progressive deposition of bone matrix was higher in the group treated with FBP and MSCs. Differentiation of mesenchymal stem cells into osteogenic lineage was not necessary to stimulate bone formation. CONCLUSIONS FBP proved to be an excellent scaffold candidate for bone repair therapies due to application ease and biocompatibility with synthetic calcium-based materials. The satisfactory results obtained by the association of FBP with MSCs may provide a more effective and less costly new approach for bone tissue engineering.
Collapse
Affiliation(s)
- Claudia Vilalva Cassaro
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luis Antonio Justulin
- Extracellular Matrix Laboratory, Botucatu Biosciences Institute
(IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Patrícia Rodrigues de Lima
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
- Botucatu Medical School (FMB), São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | - Marjorie de Assis Golim
- Flow Cytometry Laboratory, Blood Center, Botucatu Medical School
(FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Natália Perussi Biscola
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mateus Vidigal de Castro
- Department of Structural and Functional Biology, Biosciences
Institute (IB), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Danuta Pulz Doiche
- Department of Animal Reproduction and Veterinary Radiology, School
of Veterinary Medicine and Animal Husbandry, São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | - Elenize Jamas Pereira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
- Botucatu Medical School (FMB), São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
- Botucatu Medical School (FMB), São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São
Paulo State University (UNESP), Botucatu, SP, Brazil
- Botucatu Medical School (FMB), São Paulo State University (UNESP),
Botucatu, SP, Brazil
| |
Collapse
|
26
|
Escudero JSB, Perez MGB, de Oliveira Rosso MP, Buchaim DV, Pomini KT, Campos LMG, Audi M, Buchaim RL. Photobiomodulation therapy (PBMT) in bone repair: A systematic review. Injury 2019; 50:1853-1867. [PMID: 31585673 DOI: 10.1016/j.injury.2019.09.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/16/2019] [Accepted: 09/20/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Photobiomodulation therapy (PBMT) using low-level laser influences the release of several growth factors involved in the formation of epithelial cells, fibroblasts, collagen and vascular proliferation, besides accelerating the synthesis of bone matrix due to the increased vascularization and lower inflammatory response, with significant increase of osteocytes in the irradiated bone. Considering its properties, beneficial effects and clinical relevance, the aim of this review was to analyze the scientific literature regarding the use of PBMT in the process of bone defect repair. METHODS Electronic search was carried out in PubMed/MEDLINEⓇ and Web of Science databases with combination of the descriptors low-level laser therapy AND bone repair, considering the period of publication until the year 2018. RESULTS The literature search identified 254 references in PubMed/MEDLINE and 204 in Web of Science, of which 33 and 4 were selected, respectively, in accordance with the eligibility requirements. The analysis of researches showed articles using PBMT in several places of experimentation in the subjects, different types of associated biomaterials, stimulatory effects on cell proliferation, besides variations in the parameters of use of laser therapy, mainly in relation to the wavelength and density of energy. Only four articles reported that the laser did not improve the osteogenic properties of a biomaterial. CONCLUSIONS Many studies have shown that PBMT has positive photobiostimulatory effects on bone regeneration, accelerating its process regardless of parameters and the use of biomaterials. However, standardization of its use is still imperfect and should be better studied to allow correct application concerning the utilization protocols.
Collapse
Affiliation(s)
- Jose Stalin Bayas Escudero
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Maria Gabriela Benitez Perez
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Daniela Vieira Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil; Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Marília, SP, Brazil; Medical School, Discipline of Neuroanatomy, University Center of Adamantina (UNIFAI), Adamantina, SP, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Mauro Audi
- Physiotherapy School, University of Marilia (UNIMAR), Marília-SP, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil; Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Marília, SP, Brazil.
| |
Collapse
|
27
|
Pomini KT, Buchaim DV, Andreo JC, Rosso MPDO, Della Coletta BB, German ÍJS, Biguetti ACC, Shinohara AL, Rosa Júnior GM, Cosin Shindo JVT, Alcalde MP, Duarte MAH, de Bortoli Teixeira D, Buchaim RL. Fibrin Sealant Derived from Human Plasma as a Scaffold for Bone Grafts Associated with Photobiomodulation Therapy. Int J Mol Sci 2019; 20:1761. [PMID: 30974743 PMCID: PMC6479442 DOI: 10.3390/ijms20071761] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 12/14/2022] Open
Abstract
Fibrin sealants derived from human blood can be used in tissue engineering to assist in the repair of bone defects. The objective of this study was to evaluate the support system formed by a xenograft fibrin sealant associated with photobiomodulation therapy of critical defects in rat calvaria. Thirty-six rats were divided into four groups: BC (n = 8), defect filled with blood clot; FSB (n = 10), filled with fibrin sealant and xenograft; BCPBMT (n = 8), blood clot and photobiomodulation; FSBPBMT (n = 10), fibrin sealant, xenograft, and photobiomodulation. The animals were killed after 14 and 42 days. In the histological and microtomographic analysis, new bone formation was observed in all groups, limited to the defect margins, and without complete wound closure. In the FSB group, bone formation increased between periods (4.3 ± 0.46 to 6.01 ± 0.32), yet with lower volume density when compared to the FSBPBMT (5.6 ± 0.45 to 10.64 ± 0.97) group. It was concluded that the support system formed by the xenograft fibrin sealant associated with the photobiomodulation therapy protocol had a positive effect on the bone repair process.
Collapse
Affiliation(s)
- Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Daniela Vieira Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
- Department of Human Morphophysiology, Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, Brazil.
- Department of Human Anatomy and Neuroanatomy, Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil.
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | | | - Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Íris Jasmin Santos German
- Department of Dentistry, Faculty of Health Science, Universidad Iberoamericana (UNIBE), Santo Domingo 10203, Dominic Republic.
| | - Ana Carolina Cestari Biguetti
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Geraldo Marco Rosa Júnior
- Department of Health Science, University of the Sacred Heart (USC), Bauru 17011-160, Brazil.
- Department of Anatomy, University of the Ninth of July (UNINOVE), Bauru 17011-102, Brazil.
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Murilo Priori Alcalde
- Department of Health Science, University of the Sacred Heart (USC), Bauru 17011-160, Brazil.
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Marco Antônio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Daniel de Bortoli Teixeira
- Department of Human Morphophysiology, Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, Brazil.
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
- Department of Human Morphophysiology, Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, Brazil.
| |
Collapse
|
28
|
Pomini KT, Cestari TM, Santos German ÍJ, de Oliveira Rosso MP, de Oliveira Gonçalves JB, Buchaim DV, Pereira M, Andreo JC, Rosa GM, Della Coletta BB, Cosin Shindo JVT, Buchaim RL. Influence of experimental alcoholism on the repair process of bone defects filled with beta-tricalcium phosphate. Drug Alcohol Depend 2019; 197:315-325. [PMID: 30875652 DOI: 10.1016/j.drugalcdep.2018.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
This study evaluated the effect of ethanol on the repair in calvaria treated with beta-tricalcium phosphate (β-TCP). Forty rats were distributed into 2 groups: Water group (CG, n = 20) and Alcohol Group (AG, n = 20), which received 25% ethanol ad libitum after an adaptation period of 3 weeks. After 90 days of liquid diet, the rats were submitted to a 5.0 mm bilateral craniotomy in the parietal bones; the left parietal was filled with β-TCP (CG-TCP and AG-TCP) and the contralateral only with blood clot (CG-Clot and AG-Clot). The animals were killed after 10, 20, 40 and 60 days. The groups CG-Clot and AG-Clot showed similar pattern of bone formation with a gradual and significant increase in the amount of bone in CG-Clot (22.17 ± 3.18 and 34.81 ± 5.49) in relation to AG-Clot (9.35 ± 5.98 and 21.65 ± 6.70) in periods of 20-40 days, respectively. However, in the other periods there was no statistically significant difference. Alcohol ingestion had a negative influence on bone formation, even with the use of β-TCP, exhibiting slow resorption and replacement by fibrous tissue, with 16% of bone formation within 60 days in AG-TCP, exhibiting immature bone tissue with predominance of disorganized collagen fibers. Defects in CG-TCP showed bone tissue with predominance of lamellar arrangement filling 39% of the original defect. It can be concluded that chronic ethanol consumption impairs the ability to repair bone defects, even with the use of a β-TCP biomaterial.
Collapse
Affiliation(s)
- Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | - Tânia Mary Cestari
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | | | | | | | - Daniela Vieira Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil; Medical School, University of Marilia (UNIMAR), Marília, Brazil; Medical School, University Center of Adamantina (UNIFAI), Adamantina, Brazil.
| | - Mizael Pereira
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | - Geraldo Marco Rosa
- University of the Sacred Heart (USC), Bauru, Brazil; University of the Ninth of July (UNINOVE), Bauru, Brazil.
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | | | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil; Medical School, University of Marilia (UNIMAR), Marília, Brazil.
| |
Collapse
|
29
|
Leite APS, Pinto CG, Tibúrcio FC, Sartori AA, de Castro Rodrigues A, Barraviera B, Ferreira RS, Filadelpho AL, Matheus SMM. Heterologous fibrin sealant potentiates axonal regeneration after peripheral nerve injury with reduction in the number of suture points. Injury 2019; 50:834-847. [PMID: 30922661 DOI: 10.1016/j.injury.2019.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/10/2019] [Accepted: 03/16/2019] [Indexed: 02/02/2023]
Abstract
The use of suture associated with heterologous fibrin sealant has been highlighted for reconstruction after peripheral nerve injury, having the advantage of being safe for clinical use. In this study we compared the use of this sealant associated with reduced number of stitches with conventional suture after ischiatic nerve injury. 36 Wistar rats were divided into 4 groups: Control (C), Denervated (D), ischiatic nerve neurotmesis (6 mm gap); Suture (S), epineural anastomosis after 7 days from neurotmesis, Suture + Fibrin Sealant (SFS), anastomosis with only one suture point associated with Fibrin Sealant. Catwalk, electromyography, ischiatic and tibial nerve, soleus muscle morphological and morphometric analyses were performed. The amplitude and latency values of the Suture and Suture + Fibrin Sealant groups were similar and indicative of nerve regeneration.The ischiatic nerve morphometric analysis in the Suture + Fibrin Sealant showed superior values related to axons and nerve fibers area and diameter when compared to Suture group. In the Suture and Suture + Fibrin Sealant groups, there was an increase in muscle weight and in fast fibers frequency, it was a decrease in the percentage of collagen compared to group Denervated and in the neuromuscular junctions, the synaptic boutons were reestablished.The results suggest a protective effect at the lesion site caused by the fibrin sealant use. The stitches reduction minimizes the trauma caused by the needle and it accelerates the surgical practice. So the heterologous fibrin sealant use in nerve reconstruction should be considered.
Collapse
Affiliation(s)
- Ana Paula Silveira Leite
- Graduate Program on the General Bases of Surgery, Botucatu Medical School, Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil; Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil.
| | - Carina Guidi Pinto
- Graduate Program on the General Bases of Surgery, Botucatu Medical School, Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil; Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Felipe Cantore Tibúrcio
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Arthur Alves Sartori
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | | | - Benedito Barraviera
- The Center for the Study of Venoms and Venomous Animals, UNESP, Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- The Center for the Study of Venoms and Venomous Animals, UNESP, Botucatu, SP, Brazil
| | - André Luis Filadelpho
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Selma Maria Michelin Matheus
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| |
Collapse
|
30
|
Rosso MPDO, Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL. Photobiomodulation Therapy (PBMT) in Peripheral Nerve Regeneration: A Systematic Review. Bioengineering (Basel) 2018; 5:44. [PMID: 29890728 PMCID: PMC6027218 DOI: 10.3390/bioengineering5020044] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Photobiomodulation therapy (PBMT) has been investigated because of its intimate relationship with tissue recovery processes, such as on peripheral nerve damage. Based on the wide range of benefits that the PBMT has shown and its clinical relevance, the aim of this research was to carry out a systematic review of the last 10 years, ascertaining the influence of the PBMT in the regeneration of injured peripheral nerves. The search was performed in the PubMed/MEDLINE database with the combination of the keywords: low-level laser therapy AND nerve regeneration. Initially, 54 articles were obtained, 26 articles of which were chosen for the study according to the inclusion criteria. In the qualitative aspect, it was observed that PBMT was able to accelerate the process of nerve regeneration, presenting an increase in the number of myelinated fibers and a better lamellar organization of myelin sheath, besides improvement of electrophysiological function, immunoreactivity, high functionality rate, decrease of inflammation, pain, and the facilitation of neural regeneration, release of growth factors, increase of vascular network and collagen. It was concluded that PBMT has beneficial effects on the recovery of nerve lesions, especially when related to a faster regeneration and functional improvement, despite the variety of parameters.
Collapse
Affiliation(s)
- Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisola 9-75, Vila Nova Cidade Universitária, Bauru, São Paulo CEP 17012-901, Brazil.
| | - Daniela Vieira Buchaim
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
- Medical School, Discipline of Neuroanatomy, University Center of Adamantina (UNIFAI), Rua Nove de Julho, 730, Centro, Adamantina, São Paulo CEP 17800-000, Brazil.
| | - Natália Kawano
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
| | - Gabriela Furlanette
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisola 9-75, Vila Nova Cidade Universitária, Bauru, São Paulo CEP 17012-901, Brazil.
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisola 9-75, Vila Nova Cidade Universitária, Bauru, São Paulo CEP 17012-901, Brazil.
- Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Av. Higino Muzi Filho, 1001 Campus Universitário, Jardim Araxa, Marília, São Paulo CEP 17525-902, Brazil.
| |
Collapse
|
31
|
de Freitas NR, Guerrini LB, Esper LA, Sbrana MC, Dalben GDS, Soares S, de Almeida ALPF. Evaluation of photobiomodulation therapy associated with guided bone regeneration in critical size defects. In vivo study. J Appl Oral Sci 2018; 26:e20170244. [PMID: 29742256 PMCID: PMC5933825 DOI: 10.1590/1678-7757-2017-0244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 03/25/2024] Open
Abstract
The repair of bone defects raises the interest of investigators in several health specialties. Grafting techniques with bone substitutes and laser therapies have been investigated to replace autogenous bone and accelerate the bone healing process. Objective To evaluate the effect of photobiomodulation therapy (PBMT) associated with guided bone regeneration (GBR) in critical size defects. Material and Methods The study was conducted on 80 male rats (Rattus norvegicus albinus, Wistar) submitted to surgical creation of a critical size defect on the calvaria, divided into eight study groups: group C (control - only blood clot); group M (collagen membrane); group PBMT (photobiomodulation therapy); group AB (autogenous bone); group AB+PBMT; group AB+M; group PBMT+M; group AB+PBMT+M. The animals were killed 30 days postoperatively. After tissue processing, bone regeneration was evaluated by histomorphometric analysis and statistical analyses were performed (Tukey test, p<0.05). Results All groups had greater area of newly formed bone compared to group C (9.96±4.49%). The group PBMT+M (achieved the greater quantity of new bone (64.09±7.62%), followed by groups PBMT (47.67±8.66%), M (47.43±15.73%), AB+PBMT (39.15±16.72%) and AB+PBMT+M (35.82±7.68%). After group C, the groups AB (25.10±16.59%) and AB+M (22.72±13.83%) had the smallest quantities of newly formed bone. The area of remaining particles did not have statistically significant difference between groups AB+M (14.93±8.92%) and AB+PBMT+M (14.76±6.58%). Conclusion The PBMT utilization may be effective for bone repair, when associated with bone regeneration techniques.
Collapse
Affiliation(s)
- Nicole Rosa de Freitas
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Pós-Graduação em Reabilitação Oral, Bauru, São Paulo, Brasil
| | - Luísa Belluco Guerrini
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Pós-Graduação em Reabilitação Oral, Bauru, São Paulo, Brasil
| | - Luis Augusto Esper
- Universidade de São Paulo, Hospital de Reabilitação de Anomalias Craniofaciais, Seção de Periodontia, Bauru, São Paulo, Brasil
| | - Michyele Cristhiane Sbrana
- Universidade de São Paulo, Hospital de Reabilitação de Anomalias Craniofaciais, Seção de Periodontia, Bauru, São Paulo, Brasil
| | - Gisele da Silva Dalben
- Universidade de São Paulo, Hospital de Reabilitação de Anomalias Craniofaciais, Seção de Odontopediatria e Saúde Coletiva, Bauru, São Paulo, Brasil
| | - Simone Soares
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Prótese e Periodontia, Bauru, São Paulo, Brasil
| | | |
Collapse
|
32
|
Buchaim DV, Bueno PCDS, Andreo JC, Roque DD, Roque JS, Zilio MG, Salatin JA, Kawano N, Furlanette G, Buchaim RL. Action of a deproteinized xenogenic biomaterial in the process of bone repair in rats submitted to inhalation of cigarette smoke. Acta Cir Bras 2018; 33:324-332. [PMID: 29768535 DOI: 10.1590/s0102-865020180040000004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To investigate if the inorganic bovine bone matrix changes the bone formation in rats submitted to inhalation of cigarette smoke. METHODS Twenty Wistar rats were divided into two groups: Cigarette Clot Group (CCG), which in the inhalation chamber received the smoke of 10 cigarettes, 3 times a day, 10 minutes, for 30 days and had the surgical cavity filled by clot; Cigarette Biomaterial Group (CBG), submitted to the same inhalation technique but with the cavity filled by biomaterial. RESULTS In CCG there was a significant difference of new bone tissue in the analyzed periods (15 and 45 days), and in 15 days, there was 4.8 ± 0.42 of bone formed and 11.73 ± 0.59 (p <0.05) in 45 days. The CBG also showed a significant difference between the periods of 15 to 45 days, being respectively 6.16 ± 0.30 and 11.60 ± 0.61. However, when the groups were compared, within the same analyzed periods, a significant difference was observed only in the period of 15 days, with the new bone percentage being greater in the CBG. CONCLUSION The bone matrix acted as an osteoinductive biomaterial, biocompatible and aided in the repair process, mainly in the initial period of recovery.
Collapse
Affiliation(s)
- Daniela Vieira Buchaim
- PhD, Medical and Dentistry School, Universidade de Marilia (UNIMAR), and Medical School, Centro Universitário de Adamantina (UNIFAI), Brazil. Conception and design of the study, manuscript preparation
| | | | - Jesus Carlos Andreo
- PhD, Department of Biological Sciences (Anatomy), Bauru School of Dentistry, Universidade de São Paulo (USP), Bauru-SP, Brazil. Acquisition, analysis and interpretation of data
| | - Domingos Donizeti Roque
- PhD, Medical School, UNIMAR, Marilia-SP, Brazil. Scientific and intellectual content of the study
| | - José Sidney Roque
- PhD, Department of Anatomy, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho-PR, Brazil. Technical procedures
| | - Marcelo Garcia Zilio
- Graduate student, Medical School, UNIMAR, Marilia-SP, Brazil. Histopathological examinations, statistics analysis
| | - Jefferson Augusto Salatin
- Graduate student, Medical School, UNIMAR, Marilia-SP, Brazil. Histopathological examinations, statistics analysis
| | - Natália Kawano
- Graduate student, Medical School, UNIMAR, Marilia-SP, Brazil. Histopathological examinations, statistics analysis
| | - Gabriela Furlanette
- Graduate student, Medical School, UNIMAR, Marilia-SP, Brazil. Histopathological examinations, statistics analysis
| | - Rogério Leone Buchaim
- PhD, Medical and Dentistry School, UNIMAR, Marilia-SP, and USP, Bauru-SP, Brazil. Manuscript preparation and writing, critical revision, final approval
| |
Collapse
|
33
|
Rosso MPDO, Rosa Júnior GM, Buchaim DV, German IJS, Pomini KT, de Souza RG, Pereira M, Favaretto Júnior IA, Bueno CRDS, Gonçalves JBDO, Ferreira Júnior RS, Barraviera B, Andreo JC, Buchaim RL. Stimulation of morphofunctional repair of the facial nerve with photobiomodulation, using the end-to-side technique or a new heterologous fibrin sealant. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 175:20-28. [PMID: 28846931 DOI: 10.1016/j.jphotobiol.2017.08.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 12/01/2022]
Abstract
This research evaluated the influence of Photobiomodulation Therapy (PBMT) on lesions of the facial nerve repaired with the end-to-side technique or coaptation with a new heterologous fibrin sealant. Thirty-two Wistar rats were separated into 5 groups: Control group (CG), where the buccal branch of the facial nerve was collected; Experimental Suture Group (ESG) and Experimental Fibrin Group (EFG), in which the buccal branch was end-to-side sutured to the zygomatic branch on the right side of the face or coaptated with fibrin sealant on the left side; Experimental Suture Laser Group (ESLG) and Experimental Fibrin Laser Group (EFLG), in which the same procedures were performed as the ESG and EFG, associated with PBMT (wavelength of 830nm, energy density 6.2J/cm2, power output 30mW, beam area of 0.116cm2, power density 0.26W/cm2, total energy per session 2.16J, cumulative dose of 34.56J). The laser was applied for 24s/site at 3 points on the skin's surface, for a total application time of 72s, performed immediately after surgery and 3 times a week for 5weeks. A statistically significant difference was observed in the fiber nerve area between the EFG and EFLG (57.49±3.13 and 62.52±3.56μm2, respectively). For the area of the axon, fiber diameter, axon diameter, myelin sheath area and myelin sheath thickness no statistically significant differences were found (p<0.05). The functional recovery of whisker movement occurred faster in the ESLG and EFLG, which were associated with PBMT, with results closer to the CG. Therefore, PBMT accelerated morphological and functional nerve repair in both techniques.
Collapse
Affiliation(s)
| | | | | | - Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Rafael Gomes de Souza
- Human Morphophysiology (Anatomy), University of Marilia (UNIMAR), Marilia, SP, Brazil
| | - Mizael Pereira
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | | | | | - Rui Seabra Ferreira Júnior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu, SP, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil; Human Morphophysiology (Anatomy), University of Marilia (UNIMAR), Marilia, SP, Brazil
| |
Collapse
|
34
|
Orsi PR, Landim-Alvarenga FC, Justulin LA, Kaneno R, de Assis Golim M, Dos Santos DC, Creste CFZ, Oba E, Maia L, Barraviera B, Ferreira RS. A unique heterologous fibrin sealant (HFS) as a candidate biological scaffold for mesenchymal stem cells in osteoporotic rats. Stem Cell Res Ther 2017; 8:205. [PMID: 28962655 PMCID: PMC5622505 DOI: 10.1186/s13287-017-0654-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background The injection of mesenchymal stem cells (MSCs) directly into the bone of osteoporotic (OP) patients for rapid recovery has been studied worldwide. Scaffolds associated with MSCs are used to maintain and avoid cell loss after application. A unique heterologous fibrin sealant (HFS) derived from snake venom was evaluated for the cytotoxicity of its main components and as a three-dimensional biological scaffold for MSCs to repair a critical femur defect in osteoporotic rats. Methods The cytotoxicity of HFS was assessed using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT) assay and transmission electron microscopy. The cells were cultured, characterized by flow cytometry and differentiated into the osteogenic lineage. Two-month-old rats underwent ovariectomy to induce OP. After 3 months, a 5 mm critical bone defect was made in the distal end of the rat femurs and filled with HFS; HFS + MSCs; and HFS + MSCs D (differentiated into the osteogenic lineage) to evaluate the effects. An injury control group (injury and no treatment) and blank control group (no injury and no treatment) were also included. The animals were observed at days 14 and 28 by microtomographic (micro-CT) analyses, histologic and biochemical analysis, as well as scanning electron microscopy. Results The results revealed that one of the compounds of HFS, the thrombin-like enzyme extracted from snake venom, had no cytotoxic effects on the MSCs. OP was successfully induced, as demonstrated by the significant differences in the levels of 17β-estradiol, Micro-CT analyses and alkaline phosphatase between the ovariectomized (OVX) and non-ovariectomized (NOVX) groups. The histological data revealed that at 14 days after surgery in both the OVX and NOVX animals, the HFS + CTMs and HFS + CTMsD showed a higher formation of bone cells at the site in relation to the control group (without treatment). Collagen formation was evidenced through bone neoformation in all treated and control groups. No morphological differences in the femurs of the NOVX and OVX animals were observed after the surgical procedure. Scanning electron microscopy (SEM) confirmed the histological analysis. Conclusions The new HFS composed of two non-toxic components for MSCs showed capacity to promote the recovery of the bone lesions in OVX and NOVX animals at 14 days after surgery. In addition, the HFS enabled the differentiation of MSCs into MSCs D in the group treated with HFS + MSCs. Using the MSCs and/or MSCs D together with this biopharmaceutical could potentially enable significant advances in the treatment of osteoporotic fractures. Future clinical trials will be necessary to confirm these results.
Collapse
Affiliation(s)
- Patrícia Rodrigues Orsi
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil.,Botucatu Medical School, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
| | | | - Luis Antônio Justulin
- Botucatu Biosciences Institute, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Ramon Kaneno
- Botucatu Biosciences Institute, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
| | | | | | - Camila Fernanda Zorzella Creste
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil.,Botucatu Medical School, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Eunice Oba
- College of Veterinary Medicine and Animal Husbandry (FMVZ), UNESP - Univ Estadual Paulista, Botucatu, SP, Brazil
| | - Leandro Maia
- College of Veterinary Medicine and Animal Husbandry (FMVZ), UNESP - Univ Estadual Paulista, Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil.,Botucatu Medical School, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil. .,Botucatu Medical School, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil.
| |
Collapse
|
35
|
Buchaim DV, Andreo JC, Ferreira Junior RS, Barraviera B, Rodrigues ADC, Macedo MDC, Rosa Junior GM, Shinohara AL, Santos German IJ, Pomini KT, Buchaim RL. Efficacy of Laser Photobiomodulation on Morphological and Functional Repair of the Facial Nerve. Photomed Laser Surg 2017; 35:442-449. [PMID: 28557664 DOI: 10.1089/pho.2016.4204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Evaluate the efficacy of low-level laser therapy (LLLT) on qualitative, quantitative, and functional aspects in the facial nerve regeneration process. MATERIALS AND METHODS Forty-two male Wistar rats were used, randomly divided into a control group (CG; n = 10), in which the facial nerve without lesion was collected, and four experimental groups: (1) suture experimental group (SEG) and (2) fibrin experimental group (FEG), consisting of 16 animals in which the buccal branch of the facial nerve was sectioned on both sides of the face; an end-to-end epineural suture was performed on the right side, and a fibrin sealant was used on the left side for coaptation of the stumps; and (3) laser suture experimental group (LSEG) and (4) laser fibrin experimental group (LFEG), consisting of 16 animals that underwent the same surgical procedures as SEG and FEG with the addition of laser application at three different points along the surgical site (pulsed laser of 830 nm wavelength, optical output power of 30 mW, power density of 0.2586 W/cm2, energy density of 6.2 J/cm2, beam area of 0.116 cm2, exposure time of 24 sec per point, total energy per session of 2.16 J, and cumulative dose of 34.56 J). The animals were submitted to functional analysis (subjective observation of whisker movement) and the data obtained were compared using Fisher's exact test. Euthanasia was performed at 5 and 10 weeks postoperative. The total number and density of regenerated axons were analyzed using the unpaired t-test (p < 0.05). RESULTS Laser therapy resulted in a significant increase in the number and density of regenerated axons. The LSEG and LFEG presented better scores in functional analysis in comparison with the SEG and FEG. CONCLUSIONS LLLT enhanced axonal regeneration and accelerated functional recovery of the whiskers, and both repair techniques allowed the growth of axons.
Collapse
Affiliation(s)
| | - Jesus Carlos Andreo
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | - Rui Seabra Ferreira Junior
- 3 Center for the Study of Venoms and Venomous Animals, São Paulo State University (UNESP-Univ Estadual Paulista) , Botucatu, Brazil
| | - Benedito Barraviera
- 3 Center for the Study of Venoms and Venomous Animals, São Paulo State University (UNESP-Univ Estadual Paulista) , Botucatu, Brazil
| | - Antonio de Castro Rodrigues
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | - Mariana de Cássia Macedo
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | | | - Andre Luis Shinohara
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | - Iris Jasmin Santos German
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | - Karina Torres Pomini
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | - Rogerio Leone Buchaim
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| |
Collapse
|
36
|
Ferreira RS, de Barros LC, Abbade LPF, Barraviera SRCS, Silvares MRC, de Pontes LG, Dos Santos LD, Barraviera B. Heterologous fibrin sealant derived from snake venom: from bench to bedside - an overview. J Venom Anim Toxins Incl Trop Dis 2017; 23:21. [PMID: 28396682 PMCID: PMC5379742 DOI: 10.1186/s40409-017-0109-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022] Open
Abstract
Hemostatic and adhesive agents date back to World War II, when homologous fibrin sealant came onto scene. Considering that infectious diseases can be transmitted via human blood, a new heterologous fibrin sealant was standardized in the 1990s. Its components were a serine protease (a thrombin-like enzyme) extracted from the venom of Crotalus durissus terrificus snakes and a fibrinogen-rich cryoprecipitate extracted from the blood of Bubalus bubalis buffaloes. This new bioproduct has been used as a coagulant, sealant, adhesive and recently as a candidate scaffold for mesenchymal stem cells and bone and cartilage repair. This review discusses the composition of a new heterologous fibrin sealant, and cites published articles related to its preclinical applications aiming at repairing nervous system traumas and regenerating bone marrow. Finally, we present an innovative safety trial I/II that found the product to be a safe and clinically promising candidate for treating chronic venous ulcers. A multicenter clinical trial, phase II/III, with a larger number of participants will be performed to prove the efficacy of an innovative biopharmaceutical product derived from animal venom.
Collapse
Affiliation(s)
- Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil.,CEVAP/UNESP, Avenida José Barbosa de Barros, 1780, Botucatu, SP CEP 18610-307 Brazil
| | - Luciana Curtolo de Barros
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Luciana Patrícia Fernandes Abbade
- Department of Dermatology and Radiology, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | | | - Maria Regina Cavariani Silvares
- Department of Dermatology and Radiology, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Leticia Gomes de Pontes
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Benedito Barraviera
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| |
Collapse
|