1
|
Wang MF, Yan T, Gao MC, Han CW, Yan ZQ, Gao YZ, Zhang W, Yi Z. A review of the advances in implant technology: accomplishments and challenges for the design of functionalized surface structures. Biomed Mater 2025; 20:032003. [PMID: 40199334 DOI: 10.1088/1748-605x/adca7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Biomedical implants are extensively utilized to replace hard-tissue defects owing to their biocompatibility and remarkable tissue-affinity. The materials and functional design are selected based on the resultant osseointegration level and resistance to infection, and these considerations constitute the dominant research topic in this field. However, high rates of implantation failure and peri-implantitis have been reported. Current research on biomedical-implant design encompasses enhancement of the implant surface properties, such as the roughness, nano/micro topography, and hydrophilicity, along with the realization of advanced features including antibacterial properties and cell and immunomodulation regulation. This review considers the two achievements of contemporary implant manufacturing; namely, osseointegration and the realization of antibacterial properties. Present mainstream surface modifications and coatings are discussed, along with functional design technologies and achievements. The impacts of direct surface-treatment techniques and osteogenic functional coatings on osseointegration performance and antibacterial surface structures are elucidated, considering inorganic and organic coatings with antibacterial properties as well as antibiotic-releasing coatings. Furthermore, this review highlights recent advancements in physically driven antimicrobial strategies. Expanding upon existing research, future directions for implant studies are proposed, including the realization of comprehensive functionality that integrates osseointegration and antibacterial properties, as well as patient-specific design. Our study presents a comprehensive review and offers a novel perspective on the design of biomedical implants for enhanced versatility. An in-depth exploration of future research directions will also stimulate subsequent investigations.
Collapse
Affiliation(s)
- Ming-Feng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Tao Yan
- Joint Orthopedics, Xiangyang Hospital Affiliated to Hubei University of Chinese Medicine, Xiangyang, Hubei 441000, People's Republic of China
| | - Ming-Cen Gao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Cheng-Wei Han
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Zhuo-Qun Yan
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Yu-Zhong Gao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Wei Zhang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
2
|
Truong TT, Mondal S, Doan VHM, Tak S, Choi J, Oh H, Nguyen TD, Misra M, Lee B, Oh J. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications. Adv Colloid Interface Sci 2024; 332:103263. [PMID: 39121830 DOI: 10.1016/j.cis.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The growing field of nanotechnology has witnessed numerous advancements over the past few years, particularly in the development of engineered nanoparticles. Compared with bulk materials, metal nanoparticles possess more favorable properties, such as increased chemical activity and toxicity, owing to their smaller size and larger surface area. Metal nanoparticles exhibit exceptional stability, specificity, sensitivity, and effectiveness, making them highly useful in the biomedical field. Metal nanoparticles are in high demand in biomedical nanotechnology, including Au, Ag, Pt, Cu, Zn, Co, Gd, Eu, and Er. These particles exhibit excellent physicochemical properties, including amenable functionalization, non-corrosiveness, and varying optical and electronic properties based on their size and shape. Metal nanoparticles can be modified with different targeting agents such as antibodies, liposomes, transferrin, folic acid, and carbohydrates. Thus, metal nanoparticles hold great promise for various biomedical applications such as photoacoustic imaging, magnetic resonance imaging, computed tomography (CT), photothermal, and photodynamic therapy (PDT). Despite their potential, safety considerations, and regulatory hurdles must be addressed for safe clinical applications. This review highlights advancements in metal nanoparticle surface engineering and explores their integration with emerging technologies such as bioimaging, cancer therapeutics and nanomedicine. By offering valuable insights, this comprehensive review offers a deep understanding of the potential of metal nanoparticles in biomedical research.
Collapse
Affiliation(s)
- Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hanmin Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Dung Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University, Jaipur, India
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
4
|
Ullah I, Khan SS, Ahmad W, Liu L, Rady A, Aldahmash B, Yu C, Wang Y. Silver incorporated SeTe nanoparticles with enhanced photothermal and photodynamic properties for synergistic effects on anti-bacterial activity and wound healing. RSC Adv 2024; 14:18871-18878. [PMID: 38873544 PMCID: PMC11167613 DOI: 10.1039/d4ra01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Bacteria invade the host's immune system, thereby inducing serious infections. Current treatments for bacterial infections mostly rely on single modalities, which cannot completely inhibit bacteria. This study evaluates the therapeutic potential of SeTe-Ag NPs, designed with excellent photo responsiveness, with a particular focus on their dual-action antibacterial effect and wound healing properties. SeTe-Ag NPs exhibited promising synergistic antibacterial effects due to their superior photothermal and photodynamic properties. The investigation records substantial zones of inhibition of bacteria, demonstrating potent antibacterial effect. Furthermore, upon the irradiation of near-infrared (NIR) light, SeTe-Ag NPs exhibit remarkable antibiofilm and wound-healing capabilities. Overall, this study shows the applications of NIR-active SeTe-Ag NPs, which serve as a versatile platform for biomedical applications.
Collapse
Affiliation(s)
- Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Waqar Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Yushu Wang
- School of Pharmaceutical Sciences, Southern Medical University No. 1023, South Shatai Road Guangzhou 510515 P. R. China
| |
Collapse
|
5
|
Antibacterial Activity of Ulva/Nanocellulose and Ulva/Ag/Cellulose Nanocomposites and Both Blended with Fluoride against Bacteria Causing Dental Decay. Polymers (Basel) 2023; 15:polym15041047. [PMID: 36850336 PMCID: PMC9961151 DOI: 10.3390/polym15041047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
One of the most prevalent chronic infectious disorders is tooth decay. Acids produced when plaque bacteria break down sugar in the mouth cause tooth decay. Streptococcus mutans and Lactobacillus acidophilus are the most prominent species related to dental caries. Innovative biocidal agents that integrate with a biomaterial to prevent bacterial colonization have shown remarkable promise as a result of the rapid advancement of nanoscience and nanotechnology. In this study, Ulva lactuca was used as a cellulose source and reducing agent to synthesize nanocellulose and Ulva/Ag/cellulose/nanocomposites. The characterizations of nanocellulose and Ulva/Ag/cellulose/nanocomposites were tested for FT-IR, TEM, SEM, EDS, XRD, and zeta potential. Ulva/Ag/cellulose/nanocomposites and Ulva/nanocellulose, both blended with fluoride, were tested as an antibacterial against S. mutans ATCC 25175 and L. acidophilus CH-2. The results of the SEM proved that nanocellulose is filament-shaped, and FT-IR proved that the functional groups of Ulva/nanocellulose and Ulva/Ag/cellulose/nanocomposites and cellulose are relatively similar but present some small diffusion in peaks. The TEM image demonstrated that the more piratical size distribution of Ulva/Ag/cellulose/nanocomposites ranged from 15 to 20 nm, and Ulva/nanocellulose ranged from 10 to 15 nm. Ulva/Ag/cellulose/nanocomposites have higher negativity than Ulva/nanocellulose. Ulva/Ag/cellulose/nanocomposites and Ulva/nanocellulose possess antibacterial activity against S. mutans ATCC 25175 and L. acidophilus CH-2, but Ulva/Ag/cellulose/nanocomposites are more effective, followed by that blended with fluoride. It is possible to use Ulva/Ag/cellulose/nanocomposites as an antimicrobial agent when added to toothpaste. It is promising to discover an economic and safe nanocomposite product from a natural source with an antimicrobial agent that might be used against tooth bacteria.
Collapse
|
6
|
Knowledgebase of potential multifaceted solutions to antimicrobial resistance. Comput Biol Chem 2022; 101:107772. [PMID: 36155273 DOI: 10.1016/j.compbiolchem.2022.107772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Antimicrobial resistance (AMR), a top threat to global health, challenges preventive and treatment strategies of infections. AMR strains of microbial pathogens arise through multiple mechanisms. The underlying "antibiotic resistance genes" (ARGs) spread through various species by lateral gene transfer thereby causing global dissemination. Human methods also augment this process through inappropriate use, non-compliance to treatment schedule, and environmental waste. Worldwide significant efforts are being invested to discover novel therapeutic solutions for tackling resistant pathogens. Diverse therapeutic strategies have evolved over recent years. In this work we have developed a comprehensive knowledgebase by collecting alternative antimicrobial therapeutic strategies from literature data. Therapeutic strategies against bacteria, virus, fungus and parasites were extracted from PubMed literature using text mining. We have used a subjective (sentimental) approach for data mining new strategies, resulting in broad coverage of novel entities and subsequently add objective data like entity name (including IUPAC), potency, and safety information. The extracted data was organized in a freely accessible web platform, KOMBAT. The KOMBAT comprises 1104 Chemical compounds, 220 of newly identified antimicrobial peptides, 42 bacteriophages, 242 phytochemicals, 106 nanocomposites, and 94 novel entities for phototherapy. Entities tested and evaluated on AMR pathogens are included. We envision that this database will be useful for developing future therapeutics against AMR pathogens. The database can be accessed through http://kombat.igib.res.in/.
Collapse
|
7
|
Ghulam AN, dos Santos OAL, Hazeem L, Pizzorno Backx B, Bououdina M, Bellucci S. Graphene Oxide (GO) Materials-Applications and Toxicity on Living Organisms and Environment. J Funct Biomater 2022; 13:jfb13020077. [PMID: 35735932 PMCID: PMC9224660 DOI: 10.3390/jfb13020077] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Graphene-based materials have attracted much attention due to their fascinating properties such as hydrophilicity, high dispersion in aqueous media, robust size, high biocompatibility, and surface functionalization ability due to the presence of functional groups and interactions with biomolecules such as proteins and nucleic acid. Modified methods were developed for safe, direct, inexpensive, and eco-friendly synthesis. However, toxicity to the environment and animal health has been reported, raising concerns about their utilization. This review focuses primarily on the synthesis methods of graphene-based materials already developed and the unique properties that make them so interesting for different applications. Different applications are presented and discussed with particular emphasis on biological fields. Furthermore, antimicrobial potential and the factors that affect this activity are reviewed. Finally, questions related to toxicity to the environment and living organisms are revised by highlighting factors that may interfere with it.
Collapse
Affiliation(s)
- Aminah N. Ghulam
- Department of Biology, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain; (A.N.G.); (L.H.)
| | - Otávio A. L. dos Santos
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Layla Hazeem
- Department of Biology, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain; (A.N.G.); (L.H.)
| | - Bianca Pizzorno Backx
- Numpex-Bio, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias, Duque de Caxias 25245-390, Brazil;
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
- Correspondence:
| |
Collapse
|
8
|
Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front Pharmacol 2022; 13:839808. [PMID: 35281905 PMCID: PMC8905495 DOI: 10.3389/fphar.2022.839808] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
After the first aminoglycoside antibiotic streptomycin being applied in clinical practice in the mid-1940s, aminoglycoside antibiotics (AGAs) are widely used to treat clinical bacterial infections and bacterial resistance to AGAs is increasing. The bacterial resistance to AGAs is owed to aminoglycoside modifying enzyme modification, active efflux pump gene overexpression and 16S rRNA ribosomal subunit methylation, leading to modification of AGAs' structures and decreased concentration of drugs within bacteria. As AGAs's side effects and bacterial resistance, the development of AGAs is time-consuming and difficult. Because bacterial resistance may occur in a short time after application in clinical practice, it was found that the antibacterial effect of the combination was not only better than that of AGAs alone but also reduce the dosage of antibiotics, thereby reducing the occurrence of side effects. This article reviews the clinical use of AGAs, the antibacterial mechanisms, the molecular mechanisms of bacterial resistance, and especially focuses a recent development of the combination of AGAs with other drugs to exert a synergistic antibacterial effect to provide a new strategy to overcome bacterial resistance to AGAs.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhou
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Chauhan A, Sillu D, Dhiman NK, Agnihotri S. Silver-Based Nano-formulations for Treating Antibiotic-Resistant Microbial Strains. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:279-309. [DOI: 10.1007/978-3-031-10220-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Vieira TO, Ricci-Junior E, de Barros AODS, Rebelo Alencar LM, Ferreira MRS, de Jesus Andreoli Pinto T, Santos-Oliveira R, de Holanda Saboya Souza D. Tertiary Nanosystem Composed of Graphene Quantum Dots, Levofloxacin and Silver Nitrate for Microbiological Control. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:234-240. [PMID: 35850654 DOI: 10.2174/2667387816666220715121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Infectious diseases have the highest mortality rate in the world and these numbers are associated with scarce and/or ineffective diagnosis and bacterial resistance. Currently, with the development of new pharmaceutical formulations, nanotechnology is gaining prominence. METHODS Nanomicelles were produced by ultrasonication. The particle size and shape were evaluated by scanning electron microscopy and confirmed by dynamic light scattering, also thermogravimetric analysis was performed to evaluate the thermal stability. Finally, antibacterial activity has been performed. RESULTS The results showed that a rod-shaped nanosystem, with 316.1 nm and PDI of 0.243 was formed. The nanosystem was efficient against Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis subsp. spizizenii with MIC inferior to 0.98 and a synergistic effect between silver graphene quantum dots and levofloxacin was observed. CONCLUSION The nanosystem produced may rise as a promising agent against the bacterial threat, especially regarding bacterial resistance.
Collapse
Affiliation(s)
- Thamires Oliveira Vieira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | - Eduardo Ricci-Junior
- Federal University of Rio de Janeiro, College of Pharmacy, Galenical Development Laboratory, Rio de Janeiro 21941900, Brazil
| | - Aline Oiveira da Silva de Barros
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | | | - Marcia Regina Spuri Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
- Zona Oeste State University, Laboratory of Nanoradiopharmaceuticals, Rio de Janeiro 23070200, Brazil
| | - Diego de Holanda Saboya Souza
- Institute of Macromolecules Professor Eloísa Mano (IMA), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941900, Brazil
| |
Collapse
|
11
|
Thambirajoo M, Maarof M, Lokanathan Y, Katas H, Ghazalli NF, Tabata Y, Fauzi MB. Potential of Nanoparticles Integrated with Antibacterial Properties in Preventing Biofilm and Antibiotic Resistance. Antibiotics (Basel) 2021; 10:1338. [PMID: 34827276 PMCID: PMC8615099 DOI: 10.3390/antibiotics10111338] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Nanotechnology has become an emerging technology in the medical field and is widely applicable for various clinical applications. The potential use of nanoparticles as antimicrobial agents is greatly explored and taken into consideration as alternative methods to overcome the challenges faced by healthcare workers and patients in preventing infections caused by pathogenic microorganisms. Among microorganisms, bacterial infections remain a major hurdle and are responsible for high morbidity and mortality globally, especially involving those with medical conditions and elderly populations. Over time, these groups are more vulnerable to developing resistance to antibiotics, as bacterial biofilms are difficult to destroy or eliminate via antibiotics; thus, treatment becomes unsuccessful or ineffective. Mostly, bacterial biofilms and other microbes can be found on medical devices and wounds where they disperse their contents which cause infections. To inhibit biofilm formations and overcome antibiotic resistance, antimicrobial-loaded nanoparticles alone or combined with other substances could enhance the bactericidal activity of nanomaterials. This includes killing the pathogens effectively without harming other cells or causing any adverse effects to living cells. This review summarises the mechanisms of actions employed by the different types of nanoparticles which counteract infectious agents in reducing biofilm formation and improve antibiotic therapy for clinical usage.
Collapse
Affiliation(s)
- Maheswary Thambirajoo
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Nur Fatiha Ghazalli
- Biomaterials Unit, School of Dental Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia;
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.T.); (M.M.); (Y.L.)
| |
Collapse
|
12
|
GO-based antibacterial composites: Application and design strategies. Adv Drug Deliv Rev 2021; 178:113967. [PMID: 34509575 DOI: 10.1016/j.addr.2021.113967] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO), for its unique structure with high biocompatibility and designability, is widely used in the antibacterial field. Various strategies have been designed to fabricate GO-based composites with antibacterial properties. This review summarized these strategies, divided them into three types and interpreted their antibacterial mechanisms: (i) "GO*/non-GO" type in which GO acts as the single antibacterial core, (ii) "GO*/non-GO*" type in which GO and non-GO components function synergistically as dual antibacterial cores, (iii) "GO/non-GO*" type in which non-GO acts as the single antibacterial core, while GO component plays a supportive, not a dominant role in antibiosis. Besides, the fields suiting their applications and factors influencing their antibacterial properties were analyzed. Finally, the limitations and prospects in the current researches were discussed. In summary, GO-based composites have revolutionized antibacterial strategies. This review may serve as a reference to inspire further research on GO-based antibacterial composites.
Collapse
|
13
|
Ullah S, Khan SS, Ren Y, Zhang X, Qin M, Xiong X, Krastev R, Jan AU, Liu L, Yuan Q. Near‐infrared laser 808‐nm excitable palladium nano‐dots loaded on graphene oxide hybrid for the antibacterial activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sadeeq Ullah
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Shahin S. Khan
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Yanru Ren
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Xu Zhang
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Meng Qin
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute University of Tübingen Reutlingen Germany
| | - Rumen Krastev
- Faculty of Applied Chemistry Reutlingen University Reutlingen Germany
| | - Amin U. Jan
- Department of Biotechnology Shaheed Benazir Bhutto University Sheringal Upper Dir, KPK 18300 Pakistan
| | - Luo Liu
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Qipeng Yuan
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| |
Collapse
|
14
|
Moreira RC, Oliveira JH, Libel GP, Amaral PE, Pereira EC, Siqueira VL, Grassi MF, Radovanovic E. Modified polystyrene spheres/graphene oxide decorated with silver nanoparticles as bactericidal material. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS NANO 2021; 15:2099-2142. [PMID: 33497197 PMCID: PMC9521743 DOI: 10.1021/acsnano.0c09382] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Hossein Montazerian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Md Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
16
|
Duan S, Zhao X, Su Z, Wang C, Lin Y. Layer-by-Layer Decorated Nanoscale ZIF-8 with High Curcumin Loading Effectively Inactivates Gram-Negative and Gram-Positive Bacteria. ACS APPLIED BIO MATERIALS 2020; 3:3673-3680. [PMID: 35025238 DOI: 10.1021/acsabm.0c00300] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteria-mediated infectious diseases have become a health-care challenge globally since the development of antibiotic resistance. Reactive oxygen species produced by photosensitizers have great potential in fighting bacterial infections, especially against Gram-negative bacteria that are hard to kill by regular methods owing to their formidable defensive membrane structures under the premise of avoiding overuse of antibiotics. In this work, a small molecular photosensitizer, curcumin (CCM), was used as a model and encapsulated into zeolitic imidazolate framework-8 (ZIF-8). Then the ZIF-8 loaded with CCM (CCM@ZIF-8) was decorated with biocompatible polymers hyaluronic acid (HA) and chitosan (CS) by the layer-by-layer self-assembly technique to yeild in an antibacterial CCM@ZIF-8@HA@CS nanoparticle with a high local positive charge density and is capable of binding the surface of bacteria by electrostatic interactions. The CCM drug loading capability of the nanoparticle was found to be as high as 10.89%. Upon exposure to blue light (72 J/cm2) for 10 min, the minimum inhibitory concentration and minimum bactericidal concentration of CCM@ZIF-8@HA@CS against Gram-positive bacteria (G(+)) Staphylococcus aureus (S. aureus) and Gram-negative bacteria (G(-)) Escherichia coli (E. coli) were the same, which were as low as 0.625 and 2.5 μg/mL, respectively, showing highly effective antibacterial activities. After treatment with CCM@ZIF-8@HA@CS under blue-light irradiation, the membranes of S. aureus and E. coli folded and cracked. Importantly, the antibacterial agent showed good biocompatibility in the cytotoxicity test using L929 cells and hemolysis test using rabbit blood cells under blue-light irradiation. Therefore, this CCM@ZIF-8@HA@CS nanocomposite is expected to find application in the treatment of superficial traumatic and refractory chronic infections caused by G(+) and G(-).
Collapse
Affiliation(s)
- Shihao Duan
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xia Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhaohui Su
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
17
|
Suleman Ismail Abdalla S, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi Mh Busra M. Antimicrobial activity of multifaceted lactoferrin or graphene oxide functionalized silver nanocomposites biosynthesized using mushroom waste and chitosan. RSC Adv 2020; 10:4969-4983. [PMID: 35498291 PMCID: PMC9049173 DOI: 10.1039/c9ra08680c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/24/2020] [Indexed: 11/21/2022] Open
Abstract
Hybrid nanoparticles designed to exert multiple mechanisms of antibacterial action offer a new approach to the fight against pathogenic resistant bacteria. In this study, nanomaterials with the dual actions of antibacterial and anti-biofilm activities were developed using silver nanoparticles (AgNPs) functionalized with either lactoferrin (LTF) or graphene oxide (GO). AgNPs were synthesized using mushroom waste as a reducing agent and chitosan (CS) as a stabilizing agent, prior to their surface functionalization with either GO (AgGO) or LTF (Ag-LTF). The AgNPs exhibited a surface plasmon resonance (SPR) band at 430 nm, as determined by UV-vis spectroscopy, whereas the absorption of AgGO and Ag-LTF occurred at 402 and 441 nm, respectively. Particle size analysis of AgNPs, AgGO, and Ag-LTF revealed sizes of 121.5 ± 10.5, 354.0 ± 1.6, and 130.8 ± 1.2 nm, respectively. All AgNPs, Ag-LTF, and AgGO inhibited selected Gram-positive bacteria and Gram-negative bacteria with comparable antibacterial performance, as determined by the agar diffusion method. Despite the absence of antibacterial activity by GO and LTF, a synergistic effect of AgGO and Ag-LTF was observed as they had a greater activity against P. aeruginosa. Moreover, Ag-LTF did not affect cell viability and migration rate of cells, suggesting the non-toxicity of Ag-LTF. In conclusion, AgNPs, Ag-LTF, and AgGO possess antibacterial activity, which may offer an alternative for future antibacterial agents.
Collapse
Affiliation(s)
- Sundos Suleman Ismail Abdalla
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz Kuala Lumpur 50300 Malaysia +60-3-26983271 +60-3-92897971
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz Kuala Lumpur 50300 Malaysia +60-3-26983271 +60-3-92897971
| | - Jie Yee Chan
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz Kuala Lumpur 50300 Malaysia +60-3-26983271 +60-3-92897971
| | - Pavitra Ganasan
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz Kuala Lumpur 50300 Malaysia +60-3-26983271 +60-3-92897971
| | - Fazren Azmi
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz Kuala Lumpur 50300 Malaysia +60-3-26983271 +60-3-92897971
| | - Mohd Fauzi Mh Busra
- Tissue Engineering Centre, UKM Medical Centre 56000 Cheras Kuala Lumpur Malaysia
| |
Collapse
|
18
|
Innovative technological systems to optimize the delivery and therapeutic activity of antimicrobial drugs. ADVANCES AND AVENUES IN THE DEVELOPMENT OF NOVEL CARRIERS FOR BIOACTIVES AND BIOLOGICAL AGENTS 2020. [DOI: 10.1016/b978-0-12-819666-3.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Zhen JB, Kang PW, Zhao MH, Yang KW. Silver Nanoparticle Conjugated Star PCL-b-AMPs Copolymer as Nanocomposite Exhibits Efficient Antibacterial Properties. Bioconjug Chem 2019; 31:51-63. [DOI: 10.1021/acs.bioconjchem.9b00739] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian-Bin Zhen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Peng-Wei Kang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Mu-Han Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
20
|
Ullah S, Ahmad A, Ri H, Khan AU, Khan UA, Yuan Q. Green synthesis of catalytic Zinc Oxide nano‐flowers and their bacterial infection therapy. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sadeeq Ullah
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology No. 15 East Road of North Third Ring, Chao Yang District Beijing 100029 China
| | - Aftab Ahmad
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology No. 15 East Road of North Third Ring, Chao Yang District Beijing 100029 China
| | - HyonIl Ri
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology No. 15 East Road of North Third Ring, Chao Yang District Beijing 100029 China
- Department of Chemical ScienceKim Hyong Jik University of Education Pyongyang Democratic people's Republic of Korea
| | - Arif Ullah Khan
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology No. 15 East Road of North Third Ring, Chao Yang District Beijing 100029 China
| | - Usman Ali Khan
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology No. 15 East Road of North Third Ring, Chao Yang District Beijing 100029 China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology No. 15 East Road of North Third Ring, Chao Yang District Beijing 100029 China
| |
Collapse
|
21
|
Tong C, Li L, Xiao F, Fan J, Zhong X, Liu X, Liu B, Wu Z, Zhou J. Daptomycin and AgNP co-loaded rGO nanocomposites for specific treatment of Gram-positive bacterial infection in vitro and in vivo. Biomater Sci 2019; 7:5097-5111. [PMID: 31524205 DOI: 10.1039/c9bm01229j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to improve the stability of AgNPs and decrease the dosage of Daptomycin for killing bacteria, a reduced graphene oxide (rGO) was used for simultaneously anchoring AgNPs and Daptomycin to prepare rGO@Ag@Dap nanocomposites. In vitro experiments showed that the nanocomposites can efficiently kill four kinds of pathogenic bacteria, especially two kinds of Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) through damaging cell integrity, producing ROS, decreasing ATP and GSH and disrupting bacterial metabolism. Against Gram-positive bacteria, the rGO@Ag@Dap nanocomposites showed a cooperative antibacterial effect. Moreover, in vivo experiments showed that rGO@Ag@Dap can improve the healing of wounds infected with bacteria by efficiently killing the bacteria on the wounds and further promoting skin regeneration and dense collagen deposition. In summary, the above results suggest that the cooperative function of AgNPs with Daptomycin can significantly improve antibacterial efficiency against infectious diseases caused by bacteria, especially for therapies made ineffective due to the drug resistance of pathogenic bacteria.
Collapse
Affiliation(s)
- Chunyi Tong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Li Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Feng Xiao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Jialong Fan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Xianghua Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Bin Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Zhaohui Wu
- Hunan Hybrid Rice Research Center/State key Laboratory of Hybrid Rice, Changsha, 410125, PR China.
| | - Jianqun Zhou
- Hunan Institute of Agricultural Information and Engineering, Changsha, 410125, PR China
| |
Collapse
|
22
|
Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents - a minireview. NANOSCALE HORIZONS 2019; 4:117-137. [PMID: 32254148 DOI: 10.1039/c8nh00174j] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Due to the increasing global population, growing contamination of water and air, and wide spread of infectious diseases, antibiotics are extensively used as a major antibacterial drug. However, many microbes have developed resistance to antibiotics through mutation over time. As an alternative to antibiotics, antimicrobial nanomaterials have attracted great attention due to their advantageous properties and unique mechanisms of action toward microbes. They inhibit bacterial growth and destroy cells through complex mechanisms, making it difficult for bacteria to develop drug resistance, though some health concerns related to biocompatibility remain for practical applications. Among various antibacterial nanomaterials, carbon-based materials, especially graphene oxide (GO) and carbon dots (C-Dots), are promising candidates due to the ease of production and functionalization, high dispersibility in aqueous media, and promising biocompatibility. The antibacterial properties of these nanomaterials can be easily adjusted by surface modification. They are promising materials for future applications against multidrug-resistant bacteria based on their strong capacity in disruption of microbial membranes. Though many studies have reported excellent antibacterial activity of carbon nanomaterials, their impact on the environment and living organisms is of concern due to the accumulatory and cytotoxic effects. In this review, we discuss antimicrobial applications of the functional carbon nanomaterials (GO and C-Dots), their antibacterial mechanisms, factors affecting antibacterial activity, and concerns regarding cytotoxicity.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | | | | | | | | | | |
Collapse
|