1
|
Hu H, Fan Y, Wang J, Zhang J, Lyu Y, Hou X, Cui J, Zhang Y, Gao J, Zhang T, Nan K. Single-cell technology for cell-based drug delivery and pharmaceutical research. J Control Release 2025; 381:113587. [PMID: 40032008 DOI: 10.1016/j.jconrel.2025.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Leveraging the capacity to precisely manipulate and analyze individual cells, single-cell technology has rapidly become an indispensable tool in the advancement of cell-based drug delivery systems and innovative cell therapies. This technology offers powerful means to address cellular heterogeneity and significantly enhance therapeutic efficacy. Recent breakthroughs in techniques such as single-cell electroporation, mechanical perforation, and encapsulation, particularly when integrated with microfluidics and bioelectronics, have led to remarkable improvements in drug delivery efficiency, reductions in cytotoxicity, and more precise targeting of therapeutic effects. Moreover, single-cell analyses, including advanced sequencing and high-resolution sensing, offer profound insights into complex disease mechanisms, the development of drug resistance, and the intricate processes of stem cell differentiation. This review summarizes the most significant applications of these single-cell technologies, highlighting their impact on the landscape of modern biomedicine. Furthermore, it provides a forward-looking perspective on future research directions aimed at further optimizing drug delivery strategies and enhancing therapeutic outcomes in the treatment of various diseases.
Collapse
Affiliation(s)
- Huihui Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yunlong Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China; MicroTech Medical (Hangzhou) Co., Hangzhou 311100, China
| | - Jiawen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jialu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yidan Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Xiaoqi Hou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai 200438, China; International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
| | - Yamin Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| | - Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
2
|
Aziz IA, Gabirondo E, Flores A, Posadas P, Sardon H, Mecerreyes D, Criado-Gonzalez M. Nanostructured films from poly(3-hexylthiophene)- graft-poly(ε-caprolactone) as light-responsive generators of reactive oxygen species. NANOSCALE 2025; 17:10677-10684. [PMID: 40202768 DOI: 10.1039/d5nr00027k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The design of smart photoelectrodes is used to modulate and control the spatio-temporal production of reactive oxygen species (ROS). In this work, we develop photoactive films with tunable nanostructured morphologies to favor ROS production via photostimulation. To that aim, we synthesized graft copolymers, made of poly(3-hexylthiophene) (P3HT) and poly(ε-caprolactone) (PCL), P3HT-g-PCL, which were employed to fabricate compact films by drop casting. The films were further subjected to a thermo-oxidative treatment in the presence of H2O2 at 42 °C. This led to nanostructured films with a porosity (∼500 nm diameter and ∼70 nm height) controlled at specific copolymer compositions, as determined by atomic force microscopy (AFM). The nanostructured P3HT films possess higher storage moduli (E') than flat P3HT films, as determined by nanoindentation measurements. Finally, the performance of nanostructured P3HT films as photoelectrodes is assessed in a three-electrode electrochemical cell upon visible-light irradiation (λ = 467 nm), leading to the spatiotemporal production of H2O2 at non-cytotoxic levels for future non-invasive redox medicine applications.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Elena Gabirondo
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Araceli Flores
- Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain.
| | - Pilar Posadas
- Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain.
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
3
|
Da Silva D, Crous A, Abrahamse H. Synergistic Effects of Photobiomodulation and Differentiation Inducers on Osteogenic Differentiation of Adipose-Derived Stem Cells in Three-Dimensional Culture. Int J Mol Sci 2024; 25:13350. [PMID: 39769115 PMCID: PMC11678880 DOI: 10.3390/ijms252413350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis, a common metabolic bone disorder, leads to increased fracture risk and significant morbidity, particularly in postmenopausal women and the elderly. Traditional treatments often fail to fully restore bone health and may cause side effects, prompting the exploration of regenerative therapies. Adipose-derived stem cells (ADSCs) offer potential for osteoporosis treatment, but their natural inclination toward adipogenic rather than osteogenic differentiation poses a challenge. This study investigates a novel approach combining differentiation inducers (DIs), three-dimensional (3D) hydrogel scaffolds, and photobiomodulation (PBM) to promote osteogenic differentiation of immortalised ADSCs. A dextran-based 3D hydrogel matrix, supplemented with a DI cocktail of dexamethasone, β-glycerophosphate disodium, and ascorbic acid, was used to foster osteogenesis. PBM was applied using near-infrared (825 nm), green (525 nm), and combined wavelengths at fluences of 3 J/cm2, 5 J/cm2, and 7 J/cm2 to enhance osteogenic potential. Flow cytometry identified osteoblast-specific markers, while inverted light microscopy evaluated cellular morphology. Reactive oxygen species assays measured oxidative stress, and quantitative polymerase chain reaction (qPCR) revealed upregulated gene expression linked to osteogenesis. The findings demonstrate that integrating DIs, 3D hydrogels, and PBM effectively drives osteogenic differentiation in immortalised ADSCs. The PBM enhanced osteogenic marker expression, induced morphological changes, and upregulated gene activity, presenting a promising framework for bone regeneration. Future research should assess the stability and functionality of these differentiated cells and explore their applicability in preclinical models of bone injury or degeneration. This integrative approach demonstrated specific efficacy in promoting the osteogenic differentiation of ADSCs, highlighting its potential application in developing targeted treatments for osteoporosis.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
4
|
Sirek B, Topaloğlu N. Red wavelength-induced photobiomodulation enhances indocyanine green-based anticancer photodynamic therapy. Med Oncol 2024; 42:8. [PMID: 39560842 DOI: 10.1007/s12032-024-02558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Cancer is a global concern worldwide. Prostate cancer has high prevalence and mortality rates among men. Photodynamic therapy (PDT) is an alternative treatment that is promising and effective with fewer side-effects than conventional therapies. However, some factors may limit its efficacy. For this, PDT can be combined with other modalities such as photobiomodulation (PBM) which is commonly used for increased cell proliferation/differentiation and wound healing. In this study, PBM pre-treatment at 655 nm of wavelength with 1, 3, and 5 J/cm2 energy densities was applied to prostate cancer cells to investigate its role in indocyanine green (ICG)-mediated PDT applications. Following PBM treatment, various analyses were assessed including cell viability, cellular uptake of ICG, ATP production, nitric oxide release, reactive oxygen species generation, and the changes in mitochondrial membrane potential. Increased cell death was observed with the PBM pre-treatment at 1 and 3 J/cm2 energy densities depending on ICG incubation time. Intracellular ROS generation and nitric oxide release by PBM had a significant impact on anticancer PDT action. An enhanced anticancer PDT effect was obtained with the PBM pre-treatment which may become a valuable modality to increase the sensitivity of the cancerous cells to PDT applications.
Collapse
Affiliation(s)
- Büşra Sirek
- Department of Biomedical Sciences, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Nermin Topaloğlu
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey.
| |
Collapse
|
5
|
Moradi A, Ghaffari Novin M, Bayat M. A Comprehensive Systematic Review of the Effects of Photobiomodulation Therapy in Different Light Wavelength Ranges (Blue, Green, Red, and Near-Infrared) on Sperm Cell Characteristics in Vitro and in Vivo. Reprod Sci 2024; 31:3275-3302. [PMID: 39095677 DOI: 10.1007/s43032-024-01657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
Around 7% of the male population in the world are entangle with considerable situation which is known as male infertility. Photobiomodulation therapy (PBMT) is the application of low-level laser radiation, that recently used to increase or promote the various cell functions including, proliferation, differentiation, ATP production, gene expressions, regulation of reactive oxygen spices (ROS), and also boost the tissue healing and reduction of inflammation. This systematic review's main idea is a comprehensive appraisal of the literatures on subjects of PBMT consequences in four light ranges wavelength (blue, green, red, near-infrared (NIR)) on sperm cell characteristics, in vitro and in vivo. In this study, PubMed, Google Scholar, and Scopus databases were used for abstracts and full-text scientific papers published from 2003-2023 that reported the application of PBM on sperm cells. Criteria's for inclusion and exclusion to review were applied. Finally, the studies that matched with our goals were included, classified, and reported in detail. Also, searched studies were subdivided into the effects of four ranges of light irradiation, including the blue light range (400-500 nm), green light range (500-600 nm), red light range (600-780 nm), and NIR light range (780-3000 nm) of laser irradiation on human or animal sperm cells, in situations of in vitro or in vivo. Searches with our keywords results in 137 papers. After primary analysis, some articles were excluded because they were review articles or incomplete and unrelated studies. Finally, we use the 63 articles for this systematic review. Our category tables were based on the light range of irradiation, source of sperm cells (human or animal cells) and being in vitro or in vivo. Six% of publications reported the effects of blue, 10% green, 53% red and 31% NIR, light on sperm cell. In general, most of these studies showed that PBMT exerted a positive effect on the sperm cell motility. The various effects of PBMT in different wavelength ranges, as mentioned in this review, provide more insights for its potential applications in improving sperm characteristics. PBMT as a treatment method has significant effectiveness for treatment of different medical problems. Due to the lack of reporting data in this field, there is a need for future studies to assessment the biochemical and molecular effects of PBMT on sperm cells for the possible application of this treatment to the human sperm cells before the ART process.
Collapse
Affiliation(s)
- Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, USA.
- Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
6
|
Criado-Gonzalez M, Marzuoli C, Bondi L, Gutierrez-Fernandez E, Tullii G, Lagonegro P, Sanz O, Cramer T, Antognazza MR, Mecerreyes D. Porous Semiconducting Polymer Nanoparticles as Intracellular Biophotonic Mediators to Modulate the Reactive Oxygen Species Balance. NANO LETTERS 2024; 24:7244-7251. [PMID: 38842262 PMCID: PMC11194851 DOI: 10.1021/acs.nanolett.4c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The integration of nanotechnology with photoredox medicine has led to the emergence of biocompatible semiconducting polymer nanoparticles (SPNs) for the optical modulation of intracellular reactive oxygen species (ROS). However, the need for efficient photoactive materials capable of finely controlling the intracellular redox status with high spatial resolution at a nontoxic light density is still largely unmet. Herein, highly photoelectrochemically efficient photoactive polymer beads are developed. The photoactive material/electrolyte interfacial area is maximized by designing porous semiconducting polymer nanoparticles (PSPNs). PSPNs are synthesized by selective hydrolysis of the polyester segments of nanoparticles made of poly(3-hexylthiophene)-graft-poly(lactic acid) (P3HT-g-PLA). The photocurrent of PSPNs is 4.5-fold higher than that of nonporous P3HT-g-PLA-SPNs, and PSPNs efficiently reduce oxygen in an aqueous environment. PSPNs are internalized within endothelial cells and optically trigger ROS generation with a >1.3-fold concentration increase with regard to nonporous P3HT-SPNs, at a light density as low as a few milliwatts per square centimeter, fully compatible with in vivo, chronic applications.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Camilla Marzuoli
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
- Politecnico
di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Bondi
- Department
of Physics and Astronomy, University of
Bologna, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy
| | - Edgar Gutierrez-Fernandez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- XMaS/BM28-ESRF, 71 Avenue Des Martyrs, F-38043 Grenoble Cedex, France
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - Paola Lagonegro
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - Oihane Sanz
- Department
of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Tobias Cramer
- Department
of Physics and Astronomy, University of
Bologna, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| |
Collapse
|
7
|
Keszler A, Weihrauch D, Lindemer B, Broeckel G, Lohr NL. Vitamin E Attenuates Red-Light-Mediated Vasodilation: The Benefits of a Mild Oxidative Stress. Antioxidants (Basel) 2024; 13:668. [PMID: 38929107 PMCID: PMC11200653 DOI: 10.3390/antiox13060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Red light (670 nm) energy controls vasodilation via the formation of a transferable endothelium-derived nitric oxide (NO)-precursor-containing substance, its intracellular traffic, and exocytosis. Here we investigated the underlying mechanistic effect of oxidative stress on light-mediated vasodilation by using pressure myography on dissected murine arteries and immunofluorescence on endothelial cells. Treatment with antioxidants Trolox and catalase decreased vessel dilation. In the presence of catalase, a lower number of exosomes were detected in the vessel bath. Light exposure resulted in increased cellular free radical levels. Mitochondrial reactive oxygen species were also more abundant but did not alter cellular ATP production. Red light enhanced the co-localization of late exosome marker CD63 and cellular S-nitrosoprotein to a greater extent than high glucose, suggesting that a mild oxidative stress favors the localization of NO precursor in late exosomes. Exocytosis regulating protein Rab11 was more abundant after irradiation. Our findings conclude that red-light-induced gentle oxidative stress facilitates the dilation of blood vessels, most likely through empowering the traffic of vasodilatory substances. Application of antioxidants disfavors this mechanism.
Collapse
Affiliation(s)
- Agnes Keszler
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.K.); (D.W.); (B.L.); (G.B.)
| | - Dorothee Weihrauch
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.K.); (D.W.); (B.L.); (G.B.)
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian Lindemer
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.K.); (D.W.); (B.L.); (G.B.)
| | - Grant Broeckel
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.K.); (D.W.); (B.L.); (G.B.)
| | - Nicole L. Lohr
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.K.); (D.W.); (B.L.); (G.B.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 53233, USA
- Birmigham VA Medical Center, Birmingham, AL 53233, USA
| |
Collapse
|
8
|
Dani S, Schütz K, Dikici E, Bernhardt A, Lode A. The effect of continuous long-term illumination with visible light in different spectral ranges on mammalian cells. Sci Rep 2024; 14:9444. [PMID: 38658667 PMCID: PMC11043379 DOI: 10.1038/s41598-024-60014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
One of the biggest challenges in tissue engineering and regenerative medicine is to ensure oxygen supply of cells in the (temporary) absence of vasculature. With the vision to exploit photosynthetic oxygen production by microalgae, co-cultivated in close vicinity to oxygen-consuming mammalian cells, we are searching for culture conditions that are compatible for both sides. Herein, we investigated the impact of long-term illumination on mammalian cells which is essential to enable photosynthesis by microalgae: four different cell types-primary human fibroblasts, dental pulp stem cells, and osteoblasts as well as the murine beta-cell line INS-1-were continuously exposed to warm white light, red or blue light over seven days. We observed that illumination with red light has no adverse effects on viability, metabolic activity and growth of the cells whereas exposure to white light has deleterious effects that can be attributed to its blue light portion. Quantification of intracellular glutathione did not reveal a clear correlation of this effect with an enhanced production of reactive oxygen species. Finally, our data indicate that the cytotoxic effect of short-wavelength light is predominantly a direct effect of cell illumination; photo-induced changes in the cell culture media play only a minor role.
Collapse
Affiliation(s)
- Sophie Dani
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Ezgi Dikici
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
9
|
Chailakhyan R, Grosheva A, Vorobieva N, Yusupov V, Sviridov A. Combined Light and Thermal Stimulation of Bone Marrow Stem Cells. J Lasers Med Sci 2024; 15:e8. [PMID: 39050999 PMCID: PMC11267100 DOI: 10.34172/jlms.2024.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/17/2024] [Indexed: 07/27/2024]
Abstract
Introduction: The purpose of this study is to achieve a significant increase in the proliferative activity of mesenchymal stem cells (MSCs) of the bone marrow (BM) at early passages after laser exposure to a suspension of these cells and to estimate the effect of light and heat components of laser radiation on the proliferation of BM MSCs. Methods: The studies were performed on rats BM MSCs. MSC suspension was placed into the wells and heated by using laser radiation (980 nm wavelength) or a water bath at 70 °C providing similar temperature dynamics. The studies were carried out in 3 comparison groups: (1) control suspension of MSCs, which was not subjected to heating in a water bath or laser exposure; (2) MSC suspension, which was heated for in a water bath; and (3) suspension of MSCs, which was subjected to laser exposure. The exposure times for the 2nd and 3rd experimental groups were 10- 50 seconds. Results: Under optimal parameters of laser action on the suspension of BM MSCs, a six-fold increase in the number of BM MSCs colonies was registered compared to the control. The role of the light and heat components of laser exposure to MSCs was determined by comparable heating of a suspension of BM MSCs in a water bath, at which only a twofold increase in the number of colonies was maximally obtained. Conclusion: The increase in the MSC proliferation activity occurs due to their Thermo-Photobiomodulation. The result obtained is important for practical use in cell transplantation in the treatment of traumatic injuries of bone, cartilage, and tendon tissues when a rapid and multiple increase in the initial number of autologous BM MSCs is required.
Collapse
Affiliation(s)
- Ruben Chailakhyan
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alla Grosheva
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | | | | |
Collapse
|
10
|
Perveen R, Jamil Y, Al-Huqail AA, Alsudays IM, Alghanem SMS, Ali Q, Saeed F, Azeem M, Rizwan M, Al-Robai SA. Effects of pulsed Nd:YAG laser kernel irradiation on maize (Zea mays L.): Insights into germination, gas exchange, photosynthetic pigments, and morphological modifications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112876. [PMID: 38452453 DOI: 10.1016/j.jphotobiol.2024.112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Energy has always been the most concerned topic worldwide due to its large consumption. Among various types of energies, light has amazing characteristics and have interesting effects on living organisms. Interest is increasing in the use of laser kernel treatment as an environment friendly physical technique for better results in agronomic crops, but the work is still in progress. The present study was conducted with the aim to examine the application of range of Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG) pulsed laser exposures (200, 400, 600, 800, 1000, 1200, 1400 J/cm2) as pre-sowing kernel treatment on seedling survival rate, leaf photosynthetic activity in relation with photosynthetic pigments and visual morphological effects at seedling to maturity stage. Results showed that the low laser exposure (200, 400 and 600 J/cm2) improved the photosynthetic activity in parallel with improvement in chlorophyll a, chlorophyll b, total chlorophyll, carotenoids as well as morphological traits. Kernel treatments with higher laser fluences (800, 1000, 1200 and 1400 J/cm2) showed irregular responses in studied attributes examined at the individual plant level. At 800 and 1000 J/cm2 improvements were found in some plants but at higher doses clear negative impacts were recorded on studied attributes. In conclusion, the lower doses of Nd:YAG pulsed laser fluences are found beneficial for induction of improvement in maize plants for better growth but higher doses were found toxic ones. In future further studies are needed to check the impacts of low laser doses on yield related attributes under field conditions and the high doses might also be used to create variants with beneficial characteristics if possible.
Collapse
Affiliation(s)
- Rashida Perveen
- Laser Spectroscopy Lab, Department of Physics, University of Agriculture Faisalabad, 38040, Pakistan
| | - Yasir Jamil
- Laser Spectroscopy Lab, Department of Physics, University of Agriculture Faisalabad, 38040, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Qasim Ali
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Farah Saeed
- Department of Botany, Government College Women University Faisalabad, 38000, Pakistan
| | - Muhammad Azeem
- Department of Biology, College of Science, University of Bahrain, Zallaq, Bahrain
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Sami Asir Al-Robai
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 1988, Saudi Arabia
| |
Collapse
|
11
|
Zhang H, Zhang C, Pan L, Chen Y, Bian Z, Yang Y, Ke T, Sun W, Chen L, Tan J. Low-level Nd:YAG laser inhibiting inflammation and oxidative stress in human gingival fibroblasts via AMPK/SIRT3 axis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112845. [PMID: 38244301 DOI: 10.1016/j.jphotobiol.2024.112845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE Photobiomodulation is extensively employed in the management of chronic inflammatory diseases such as periodontitis because of its anti-inflammatory and antioxidant effects. This study used low-level Nd:YAG laser to investigate the mechanism of photobiomodulation as well as the role of adenosine monophosphate-activated protein kinase (AMPK) and Sirtuins (SIRT) 3 in it, providing new clues for the treatment of periodontitis. METHODS Human gingival fibroblasts (HGFs) were extracted from gingiva and stimulated with LPS. The suitable parameters of Nd:YAG laser were chosen for subsequent experiments by detecting cell viability. We assessed the level of inflammation and oxidative stress as well as AMPK and SIRT3. The mechanism for AMPK targeting SIRT3 modulating the anti-inflammatory and antioxidant effects of photobiomodulation was explored by the AMPK inhibitor (Compound C) test, cell transfection, western blot, and immunofluorescence. RESULTS HGFs were isolated and identified, followed by the identification of optimal Nd:YAG laser parameters (60 mJ, 15 Hz, 10s) for subsequent experimentation. With this laser, inflammatory factors (IL-6, TNF-α, COX2, and iNOS) decreased as well as the phosphorylation and nuclear translocation of NFκB-P65. SOD2 was up-regulated but reactive oxygen species (ROS) was down-regulated. The laser treatment exhibited enhancements in AMPK phosphorylation and SIRT3 expression. The above effects could all be reversed by Compound C. Silencing AMPK or SIRT3 by siRNA, the down-regulation of COX2, iNOS, and ROS by laser was inhibited. SIRT3 was down-regulated when the AMPK was silenced. CONCLUSION Low-level Nd:YAG laser activated AMPK-SIRT3 signaling pathway, facilitating the anti-inflammatory and antioxidative activity.
Collapse
Affiliation(s)
- Haizheng Zhang
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyi Zhang
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lai Pan
- Dental Department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yifan Chen
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zirui Bian
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxuan Yang
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Ke
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilian Sun
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Chen
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China..
| | - Jingyi Tan
- Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China..
| |
Collapse
|
12
|
Leyane TS, Jere SW, Houreld NN. Effect of photobiomodulation at 830 nm on gene expression correlated with JAK/STAT signalling in wounded and diabetic wounded fibroblasts in vitro. JOURNAL OF BIOPHOTONICS 2024; 17:e202300230. [PMID: 38010362 DOI: 10.1002/jbio.202300230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Treatment of chronic diabetic wounds is an ongoing socio-economic challenge. Dysregulated signalling pathways characterise cells from chronic diabetic wounds. Photobiomodulation (PBM) stimulates healing by eliciting photochemical effects that affect gene regulation. JAK/STAT signalling is a primary signal transduction pathway involved in wound healing. This in vitro study aimed to determine if PBM at 830 nm and a fluence of 5 J/cm2 regulates genes related to JAK/STAT signalling in wounded and diabetic wounded fibroblast cells. A continuous wave diode laser (12.53 mW/cm2 ) was used to irradiate cells. Forty-eight hours post-PBM, RT-qPCR was used to analyse 84 genes related to JAK/STAT signalling. Five genes were upregulated and four downregulated in wounded cell models, while six genes were downregulated in diabetic wounded models. The results show drastic gene expression differences between wounded and diabetic wounded cell models in response to PBM using 830 nm.
Collapse
Affiliation(s)
- Thobekile S Leyane
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Sandy W Jere
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
13
|
Weihrauch D, Keszler A, Broeckel G, Aranda E, Lindemer B, Lohr NL. Red light mediates the exocytosis of vasodilatory vesicles from cultured endothelial cells: a cellular, and ex vivo murine model. Photochem Photobiol Sci 2024; 23:355-364. [PMID: 38277065 PMCID: PMC10917865 DOI: 10.1007/s43630-023-00522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
We have previously established that 670 nm energy induces relaxation of blood vessels via an endothelium derived S-nitrosothiol (RSNO) suggested to be embedded in vesicles. Here, we confirm that red light facilitates the exocytosis of this vasodilator from cultured endothelial cells and increases ex vivo blood vessel diameter. Ex vivo pressurized and pre-constricted facial arteries from C57Bl6/J mice relaxed 14.7% of maximum diameter when immersed in the medium removed from red-light exposed Bovine Aortic Endothelial Cells. In parallel experiments, 0.49 nM RSNO equivalent species was measured in the medium over the irradiated cells vs dark control. Electron microscopy of light exposed endothelium revealed significant increases in the size of the Multi Vesicular Body (MVB), a regulator of exosome trafficking, while RSNO accumulated in the MVBs as detected with immunogold labeling electron microscopy (1.8-fold of control). Moreover, red light enhanced the presence of F-actin related stress fibers (necessary for exocytosis), and the endothelial specific marker VE-cadherin levels suggesting an endothelial origin of the extracellular vesicles. Flow cytometry coupled with DAF staining, an indirect sensor of nitric oxide (NO), indicated significant amounts of NO within the extracellular vesicles (1.4-fold increase relative to dark control). Therefore, we further define the mechanism on the 670 nm light mediated traffic of endothelial vasodilatory vesicles and plan to leverage this insight into the delivery of red-light therapies.
Collapse
Affiliation(s)
- Dorothee Weihrauch
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Anesthesiology, Milwaukee, WI, USA
- Department of Plastic Surgery, Milwaukee, WI, USA
| | - Agnes Keszler
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Grant Broeckel
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eva Aranda
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Anesthesiology, Milwaukee, WI, USA
| | - Brian Lindemer
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicole L Lohr
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Clement J Zablocki VA Medical Center, Milwaukee, WI, USA.
- Cardiovascular Institute, University of Birmingham, Alabama, USA.
| |
Collapse
|
14
|
Iranpour B, Mohammadi K, Hodjat M, Hakimiha N, Sayar F, Kharazi Fard MJ, Sadatmansouri S, Hanna R. An evaluation of photobiomodulation effects on human gingival fibroblast cells under hyperglycemic condition: an in vitro study. Lasers Med Sci 2023; 39:9. [PMID: 38110767 DOI: 10.1007/s10103-023-03954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
An in vitro study was designed to evaluate the effects of photobiomodulation (PBM) with 915-nm diode laser on human gingival fibroblast (HGF) cells under hyperglycemic condition. The HGF cells were cultured in Dulbecco's modified eagle medium (DMEM) medium containing 30 mM glucose concentration for 48 h to mimic the hyperglycemic condition. Subsequently, the cells received three sessions of PBM (915 nm, continuous emission mode, 200 mW, energy density values of 3.2, 6, and 9.2 J/cm2). Twenty-four hours post-irradiation, cell proliferation, expression of interleukin 6 (IL-6), and vascular endothelial growth factor (VEGF) were assessed with MTT and real-time polymerase chain reaction (PCR) tests, respectively. Also, reactive oxygen species (ROS) production was measured using CM-H2DCFDA fluorimetry. No changes were detected in the cell proliferation rate between the high glucose control group and laser-treated cells, while VEGF and IL-6 gene expression levels increased significantly after PBM in the high glucose-treated cells group. ROS level was significantly decreased in the irradiated cells in high-glucose medium compared with the high glucose control group. Our study revealed the inductive role of 915-nm-mediated PBM on VEGF and the inflammatory response while concurrently reducing reactive oxygen species production in HGF cells in hyperglycemic conditions.
Collapse
Affiliation(s)
- Babak Iranpour
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kimia Mohammadi
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahshid Hodjat
- Dental Research Centre, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ferena Sayar
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Saeed Sadatmansouri
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reem Hanna
- Department of Oral Surgery, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
- Department of Restorative Dental Sciences, Faculty of Medical Sciences, UCL-Eastman Dental Institute, Rockefeller Building, London, WC1E 6DE, UK
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, Italy
| |
Collapse
|
15
|
Da Silva D, Crous A, Abrahamse H. Enhancing osteogenic differentiation in adipose-derived mesenchymal stem cells with Near Infra-Red and Green Photobiomodulation. Regen Ther 2023; 24:602-616. [PMID: 38034860 PMCID: PMC10682681 DOI: 10.1016/j.reth.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Worldwide, osteoporosis is the utmost predominant degenerative bone condition. Stem cell regenerative therapy using adipose-derived mesenchymal stem cells (ADMSCs) is a promising therapeutic route for osteoporosis. Photobiomodulation (PBM) has sparked considerable international appeal due to its' ability to augment stem cell proliferation and differentiation properties. Furthermore, the differentiation of ADMSCs into osteoblast cells and cellular proliferation effects have been established using a combination of osteogenic differentiation inducers and PBM. This in vitro study applied dexamethasone, β-glycerophosphate disodium, and ascorbic acid as differentiation inducers for osteogenic induction differentiation media. In addition, PBM at a near-infrared (NIR) wavelength of 825 nm, a green (G) wavelength of 525 nm, and the novel combination of both these wavelengths using a single fluence of 5 J/cm2 had been applied to stimulate proliferation and differentiation effectivity of immortalised ADMSCs into early osteoblasts. Flow cytometry and ELISA were used to identify osteoblast antigens using early and late osteoblast protein markers. Alizarin red Stain was employed to identify calcium-rich deposits by cells within culture. The morphology of the cells was examined, and biochemical assays such as an EdU proliferation assay, MTT proliferation and viability assay, Mitochondrial Membrane Potential assay, and Reactive Oxygen Species assay were performed. The Central Scratch Test determined the cells' motility potential. The investigative outcomes revealed that a combination of PBM treatment and osteogenic differentiation inducers stimulated promising early osteogenic differentiation of immortalised ADMSCs. The NIR-Green PBM combination did appear to offer great potential for immortalised ADMSC differentiation into early osteoblasts amongst selected assays, however, further investigations will be required to establish the effectivity of this novel wavelength combination. This research contributes to the body of knowledge and assists in the establishment of a standard for osteogenic differentiation in vitro utilising PBM.
Collapse
Affiliation(s)
- Daniella Da Silva
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
16
|
George S, Serpe L. Exploring the redox potential induced by low-intensity focused ultrasound on tumor masses. Life Sci 2023; 332:122040. [PMID: 37633418 DOI: 10.1016/j.lfs.2023.122040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Cancer is still a major health problem worldwide despite huge efforts being spent on its biomedical research. Beyond the mainstream therapeutic interventions (i.e., surgery, chemotherapy, immunotherapy and radiotherapy), further significant progresses in anticancer therapy could rely on the development of novel treatment paradigms. To this end, one emerging approach consists in the use of non-thermal low-intensity focused ultrasound (LIFU) for conditioning cancer molecules and/or cancer-targeted compounds, thereby leading to cancer cell death with least side-effects. Cellular redox homeostasis manifested as the generation of reactive oxygen species (ROS) during energy metabolism as well as the antioxidant capacity is interwoven to the composition, size and anatomical location of the tumor masses. The higher content of "oxide free radicals" in cancers makes them vulnerable to disruption of redox homeostasis than in the healthy cells and therefore, one of the best options for preferentially eradicating them is increasing their oxidative stress, excessively. A little is known about the modulation of cellular redox homeostasis by LIFU, and so it will be of great interest and utility to understand the effects of LIFU on the energy metabolism of cancer cells. This review is intended to improve our knowledge on the effect of LIFU on cancer cells with particular reference to its redox metabolism for ultrasound-based therapies. Thereby, it could pave the way for exploring novel methodologies and designing combined anti-cancer therapies, especially, for faster and safer eradication of drug resistant and metastasizing solid tumors.
Collapse
Affiliation(s)
- Sajan George
- School of Bio Sciences & Technology, Vellore Institute of Technology, TN 632 014, India; Laser Research Centre, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Loredana Serpe
- Department of Drug Science & Technology, University of Turin, Turin 10125, Italy
| |
Collapse
|
17
|
Rotunjanu S, Racoviceanu R, Mioc A, Milan A, Negrea-Ghiulai R, Mioc M, Marangoci NL, Şoica C. Newly Synthesized CoFe 2-xDy xO 4 (x = 0; 0.1; 0.2; 0.4) Nanoparticles Reveal Promising Anticancer Activity against Melanoma (A375) and Breast Cancer (MCF-7) Cells. Int J Mol Sci 2023; 24:15733. [PMID: 37958717 PMCID: PMC10650938 DOI: 10.3390/ijms242115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The current study focuses on the synthesis via combustion of dysprosium-doped cobalt ferrites that were subsequently physicochemically analyzed in terms of morphological and magnetic properties. Three types of doped nanoparticles were prepared containing different Dy substitutions and coated with HPGCD for higher dispersion properties and biocompatibility, and were later submitted to biological tests in order to reveal their potential anticancer utility. Experimental data obtained through FTIR, XRD, SEM and TEM confirmed the inclusion of Dy3+ ions in the nanoparticles' structure. The size of the newly formed nanoparticles ranged between 20 and 50 nm revealing an inverse proportional relationship with the Dy content. Magnetic studies conducted by VSM indicated a decrease in remanent and saturation mass magnetization, respectively, in Dy-doped nanoparticles in a direct proportionality with the Dy content; the decrease was further amplified by cyclodextrin complexation. Biological assessment in the presence/absence of red light revealed a significant cytotoxic activity in melanoma (A375) and breast (MCF-7) cancer cells, while healthy keratinocytes (HaCaT) remained generally unaffected, thus revealing adequate selectivity. The investigation of the underlying cytotoxic molecular mechanism revealed an apoptotic process as indicated by nuclear fragmentation and shrinkage, as well as by Western blot analysis of caspase 9, p53 and cyclin D1 proteins. The anticancer activity for all doped Co ferrites varied was in a direct correlation to their Dy content but without being affected by the red light irradiation.
Collapse
Affiliation(s)
- Slaviţa Rotunjanu
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (A.M.); (M.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (A.M.); (M.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Negrea-Ghiulai
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (A.M.); (M.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Narcisa Laura Marangoci
- Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Vodă, 700487 Iaşi, Romania;
| | - Codruţa Şoica
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
18
|
Grenier A, Morissette MC, Rochette PJ, Pouliot R. Toxic Interaction Between Solar Radiation and Cigarette Smoke on Primary Human Keratinocytes. Photochem Photobiol 2023; 99:1258-1268. [PMID: 36537030 DOI: 10.1111/php.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Solar radiation and cigarette smoke are two environmental risk factors known to affect skin integrity. Although the toxic effects of these factors on skin have been widely studied separately, few studies have focused on their interaction. The objective of this study was to evaluate and understand the synergistic harmful effects of cigarette smoke and solar rays on human primary keratinocytes. The keratinocytes were exposed to cigarette smoke extract (CSE) and then irradiated with a solar simulator light (SSL). The viability, as determined by measuring metabolic activity of skin cells, and the levels of global reactive oxygen species (ROS) were evaluated after exposure to CSE and SSL. The combination of 3% CSE with 29 kJ m-2 UVA caused a decrease of 81% in cell viability, while with 10% to 20% CSE, the cell viability was null. This phototoxicity was accompanied by an increase in singlet oxygen but a decrease in type I ROS when CSE and SSL were combined in vitro. Surprisingly, an increase in the CSE's total antioxidant capacity was also observed. These results suggest a synergy between the two environmental factors in their effect on skin cells, and more precisely a phototoxicity causing a drastic decrease in cell viability.
Collapse
Affiliation(s)
- Alexe Grenier
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | - Mathieu C Morissette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec, QC, Canada
- Département de médecine, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Patrick J Rochette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département d'ophtalmologie et ORL-chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
| |
Collapse
|
19
|
Migliario M, Yerra P, Gino S, Sabbatini M, Renò F. Laser Biostimulation Induces Wound Healing-Promoter β2-Defensin Expression in Human Keratinocytes via Oxidative Stress. Antioxidants (Basel) 2023; 12:1550. [PMID: 37627545 PMCID: PMC10451672 DOI: 10.3390/antiox12081550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The innate immune system is the first line of defense of the body composed of anatomical barriers, such as skin and mucosa, as well as effector cells, antimicrobial peptides, soluble mediators, and cell receptors able to detect and destroy viruses and bacteria and to sense trauma and wounds to initiate repair. The human β-defensins belong to a family of antimicrobial small cationic peptides produced by epithelial cells, and show immunomodulatory and pro-healing activities. Laser biostimulation is a therapy widely used to contrast microbial infection and to accelerate wound healing through biological mechanisms that include the creation of oxidative stress. In this paper, we explored laser biostimulation's ability to modulate the production of two β-defensins, hBD-1 and hBD-2, in human keratinocytes and whether this modulation was, at least in part, oxidative-stress-dependent. Human spontaneously immortalized keratinocytes (HaCaT) were stimulated using laser irradiation at a 980 nm wavelength, setting the power output to 1 W (649.35 mW/cm2) in the continuous mode. Cells were irradiated for 0 (negative control), 5, 10, 25 and 50 s, corresponding to an energy stimulation of 0, 5, 10, 25 and 50 J. Positive control cells were treated with lipopolysaccharide (LPS, 200 ng/mL). After 6 and 24 h of treatment, the cell conditioned medium was collected and analyzed via ELISA assay for the production of hBD-1 and hBD-2. In another set of experiments, HaCaT were pre-incubated for 45 min with antioxidant drugs-vitamin C (Vit. C, 100 µM), sodium azide (NaN3, 1 mM); ω-nitro-L-arginine methyl ester (L-NAME, 10 mM) and sodium pyruvate (NaPyr, 100 µM)-and then biostimulated for 0 or 50 s. After 6 h, the conditioned medium was collected and used for the ELISA analysis. The hBD-1 and hBD-2 production by HaCaT was significantly increased by single laser biostimulation after 6 h in an energy-dependent fashion compared to basal levels, and both reached production levels induced by LPS. After 24 h, only hBD-2 production induced by laser biostimulation was further increased, while the basal and stimulated hBD-1 levels were comparable. Pre-incubation with antioxidative drugs was able to completely abrogate the laser-induced production of both hBD-1 and hBD-2 after 6 h, with the exception of hBD-1 production in samples stimulated after NaN3 pre-incubation. A single laser biostimulation induced the oxidative-stress-dependent production of both hBD-1 and hBD-2 in human keratinocytes. In particular, the pro-healing hBD-2 level was almost three times higher than the baseline level and lasted for 24 h. These findings increase our knowledge about the positive effects of laser biostimulation on wound healing.
Collapse
Affiliation(s)
- Mario Migliario
- Traslational Medicine Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy;
| | - Preetham Yerra
- Health Sciences Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy; (P.Y.); (S.G.)
| | - Sarah Gino
- Health Sciences Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy; (P.Y.); (S.G.)
| | - Maurizio Sabbatini
- Sciences and Innovative Technology Department, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Filippo Renò
- Health Sciences Department, Università del Piemonte Orientale, Via Solaroli n. 17, 28100 Novara, Italy; (P.Y.); (S.G.)
| |
Collapse
|
20
|
Omidi H, Sohrabi K, Amini A, Fathabady FF, Mostafavinia A, Ahmadi H, Mirzaei M, Moravej FG, Asghari M, Rezaei F, Gachkar L, Chien S, Bayat M. Application of combined photobiomodulation and curcumin-loaded iron oxide nanoparticles considerably enhanced repair in an infected, delayed-repair wound model in diabetic rats compared to either treatment alone. Photochem Photobiol Sci 2023; 22:1791-1807. [PMID: 37039961 DOI: 10.1007/s43630-023-00411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023]
Abstract
Herein, we attempted to evaluate the therapeutic potential of photobiomodulation (PBM) and curcumin-loaded iron nanoparticles (CUR), alone and in combination, on wound closure rate (WCR), microbial flora by measuring colony-forming units (CFUs), the stereological and biomechanical properties of repairing wounds in the maturation stage of the wound healing course in an ischemic infected delayed healing wound model (IIDHWM) of type I diabetic (TIDM) rats. There were four groups: group 1 was the control, group 2 received CUR, rats in group 3 were exposed to PBM (80 Hz, 890 nm, and 0.2 J/cm2), and rats in group 4 received both PBM and CUR (PBM + CUR). We found CFU was decreased in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Groups 2, 3, and 4 showed a considerable escalation in WCR compared to group 1 (p = 0.000 for all). In terms of wound strength parameters, substantial increases in bending stiffness and high-stress load were observed in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Stereological examinations revealed decreases in neutrophil and macrophage counts and increases in fibroblast counts in groups 2, 3, and 4compared to group 1 (p = 0.000 for all). Blood vessel counts were more dominant in the PBM and PBM + CUR groups over group 1 (p = 0.000 for all). CFU and wound strength as well as macrophage, neutrophil, and fibroblast counts were found to be improved in the PBM + CUR and PBM groups compared to the CUR group (ranging from p = 0.000 to p < 0.05). Better results were achieved in the PBM + CUR treatment over the PBM therapy. We determined therapy with PBM + CUR, PBM alone, and CUR alone substantially accelerated diabetic wound healing in an IIDHWM of TIDM rats compared to control group. Concomitantly, the PBM + CUR and PBM groups attained significantly enhanced results for WCR, stereological parameters, and wound strength than the CUR group, with the PBM + CUR results being superior to those of the PBM group.
Collapse
Affiliation(s)
- Hamidreza Omidi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaysan Sohrabi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansooreh Mirzaei
- Department of Anatomy, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Asghari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Latif Gachkar
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
| |
Collapse
|
21
|
Criado-Gonzalez M, Bondi L, Marzuoli C, Gutierrez-Fernandez E, Tullii G, Ronchi C, Gabirondo E, Sardon H, Rapino S, Malferrari M, Cramer T, Antognazza MR, Mecerreyes D. Semiconducting Polymer Nanoporous Thin Films as a Tool to Regulate Intracellular ROS Balance in Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37467460 PMCID: PMC10401575 DOI: 10.1021/acsami.3c06633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The design of soft and nanometer-scale photoelectrodes able to stimulate and promote the intracellular concentration of reactive oxygen species (ROS) is searched for redox medicine applications. In this work, we show semiconducting polymer porous thin films with an enhanced photoelectrochemical generation of ROS in human umbilical vein endothelial cells (HUVECs). To achieve that aim, we synthesized graft copolymers, made of poly(3-hexylthiophene) (P3HT) and degradable poly(lactic acid) (PLA) segments, P3HT-g-PLA. In a second step, the hydrolysis of sacrificial PLA leads to nanometer-scale porous P3HT thin films. The pore sizes in the nm regime (220-1200 nm) were controlled by the copolymer composition and the structural arrangement of the copolymers during the film formation, as determined by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The porous P3HT thin films showed enhanced photofaradaic behavior, generating a higher concentration of ROS in comparison to non-porous P3HT films, as determined by scanning electrochemical microscopy (SECM) measurements. The exogenous ROS production was able to modulate the intracellular ROS concentration in HUVECs at non-toxic levels, thus affecting the physiological functions of cells. Results presented in this work provide an important step forward in the development of new tools for precise, on-demand, and non-invasive modulation of intracellular ROS species and may be potentially extended to many other physiological or pathological cell models.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Luca Bondi
- Department of Physics and Astronomy, University of Bologna, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy
| | - Camilla Marzuoli
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Edgar Gutierrez-Fernandez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- XMaS/BM28-ESRF, 71 Avenue Des Martyrs, F-38043 Grenoble Cedex, France
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Gabriele Tullii
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - Carlotta Ronchi
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - Elena Gabirondo
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Stefania Rapino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Marco Malferrari
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Tobias Cramer
- Department of Physics and Astronomy, University of Bologna, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
22
|
Neurite growth induced by red light-caused intracellular reactive oxygen species production through cytochrome c oxidase activation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112681. [PMID: 36870246 DOI: 10.1016/j.jphotobiol.2023.112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The applications of red-light photobiomodulation (PBM) to enhance neurite growth have been proposed for many years. However, the detailed mechanisms require further studies. In the present work we used a focused red-light spot to illuminate the junction of the longest neurite and the soma of a neuroblastoma cell (N2a), and demonstrated enhanced neurite growth at 620 nm and 760 nm with adequate illumination energy fluences. In contrast, 680 nm light showed no effect on neurite growth. The neurite growth was accompanied with the increase of intracellular reactive oxygen species (ROS). Using Trolox to reduce the ROS level, this red light-induced neurite growth was hindered. Suppressing the activities of cytochrome c oxidase (CCO) by using either a small-molecule inhibitor or siRNA abrogated the red light-induced neurite growth. These results suggest that red light-induced ROS production through the activation of CCO could be beneficial for neurite growth.
Collapse
|
23
|
Zhou S, Yamada R, Sakamoto K. Low energy multiple blue light-emitting diode light Irradiation promotes melanin synthesis and induces DNA damage in B16F10 melanoma cells. PLoS One 2023; 18:e0281062. [PMID: 36730244 PMCID: PMC9894472 DOI: 10.1371/journal.pone.0281062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Visible light is present everywhere in our lives. Widespread use of computers and smartphones has increased the daily time spent in front of screens. What effect does this visible light have on us? Recent studies have shown that short-wavelength blue light (400-450nm) irradiation, similar to UV, inhibits the cell proliferation and differentiation, induces the intracellular oxidative stress, promotes the cell apoptosis and causes some other negative effects. However, it's unusual that directly face to such short-wavelength and high-energy blue light in daily life. Therefore, the effects of blue light with longer wavelength (470nm), lower energy (1, 2 J/cm2) and multiple times (simulated daily use) exposure on cells have been studied in this experiment. In our results, low energy density multiple blue light inhibited cell proliferation and metastatic capability with a weak phototoxicity. Blue light also promoted intracellular reactive oxygen species and caused DNA damage. Furthermore, the melanin synthesis was also promoted by low energy density multiple blue light exposure. Together, these results indicate that longer wavelength and low energy density blue light multiple exposure is still harmful to our cells. Furthermore, prolonged exposure to screens likely induces dull skin through induction of melanin synthesis. These results further mentioned us should paid more attention to controlling the daily use of digital device.
Collapse
Affiliation(s)
- Siqi Zhou
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryusuke Yamada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuichi Sakamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
24
|
Rajendran NK, Houreld NN. Photobiomodulation hastens diabetic wound healing via modulation of the PI3K/AKT/FoxO1 pathway in an adipose derived stem cell-fibroblast co-culture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
The antibacterial activity of photodynamic agents against multidrug resistant bacteria causing wound infection. Photodiagnosis Photodyn Ther 2022; 40:103066. [PMID: 35998880 DOI: 10.1016/j.pdpdt.2022.103066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial photodynamic inactivation (aPDI) of multidrug-resistant (MDR) wound pathogens was evaluated with cationic porphyrin derivatives (CPDs). MDR bacterial strains including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, and Klebsiella pneumoniae were used. The CPDs named PM, PE, PN, and PL were synthesized as a photosensitizer (PS). A diode laser with a wavelength of 655 nm was used as a light source. aPDI of the combinations formed with different energy densities (50, 100, and 150 J/cm²) and PS concentrations (ranging from 3.125 to 600 µM) were evaluated on each bacterial strain. Dark toxicity, cytotoxicity, and phototoxicity were determined on fibroblast cells. In the aPDI groups, survival reductions of up to 5.80 log₁₀ for E. coli, 5.90 log₁₀ for P. aeruginosa, 6.11 log₁₀ for K. pneumoniae, and 6.78 log₁₀ for A. baumannii were obtained. The cytotoxic effect of PL and PM on fibroblast cells was very limited. PN was the type of CPD with the highest dark toxicity on fibroblast cells. In terms of providing broad-spectrum aPDI without or with very limited cytotoxic effect, the best result was observed in aPDI application with PL. The other CPDs need some modifications to show bacterial selectivity for use at 50 µM and above.
Collapse
|
26
|
Tripodi N, Sidiroglou F, Fraser S, Husaric M, Kiatos D, Apostolopoulos V, Feehan J. The effects of polarized photobiomodulation on cellular viability, proliferation, mitochondrial membrane potential and apoptosis in human fibroblasts: Potential applications to wound healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 236:112574. [PMID: 36179581 DOI: 10.1016/j.jphotobiol.2022.112574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Photobiomodulation (PBM) is a widely used therapeutic intervention used to treat several chronic conditions. Despite this, fundamental research underpinning its effectiveness is lacking, highlighted by the lack of a definitive mechanism of action. Additionally, there are many treatment variables which remain underexplored, one of those being the effect of polarization the property of light that specifies the direction of the oscillating electric field. When applied to PBM, using linearly polarized light, when compared to otherwise identical non-polarized light, may enhance its biological efficacy. As such, we investigated the potential biological effects of polarized PBM when compared to non-polarized and non-irradiated controls in the domains of cellular viability, proliferation, apoptosis and mitochondrial membrane potential (ΔΨ) within cells exposed to oxidative stress. It was noted that polarized PBM, when compared to non-polarized PBM and non-irradiated controls, demonstrated mostly increased levels of cellular proliferation and ΔΨ, whilst decreasing the amount of cellular apoptosis. These results indicate that polarization may have utility in the clinical application of PBM. Future research is needed to further elucidate the underpinning mechanisms of PBM and polarization.
Collapse
Affiliation(s)
- Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Australia; First Year College, Victoria University, Melbourne, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia
| | - Fotios Sidiroglou
- First Year College, Victoria University, Melbourne, Australia; Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Maja Husaric
- Institute for Health and Sport, Victoria University, Melbourne, Australia; First Year College, Victoria University, Melbourne, Australia
| | - Dimitrios Kiatos
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia.
| |
Collapse
|
27
|
Yang J, Song J, Kim SJ, You G, Lee JB, Mok H. Chronic infrared-A irradiation-induced photoaging of human dermal fibroblasts from different donors at physiological temperature. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:571-581. [PMID: 35437847 DOI: 10.1111/phpp.12793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In this study, we examined cellular responses to acute and chronic IRA irradiation at mild and natural levels of exposure in two types of human fibroblasts, each isolated from a different donor, at physiological temperature (34°C). METHOD Two types of human dermal fibroblasts (derived from a 20- and 50-year-old women, respectively) were exposed to different repeat numbers of IRA exposure (3, 6, 10, and 14 times; 42 mW/cm2 ) at a frequency of 3-4 times per week (4 h per irradiation). Cellular responses to acute and chronic IRA irradiation were examined by reactive oxygen species (ROS) level, apoptotic signals, cellular morphology, and collagen level. RESULTS We demonstrated that chronic IRA irradiation-induced severe cellular damage, including prolonged cell proliferation, increased intracellular ROS levels, activated cellular apoptosis, and elongated cell morphology, whereas acute IRA irradiation had negligible effects at 34°C. In addition, it was evident that the degree of cellular damage due to IRA irradiation differed according to the type of fibroblasts. CONCLUSIONS Considering the severe cellular damage induced by chronic IRA irradiation without heat, continuous exposure of skin to IRA irradiation during daily life may be harmful enough to induce photoaging.
Collapse
Affiliation(s)
- Jiwon Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Jihyeon Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | | | - Gayeon You
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | | | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
28
|
Freitas KABDS, Minicucci EM, da Silva VFB, Menozzi BD, Langoni H, Popim RC. Effects of photobiomodulation (660 nm laser) on anthracycline extravasation: An experimental study. Rev Lat Am Enfermagem 2022; 30:e3693. [PMID: 36287401 PMCID: PMC9580991 DOI: 10.1590/1518-8345.5786.3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE to investigate the effect of using different agents (topical hyaluronidase, photobiomodulation, and the association of photobiomodulation with topical hyaluronidase) in preventing the formation of lesions caused by doxorubicin extravasation, as well as in the reduction of lesions formed by extravasation of this drug. METHOD a quasi-experimental study conducted with 60 Wistar rats, randomized into four groups with 15 animals each. Group 1 (Control); Group 2 (Hyaluronidase); Group 3 (Photobiomodulation); and Group 4 (Hyaluronidase + Photobiomodulation). A wound was induced by applying 1 mg of doxorubicin to the subcutaneous tissue of the back of the animals. The concentration of topical hyaluronidase was 65 turbidity units/g and the energy employed was 1 joule of 100 mW red laser per square centimeter. With macroscopic evaluation every two days for 28 days, the following variables were observed: skin integrity, presence of blisters, hyperemia, exudate, bleeding, edema, crust, peeling and granulation tissue. RESULTS the animals from the groups subjected to photobiomodulation obtained better results in the assessment of the following variables: bleeding, hyperemia, exudate, intact skin and edema. CONCLUSION it was evidenced that the association of photobiomodulation with topical hyaluronidase was effective in reducing the local effects and assisted in the wound healing process, and that PBM alone was able to prevent appearance of lesions.
Collapse
Affiliation(s)
| | - Eliana Maria Minicucci
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Faculdade de Medicina de Botucatu, Departamento de Enfermagem, Botucatu, SP, Brazil
| | | | - Benedito Donizete Menozzi
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Faculdade de Medicina Veterinária e Zootecnia de Botucatu, Botucatu, SP, Brazil
| | - Hélio Langoni
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Faculdade de Medicina Veterinária e Zootecnia de Botucatu, Botucatu, SP, Brazil
| | - Regina Célia Popim
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Faculdade de Medicina de Botucatu, Departamento de Enfermagem, Botucatu, SP, Brazil
| |
Collapse
|
29
|
Shinhmar H, Hoh Kam J, Mitrofanis J, Hogg C, Jeffery G. Shifting patterns of cellular energy production (adenosine triphosphate) over the day and key timings for the effect of optical manipulation. JOURNAL OF BIOPHOTONICS 2022; 15:e202200093. [PMID: 35860879 DOI: 10.1002/jbio.202200093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are optically responsive organelles producing energy for cell function via adenosine triphosphate (ATP). But ATP production appears to vary over the day. Here we use Drosophila melanogaster to reveal daily shifts in whole animal ATP production in a tight 24 hours' time series. We show a marked production peak in the morning that declines around midday and remains low through afternoon and night. ATP production can be improved with long wavelengths (>660 nm), but apparently not at all times. Hence, we treated flies with 670 nm light to reveal optimum times. Exposures at 670 nm resulted in a significant ATP increases and a shift in the ATP/adenosine diphosphate (ADP) ratio at 8.00 and 11.00, whilst application at other time points had no effect. Hence, light-induced ATP increases appear limited to periods when natural production is high. In summary, long wavelength influences on mitochondria are conserved across species from fly to human. Determining times for their administration to improve function in ageing and disease are of key importance. This study progresses this problem.
Collapse
Affiliation(s)
| | - Jaimie Hoh Kam
- Institute of Ophthalmology, University College London, London, UK
| | - John Mitrofanis
- Institute of Ophthalmology, University College London, London, UK
- FDD-CEA, Clinatec, University of Grenoble Alpes, Saint-Martin-d'Hères, France
| | - Chris Hogg
- Institute of Ophthalmology, University College London, London, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
30
|
Ishimoto T, Mori H. Control of actin polymerization via reactive oxygen species generation using light or radiation. Front Cell Dev Biol 2022; 10:1014008. [PMID: 36211457 PMCID: PMC9538341 DOI: 10.3389/fcell.2022.1014008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Actin is one of the most prevalent proteins in cells, and its amino acid sequence is remarkably conserved from protozoa to humans. The polymerization-depolymerization cycle of actin immediately below the plasma membrane regulates cell function, motility, and morphology. It is known that actin and other actin-binding proteins are targets for reactive oxygen species (ROS), indicating that ROS affects cells through actin reorganization. Several researchers have attempted to control actin polymerization from outside the cell to mimic or inhibit actin reorganization. To modify the polymerization state of actin, ultraviolet, visible, and near-infrared light, ionizing radiation, and chromophore-assisted light inactivation have all been reported to induce ROS. Additionally, a combination of the fluorescent protein KillerRed and the luminescent protein luciferase can generate ROS on actin fibers and promote actin polymerization. These techniques are very useful tools for analyzing the relationship between ROS and cell function, movement, and morphology, and are also expected to be used in therapeutics. In this mini review, we offer an overview of the advancements in this field, with a particular focus on how to control intracellular actin polymerization using such optical approaches, and discuss future challenges.
Collapse
Affiliation(s)
- Tetsuya Ishimoto
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- *Correspondence: Tetsuya Ishimoto,
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
31
|
Dani S, Windisch J, Valencia Guerrero XM, Bernhardt A, Gelinsky M, Krujatz F, Lode A. Selection of a suitable photosynthetically active microalgae strain for the co-cultivation with mammalian cells. Front Bioeng Biotechnol 2022; 10:994134. [PMID: 36199362 PMCID: PMC9528974 DOI: 10.3389/fbioe.2022.994134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Preventing hypoxic zones in 3D bioprinted mammalian cell-laden constructs using an internal oxygen supply could enable a more successful cultivation both in vitro and in vivo. In this study, the suitability of green microalgae as photosynthetic oxygen generators within bioprinted constructs was evaluated by defining and investigating important parameters for a successful co-culture. First, we assessed the impact of light–necessary for photosynthesis–on two non-light adapted mammalian cell types and defined red-light illumination and a temperature of 37°C as essential factors in a co-culture. The four thermotolerant microalgae strains Chlorella sorokiniana, Coelastrella oocystiformis, Coelastrella striolata, and Scenedesmus sp. were cultured both in suspension culture and 3D bioprinted constructs to assess viability and photosynthetic activity under these defined co-culture conditions. Scenedesmus sp. proved to be performing best under red light and 37°C as well as immobilized in a bioprinted hydrogel based on alginate. Moreover, the presence of the antibiotic ampicillin and the organic carbon-source glucose, both required for mammalian cell cultures, had no impact on bioprinted Scenedesmus sp. cultures regarding growth, viability, and photosynthetic activity. This study is the first to investigate the influence of mammalian cell requirements on the metabolism and photosynthetic ability of different microalgal strains. In a co-culture, the strain Scenedesmus sp. could provide a stable oxygenation that ensures the functionality of the mammalian cells.
Collapse
Affiliation(s)
- Sophie Dani
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Johannes Windisch
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Xally Montserrat Valencia Guerrero
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Felix Krujatz
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Anja Lode,
| |
Collapse
|
32
|
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220027VRR. [PMID: 36104833 PMCID: PMC9473299 DOI: 10.1117/1.jbo.27.9.090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications. AIM We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering. APPROACH First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids. RESULTS Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined. CONCLUSIONS PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse
Affiliation(s)
- Polina Bikmulina
- Sechenov First Moscow State Medical University, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Moscow, Russia
| | - Nastasia Kosheleva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Anastasia Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Vladimir Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Russia
| | - Vladimir Gogvadze
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | - Yury Rochev
- National University of Ireland, Galway, Galway, Ireland
| | - Peter Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| |
Collapse
|
33
|
Keszler A, Lindemer B, Broeckel G, Weihrauch D, Gao Y, Lohr NL. In Vivo Characterization of a Red Light-Activated Vasodilation: A Photobiomodulation Study. Front Physiol 2022; 13:880158. [PMID: 35586710 PMCID: PMC9108481 DOI: 10.3389/fphys.2022.880158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Nitric oxide dependent vasodilation is an effective mechanism for restoring blood flow to ischemic tissues. Previously, we established an ex vivo murine model whereby red light (670 nm) facilitates vasodilation via an endothelium derived vasoactive species which contains a functional group that can be reduced to nitric oxide. In the present study we investigated this vasodilator in vivo by measuring blood flow with Laser Doppler Perfusion imaging in mice. The vasodilatory nitric oxide precursor was analyzed in plasma and muscle with triiodide-dependent chemiluminescence. First, a 5–10 min irradiation of a 3 cm2 area in the hind limb at 670 nm (50 mW/cm2) produced optimal vasodilation. The nitric oxide precursor in the irradiated quadriceps tissue decreased significantly from 123 ± 18 pmol/g tissue by both intensity and duration of light treatment to an average of 90 ± 17 pmol/g tissue, while stayed steady (137 ± 21 pmol/g tissue) in unexposed control hindlimb. Second, the blood flow remained elevated 30 min after termination of the light exposure. The nitric oxide precursor content significantly increased by 50% by irradiation then depleted in plasma, while remained stable in the hindlimb muscle. Third, to mimic human peripheral artery disease, an ameroid constrictor was inserted on the proximal femoral artery of mice and caused a significant reduction of flow. Repeated light treatment for 14 days achieved steady and significant increase of perfusion in the constricted limb. Our results strongly support 670 nm light can regulate dilation of conduit vessel by releasing a vasoactive nitric oxide precursor species and may offer a simple home-based therapy in the future to individuals with impaired blood flow in the leg.
Collapse
Affiliation(s)
- Agnes Keszler
- Departments of Medicine- Division of Cardiovascular Medicine, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian Lindemer
- Departments of Medicine- Division of Cardiovascular Medicine, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Grant Broeckel
- Departments of Medicine- Division of Cardiovascular Medicine, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dorothee Weihrauch
- Departments of Medicine- Division of Cardiovascular Medicine, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Departments of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yan Gao
- Institute for Health and Equity- Division of Biostatistics, Milwaukee, WI, United States
| | - Nicole L. Lohr
- Departments of Medicine- Division of Cardiovascular Medicine, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J Zablocki VA Medical Center, Milwaukee, WI, United States
- *Correspondence: Nicole L. Lohr,
| |
Collapse
|
34
|
George S, Hamblin MR, Abrahamse H. Neuronal differentiation potential of primary and immortalized adipose stem cells by photobiomodulation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 230:112445. [PMID: 35453038 DOI: 10.1016/j.jphotobiol.2022.112445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 01/28/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Adipose Stem Cells (ASCs) are capable of neuronal differentiation, which makes them an ideal choice for therapies in nerve injuries. Principally, the differentiation of autologous ASCs to neurons offers solutions for the replacement therapies of nervous system with patient's own genetic background. On the contrary, the use of genetically modified (immortalized) ASCs has the benefit of accessibility by surpassing ethical concerns and ease for propagation as a continuous cell culture. Photobiomodulation (PBM) is a therapeutic modality with laser or light, which is widely been used for modulating stem cell bioprocesses viz. proliferation and differentiation. A comparative analysis was performed to evaluate the neuronal differentiation potential of primary ASCs isolated from a healthy human subject with commercially obtained immortalized ASCs with PBM. The outcome of this analysis will help us to know either primary or immortalized ASCs are most suitable for biomedical applications. Both primary and immortalized ASCs were characterized using their surface protein markers CD44/90/133/166 and induced to differentiate into neuronal cells using Fibroblast Growth Factor, basic (bFGF) and forskolin following PBM using Near Infra-Red (NIR) lasers. Based on the expression of nestin, an early neuronal marker an exposure to 5, 10 and 15 J/cm2 of NIR and growth inducers for 14 days the primary ASCs demonstrated a higher neuronal differentiation potential compared to the immortalized ASCs. However, newly differentiated cells from either of these ASCs did not reveal βIII-tubulin, an intermediate neuronal marker even by 21 days of differentiation. This study gives an indication that immortalized ASCs have a phenotype and differentiation potential slightly less but comparable to the freshly isolated ASCs. We suggest that PBM along with growth inducers offer a better solution of differentiating ASCs to neurons.
Collapse
Affiliation(s)
- Sajan George
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa; Wellman Centre for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
35
|
Freitas KABDS, Minicucci EM, Silva VFBD, Menozzi BD, Langoni H, Popim RC. Efectos de la fotobiomodulación (láser de 660 nm) sobre la extravasación de antraciclinas: estudio experimental. Rev Lat Am Enfermagem 2022. [DOI: 10.1590/1518-8345.5786.3692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Resumen Objetivo: investigar el efecto del uso de diferentes agentes (hialuronidasa tópica, fotobiomodulación y la combinación de fotobiomodulación y hialuronidasa tópica) en la prevención de la formación de lesiones causadas por la extravasación de doxorrubicina y en la reducción de las lesiones formadas por la extravasación de ese fármaco. Método: estudio experimental con 60 ratas Wistar, distribuidos aleatoriamente en cuatro grupos de 15 animales. Grupo 1 (Control); Grupo 2 (Hialuronidasa); Grupo 3 (Fotobiomodulación) y Grupo 4 (Hialuronidasa + Fotobiomodulación). La herida se indujo aplicando 1 mg de doxorrubicina por vía subcutánea en el lomo de los animales. La concentración de hialuronidasa tópica fue de 65 unidades de turbidez/g, la energía utilizada fue de 1 joule de láser rojo de 100 mW por centímetro cuadrado. En la evaluación macroscópica cada dos días durante 28 días se observaron las siguientes variables: piel intacta, presencia de flictena, hiperemia, exudado, sangrado, edema, costra, descamación y tejido de granulación. Resultados: los animales de los grupos con fotobiomodulación obtuvieron mejores resultados en la evaluación de las variables: sangrado, hiperemia, exudado, piel intacta y edema. Conclusión: se demostró que la combinación de fotobiomodulación y hialuronidasa tópica fue eficaz para reducir los efectos locales y ayudó en el proceso de cicatrización de heridas y que la FBM por sí sola previno la aparición de lesiones.
Collapse
Affiliation(s)
| | | | | | | | - Hélio Langoni
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | | |
Collapse
|
36
|
Freitas KABDS, Minicucci EM, Silva VFBD, Menozzi BD, Langoni H, Popim RC. Efeitos da fotobiomodulação (laser 660 nm) no extravasamento de antraciclina: estudo experimental. Rev Lat Am Enfermagem 2022. [DOI: 10.1590/1518-8345.5786.3694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Resumo Objetivo: investigar o efeito do uso de diferentes agentes (hialuronidase tópica, fotobiomodulação e da associação da fotobiomodulação com a hialuronidase tópica) na prevenção de formação de lesões causadas por extravasamento de doxorrubicina bem como na diminuição de lesões formadas pelo extravasamento desta droga. Método: estudo experimental com 60 ratos Wistar, randomizados em quatro grupos de 15 animais. Grupo 1 (Controle); Grupo 2 (Hialuronidase); Grupo 3 (Fotobiomodulação) e Grupo 4 (Hialuronidase + Fotobiomodulação). Induziu-se ferida aplicando 1 mg de doxorrubicina no subcutâneo do dorso dos animais. A concentração da hialuronidase tópica foi de 65 unidades de turbidez/g, a energia empregada foi de 1 joule de laser vermelho 100 mW por centímetro quadrado. Com avaliação macroscópica a cada dois dias por 28 dias, observou-se as variáveis: integridade da pele, presença de flictema, hiperemia, exsudato, sangramento, edema, crosta, descamação e tecido de granulação. Resultados: os animais dos grupos com fotobiomodulação obtiveram melhores resultados na avaliação das variáveis: sangramento, hiperemia, exsudato, pele íntegra e edema. Conclusão: evidenciou-se que a associação da fotobiomodulação com a hialuronidase tópica foi eficaz na diminuição dos efeitos locais e auxiliou no processo de cicatrização da ferida e que a FBM isolada foi capaz de prevenir o aparecimento de lesões.
Collapse
Affiliation(s)
| | | | | | | | - Hélio Langoni
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | | |
Collapse
|
37
|
Cellular Signalling and Photobiomodulation in Chronic Wound Repair. Int J Mol Sci 2021; 22:ijms222011223. [PMID: 34681882 PMCID: PMC8537491 DOI: 10.3390/ijms222011223] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/29/2022] Open
Abstract
Photobiomodulation (PBM) imparts therapeutically significant benefits in the healing of chronic wounds. Chronic wounds develop when the stages of wound healing fail to progress in a timely and orderly frame, and without an established functional and structural outcome. Therapeutic benefits associated with PBM include augmenting tissue regeneration and repair, mitigating inflammation, relieving pain, and reducing oxidative stress. PBM stimulates the mitochondria, resulting in an increase in adenosine triphosphate (ATP) production and the downstream release of growth factors. The binding of growth factors to cell surface receptors induces signalling pathways that transmit signals to the nucleus for the transcription of genes for increased cellular proliferation, viability, and migration in numerous cell types, including stem cells and fibroblasts. Over the past few years, significant advances have been made in understanding how PBM regulates numerous signalling pathways implicated in chronic wound repair. This review highlights the significant role of PBM in the activation of several cell signalling pathways involved in wound healing.
Collapse
|
38
|
Souza C, Jayme CC, Rezende N, Tedesco AC. Synergistic effect of photobiomodulation and phthalocyanine photosensitizer on fibroblast signaling responses in an in vitro three-dimensional microenvironment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 222:112256. [PMID: 34330080 DOI: 10.1016/j.jphotobiol.2021.112256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/12/2021] [Accepted: 07/04/2021] [Indexed: 12/22/2022]
Abstract
Photobiomodulation (PBM) is a promising medical treatment modality in the area of photodynamic therapy (PDT). In this study, we investigated the effect of combined therapy in a 3D microenvironment using aluminum chloride phthalocyanines (AlClPc) as the photosensitizing agent. Normal human fibroblast-containing collagen biomatrix was prepared and treated with an oil-in-water (o/a) AlClPc-loaded nanoemulsion (from 0.5 to 3.0 μM) and irradiated at a range of fluences (from 0.1 to 3.0 J/cm2) using a continuous-wave light-emitting diode (LED) irradiation system (660 nm). PBM at 1.2 J/cm2 and AlClPc/NE at 0.5 μM modified the fibroblast signaling response under 3D conditions, promoting collagen synthesis, ROS production, MMP-9 secretion, proliferation of the actin network, and facile myofibroblastic differentiation. PBM alone (at 1.2 J/cm2 and 0.3 J/cm2) had no significant effect on any of these parameters. The combined therapy affected myofibroblastic differentiation, inflammatory response, and extracellular matrix pliability, and should thus be examined further in subsequent studies considering that no side effects of PBM have been reported. Even though significant progress has been made in the field of phototherapy in recent years, it is necessary to further elucidate the detailed mechanisms underlying its effects already shown in 2D conditions to increase the acceptance of this beneficial and non-invasive therapeutic approach.
Collapse
Affiliation(s)
- Carla Souza
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Cristiano Ceron Jayme
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Nayara Rezende
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
39
|
Gonçalves de Faria CM, Ciol H, Salvador Bagnato V, Pratavieira S. Effects of photobiomodulation on the redox state of healthy and cancer cells. BIOMEDICAL OPTICS EXPRESS 2021; 12:3902-3916. [PMID: 34457388 PMCID: PMC8367241 DOI: 10.1364/boe.421302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Photobiomodulation therapy (PBMT) uses light to stimulate cells. The molecular basis of the effects of PBMT is being unveiled, but it is stated that the cytochrome-c oxidase enzyme in mitochondria, a photon acceptor of PBMT, contributes to an increase in ATP production and modulates the reduction and oxidation of electron carriers NADH and FAD. Since its effects are not fully understood, PBMT is not used on tumors. Thus, it is interesting to investigate if its effects correlate to mitochondrial metabolism and if so, how it could be linked to the optical redox ratio (ORR), defined as the ratio of FAD/(NADH + FAD) fluorescences. To that end, fibroblasts (HDFn cell line) and oral squamous cell carcinoma (SCC-25 cell line) were irradiated with a light source of 780 nm and a total dose of 5 J/cm2, and imaged by optical microscopy. PBMT down-regulated the SCC-25 ORR by 10%. Furthermore, PBMT led to an increase in ROS and ATP production in carcinoma cells after 4 h, while fibroblasts only had a modest ATP increase 6 h after irradiation. Cell lines did not show distinct cell cycle profiles, as both had an increase in G2/M cells. This study indicates that PBMT decreases the redox state of oral cancer by possibly increasing glycolysis and affects normal and tumor cells through distinct pathways. To our knowledge, this is the first study that investigated the effects of PBMT on mitochondrial metabolism from the initiation of the cascade to DNA replication. This is an essential step in the investigation of the mechanism of action of PBMT in an effort to avoid misinterpretations of a variety of combined protocols.
Collapse
Affiliation(s)
| | - Heloisa Ciol
- São Carlos Institute of Physics - University of São Paulo, São Carlos, SP, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics - University of São Paulo, São Carlos, SP, Brazil
- Faculty Fellow at the Hagler Institute for Advanced Study and Visiting Professor at the Department of Biomedical Engineering - Texas A&M University, College Station Texas - USA 77843, USA
| | | |
Collapse
|
40
|
Kocherova I, Bryja A, Błochowiak K, Kaczmarek M, Stefańska K, Matys J, Grzech-Leśniak K, Dominiak M, Mozdziak P, Kempisty B, Dyszkiewicz-Konwińska M. Photobiomodulation with Red and Near-Infrared Light Improves Viability and Modulates Expression of Mesenchymal and Apoptotic-Related Markers in Human Gingival Fibroblasts. MATERIALS 2021; 14:ma14123427. [PMID: 34205573 PMCID: PMC8233986 DOI: 10.3390/ma14123427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/05/2023]
Abstract
Photobiomodulation (PBM), also called low-level laser treatment (LLLT), has been considered a promising tool in periodontal treatment due to its anti-inflammatory and wound healing properties. However, photobiomodulation's effectiveness depends on a combination of parameters, such as energy density, the duration and frequency of the irradiation sessions, and wavelength, which has been shown to play a key role in laser-tissue interaction. The objective of the study was to compare the in vitro effects of two different wavelengths-635 nm and 808 nm-on the human primary gingival fibroblasts in terms of viability, oxidative stress, inflammation markers, and specific gene expression during the four treatment sessions at power and energy density widely used in dental practice (100 mW, 4 J/cm2). PBM with both 635 and 808 nm at 4 J/cm2 increased the cell number, modulated extracellular oxidative stress and inflammation markers and decreased the susceptibility of human primary gingival fibroblasts to apoptosis through the downregulation of apoptotic-related genes (P53, CASP9, BAX). Moreover, modulation of mesenchymal markers expression (CD90, CD105) can reflect the possible changes in the differentiation status of irradiated fibroblasts. The most pronounced results were observed following the third irradiation session. They should be considered for the possible optimization of existing low-level laser irradiation protocols used in periodontal therapies.
Collapse
Affiliation(s)
- Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (I.K.); (A.B.); (B.K.)
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, 8952 Schlieren, Switzerland
| | - Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (I.K.); (A.B.); (B.K.)
| | - Katarzyna Błochowiak
- Department of Oral Surgery and Periodontology, Poznan University of Medical Sciences, 61-812 Poznań, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznań, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland;
| | - Jacek Matys
- Laser Laboratory at Dental Surgery Department, Medical University of Wroclaw, 50-425 Wrocław, Poland; (J.M.); (K.G.-L.); (M.D.)
| | - Kinga Grzech-Leśniak
- Laser Laboratory at Dental Surgery Department, Medical University of Wroclaw, 50-425 Wrocław, Poland; (J.M.); (K.G.-L.); (M.D.)
- Department of Periodontics, School of Dentistry Virginia Commonwealth University, VCU, Richmond, VA 23298, USA
| | - Marzena Dominiak
- Laser Laboratory at Dental Surgery Department, Medical University of Wroclaw, 50-425 Wrocław, Poland; (J.M.); (K.G.-L.); (M.D.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (I.K.); (A.B.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (I.K.); (A.B.); (B.K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8547067
| |
Collapse
|
41
|
How does the skin sense sun light? An integrative view of light sensing molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Bezinelli LM, Corrêa L, Vogel C, Kutner JM, Ribeiro AF, Hamerschlak N, Eduardo CDP, Migliorati CA, Eduardo FDP. Long-term safety of photobiomodulation therapy for oral mucositis in hematopoietic cell transplantation patients: a 15-year retrospective study. Support Care Cancer 2021; 29:6891-6902. [PMID: 34021422 DOI: 10.1007/s00520-021-06268-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022]
Abstract
Photobiomodulation therapy (PBMT) has demonstrated efficacy in the prevention and treatment of oral mucositis (OM) in hematopoietic cell transplantation (HCT). However, based on the cell stimulation properties, its long-term safety has been questioned, mainly in relation to risk for secondary malignancies in the oral cavity. The aim of this study was to investigate if different PBMT protocols for OM control have association with immediate and late adverse effects in HCT patients. Data on autologous and allogeneic transplantation, conditioning regimen, PBMT protocols, and OM severity were retrospectively collected from medical and dental records. Presence of secondary malignancies in the oral cavity was surveyed during a 15-year follow-up. Impact of OM on overall survival was also analyzed. Different PBMT protocols for prevention and treatment of OM were recorded over the years. Severe OM (grades 3 and 4) was infrequently observed. When present, we observed a significant decrease of the overall survival. No immediate adverse effect and secondary malignancy was associated to PBMT. In conclusion, the PBMT protocols used in the study were considered safe. The low frequency of severe OM observed encourages the implementation of this technique, with a special emphasis on the dosimetry adjustments focused on the HCT context.
Collapse
Affiliation(s)
- Letícia Mello Bezinelli
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/520, São Paulo, SP, CEP 05651-901, Brazil
| | - Luciana Corrêa
- School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Cristina Vogel
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/520, São Paulo, SP, CEP 05651-901, Brazil
| | - Jose Mauro Kutner
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/520, São Paulo, SP, CEP 05651-901, Brazil
| | - Andreza Feitosa Ribeiro
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/520, São Paulo, SP, CEP 05651-901, Brazil
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/520, São Paulo, SP, CEP 05651-901, Brazil
| | | | - Cesar Augusto Migliorati
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Fernanda de Paula Eduardo
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/520, São Paulo, SP, CEP 05651-901, Brazil.
| |
Collapse
|
43
|
Pérez-Silguero MA, Pérez-Silguero D, Rivero-Santana A, Bernal-Blasco MI, Encinas-Pisa P. Combined Intense Pulsed Light and Low-Level Light Therapy for the Treatment of Dry Eye: A Retrospective Before-After Study with One-Year Follow-Up. Clin Ophthalmol 2021; 15:2133-2140. [PMID: 34045848 PMCID: PMC8149274 DOI: 10.2147/opth.s307020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose To assess the effectiveness of a combination of intense pulsed light and low-level light therapy (IPL/LLLT) for the treatment of dry eye. Study Design Retrospective before-after single-center clinical study. Materials and Methods Patients diagnosed with dry eye, refractory to conventional treatment, underwent four sessions of combined IPL/LLLT over 3 months. The Ocular Surface Disease Index (OSDI) questionnaire, non-invasive breakup time (NIBUT), tear film osmolarity and meniscus height were measured 6 months before intervention, at baseline, post-intervention (3 months), 9 and 15 months. Results NIBUT, osmolarity and meniscus height significantly worsened during the 6 months before treatment, whereas symptoms did not change. OSDI scores significantly improved at post-intervention (MD = −44.0, 95% CI −38.1, −50.0), and then increased again until the at last follow-up, but still significantly different from baseline (MD = −30.0, 95% CI −23.4, −36.8). The three clinical signs showed a similar pattern, with one-year improvements of 3.6 seconds for the NIBUT (95% CI 3.1, 4.2, p <0.001), 28 mOsm/L for osmolarity (95% CI 23.6, 32.4, p <0.001) and 0.03 mm for meniscus height (95% CI 0.02, 0.04, p <0.001). No adverse effects were observed. Conclusion IPL/LLLT is safe and produces an important reduction in symptoms and signs of dry eye disease, still relevant one year after the end of treatment in a sample with high symptoms’ severity. Therefore, it represents a promising treatment option for patients who do not improve with conventional treatment. Randomized trials are needed to determine the added benefit provided by LLLT.
Collapse
Affiliation(s)
| | - David Pérez-Silguero
- Department of Ophthalmology, Pérez-Silguero Ophthalmologic Clinic, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Amado Rivero-Santana
- Department of Health Technology Assessment, Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Maria Inmaculada Bernal-Blasco
- Department of Community and Family Medicine, Primary Care Center of Cuevas Torres, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Pablo Encinas-Pisa
- Department of Ophthalmology, La Paloma Hospital, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
44
|
Cios A, Ciepielak M, Szymański Ł, Lewicka A, Cierniak S, Stankiewicz W, Mendrycka M, Lewicki S. Effect of Different Wavelengths of Laser Irradiation on the Skin Cells. Int J Mol Sci 2021; 22:ijms22052437. [PMID: 33670977 PMCID: PMC7957604 DOI: 10.3390/ijms22052437] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
The invention of systems enabling the emission of waves of a certain length and intensity has revolutionized many areas of life, including medicine. Currently, the use of devices emitting laser light is not only an indispensable but also a necessary element of many diagnostic procedures. It also contributed to the development of new techniques for the treatment of diseases that are difficult to heal. The use of lasers in industry and medicine may be associated with a higher incidence of excessive radiation exposure, which can lead to injury to the body. The most exposed to laser irradiation is the skin tissue. The low dose laser irradiation is currently used for the treatment of various skin diseases. Therefore appropriate knowledge of the effects of lasers irradiation on the dermal cells’ metabolism is necessary. Here we present current knowledge on the clinical and molecular effects of irradiation of different wavelengths of light (ultraviolet (UV), blue, green, red, and infrared (IR) on the dermal cells.
Collapse
Affiliation(s)
- Aleksandra Cios
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 04-141 Warsaw, Poland; (A.C.); (M.C.); (W.S.)
| | - Martyna Ciepielak
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 04-141 Warsaw, Poland; (A.C.); (M.C.); (W.S.)
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland
- Correspondence:
| | - Aneta Lewicka
- Laboratory of Food and Nutrition Hygiene, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland;
| | - Szczepan Cierniak
- Department of Patomorphology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland;
| | - Wanda Stankiewicz
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 04-141 Warsaw, Poland; (A.C.); (M.C.); (W.S.)
| | - Mariola Mendrycka
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland;
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, 04-141 Warsaw, Poland;
| |
Collapse
|
45
|
Sterczała B, Grzech-Leśniak K, Michel O, Trzeciakowski W, Dominiak M, Jurczyszyn K. Assessment of Human Gingival Fibroblast Proliferation after Laser Stimulation In Vitro Using Different Laser Types and Wavelengths (1064, 980, 635, 450, and 405 nm)-Preliminary Report. J Pers Med 2021; 11:98. [PMID: 33557038 PMCID: PMC7913795 DOI: 10.3390/jpm11020098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE to assess the effect of photobiomodulation (PBM) on human gingival fibroblast proliferation. METHODS The study was conducted using the primary cell cultures of human fibroblasts collected from systemically healthy donors. Three different laser types, Nd:YAG (1064 nm), infrared diode laser (980 nm), and prototype led laser emitting 405, 450, and 635 nm were used to irradiate the fibroblasts. Due to the patented structure of that laser, it was possible to irradiate fibroblasts with a beam combining two or three wavelengths. The energy density was 3 J/cm2, 25 J/cm2, 64 J/cm2. The viability and proliferation of cells were determined using the (Thiazolyl Blue Tetrazolium Blue) (MTT) test conducted 24, 48, and 72 h after laser irradiation. RESULTS The highest percentage of mitochondrial activity (MA = 122.1%) was observed in the group irradiated with the 635 nm laser, with an energy density of 64 J/cm2 after 48 h. The lowest percentage of MA (94.0%) was observed in the group simultaneously irradiated with three wavelengths (405 + 450 + 635 nm). The use of the 405 nm laser at 25 J/cm2 gave similar results to the 635 nm laser. CONCLUSIONS The application of the 635 nm and 405 nm irradiation caused a statistically significant increase in the proliferation of gingival fibroblasts.
Collapse
Affiliation(s)
- Barbara Sterczała
- Dental Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland; (M.D.); (K.J.)
| | - Kinga Grzech-Leśniak
- Laser Laboratory at Dental Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland;
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, VCU, Richmond, VA 23298, USA
| | - Olga Michel
- Department of Molecular and Cell Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Witold Trzeciakowski
- Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland;
| | - Marzena Dominiak
- Dental Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland; (M.D.); (K.J.)
| | - Kamil Jurczyszyn
- Dental Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland; (M.D.); (K.J.)
| |
Collapse
|
46
|
In Vitro Wound Healing Potential of Photobiomodulation Is Possibly Mediated by Its Stimulatory Effect on AKT Expression in Adipose-Derived Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6664627. [PMID: 33505585 PMCID: PMC7811432 DOI: 10.1155/2021/6664627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that adipose-derived stem cells (ADSCs) serve as a therapeutic approach for wound healing. The aim of this study was to determine the effect of photobiomodulation (PBM) on antioxidant enzymes in ADSCs. Four ADSC cell models, namely, normal, wounded, diabetic, and diabetic wounded, were irradiated with 660 nm (fluence of 5 J/cm2 and power density of 11.2 mW/cm2) or 830 nm (fluence of 5 J/cm2 and power density of 10.3 mW/cm2). Nonirradiated cells served as controls. Cell morphology and wound migration were determined using light microscopy. Cell viability was determined by the trypan blue exclusion assay. The enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of antioxidants (superoxide dismutase (SOD), catalase (CAT), and heme oxygenase (HMOX1)). AKT activation and FOXO1 levels were determined by immunofluorescence and western blotting. The gaps (wound) in PBM-treated wounded and diabetic wounded cell models closed faster than the controls. PBM treatment significantly increased antioxidant levels in all cell models. This reflects that oxidative stress is reduced on the counterpart of increased antioxidant levels. This might be due to the activation of the AKT signaling pathway as evidenced by the increased AKT signals via western blotting and immunofluorescence. This data suggests that PBM promotes wound healing by increasing antioxidant levels by activating AKT signaling.
Collapse
|
47
|
The effects of photobiomodulation on human dermal fibroblasts in vitro: A systematic review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 214:112100. [DOI: 10.1016/j.jphotobiol.2020.112100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
|
48
|
Shanmugapriya K, Kim H, Kang HW. Fucoidan-loaded hydrogels facilitates wound healing using photodynamic therapy by in vitro and in vivo evaluation. Carbohydr Polym 2020; 247:116624. [DOI: 10.1016/j.carbpol.2020.116624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023]
|
49
|
Karic V, Chandran R, Abrahamse H. Laser-Induced Differentiation of Human Adipose-Derived Stem Cells to Temporomandibular Joint Disc Cells. Lasers Surg Med 2020; 53:567-577. [PMID: 33030751 DOI: 10.1002/lsm.23332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Temporomandibular disorder (TMD) is an incapacitating disease with temporomandibular joint (TMJ) disc degenerative changes in patients. Despite several research attempts to find a definitive treatment, there is no evidence of a permanent solution. The objective of the current study was to observe the role of 660 nm diode laser in the differentiation of human adipose-derived stem cells (ADSCs) to fibroblasts and chondrocytes. STUDY DESIGN/MATERIALS AND METHODS After irradiation, the morphology, viability, and adenosine triphosphate (ATP) proliferation of the ADSCs were analyzed at different time intervals. The differentiation of ADSCs toward fibroblastic and chondrogenic phenotypes was supported using flow cytometry and immunofluorescence at 1- and 2-week post-irradiation. RESULTS More than 90% of viable cells were observed in all experimental groups, with an increase in ATP proliferation. Flow cytometry analyses and immunofluorescence demonstrated the presence of chondrogenic and fibroblastic cell surface markers at 1- and 2-week post-irradiation. CONCLUSION This study has demonstrated methods to induce the differentiation of ADSCs toward fibroblastic and chondrogenic phenotypes with a 660 nm diode laser. The study also proposes a future alternative method of treatment for patients with degenerative TMJ disc disorders and presents a positive prospect in the application of photobiomodulation and ADSCs in the treatment of degenerative TMJ disc. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Vesna Karic
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO, Box 17011, Doornfontein, Johannesburg, 2028, South Africa.,Department of Prosthodontic and Oral Rehabilitation, and Laser Therapy in Dentistry, Division, School of Oral Sciences, Health Sciences Faculty, WITS University, PO Box, 2010, 7 York Street, Johannesburg, 2193, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO, Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO, Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
50
|
George S, Hamblin MR, Abrahamse H. Photobiomodulation-Induced Differentiation of Immortalized Adipose Stem Cells to Neuronal Cells. Lasers Surg Med 2020; 52:1032-1040. [PMID: 32525253 DOI: 10.1002/lsm.23265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Transdermal differentiation of human adipose stem cells (ASCs) to other cell types is still a challenge in regenerative medicine. Studies using primary ASCs are also limited as they may undergo replicative senescence during repeated passages in vitro. However, ASCs immortalized (iASCs) with human telomerase enzyme expressing plasmid exhibits a uniform population suitable for differentiation in vitro. A right combination of biological and physical stimuli may induce transdermal differentiation of iASCs into neurons in vitro. STUDY DESIGN/MATERIALS AND METHODS iASCs were differentiated to free-floating neural stem cell aggregates (neurospheres) using a combination of growth inducers. Cells in these spheres were induced to differentiate into neurons using low-intensity lasers by a process called photobiomodulation (PBM). RESULTS Laser at the near infrared (NIR) wavelength 825 nm and fluences 5, 10, and 15 J/cm2 was capable of increasing the differentiation of neurospheres to neurons. Precisely, there was a statistically significant increase in the early neuronal marker at 5 J/cm2 and a much appreciable increase at 15 J/cm2 in correlation with the biphasic dose response of PBM. However, these differentiated cells failed to express late neuronal markers in vitro. Comparison of these differentiating iASCs with the primary ASCs revealed a sharp distinction between the metabolic processes of the primary ASCs, neurospheres, and newly differentiated neurons. CONCLUSION We found that PBM increased the yield of neurons and effected stem cell differentiation through modulation of cellular metabolism and redox status. Our study also identifies that iASCs are an excellent model for analysis of stem cell biology and for performing transdermal differentiation. SIGNIFICANCE This study demonstrates that a combination of biological and physical inducers can advance the differentiation of adipose stem cells to neurons. We were able to establish the optimal energy for the neuronal differentiation of iASCs in vitro. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Sajan George
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, South Africa
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, South Africa.,Wellman Centre for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, 02114.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, South Africa
| |
Collapse
|