1
|
Yan B, Zhou J, Yan F, Gao M, Tang J, Huang L, Luo Y. Unlocking the potential of photobiomodulation therapy for brain neurovascular coupling: The biological effects and medical applications. J Cereb Blood Flow Metab 2025; 45:800-830. [PMID: 39763390 PMCID: PMC11705326 DOI: 10.1177/0271678x241311695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Photobiomodulation (PBM) therapy stands as an innovative neurostimulation modality that has demonstrated both efficacy and safety in improving brain function. This therapy exerts multifaceted influences on neurons, blood vessels, and their intricate interplay known as neurovascular coupling (NVC). Growing evidence indicates that NVC may present a promising target for PBM intervention. However, the detailed mechanisms underlying its therapeutic benefits remain to be fully understood. This review aims to elucidate the potential metabolic pathways and signaling cascades involved in the modulatory effects of PBM, while also exploring the extensive repertoire of PBM applications in neurologic and psychiatric conditions. The prospects of PBM within the realm of NVC investigation are intensively considered, providing deeper insights into the powerful capabilities of PBM therapy and its potential to revolutionize neurostimulation treatments.
Collapse
Affiliation(s)
- Bingzi Yan
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhou
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Fengshuo Yan
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Mingyang Gao
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Jiaji Tang
- Sichuan Becoming Technology Co., LTD, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Yadu N, Singh M, Singh D, Keshavkant S. Mechanistic insights of diabetic wound: Healing process, associated pathways and microRNA-based delivery systems. Int J Pharm 2025; 670:125117. [PMID: 39719258 DOI: 10.1016/j.ijpharm.2024.125117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Wounds that represent one of the most critical complications can occur in individuals suffering from diabetes mellitus, and results in the need for hospitalisation and, in severe cases, require amputation. This condition is primarily characterized by infections, persistent inflammation, and delayed healing processes, which exacerbate the overall health of the patients. As per the standard mechanism, signalling pathways such as PI3K/AKT, HIF-1, TGF-β, Notch, Wnt/β-Cat, NF-κB, JAK/STAT, TLR, and Nrf2 play major roles in inflammatory, proliferative and remodelling phases of wound healing. However, dysregulation of the above pathways has been seen during the healing of diabetic wounds. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of various genes and signalling pathways which are associated with the process of wound healing. In the past few years, there has been a great deal of interest in the potential of miRNAs as biological agents in the management of a number of disorders. These miRNAs have been shown to modulate expression of genes involved in the healing process of wounds. There have been previous reviews pertaining to clinical trials examining miRNAs in several disorders, but only a few clinical studies have examined involvement of miRNAs in healing of wounds. Considering the therapeutic promise, there are several obstacles concerning their instabilities and inefficient delivery into the target cells. Therefore, this review is an attempt to discuss precise roles of signalling pathways and miRNAs in different phases of wound healing, and their aberrant regulation in diabetic wounds, particularly. It has also compiled a range of delivery mechanisms as well as an overview of the latest findings pertaining to miRNAs and associated delivery systems for improved healing of diabetic wounds.
Collapse
Affiliation(s)
- Nidhi Yadu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Manju Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| |
Collapse
|
3
|
Maghfour J, Ozog DM, Mineroff J, Jagdeo J, Kohli I, Lim HW. Photobiomodulation CME part I: Overview and mechanism of action. J Am Acad Dermatol 2024; 91:793-802. [PMID: 38309304 DOI: 10.1016/j.jaad.2023.10.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 02/05/2024]
Abstract
Photobiomodulation (PBM), previously known as low-level laser light therapy, represents a noninvasive form of phototherapy that utilizes wavelengths in the red light (RL, 620-700 nm) portion of the visible light (VL, 400-700 nm) spectrum and the near-infrared (NIR, 700-1440 nm) spectrum. PBM is a promising and increasingly used therapy for the treatment of various dermatologic and nondermatologic conditions. Photons from RL and NIR are absorbed by endogenous photoreceptors including mitochondrial cytochrome C oxidase (COX). Activation of COX leads to the following changes: modulation of mitochondrial adenosine triphosphate (ATP), generation of reactive oxygen species (ROS), and alterations in intracellular calcium levels. The associated modulation of ATP, ROS and calcium levels promotes the activation of various signaling pathways (eg, insulin-like growth factors, phosphoinositide 3-kinase pathways), which contribute to downstream effects on cellular proliferation, migration, and differentiation. Effective PBM therapy is dependent on treatment parameters (eg, fluence, treatment duration and output power). PBM is generally well-tolerated and safe with erythema being the most common and self-limiting adverse cutaneous effect.
Collapse
Affiliation(s)
- Jalal Maghfour
- Department of Dermatology, Henry Ford Health, Detroit, Michigan
| | - David M Ozog
- Department of Dermatology, Henry Ford Health, Detroit, Michigan; The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan.
| | - Jessica Mineroff
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Jared Jagdeo
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Indermeet Kohli
- The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health, Detroit, Michigan; The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
4
|
Kang M, Lee Y, Lee Y, Kim E, Jo J, Shin H, Choi J, Oh J, Yoon H, Kang HW. Wavelength-dependent photobiomodulation (PBM) for proliferation and angiogenesis of melanoma tumor in vitro and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112990. [PMID: 39032372 DOI: 10.1016/j.jphotobiol.2024.112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Photobiomodulation (PBM) has widely been used to effectively treat complications associated with cancer treatment, including oral mucositis, radiation dermatitis, and surgical wounds. However, the safety of PBM against cancer still needs to be validated as the effects of PBM on cancer cells and their mechanisms are unclear. The current study investigated the wavelength-dependent PBM effects by examining four different laser wavelengths (405, 532, 635, and 808 nm) on B16F10 melanoma tumor cells. In vitro tests showed that PBM with 808 nm promoted both proliferation and migration of B16F10 cells. In vivo results demonstrated that PBM with 808 nm significantly increased the relative tumor volume and promoted angiogenesis with overexpression of VEGF and HIF-1α. In addition, PBM induced the phosphorylation of factors closely related to cancer cell proliferation and tumor growth and upregulated the related gene expression. The current result showed that compared to the other wavelengths, 808 nm yielded a significant tumor-stimulating effect the malignant melanoma cancer. Further studies will investigate the in-depth molecular mechanism of PBM on tumor stimulation in order to warrant the safety of PBM for clinical cancer treatment.
Collapse
Affiliation(s)
- Myungji Kang
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Yeachan Lee
- Center for Advanced Models for Translational Sciences and Therapeutics and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuri Lee
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Eunjung Kim
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Jihye Jo
- Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare and Digital Healthcare Research Center, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Hwarang Shin
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare and Digital Healthcare Research Center, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hongsup Yoon
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea.
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine-Integrated Biomedical Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare and Digital Healthcare Research Center, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
5
|
Pan Y, Zhang H, Liu Q, Wu H, Du S, Song W, Zhang F, Liu H. Photobiomodulation with 630-nm LED Inhibits M1 Macrophage Polarization via STAT1 Pathway Against Sepsis-Induced Acute Lung Injury. Photobiomodul Photomed Laser Surg 2024; 42:148-158. [PMID: 38301209 DOI: 10.1089/photob.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Background: Sepsis-induced acute lung injury (ALI) is a clinical syndrome characterized by excessive uncontrolled inflammation. Photobiomodulation such as light-emitting diode (LED) irradiation has been used to attenuate inflammatory disease. Objective: The protective effect of 630 nm LED irradiation on sepsis-induced ALI remains unknown. The purpose of this study was to investigate the role of 630 nm LED irradiation in sepsis-induced ALI and its underlying mechanism. Methods and results: C57BL/6 mice were performed cecal ligation and puncture (CLP) for 12 h to generate experimental sepsis models. Histopathology analysis showed that alveolar injury, inflammatory cells infiltration, and hemorrhage were suppressed in CLP mice after 630 nm LED irradiation. The ratio of wet/dry weigh of lung tissue was significantly inhibited by irradiation. The number of leukocytes was reduced in bronchoalveolar lavage fluid. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results and enzyme-linked immunosorbent assay showed that 630 nm LED irradiation significantly inhibited the mRNA and protein levels of M1 macrophage-related genes in the lung of CLP-induced septic mice. Meanwhile, LED irradiation significantly inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation in the lung of septic mice. In vitro experiments showed that 630 nm LED irradiation significantly inhibited M1 genes mRNA and protein expression in THP-1-derived M1 macrophages without affecting the cell viability. LED irradiation also significantly inhibited the level of STAT1 phosphorylation in THP-1-derived M1 macrophages. Conclusions: We concluded that 630 nm LED is promising as a treatment against ALI through inhibiting M1 macrophage polarization, which is associated with the downregulation of STAT1 phosphorylation.
Collapse
Affiliation(s)
- Yue Pan
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
- Departments of Laboratory Diagnosis, Daqing Oilfield General Hospital, Daqing, China
| | - Hanxu Zhang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Qiannan Liu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Hao Wu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Siqi Du
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Wuqi Song
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Fengmin Zhang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Hailiang Liu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
6
|
Li J, Zhao Q, Gao X, Dai T, Bai Z, Sheng J, Tian Y, Bai Z. Dendrobium officinale Kinura et Migo glycoprotein promotes skin wound healing by regulating extracellular matrix secretion and fibroblast proliferation on the proliferation phase. Wound Repair Regen 2024; 32:55-66. [PMID: 38113346 DOI: 10.1111/wrr.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 12/21/2023]
Abstract
Dendrobium officinale Kinura et Migo (DOKM) has a variety of medicinal applications; however, its ability to promote wound healing has not been previously reported. The purpose of this study is to investigate the proliferative phase of the wound-healing effect of DOKM glycoprotein (DOKMG) in rats and to elucidate its mechanism of action in vitro. In the present study, the ointment mixture containing DOKMG was applied to the dorsal skin wounds of the full-thickness skin excision rat model, and the results showed that the wound healing speed was faster in the proliferative phase than vaseline. Histological analysis demonstrates that DOKMG promoted the re-epithelialization of wound skin. Immunofluorescence staining and quantitative polymerase chain reaction assays revealed that DOKMG promotes the secretion of Fibronectin and inhibits the secretion of Collagen IV during the granulation tissue formation period, indicating that DOKMG could accelerate the formation of granulation tissue by precisely regulating extracellular matrix (ECM) secretion. In addition, we demonstrated that DOKMG enhanced the migration and proliferation of fibroblast (3T6 cell) in two-dimensional trauma by regulating the secretion of ECM, via a mechanism that may implicate the AKT and JAK/STAT pathways under the control of epidermal growth factor receptor (EGFR) signalling. In summary, we have demonstrated that DOKMG promotes wound healing during the proliferative phase. Therefore, we suggest that DOKMG may have a potential therapeutic application for the treatment and management of cutaneous wounds.
Collapse
Affiliation(s)
- Jia Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Qian Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaoyu Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Tianyi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zilin Bai
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zhongbin Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Zhao Y, Zhao Y, Xu B, Liu H, Chang Q. Microenvironmental dynamics of diabetic wounds and insights for hydrogel-based therapeutics. J Tissue Eng 2024; 15:20417314241253290. [PMID: 38818510 PMCID: PMC11138198 DOI: 10.1177/20417314241253290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
The rising prevalence of diabetes has underscored concerns surrounding diabetic wounds and their potential to induce disability. The intricate healing mechanisms of diabetic wounds are multifaceted, influenced by ambient microenvironment, including prolonged hyperglycemia, severe infection, inflammation, elevated levels of reactive oxygen species (ROS), ischemia, impaired vascularization, and altered wound physicochemical properties. In recent years, hydrogels have emerged as promising candidates for diabetic wound treatment owing to their exceptional biocompatibility and resemblance to the extracellular matrix (ECM) through a three-dimensional (3D) porous network. This review will first summarize the microenvironment alterations occurring in the diabetic wounds, aiming to provide a comprehensive understanding of its pathogenesis, then a comprehensive classification of recently developed hydrogels will be presented, encompassing properties such as hypoglycemic effects, anti-inflammatory capabilities, antibacterial attributes, ROS scavenging abilities, promotion of angiogenesis, pH responsiveness, and more. The primary objective is to offer a valuable reference for repairing diabetic wounds based on their unique microenvironment. Moreover, this paper outlines potential avenues for future advancements in hydrogel dressings to facilitate and expedite the healing process of diabetic wounds.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Burn and Plastic surgery, Jinan University Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Yulan Zhao
- Department of Nephropathy Rheumatology, Guizhou Medical University Affiliated Zhijin Hospital, Zhijin, China
| | - Bing Xu
- Department of Burn and Plastic surgery, Jinan University Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Wang L, Deng T, Liu Y, Cheng H. Discussion on the Antipruritic Mechanism of Qiwei Antipruritic Based on Network Pharmacology and Molecular Docking Technology. Clin Cosmet Investig Dermatol 2023; 16:3295-3307. [PMID: 38021433 PMCID: PMC10657760 DOI: 10.2147/ccid.s435800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Objective To explore the mechanism of Qiwei antipruritic by using network pharmacology and molecular docking technology. Methods The components and related targets of Qiwei antipruritic were screened by using the traditional Chinese medicine system pharmacology database (TCMSP and symmap databases). GeneCards and OMIM databases were used to screen itch-related targets. The protein-protein interaction (PPI) network between active ingredient targets and pruritus disease targets was constructed using STRING database. Cytoscape 3.8.0 software was used to draw the visualization network of "drug-component-target-signaling pathway" and screen the core targets. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using R software. AutoDock vina software was used to perform molecular docking of key targets and their corresponding key components. Results There were 44 main components of Qiwei antipruritic compound, 118 corresponding targets and 3869 itch-related genes. A total of 82 predicted targets of Qiwei antipruritic in the treatment of pruritus were obtained. Eleven key targets were screened. Among the 23 KEGG enriched pathways, 12 signaling pathways were related to skin pruritus. Molecular docking results showed that the core components of Qiwei antipruritic, including quercetin, kaempferol, β-sitosterol, stigmasterol, luteolin, and preskimmianine, had good binding ability with ESR1, PPARG, IL6, TP53, and EGFR, and the docking scores were all less than -4. Conclusion The mechanism of Qiwei antipruritic may be related to histamine activation mechanism, calcium channel mechanism, inhibition of inflammatory signaling pathway, inhibition of neurotransmitters, and regulation of immune pathways. The traditional Chinese medicine compound Qiwei antipruritic can treat clinical pruritus through multiple targets and pathways.
Collapse
Affiliation(s)
- Luoxi Wang
- Clinical Research on Skin Diseases School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
| | - Tinghan Deng
- Clinical Research on Skin Diseases School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
| | - Ying Liu
- Clinical Research on Skin Diseases School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
| | - Hongbin Cheng
- Dermatology of Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
Omidi H, Sohrabi K, Amini A, Fathabady FF, Mostafavinia A, Ahmadi H, Mirzaei M, Moravej FG, Asghari M, Rezaei F, Gachkar L, Chien S, Bayat M. Application of combined photobiomodulation and curcumin-loaded iron oxide nanoparticles considerably enhanced repair in an infected, delayed-repair wound model in diabetic rats compared to either treatment alone. Photochem Photobiol Sci 2023; 22:1791-1807. [PMID: 37039961 DOI: 10.1007/s43630-023-00411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023]
Abstract
Herein, we attempted to evaluate the therapeutic potential of photobiomodulation (PBM) and curcumin-loaded iron nanoparticles (CUR), alone and in combination, on wound closure rate (WCR), microbial flora by measuring colony-forming units (CFUs), the stereological and biomechanical properties of repairing wounds in the maturation stage of the wound healing course in an ischemic infected delayed healing wound model (IIDHWM) of type I diabetic (TIDM) rats. There were four groups: group 1 was the control, group 2 received CUR, rats in group 3 were exposed to PBM (80 Hz, 890 nm, and 0.2 J/cm2), and rats in group 4 received both PBM and CUR (PBM + CUR). We found CFU was decreased in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Groups 2, 3, and 4 showed a considerable escalation in WCR compared to group 1 (p = 0.000 for all). In terms of wound strength parameters, substantial increases in bending stiffness and high-stress load were observed in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Stereological examinations revealed decreases in neutrophil and macrophage counts and increases in fibroblast counts in groups 2, 3, and 4compared to group 1 (p = 0.000 for all). Blood vessel counts were more dominant in the PBM and PBM + CUR groups over group 1 (p = 0.000 for all). CFU and wound strength as well as macrophage, neutrophil, and fibroblast counts were found to be improved in the PBM + CUR and PBM groups compared to the CUR group (ranging from p = 0.000 to p < 0.05). Better results were achieved in the PBM + CUR treatment over the PBM therapy. We determined therapy with PBM + CUR, PBM alone, and CUR alone substantially accelerated diabetic wound healing in an IIDHWM of TIDM rats compared to control group. Concomitantly, the PBM + CUR and PBM groups attained significantly enhanced results for WCR, stereological parameters, and wound strength than the CUR group, with the PBM + CUR results being superior to those of the PBM group.
Collapse
Affiliation(s)
- Hamidreza Omidi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaysan Sohrabi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansooreh Mirzaei
- Department of Anatomy, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Asghari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Latif Gachkar
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
| |
Collapse
|
10
|
Traber J, Wild T, Marotz J, Berli MC, Franco-Obregón A. Concurrent Optical- and Magnetic-Stimulation-Induced Changes on Wound Healing Parameters, Analyzed by Hyperspectral Imaging: An Exploratory Case Series. Bioengineering (Basel) 2023; 10:750. [PMID: 37508777 PMCID: PMC10376418 DOI: 10.3390/bioengineering10070750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The effects of concurrent optical and magnetic stimulation (COMS) therapy on wound-healing-related parameters, such as tissue oxygenation and water index, were analyzed by hyperspectral imaging: an exploratory case series. Background: Oedema and inadequate perfusion have been identified as key factors in delayed wound healing and have been linked to reduced mitochondrial respiration. Targeting mitochondrial dysfunction is a promising approach in the treatment of therapy refractory wounds. This sub-study aimed to investigate the effects of concurrent optical and magnetic stimulation (COMS) on oedema and perfusion through measuring tissue oxygenation and water index, using hyperspectral imaging. Patients and methods: In a multi-center, prospective, comparative clinical trial, eleven patients with chronic leg and foot ulcers were treated with COMS additively to Standard of Care (SOC). Hyperspectral images were collected during patient visits before and after treatment to assess short- and long-term hemodynamic and immunomodulatory effects through changes in tissue oxygenation and water index. Results: The average time for wound onset in the eleven patients analyzed was 183 days, with 64% of them being considered unresponsive to SOC. At week 12, the rate of near-complete and complete wound closure was 64% and 45%, respectively. COMS therapy with SOC resulted in an increased short-term tissue oxygenation over the 8-week treatment phase, with oxygen levels decreasing in-between patient visits. The study further found a decrease in tissue water content after the therapy, with a general accumulation of water levels in-between patient visits. This study's long-term analysis was hindered by the lack of absolute values in hyperspectral imaging and the dynamic nature of patient parameters during visits, resulting in high interpatient and intervisit variability. Conclusions: This study showed that COMS therapy as an adjunct to SOC had a positive short-term effect on inflammation and tissue oxygenation in chronic wounds of various etiologies. These results further supported the body of evidence for safety and effectiveness of COMS therapy as a treatment option, especially for stagnant wounds that tended to stay in the inflammatory phase and required efficient phase transition towards healing.
Collapse
Affiliation(s)
- Jürg Traber
- Venenklinik Bellevue, Brückenstrasse 9, 8280 Kreuzlingen, Switzerland
| | - Thomas Wild
- Clinic of Plastic, Hand and Aesthetic Surgery Burn Center, BG Clinic Bergmannstrost, 06112 Halle (Saale), Germany
- Medical University Halle, Outpatient and Operating Center, Martin-Luther University Halle (Saale), 06112 Halle (Saale), Germany
- Institute of Applied Bioscience and Process Management Head of Education Course "Academic Wound Consultant", University of Applied Science Anhalt, 06366 Koethen, Germany
| | - Jörg Marotz
- BG-Klinikum Bergmannstrost, 06112 Halle (Saale), Germany
| | - Martin C Berli
- Department of Surgery, Spital Limmattal, 8952 Schlieren, Switzerland
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
11
|
Kasowanjete P, Abrahamse H, Houreld NN. Photobiomodulation at 660 nm Stimulates In Vitro Diabetic Wound Healing via the Ras/MAPK Pathway. Cells 2023; 12:cells12071080. [PMID: 37048153 PMCID: PMC10093328 DOI: 10.3390/cells12071080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are open chronic wounds that affect diabetic patients due to hyperglycaemia. DFUs are known for their poor response to treatment and frequently require amputation, which may result in premature death. The present study evaluated the effect of photobiomodulation (PBM) at 660 nm on wound healing via activation of Ras/MAPK signalling in diabetic wounded cells in vitro. This study used four human skin fibroblast cell (WS1) models, namely normal (N), wounded (W), diabetic (D), and diabetic wounded (DW). Cells were irradiated at 660 nm with 5 J/cm2. Non-irradiated cells (0 J/cm2) served as controls. Cells were incubated for 24 and 48 h post-irradiation, and the effect of PBM on cellular morphology and migration rate, viability, and proliferation was assessed. Basic fibroblast growth factor (bFGF), its phosphorylated (activated) receptor FGFR, and phosphorylated target proteins (Ras, MEK1/2 and MAPK) were determined by enzyme-linked immunosorbent assay (ELISA) and Western blotting; nuclear translocation of p-MAPK was determined by immunofluorescence. PBM resulted in an increase in bFGF and a subsequent increase in FGFR activation. There was also an increase in downstream proteins, p-Ras, p-MEK1/2 and p-MAPK. PBM at 660 nm led to increased viability, proliferation, and migration as a result of increased bFGF and subsequent activation of the Ras/MAPK signalling pathway. Therefore, this study can conclude that PBM at 660 nm stimulates in vitro diabetic wound healing via the bFGF-activated Ras/MAPK pathway.
Collapse
Affiliation(s)
- Patricia Kasowanjete
- Laser Research Centre, University of Johannesburg, Johannesburg 2006, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg 2006, South Africa
| | - Nicolette N. Houreld
- Laser Research Centre, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
12
|
Deng H, Li B, Shen Q, Zhang C, Kuang L, Chen R, Wang S, Ma Z, Li G. Mechanisms of diabetic foot ulceration: A review. J Diabetes 2023; 15:299-312. [PMID: 36891783 PMCID: PMC10101842 DOI: 10.1111/1753-0407.13372] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are associated with complex pathogenic factors and are considered a serious complication of diabetes. The potential mechanisms underlying DFUs have been increasingly investigated. Previous studies have focused on the three aspects of diabetic peripheral vascular disease, neuropathy, and wound infections. With advances in technology, researchers have been gradually conducting studies using immune cells, endothelial cells, keratinocytes, and fibroblasts, as they are involved in wound healing. It has been reported that the upregulation or downregulation of molecular signaling pathways is essential for the healing of DFUs. With a recent increase in the awareness of epigenetics, its regulatory role in wound healing has become a much sought-after trend in the treatment of DFUs. This review focuses on four aspects involved in the pathogenesis of DFUs: physiological and pathological mechanisms, cellular mechanisms, molecular signaling pathway mechanisms, and epigenetics. Given the challenge in the treatment of DFUs, we are hopeful that our review will provide new ideas for peers.
Collapse
Affiliation(s)
- Haibo Deng
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Binghui Li
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Qian Shen
- School of Foreign StudiesZhongnan University of Economics and LawWuhanHubeiChina
| | - Chenchen Zhang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Liwen Kuang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Ran Chen
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - SiYuan Wang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - ZhiQiang Ma
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Gongchi Li
- Department of Hand Surgery, Union Hospital affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
13
|
Rajendran NK, Houreld NN. Photobiomodulation hastens diabetic wound healing via modulation of the PI3K/AKT/FoxO1 pathway in an adipose derived stem cell-fibroblast co-culture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Jere SW, Houreld NN, Abrahamse H. Photobiomodulation activates the PI3K/AKT pathway in diabetic fibroblast cells in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 237:112590. [DOI: 10.1016/j.jphotobiol.2022.112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|
15
|
Tripodi N, Sidiroglou F, Fraser S, Husaric M, Kiatos D, Apostolopoulos V, Feehan J. The effects of polarized photobiomodulation on cellular viability, proliferation, mitochondrial membrane potential and apoptosis in human fibroblasts: Potential applications to wound healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 236:112574. [PMID: 36179581 DOI: 10.1016/j.jphotobiol.2022.112574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Photobiomodulation (PBM) is a widely used therapeutic intervention used to treat several chronic conditions. Despite this, fundamental research underpinning its effectiveness is lacking, highlighted by the lack of a definitive mechanism of action. Additionally, there are many treatment variables which remain underexplored, one of those being the effect of polarization the property of light that specifies the direction of the oscillating electric field. When applied to PBM, using linearly polarized light, when compared to otherwise identical non-polarized light, may enhance its biological efficacy. As such, we investigated the potential biological effects of polarized PBM when compared to non-polarized and non-irradiated controls in the domains of cellular viability, proliferation, apoptosis and mitochondrial membrane potential (ΔΨ) within cells exposed to oxidative stress. It was noted that polarized PBM, when compared to non-polarized PBM and non-irradiated controls, demonstrated mostly increased levels of cellular proliferation and ΔΨ, whilst decreasing the amount of cellular apoptosis. These results indicate that polarization may have utility in the clinical application of PBM. Future research is needed to further elucidate the underpinning mechanisms of PBM and polarization.
Collapse
Affiliation(s)
- Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Australia; First Year College, Victoria University, Melbourne, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia
| | - Fotios Sidiroglou
- First Year College, Victoria University, Melbourne, Australia; Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Maja Husaric
- Institute for Health and Sport, Victoria University, Melbourne, Australia; First Year College, Victoria University, Melbourne, Australia
| | - Dimitrios Kiatos
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia.
| |
Collapse
|
16
|
Kasowanjete P, Houreld NN, Abrahamse H. The effect of photomodulation on fibroblast growth factor and the Ras/MAPK signalling pathway: a review. J Wound Care 2022; 31:832-845. [DOI: 10.12968/jowc.2022.31.10.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Objective: Current therapies and technologies used to treat hard-to-heal diabetic wounds are limited to a 50% healing rate. The rise in the percentage of lower limb non-traumatic amputations in patients with diabetes has caused an increased demand for alternative, effective and safe treatment modalities. Photobiomodulation therapy (PBMT) utilises light to induce physiological changes and provide therapeutic benefits and has been shown to increase the healing of hard-to-heal wounds through the release of growth factors. The aim of this narrative review is to investigate the effect of photobiomodulation (PBM) on fibroblast growth factor (FGF) and the role of the Ras/MAPK signalling pathway in diabetic wound healing. Method: Relevant journal articles were obtained through PubMed and Google Scholar. Results: Experimental and clinical findings from the review show that PBM can stimulate the release of growth factors, including FGF, an essential cytokine in wound healing, and one which is present at lower concentrations in diabetic wounds. There is also activation of the Ras/MAPK signalling pathway. Conclusion: One mechanism through which healing may be stimulated by PBM is via the FGF-Ras/MAPK signalling pathway, although strong evidence under hyperglycaemic conditions is lacking.
Collapse
Affiliation(s)
| | - Nicolette N Houreld
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
17
|
Li T, Zhou L, Fan M, Chen Z, Yan L, Lu H, Jia M, Wu H, Shan L. Human Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Skin Aging of Nude Mice Through Autophagy-Mediated Anti-Senescent Mechanism. Stem Cell Rev Rep 2022; 18:2088-2103. [PMID: 35864432 DOI: 10.1007/s12015-022-10418-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Skin aging is a currently irreversible process, affected by increased oxidative stress, activated cellular senescence, and lacked regeneration of the dermal layer. Mesenchymal stem cells (MSCs), such as human umbilical cord-derived MSCs (hucMSCs), have pro-regeneration and anti-aging potencies. To explore whether hucMSCs can be used to treat skin aging, this study employed skin-aging model of nude mice to conduct in vivo assays, including biochemical analysis of superoxide dismutase (SOD) and malondialdehyde (MDA), gross observation, histopathological observation, and immunohistochemical analysis. To clarify how hucMSCs work on skin aging, this study employed skin-aging model of human dermal fibroblasts (HDFs) to conduct in vitro assays by applying conditional medium of hucMSCs (CMM), including wound healing assay, senescence staining, flow cytometric oxidative detection, real time PCR, and western blot analysis. The in vivo data demonstrated that hucMSCs dose-dependently removed wrinkles, smoothed skin texture, and increased dermal thickness and collagen production of aged skin by reversing SOD and MDA levels and up-regulating Col-1 and VEGF expressions, indicating anti-oxidative and pro-regenerative effects against skin aging. The in vitro data revealed that hucMSCs significantly reversed the senescence of HDFs by promoting cell migration, inhibiting ROS production, and restoring the overexpressions of oxidative and senescent markers through paracrine mode of action, and the paracrine mechanism was mediated by the inhibition of autophagy. This study provided novel knowledge regarding the anti-aging efficacy and paracrine mechanism of hucMSCs on skin, making hucMSCs-based therapy a promising regime for skin aging treatment.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengqiang Fan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yan
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Haishan Lu
- Department of Dermatology, PLA 903 Hospital, Hangzhou, China
| | - Ming Jia
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiling Wu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China. .,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China. .,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| |
Collapse
|
18
|
Atiba A, Abdo W, Ali EK, Abd-Elsalam M, Amer M, Abdel Monsef A, Taha R, Antar S, Mahmoud A. Topical and oral applications of Aloe vera improve healing of deep second-degree burns in rats via modulation of growth factors. Biomarkers 2022; 27:608-617. [PMID: 35734963 DOI: 10.1080/1354750x.2022.2085800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Introduction: Burn injuries are underappreciated injuries that cause significant morbidity and mortality. Burn injuries, especially severe burns, trigger immunological and inflammatory responses, metabolic abnormalities, and distributive shock, all of which can be extended to multiple organ failures. Aloe vera (A. vera) has been exploited for its medicinal properties for centuries. The goal of the present study is to examine the therapeutic effect of topical and oral administration of A. vera against deep second-degree burn in rats. Materials and methods: skin burn was created on the back of rats, and wound healing was assessed within the three examined groups; control, topical A. vera and oral A. vera throughout 30 days. Wound tissues were examined histologically, immunohistochemically for the expression of transforming growth factor beta-1 (TGF-β1), peroxiredoxin (Prdx6), and mRNA abundance of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was assessed. Results: Our finding showed acceleration of wound contraction with both topical and oral A. vera administration. Maturation of granulation tissues was seen in both A. vera-supplemented groups. The topical application of A. vera revealed marked remodelling of the granulation tissues and higher expression levels of TGF-β1, VEGF, bFGF, and Prdx6 in comparison with control and oral A. vera groups (P < 0.001). Conclusion: Both oral and topical applications of A. vera have beneficial effects in deep second-degree burn wound healing by boosting the growth factors and antioxidant status of skin tissue. The topical treatment was more efficient in accelerating wound healing and hence could be used efficiently to treat second-degree burns.
Collapse
Affiliation(s)
- Ayman Atiba
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.A.)
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (W.A.)
| | - Ehab K Ali
- Departments of Anatomy and Embryology, Faculty of Medicine, Al-Azhar University, New Damietta, Egypt; (E.K.A.)
| | - Marwa Abd-Elsalam
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt; (M.M.A.)
| | - Mohamed Amer
- Department of Histology, Faculty of Medicine, Al-Azhar University, New Damietta, Egypt; (M.E.A.)
| | - Ahmed Abdel Monsef
- Department of Physiology, Faculty of Medicine, Al-Azhar University, New Damietta, Egypt; (A.S.A.)
| | - Reda Taha
- Departments of Anatomy and Embryology, Faculty of Medicine, Al-Azhar, University, New Damietta, Egypt; (R.S.T.)
| | - Samar Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt; (S.A.A.)
| | - Ayman Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt; (A.M.M.).,Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.M.M.)
| |
Collapse
|
19
|
Reinboldt-Jockenhöfer F, Traber J, Liesch G, Bittner C, Benecke U, Dissemond J. Concurrent optical and magnetic stimulation therapy in patients with lower extremity hard-to-heal wounds. J Wound Care 2022; 31:S12-S21. [PMID: 35678774 DOI: 10.12968/jowc.2022.31.sup6.s12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The treatment of patients with hard-to-heal wounds represents a major multidisciplinary challenge. Therefore, the development and clinical validation of new technologies remains extremely important. The novel application of concurrent optical and magnetic stimulation (COMS) offers a promising noninvasive approach to support physiological wound healing processes, especially in hard-to-heal wounds. METHOD In a multicentre, prospective, comparative, clinical trial, patients with hard-to-heal wounds on lower extremities of different aetiologies were treated with COMS as an adjunct to standard of care (SOC). The primary endpoint was safety; secondary endpoints were wound healing, pain and wound-specific quality of life (Wound-QoL). RESULTS A total of 40 patients were enrolled in this study (intention to treat population (ITTP), n=40). Of these patients, 37 were included in the analysis of the primary endpoint (primary endpoint population, (PEP), n=37). A further subgroup of 30 patients was included in the analysis of the secondary endpoint (secondary endpoint population (SEP), n=30). Finally, the SEP was stratified regarding patients' responsiveness to SOC in an SOC non-responder subgroup (NRSG), n=21, and in an SOC responder subgroup (RSG), n=9. A total of 102 adverse events (AEs) were recorded, of which 96% were 'mild' or 'moderate', and 91% were either a singular or transient event. Only 11 AEs were serious and associated with inpatient treatments unrelated to the studied intervention. In the NRSG, reductions in wound size were found to be statistically significant within the different study periods. Additionally, an acceleration of the healing rate was detected between the baseline and the first four weeks of COMS treatment (p=0.041). The rate of near-complete and complete wound closure in the SEP after 12 weeks were 60% and 43%, respectively. Pain reduction across the treatment group was statistically significant (p≤0.002 for both the SEP and NRSG). The Wound-QoL score improved by 24% during the study (p=0.001). CONCLUSION In this study, COMS treatment for patients with hard-to-heal wounds on lower extremities was a safe and effective novel treatment option, especially for patients who did not respond to SOC.
Collapse
Affiliation(s)
| | - Jürg Traber
- Venenklinik Bellevue, Kreuzlingen, Switzerland
| | | | | | - Ulf Benecke
- Department of Dermatology, Venereology and Allergology, University Hospital, Essen, Germany
| | - Joachim Dissemond
- Department of Dermatology, Venereology and Allergology, University Hospital, Essen, Germany
| |
Collapse
|
20
|
Regulatory Processes of the Canonical Wnt/β-Catenin Pathway and Photobiomodulation in Diabetic Wound Repair. Int J Mol Sci 2022; 23:ijms23084210. [PMID: 35457028 PMCID: PMC9028270 DOI: 10.3390/ijms23084210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Skin is a biological system composed of different types of cells within a firmly structured extracellular matrix and is exposed to various external and internal insults that can break its configuration. The restoration of skin's anatomic continuity and function following injury is a multifaceted, dynamic, well-coordinated process that is highly dependent on signalling pathways, including the canonical Wnt/β catenin pathway, all aimed at restoring the skin's protective barrier. Compromised and inappropriate tissue restoration processes are often the source of wound chronicity. Diabetic patients have a high risk of developing major impediments including wound contamination and limb amputation due to chronic, non-healing wounds. Photobiomodulation (PBM) involves the application of low-powered light at specific wavelengths to influence different biological activities that incite and quicken tissue restoration. PBM has been shown to modulate cellular behaviour through a variety of signal transduction pathways, including the Wnt/β catenin pathway; however, the role of Wnt/β catenin in chronic wound healing in response to PBM has not been fully defined. This review largely focuses on the role of key signalling pathways in human skin wound repair, specifically, the canonical Wnt/β-catenin pathway, and the effects of PBM on chronic wound healing.
Collapse
|
21
|
Oliveira RF, Marquiore LF, Gomes CBS, de Abreu PTR, Ferreira LAQ, Diniz LA, Gomes NA, Jácome‐Santos H, Moreno A, Macari S, Mesquita RA, Silva TA, Marques MM, Diniz IMA. Interplay between epithelial and mesenchymal cells unveils essential proinflammatory and pro‐resolutive mediators modulated by photobiomodulation therapy at 660 nm. Wound Repair Regen 2022; 30:345-356. [PMID: 35373874 DOI: 10.1111/wrr.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 03/04/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Rafaela F. Oliveira
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Larissa F. Marquiore
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Cristopher B. S. Gomes
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Priscila T. R. de Abreu
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Luiza A. Q. Ferreira
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Luiza A. Diniz
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Natália A. Gomes
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Humberto Jácome‐Santos
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Amália Moreno
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Soraia Macari
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Ricardo A. Mesquita
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Tarcília A. Silva
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Márcia M. Marques
- Post‐Graduation Program in Dentistry, Ibirapuera University São Paulo São Paulo Brazil
| | - Ivana M. A. Diniz
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
22
|
Oyebode OA, Houreld NN. Photobiomodulation at 830 nm Stimulates Migration, Survival and Proliferation of Fibroblast Cells. Diabetes Metab Syndr Obes 2022; 15:2885-2900. [PMID: 36172056 PMCID: PMC9510698 DOI: 10.2147/dmso.s374649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Photobiomodulation (PBM) promotes diabetic wound healing by favoring cell survival and proliferation. This study aimed to investigate the potential of PBM in stimulating cellular migration, viability, and proliferation using the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. METHODS The study explored the in vitro effects of near infrared (NIR) light on cell viability (survival) and proliferation as well as the presence of TGF-β1, phosphorylated TGF-β receptor type I (pTGF-βR1) and phosphorylated mothers against decapentaplegic-homolog (Smad)-2/3 (p-Smad2/3) in different fibroblast cell models. RESULTS Results show a significant increase in cellular migration in wounded models, and increased viability and proliferation in irradiated cells compared to their respective controls. An increase in the presence of TGF-β1 in the culture media, a reduction in pTGF-βR1 and a slight presence of p-Smad2/3 was observed in the cells. CONCLUSION These findings show that PBM at 830 nm using a fluence of 5 J/cm2 could induce cell viability, migration and proliferation to favor successful healing of diabetic wounds. This study contributes to the growing body of knowledge on the molecular and cellular effect of PBM and showcases the suitability of PBM at 830 nm in managing diabetic wounds.
Collapse
Affiliation(s)
- Olajumoke Arinola Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa
- Correspondence: Olajumoke Arinola Oyebode, Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa, Tel + 27781519058, Email
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa
| |
Collapse
|
23
|
Cai W, Hamushan M, Zhang Y, Xu Z, Ren Z, Du J, Ju J, Cheng P, Tan M, Han P. Synergistic Effects of Photobiomodulation Therapy with Combined Wavelength on Diabetic Wound Healing In Vitro and In Vivo. Photobiomodul Photomed Laser Surg 2022; 40:13-24. [PMID: 34941461 DOI: 10.1089/photob.2021.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective: The difficulty in chronic diabetic wound healing remains the focus of clinical research. Photobiomodulation therapy (PBMT) with different wavelengths could exert different effects on wound healing, but the effects of combined red and blue light (BL) remained unclear. Methods: Diabetic rat wound model and diabetic wounded endothelial cell model were established to observe possible effects of PBMT using combined wavelengths for wound healing. Cells and animals were separated into four groups exposed to red and/or BL. Cell viability, apoptosis, and migration, as well as the expression level of nitric oxide (NO), vascular endothelial growth factor, interleukin-6, and tumor necrosis factor-α were measured in vitro. Diabetic rats were evaluated for wound closure rates, collagen deposition, inflammation intensity, and density of neovascularization after light irradiation. Results: PBMT using combined wavelengths significantly sped up the healing process with increasing angiogenesis density, collagen deposition, and alleviating inflammation in vivo. Moreover, combined wavelength irradiation promoted cell proliferation and migration, and NO production, as well as reduced reactive oxygen species and inflammation in vitro. Conclusions: PBMT using combined wavelengths performed a synergistic effect for promoting diabetic wound healing and would be helpful to explore a more efficient pattern toward chronic wound healing.
Collapse
Affiliation(s)
- Weijie Cai
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Musha Hamushan
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yubo Zhang
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhengyu Xu
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zun Ren
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiafei Du
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiaqi Ju
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Pengfei Cheng
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Moyan Tan
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Pei Han
- Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
24
|
Mostafavinia A, Ahmadi H, Amini A, Roudafshani Z, Hamblin MR, Chien S, Bayat M. The effect of photobiomodulation therapy on antioxidants and oxidative stress profiles of adipose derived mesenchymal stem cells in diabetic rats. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120157. [PMID: 34271236 DOI: 10.1016/j.saa.2021.120157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
We studied the effects of photobiomodulation therapy (PBMT) on adipose-derived mesenchymal stem cells (ADSCs) which were extracted from streptozotocin (STZ) induced diabetic rats. Adipose tissue was extracted from the hypodermis of diabetic rats, and diabetic ADSCs were extracted, characterized, and cultured. There were two in vitro groups: control-diabetic ADSCs, and PBMT-diabeticADSCs. We used 630 nm and 810 nm laser at 1.2 J/cm2 with 3 applications 48 h apart. We measured cell viability, apoptosis, population doubling time (PDT), and reactive oxygen species (ROS) by flow cytometry. Gene expression of antioxidants, including cytosolic copper-zinc superoxide dismutase (SOD1), catalase (CAT), total antioxidant capacity (TAC), and oxidative stress biomarkers (NADPH oxidase 1 and 4) by quantitative real time (qRT) - PCR. In this study, data were analyzed using t-test. Viability of PBMT-diabetic- ADSC group was higher than control- diabetic-ADSC (p = 0.000). PDT and apoptosis of PBMT- diabetic-ADSC group were lower than control-diabetic -ADSC (p = 0.001, p = 0.02). SOD1 expression and TAC of PBMT- diabetic-ADSC group were higher than control -diabetic -ADSC (p = 0.018, p = 0.005). CAT of PBMT -diabetic-ADSC group was higher than control-diabetic -ADSC. ROS, NOX1, and NOX4 of PBMT- diabetic -ADSC group were lower than control-diabetic-ADSC (p = 0.002, p = 0.021, p = 0.017). PBMT may improve diabetic- ADSC function in vitro by increasing levels of cell viability, and gene expression of antioxidant agents (SOD1, CAT, and TAC), and significantly decreasing of levels of PDT, apoptosis, ROS, and gene expression of oxidative stress biomarkers (NOX1 and NOX4).
Collapse
Affiliation(s)
- Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Roudafshani
- Central Lab, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| |
Collapse
|
25
|
Cellular Signalling and Photobiomodulation in Chronic Wound Repair. Int J Mol Sci 2021; 22:ijms222011223. [PMID: 34681882 PMCID: PMC8537491 DOI: 10.3390/ijms222011223] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/29/2022] Open
Abstract
Photobiomodulation (PBM) imparts therapeutically significant benefits in the healing of chronic wounds. Chronic wounds develop when the stages of wound healing fail to progress in a timely and orderly frame, and without an established functional and structural outcome. Therapeutic benefits associated with PBM include augmenting tissue regeneration and repair, mitigating inflammation, relieving pain, and reducing oxidative stress. PBM stimulates the mitochondria, resulting in an increase in adenosine triphosphate (ATP) production and the downstream release of growth factors. The binding of growth factors to cell surface receptors induces signalling pathways that transmit signals to the nucleus for the transcription of genes for increased cellular proliferation, viability, and migration in numerous cell types, including stem cells and fibroblasts. Over the past few years, significant advances have been made in understanding how PBM regulates numerous signalling pathways implicated in chronic wound repair. This review highlights the significant role of PBM in the activation of several cell signalling pathways involved in wound healing.
Collapse
|
26
|
Yoon SR, Hong N, Lee MY, Ahn JC. Photobiomodulation with a 660-Nanometer Light-Emitting Diode Promotes Cell Proliferation in Astrocyte Culture. Cells 2021; 10:1664. [PMID: 34359834 PMCID: PMC8307591 DOI: 10.3390/cells10071664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes act as neural stem cells (NSCs) that have the potential to self-renew and differentiate into other neuronal cells. The protein expression of these astrocytes depends on the stage of differentiation, showing sequential expression of multiple proteins such as octamer-binding transcription factor 4 (Oct4), nestin, glial fibrillary acidic protein (GFAP), and aldehyde dehydrogenase 1 family member L1 (aldh1L1). Photobiomodulation (PBM) affects cell apoptosis, proliferation, migration, and adhesion. We hypothesized that astrocyte proliferation and differentiation would be modulated by PBM. We used an optimized astrocyte culture method and a 660-nanometer light-emitting diode (LED) to enhance the biological actions of many kinds of cells. We determined that the 660-nanometer LED promoted the biological actions of cultured astrocytes by increasing the reactive oxygen species levels. The overall viability of the cultured cells, which included various cells other than astrocytes, did not change after LED exposure; however, astrocyte-specific proliferation was observed by the increased co-expression of GFAP and bromodeoxyuridine (BrdU)/Ki67. Furthermore, the 660-nanometer LED provides evidence of differentiation, as shown by the decreased Oct4 and GFAP co-expression and increased nestin and aldh1L1 expression. These results demonstrate that a 660-nanometer LED can modify astrocyte proliferation, which suggests the efficacy of the therapeutic application of LED in various pathological states of the central nervous system.
Collapse
Affiliation(s)
- Sung-Ryeong Yoon
- Department of Medical Laser, Graduate School of Medicine, Dankook University, Cheonan 31116, Korea;
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Korea;
| | - Namgue Hong
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Korea;
| | - Min-Young Lee
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Korea
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Jin-Chul Ahn
- Department of Medical Laser, Graduate School of Medicine, Dankook University, Cheonan 31116, Korea;
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Korea;
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
27
|
Oyebode O, Houreld NN, Abrahamse H. Photobiomodulation in diabetic wound healing: A review of red and near-infrared wavelength applications. Cell Biochem Funct 2021; 39:596-612. [PMID: 33870502 DOI: 10.1002/cbf.3629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
The development of a painless, non-invasive, and faster way to diabetic wound healing is at the forefront of research. The complexity associated with diabetic wounds makes it a cause for concern amongst diabetic patients and the world at large. Irradiation of cells generates a photobiomodulatory response on cells and tissues, directly causing alteration of cellular processes and inducing diabetic wound repair. Photobiomodulation therapy (PBMT) using red and near-infrared (NIR) wavelengths is being considered as a promising technique for speeding up the rate of diabetic wound healing, eradication of pain and reduction of inflammation through the alteration of diverse cellular and molecular processes. This review presents the extent to which the potential of red and NIR wavelengths have been harnessed in PBMT for diabetic wound healing. Important research challenges and gaps are identified and discussed, and future directions mapped out. This review thus provides useful insights and strategies into improvement of PBMT, including its acceptance within the global medical research community.
Collapse
Affiliation(s)
- Olajumoke Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
28
|
Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with Light-Emitting Diode: Implications and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6663539. [PMID: 33623634 PMCID: PMC7875639 DOI: 10.1155/2021/6663539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 01/08/2023]
Abstract
This study evaluated the effects of light-emitting diode (LED) on mesenchymal stem cells (MSCs). An electronic search was conducted in PubMed/MEDLINE, Scopus, and Web of Science database for articles published from 1980 to February 2020. Ten articles met the search criteria and were included in this review. The risk of bias was evaluated to report quality, safety, and environmental standards. MSCs were derived from adipose tissue, bone marrow, dental pulp, gingiva, and umbilical cord. Protocols for cellular irradiation used red and blue light spectrum with variations of the parameters. The LED has been shown to induce greater cellular viability, proliferation, differentiation, and secretion of growth factors. The set of information available leads to proposing a complex signaling cascade for the action of photobiomodulation, including angiogenic factors, singlet oxygen, mitogen-activated protein kinase/extracellular signal-regulated protein kinase, Janus kinase/signal transducer, and reactive oxygen species. In conclusion, although our results suggest that LED can boost MSCs, a nonuniformity in the experimental protocol, bias, and the limited number of studies reduces the power of systematic review. Further research is essential to find the optimal LED irradiation parameters to boost MSCs function and evaluate its impact in the clinical setting.
Collapse
|
29
|
Lewandowski RB, Stępińska M, Gietka A, Dobrzyńska M, Łapiński MP, Trafny EA. The red-light emitting diode irradiation increases proliferation of human bone marrow mesenchymal stem cells preserving their immunophenotype. Int J Radiat Biol 2021; 97:553-563. [PMID: 33471577 DOI: 10.1080/09553002.2021.1876947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/20/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE For effective clinical application of human bone marrow mesenchymal stem cells (hBM-MSCs), the enhancement of their proliferation in vitro together with maintaining the expression of their crucial surface antigens and differentiation potential is necessary. The present study aimed to investigate the effect of light-emitting diode (LED) irradiation on hBM-MSCs proliferation after two, five, or nine days post-irradiation. MATERIALS AND METHODS The hBM-MSCs were exposed to the LED light at 630 nm, 4 J/cm2, and power densities of 7, 17, or 30 mW/cm2. To assess the cell proliferation rate in the sham-irradiated and irradiated samples the cells metabolic activity and DNA content were determined. The number of apoptotic and necrotic cells in the samples was also evaluated. The expression of the crucial surface antigens of the hBM-MSCs up to nine days after irradiation at 4 J/cm2 and 17 mW/cm2 was monitored with flow cytometry. Additionally, the potential of hBM-MSCs for induced differentiation was measured. RESULTS When the metabolic activity was assayed, the significant increase in the cell proliferation rate by 31 and 50% after the irradiation with 4 J/cm2 and 17 mW/cm2, respectively, was observed at day five and nine when compared to the sham-irradiated cells (p < .05). Similarly, DNA content within the irradiated hBM-MSCs increased by 31 and 41% at day five and nine after the irradiation with 4 J/cm2 and 17 mW/cm2 in comparison to the sham-irradiated cells. LED irradiation did not change the expression of the crucial surface antigens of the hBM-MSCs up to nine days after irradiation at 4 J/cm2 and 17 mW/cm2. At the same experimental conditions, the hBM-MSCs maintain in vitro their capability for multipotential differentiation into osteoblasts, adipocytes, and chondrocytes. CONCLUSION Therefore, LED irradiation at a wavelength of 630 nm, energy density 4 J/cm2, and power density 17 mW/cm2 can effectively increase the number of viable hBM-MSCs in vitro.
Collapse
Affiliation(s)
- Rafał B Lewandowski
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Małgorzata Stępińska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Andrzej Gietka
- Optoelectronic Technologies Division, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Monika Dobrzyńska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Mariusz P Łapiński
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Elżbieta A Trafny
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| |
Collapse
|
30
|
The effects of photobiomodulation on human dermal fibroblasts in vitro: A systematic review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 214:112100. [DOI: 10.1016/j.jphotobiol.2020.112100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
|
31
|
Rajendran NK, Houreld NN, Abrahamse H. Photobiomodulation reduces oxidative stress in diabetic wounded fibroblast cells by inhibiting the FOXO1 signaling pathway. J Cell Commun Signal 2020; 15:195-206. [PMID: 33052534 DOI: 10.1007/s12079-020-00588-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to elucidate the underlying molecular mechanism of photobiomodulation (PBM) in attenuating oxidative stress in diabetic wounded fibroblast cells. Cell models were exposed to PBM at a wavelength of 660 nm (fluence of 5 J/cm2, and power density of 11.2 mW/cm2) or 830 nm (fluence of 5 J/cm2, and power density of 10.3 mW/cm2). Non-irradiated cell models were used as controls. Cellular migration was determined at regular time intervals (0, 12, 24 and 48 h) using inverted light microscopy. Cell viability was determined by the Trypan blue exclusion assay. The levels of enzymic antioxidants superoxide dismutase (SOD), catalase (CAT), and heme oxygenase (HMOX1) were determined by the enzyme linked immunosorbent assay (ELISA). The alteration in the levels of AKT and FOXO1 was determined by immunofluorescence and western blotting. Upon PBM treatment, elevated oxidative stress was reversed in diabetic and diabetic wounded fibroblast cells. The reduced oxidative stress was represented by decreased FOXO1 levels and increased levels of SOD, CAT and HMOX1. This might be due to the activation of the AKT signaling pathway. This study concluded that treatment with PBM progressed diabetic wound healing by attenuating oxidative stress through inhibition of the FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
32
|
Dhilip Kumar SS, Houreld NN, Abrahamse H. Selective Laser Efficiency of Green-Synthesized Silver Nanoparticles by Aloe arborescens and Its Wound Healing Activities in Normal Wounded and Diabetic Wounded Fibroblast Cells: In vitro Studies. Int J Nanomedicine 2020; 15:6855-6870. [PMID: 32982237 PMCID: PMC7509482 DOI: 10.2147/ijn.s257204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Silver nanoparticles (AgNPs) have been extensively used in wound healing applications owing to their valuable physicochemical and biological properties. The main objective of this study was to evaluate the combined effects of green-synthesized silver nanoparticles (G-AgNPs) and photobiomodulation (PBM; laser irradiation at 830 nm with 5 J/cm2) in normal wounded and diabetic wounded fibroblast cells (WS1). Methods The combined effect of G-AgNPs and PBM was studied by various in vitro wound healing studies including cell morphology, cell migration rate and percentage wound closure, cell viability, cell proliferation, and filamentous (F)-actin and nuclear morphology staining. Results Cell viability results revealed good cellular compatibility of G-AgNPs to WS1 cells. The combined therapy of G-AgNPs and PBM demonstrated promising results to achieve progressive migration and wound closure in both normal wounded and diabetic wounded cell models. G-AgNPs alone and in combination with PBM had no negative effect on cell viability and proliferation, and there was an increase in cell migration. Conclusion Overall, these findings demonstrate that the combined treatment of G-AgNPs and PBM does not display any adverse effects on wound healing processes in both normal wounded and diabetic wounded cell models.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
33
|
Shen W, Teo KYC, Wood JPM, Vaze A, Chidlow G, Ao J, Lee SR, Yam MX, Cornish EE, Fraser-Bell S, Casson RJ, Gillies MC. Preclinical and clinical studies of photobiomodulation therapy for macular oedema. Diabetologia 2020; 63:1900-1915. [PMID: 32661752 DOI: 10.1007/s00125-020-05189-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/16/2020] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS Diabetic macular oedema (DME) is the leading cause of visual impairment in people with diabetes. Intravitreal injections of vascular endothelial growth factor inhibitors or corticosteroids prevent loss of vision by reducing DME, but the injections must be given frequently and usually for years. Here we report laboratory and clinical studies on the safety and efficacy of 670 nm photobiomodulation (PBM) for treatment of centre-involving DME. METHODS The therapeutic effect of PBM delivered via a light-emitting diode (LED) device was tested in transgenic mice in which induced Müller cell disruption led to photoreceptor degeneration and retinal vascular leakage. We also developed a purpose-built 670 nm retinal laser for PBM to treat DME in humans. The effect of laser-delivered PBM on improving mitochondrial function and protecting against oxidative stress was studied in cultured rat Müller cells and its safety was studied in pigmented and non-pigmented rat eyes. We then used the retinal laser to perform PBM in an open-label, dose-escalation Phase IIa clinical trial involving 21 patients with centre-involving DME. Patients received 12 sessions of PBM over 5 weeks for 90 s per treatment at a setting of 25, 100 or 200 mW/cm2 for the three sequential cohorts of 6-8 patients each. Patients were recruited from the Sydney Eye Hospital, over the age of 18 and had centre-involving DME with central macular thickness (CMT) of >300 μm with visual acuity of 75-35 Log minimum angle of resolution (logMAR) letters (Snellen visual acuity equivalent of 20/30-20/200). The objective of this trial was to assess the safety and efficacy of laser-delivered PBM at 2 and 6 months. The primary efficacy outcome was change in CMT at 2 and 6 months. RESULTS LED-delivered PBM enhanced photoreceptor mitochondrial membrane potential, protected Müller cells and photoreceptors from damage and reduced retinal vascular leakage resulting from induced Müller cell disruption in transgenic mice. PBM delivered via the retinal laser enhanced mitochondrial function and protected against oxidative stress in cultured Müller cells. Laser-delivered PBM did not damage the retina in pigmented rat eyes at 100 mW/cm2. The completed clinical trial found a significant reduction in CMT at 2 months by 59 ± 46 μm (p = 0.03 at 200 mW/cm2) and significant reduction at all three settings at 6 months (25 mW/cm2: 53 ± 24 μm, p = 0.04; 100 mW/cm2: 129 ± 51 μm, p < 0.01; 200 mW/cm2: 114 ± 60 μm, p < 0.01). Laser-delivered PBM was well tolerated in humans at settings up to 200 mW/cm2 with no significant side effects. CONCLUSIONS/INTERPRETATION PBM results in anatomical improvement of DME over 6 months and may represent a safe and non-invasive treatment. Further testing is warranted in randomised clinical trials. TRIAL REGISTRATION ClinicalTrials.gov NCT02181400 Graphical abstract.
Collapse
Affiliation(s)
- Weiyong Shen
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Kelvin Yi Chong Teo
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - John P M Wood
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Anagha Vaze
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Glyn Chidlow
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jack Ao
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia
| | - So-Ra Lee
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Michelle X Yam
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Elisa E Cornish
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Samantha Fraser-Bell
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Robert J Casson
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Mark C Gillies
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia.
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia.
| |
Collapse
|
34
|
Rahbar Layegh E, Fadaei Fathabadi F, Lotfinia M, Zare F, Mohammadi Tofigh A, Abrishami S, Piryaei A. Photobiomodulation therapy improves the growth factor and cytokine secretory profile in human type 2 diabetic fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111962. [PMID: 32712344 DOI: 10.1016/j.jphotobiol.2020.111962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023]
Abstract
Impaired wound healing is a common complication of diabetes mellitus (DM) and the underlying mechanism of this impairment is still unclear. Fibroblast, as the main reconstructing cell, secretes some critical growth factors and cytokine contributing to wound healing. It is well known that DM alters the behavior of these cells and photobiomodulation therapy (PBMT) compensates some impairments in diabetic fibroblasts. Therefore, the aim of the present study was to demonstrate the impact of diabetes and the role of PBMT through low level laser irradiation on secretory profile of human diabetic fibroblasts. Primary human dermal fibroblasts from normal (HDFs) and diabetic (DHDFs) donors were harvested. For PBMT, the DHDFs were irradiated with a Helium-Neon laser at 632.8 nm wavelength and energy density of 0.5 J/cm2, as laser treated group (LT-DHDFs). Next, some cellular behaviors and secretory profiling array for 60 growth factors/cytokines were investigated in LT-DHDFs and then compared with those of controls. The data showed that the PBMT could compensate such impairments occurred in DHDFs in terms of viability, proliferation, and migration. Furthermore, considering our novel findings, out of those 20 growth factors/cytokines involved in cell proliferation, immune system regulation, and cell-cell communication pathways, which significantly decreased in DHDF as compared with HDFs, the PBMT could compensate seven in LT-DHDFs as compared with DHDFs. The seven growth factor/cytokines, which are mainly involved in cell-cell communication, positive regulation of cell proliferation, and chemokine mediated pathway included BDNF, Eotaxin-3, FGF6, FGF7, Fractalkine, fit-3ligand, and GCP-2. Therefore, it is suggested that scrutinizing these differentially secreted molecules and the impaired pathways in DHDFs, in combination with those compensated in LT-DHDFs, could raise our knowledge to manage diabetic ulcer through a feasible and cost effective intervention, specifically PBMT.
Collapse
Affiliation(s)
- E Rahbar Layegh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Fadaei Fathabadi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - M Lotfinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - F Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Mohammadi Tofigh
- Department of General Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Abrishami
- Department of Cardiovascular Surgery, Imam Khomeini Hospital Complex, Tehran Iniversity Medical Center, Tehran, Iran
| | - A Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Effect of photobiomodulation on cellular migration and survival in diabetic and hypoxic diabetic wounded fibroblast cells. Lasers Med Sci 2020; 36:365-374. [PMID: 32483750 DOI: 10.1007/s10103-020-03041-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
A disrupted wound repair process often leads to the development of chronic wounds, and pose a major physical, social and economic inconvenience on patients and the public health sector. Chronic wounds are a common complication seen in diabetes mellitus (DM), and often the severity necessitates amputation of the lower limbs. Recently, there has been increasing evidence that photobiomodulation (PBM) initiates wound healing, including increased protein transcription for cell proliferation, viability, migration and tissue reepithelialisation. Here, the hypothesis that PBM at a wavelength of 660 nm and energy density of 5 J/cm2 regulates wound repair in diabetic wounded and hypoxic diabetic wounded fibroblasts by enhancing cell migration and survival was investigated. PBM increased migration and survival in diabetic wounded and hypoxic diabetic wounded fibroblasts. Our findings suggest that PBM enhances migration and survival in diabetic wounded and hypoxic diabetic wounded fibroblasts, indicating that this therapeutic method may be beneficial against chronic wounds in diabetic patients.
Collapse
|
36
|
Photobiomodulation and the expression of genes related to the JAK/STAT signalling pathway in wounded and diabetic wounded cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111791. [PMID: 31981991 DOI: 10.1016/j.jphotobiol.2020.111791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
Photobiomodulation therapy (PBMT) is a curative technique that uses low intensity light to relegate pain and inflammation, and accelerate tissue repair. At a molecular level, the effects of photobiomodulation (PBM) are not fully established. The present study aimed to assess the impact of PBM on the alteration of genes linked to Janus kinase-Signal transducer and activator of transcription (JAK-STAT) signalling in wounded and diabetic wounded cells in vitro. Cells were irradiated using a diode laser at a wavelength of 660 nm and an energy density of 5 J/cm2. RNA was extracted from cells 48 h post-irradiation, and was used to synthesise complementary deoxyribonucleic acid (cDNA) that was used in PCR arrays to profile for 84 JAK/STAT signalling related genes. Irradiation at a wavelength of 660 nm and an energy density of 5 J/cm2 significantly regulated genes related to the JAK/STAT signalling pathway in wounded and diabetic wounded cells. In irradiated wounded cells, 19 genes were significantly regulated, of which two were up-regulated and 17 were down-regulated, while 73 genes were significantly regulated in irradiated diabetic wounded cells of which 46 were up-regulated and 27 were down-regulated. This data suggests that PBM modulates gene transcription for protein synthesis and activates cellular signalling, and may indeed be helpful in enhancing diabetic wound repair.
Collapse
|
37
|
Mokoena DR, Houreld NN, Dhilip Kumar SS, Abrahamse H. Photobiomodulation at 660 nm Stimulates Fibroblast Differentiation. Lasers Surg Med 2019; 52:671-681. [DOI: 10.1002/lsm.23204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Dimakatso R. Mokoena
- Laser Research Centre, Faculty of Health SciencesUniversity of Johannesburg P.O. Box 17011 Doornfontein 2028 South Africa
| | - Nicolette N. Houreld
- Laser Research Centre, Faculty of Health SciencesUniversity of Johannesburg P.O. Box 17011 Doornfontein 2028 South Africa
| | - Sathish S. Dhilip Kumar
- Laser Research Centre, Faculty of Health SciencesUniversity of Johannesburg P.O. Box 17011 Doornfontein 2028 South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health SciencesUniversity of Johannesburg P.O. Box 17011 Doornfontein 2028 South Africa
| |
Collapse
|
38
|
Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine Growth Factor Rev 2019; 50:52-59. [PMID: 30890300 DOI: 10.1016/j.cytogfr.2019.03.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
|
39
|
Abstract
Diabetic patients frequently develop chronic ulcers of the lower extremities, which are a frequent cause for hospitalization and amputation, placing strain on patients, their families, and healthcare systems. Present therapies remain a challenge, with high recurrence rates. Photobiomodulation (PBM), which is the non-invasive application of light at specific wavelengths, has been shown to speed up healing of chronic wounds, including diabetic foot ulcers (DFUs). PBM produces photophysical and photochemical changes within cells without eliciting thermal damage. It has been shown to promote tissue regeneration and speed up wound repair by reducing inflammation and oxidative stress, accelerating cell migration and proliferation, and promoting extracellular matrix production and release of essential growth factors. The shortage of rigorous, well-designed clinical trials makes it challenging to assess the scientific impact of PBM on DFUs, and lack of understanding of the underlying mechanisms also hinders the conventional use of this therapy. This review gives a glimpse into diabetic wound healing and PBM, and the effects of PBM on diabetic wound healing.
Collapse
|
40
|
Shang W, Chen G, Li Y, Zhuo Y, Wang Y, Fang Z, Yu Y, Ren H. Static Magnetic Field Accelerates Diabetic Wound Healing by Facilitating Resolution of Inflammation. J Diabetes Res 2019; 2019:5641271. [PMID: 31886281 PMCID: PMC6915019 DOI: 10.1155/2019/5641271] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Impaired wound healing is commonly encountered in patients with diabetes mellitus, which may lead to severe outcomes such as amputation, if untreated timely. Macrophage plays a critical role in the healing process including the resolution phase. Although magnetic therapy is known to improve microcirculation, its effect on wound healing remains uncertain. In the present study, we found that 0.6 T static magnetic field (SMF) significantly accelerated wound closure and elevated reepithelialization and revascularization in diabetic mice. Notably, SMF promoted the wound healing by skewing the macrophage polarization towards M2 phenotype, thus facilitating the resolution of inflammation. In addition, SMF upregulated anti-inflammatory gene expression via activating STAT6 and suppressing STAT1 in macrophage. Taken together, our results indicate that SMF may be a promising adjuvant therapeutic tool for treating diabetic wounds.
Collapse
Affiliation(s)
- Wenlong Shang
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guilin Chen
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yinxiu Li
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujuan Zhuo
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuhong Wang
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhicai Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, Zhejiang 313300, China
| | - Ying Yu
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huiwen Ren
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
41
|
Tricarico PM, Zupin L, Ottaviani G, Pacor S, Jean-Louis F, Boniotto M, Crovella S. Photobiomodulation therapy promotes in vitro wound healing in nicastrin KO HaCaT cells. JOURNAL OF BIOPHOTONICS 2018; 11:e201800174. [PMID: 29968387 DOI: 10.1002/jbio.201800174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Mutations in NCSTN gene (encoding for nicastrin protein) are associated with hidradenitis suppurativa (HS), a chronic inflammatory disease involving hair follicles. HS is clinically handled with drugs but the most severe cases are treated with surgery. Photobiomodulation (PBM) therapy, already used in the treatment of skin diseases such as acne, herpes virus lesions, ultraviolet damage, vitiligo, hypertrophic scar, keloid, burn, psoriasis and diabetic chronic wounds, could be beneficial as an adjuvant supportive treatment to promote and foster the healing process after skin excision in HS. The effects of PBM therapy in promoting the wound closure are evaluated in a HaCaT cells NCSTN-/-, assessing cell metabolism, migration rate, proliferation and cell cycle progression. In our experimental model, PBM exerts a potent action on metabolism of mutated keratinocytes, incrementing adenosine triphosphate (ATP) production at 2 hours, while after 24 hours an increase of metabolism with a decrement of intracellular ATP levels were recorded. Moreover, PBM speeds up the wound closure, inducing cells' migration without affecting their proliferation.Based on our findings, we suggest the use of PBM in HS patients, who undergo major surgery with large skin excision.
Collapse
Affiliation(s)
| | | | | | | | - Francette Jean-Louis
- INSERM U955 Eq.16, Institut Mondor de Recherche Biomédicale and VRI (Vaccine Research Institute), Créteil, France
| | - Michele Boniotto
- INSERM U955 Eq. 16, Institut Mondor de Recherche Biomédicale and Université Paris Est-Créteil (UPEC), Faculté de Médecine, Créteil, France
| | - Sergio Crovella
- University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
42
|
Role of photobiomodulation on the activation of the Smad pathway via TGF-β in wound healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:138-144. [PMID: 30343208 DOI: 10.1016/j.jphotobiol.2018.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/31/2018] [Accepted: 10/09/2018] [Indexed: 12/30/2022]
Abstract
Wound healing is an essential process in which the separated or destroyed tissue attempts to restore itself into its normal state. In some instances, healing is prolonged and remains stagnant in the inflammatory phase, and is referred to as a chronic wound. At a cellular and molecular level, many factors are required during the process of successful wound healing, such as cytokines, polypeptide growth factors and components of the extracellular matrix (ECM). Transforming growth factor-beta (TGF-β) is considered as one of the essential growth factors in wound healing. Working through the Smad pathway, it is the main inducer of fibroblast differentiation which is essential for wound healing. Photobiomodulation (PBM) shows significant advantages in wound healing, and may stimulate cellular processes and tissue regeneration that results in an increase in growth factors and a decrease in inflammatory cytokines. Moreover, it leads to enhanced cell proliferation, migration, angiogenesis, and increased adenosine triphosphate (ATP) and cytochrome C oxidase (CCO) activity. In this review paper, we discuss the effects of PBM and its role on the activation of the TGF-β/Smad pathway in the process of wound healing.
Collapse
|
43
|
Houreld NN, Ayuk SM, Abrahamse H. Cell Adhesion Molecules are Mediated by Photobiomodulation at 660 nm in Diabetic Wounded Fibroblast Cells. Cells 2018; 7:cells7040030. [PMID: 29659538 PMCID: PMC5946107 DOI: 10.3390/cells7040030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes affects extracellular matrix (ECM) metabolism, contributing to delayed wound healing and lower limb amputation. Application of light (photobiomodulation, PBM) has been shown to improve wound healing. This study aimed to evaluate the influence of PBM on cell adhesion molecules (CAMs) in diabetic wound healing. Isolated human skin fibroblasts were grouped into a diabetic wounded model. A diode laser at 660 nm with a fluence of 5 J/cm2 was used for irradiation and cells were analysed 48 h post-irradiation. Controls consisted of sham-irradiated (0 J/cm2) cells. Real-time reverse transcription (RT) quantitative polymerase chain reaction (qPCR) was used to determine the expression of CAM-related genes. Ten genes were up-regulated in diabetic wounded cells, while 25 genes were down-regulated. Genes were related to transmembrane molecules, cell–cell adhesion, and cell–matrix adhesion, and also included genes related to other CAM molecules. PBM at 660 nm modulated gene expression of various CAMs contributing to the increased healing seen in clinical practice. There is a need for new therapies to improve diabetic wound healing. The application of PBM alongside other clinical therapies may be very beneficial in treatment.
Collapse
Affiliation(s)
- Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa.
| | - Sandra M Ayuk
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa.
| |
Collapse
|