1
|
Ferreira JDS, Figueiredo BS, Vasconcelos VVV, de Abreu ALL, Ribeiro SSDS, Kaya EN, Bulut M, Ribeiro JN, Durmuş M, Romero da Silva A. Photodynamic Inactivation of Staphylococcus aureus and Biomolecules by Free and Encapsulated Indium(III) Phthalocyanines in PHB Nanoparticles: The Influence of the Position of the Coumarin Group. Biomacromolecules 2025; 26:2076-2094. [PMID: 40165010 PMCID: PMC12004533 DOI: 10.1021/acs.biomac.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising alternative to inactivating resistant microorganisms. Metallic phthalocyanines (Pc) substituted with coumarin groups exhibit favorable photophysical properties for APDT; however, their hydrophobicity limits administration. This study investigates indium(III) Pc substituted with 7-oxy-3-(3',4',5'-trimethoxyphenyl)coumarin at nonperipheral (3nInOAc) and peripheral (4nInOAc) positions, both in their free form and encapsulated in polyhydroxybutyrate nanoparticles, for the photodynamic inactivation of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA) bacteria. The photodynamic activity was also assessed through the photooxidation of tryptophan and bovine serum albumin. Theoretical calculations and molecular docking were performed to corroborate the experimental results, investigating the influence of molecular structure on the photodynamic and antimicrobial performance of Pc-loaded nanoparticles as well as their nanoparticulate properties. Overall, both free and encapsulated Pc were capable of photooxidizing biomolecules and exhibited moderate antimicrobial activity, with 4nInOAc demonstrating superior efficacy, achieving an average reduction of 2 logs (99%) in MSSA and MRSA colonies.
Collapse
Affiliation(s)
- Julyana
Noval de Souza Ferreira
- Graduate
Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, Espírito Santo, Brazil
- Federal
Institute of Education, Science and Technology of Espírito
Santo, Campus Vitória, 29040-780 Vitória, Espírito Santo, Brazil
| | - Barbara Silva Figueiredo
- Graduate
Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, Espírito Santo, Brazil
| | - Vannyla Viktória Viana Vasconcelos
- Graduate
Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, Espírito Santo, Brazil
| | - Antony Luca Luna
Vieira de Abreu
- Federal
Institute of Education, Science and Technology of Espírito
Santo, Campus Aracruz, 29192-733 Aracruz, Espírito Santo, Brazil
| | - Sheila Souza da Silva Ribeiro
- Federal
Institute of Education, Science and Technology of Espírito
Santo, Campus Vitória, 29040-780 Vitória, Espírito Santo, Brazil
| | - Esra Nur Kaya
- Faculty
of Art and Science, Department of Chemistry, Marmara University, 34722 Kadıköy, İstanbul, Turkey
- Department
of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Mustafa Bulut
- Faculty
of Art and Science, Department of Chemistry, Marmara University, 34722 Kadıköy, İstanbul, Turkey
| | - Joselito Nardy Ribeiro
- Health
Science
Center, Federal University of Espírito
Santo, 29043-910 Vitória, Espírito Santo, Brazil
| | - Mahmut Durmuş
- Department
of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - André Romero da Silva
- Graduate
Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, Espírito Santo, Brazil
- Federal
Institute of Education, Science and Technology of Espírito
Santo, Campus Aracruz, 29192-733 Aracruz, Espírito Santo, Brazil
| |
Collapse
|
2
|
Zhao W, Wang L, Zhang M, Liu Z, Wu C, Pan X, Huang Z, Lu C, Quan G. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm (Beijing) 2024; 5:e603. [PMID: 38911063 PMCID: PMC11193138 DOI: 10.1002/mco2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Photodynamic therapy (PDT) is a temporally and spatially precisely controllable, noninvasive, and potentially highly efficient method of phototherapy. The three components of PDT primarily include photosensitizers, oxygen, and light. PDT employs specific wavelengths of light to active photosensitizers at the tumor site, generating reactive oxygen species that are fatal to tumor cells. Nevertheless, traditional photosensitizers have disadvantages such as poor water solubility, severe oxygen-dependency, and low targetability, and the light is difficult to penetrate the deep tumor tissue, which remains the toughest task in the application of PDT in the clinic. Here, we systematically summarize the development and the molecular mechanisms of photosensitizers, and the challenges of PDT in tumor management, highlighting the advantages of nanocarriers-based PDT against cancer. The development of third generation photosensitizers has opened up new horizons in PDT, and the cooperation between nanocarriers and PDT has attained satisfactory achievements. Finally, the clinical studies of PDT are discussed. Overall, we present an overview and our perspective of PDT in the field of tumor management, and we believe this work will provide a new insight into tumor-based PDT.
Collapse
Affiliation(s)
- Wanchen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Meihong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Zhiqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
3
|
Camacho Vieira C, Peltonen L, Karttunen AP, Ribeiro AJ. Is it advantageous to use quality by design (QbD) to develop nanoparticle-based dosage forms for parenteral drug administration? Int J Pharm 2024; 657:124163. [PMID: 38670473 DOI: 10.1016/j.ijpharm.2024.124163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Parenteral administration is one of the most commonly used drug delivery routes for nanoparticle-based dosage forms, such as lipid-based and polymeric nanoparticles. For the treatment of various diseases, parenteral administration include intravenous, subcutaneous, and intramuscular route. In drug development phase, multiparameter strategy with a focus on drug physicochemical properties and the specificity of the administration route is required. Nanoparticle properties in terms of size and targeted delivery, among others, are able to surpass many drawbacks of conventional dosage forms, but these unique properties can be a bottleneck for approval by regulatory authorities. Quality by Design (QbD) approach has been widely utilized in development of parenteral nanoparticle-based dosage forms. It fosters knowledge of product and process quality by involving sound scientific data and risk assessment strategies. A full and comprehensive investigation into the state of implementation and applications of the QbD approach in these complex drug products can highlight the gaps and challenges. In this review, the analysis of critical attributes and Design of Experiment (DoE) approach in different nanoparticulate systems, together with the proper utilization of Process Analytical Technology (PAT) applications are described. The essential of QbD approach for the design and development of nanoparticle-based dosage forms for delivery via parenteral routes is discussed thoroughly.
Collapse
Affiliation(s)
- C Camacho Vieira
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal
| | - L Peltonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - A P Karttunen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - A J Ribeiro
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal; i(3)S, IBMC, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
4
|
de Souza Ferreira JN, Vasconcelos VVV, Figueiredo BS, Alves DP, de Abreu ALLV, de Souza PP, Costa DLN, da Silva AR. PLGA nanoparticles for treatment of cardiovascular diseases. POLY(LACTIC-CO-GLYCOLIC ACID) (PLGA) NANOPARTICLES FOR DRUG DELIVERY 2023:267-302. [DOI: 10.1016/b978-0-323-91215-0.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14071506. [PMID: 35890401 PMCID: PMC9320085 DOI: 10.3390/pharmaceutics14071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology-based approaches for targeting the delivery and controlled release of metal-based therapeutic agents have revealed significant potential as tools for enhancing the therapeutic effect of metal-based agents and minimizing their systemic toxicities. In this context, a series of polymer-based nanosized systems designed to physically load or covalently conjugate metal-based therapeutic agents have been remarkably improving their bioavailability and anticancer efficacy. Initially, the polymeric nanocarriers were applied for platinum-based chemotherapeutic agents resulting in some nanoformulations currently in clinical tests and even in medical applications. At present, these nanoassemblies have been slowly expanding for nonplatinum-containing metal-based chemotherapeutic agents. Interestingly, for metal-based photosensitizers (PS) applied in photodynamic therapy (PDT), especially for cancer treatment, strategies employing polymeric nanocarriers have been investigated for almost 30 years. In this review, we address the polymeric nanocarrier-assisted metal-based therapeutics agent delivery systems with a specific focus on non-platinum systems; we explore some biological and physicochemical aspects of the polymer–metallodrug assembly. Finally, we summarize some recent advances in polymeric nanosystems coupled with metal-based compounds that present potential for successful clinical applications as chemotherapeutic or photosensitizing agents. We hope this review can provide a fertile ground for the innovative design of polymeric nanosystems for targeting the delivery and controlled release of metal-containing therapeutic agents.
Collapse
|
6
|
Figueiredo BS, Ferreira JNDS, Vasconcelos VVV, Ribeiro JN, Guimarães MCC, Gonçalves ADS, da Silva AR. Interaction effects between macromolecules and photosensitizer on the ability of AlPc and InPc-loaded PHB magnetic nanoparticles in photooxidatizing simple biomolecules. Int J Biol Macromol 2022; 212:579-593. [PMID: 35618092 DOI: 10.1016/j.ijbiomac.2022.05.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022]
Abstract
The parameters used in the preparation of polymeric nanoparticles can influence its ability to photooxidate biomolecules. This work evaluated the effects of four parameter to prepare Poly(3-hydroxybutyrate) (PHB) nanoparticle loaded with aluminum and indium phthalocyanine (AlPc and InPc), together with iron oxide nanoparticles, assessing their influence on the size, the entrapment efficiency, and the nanoparticles recovery efficacy. The capability of free, and encapsulated, AlPc and InPc in photooxidating the bovine serum albumin (BSA) and tryptophan (Trp) was monitored by fluorescence. The AlPc-loaded nanoparticles had a larger size and a greater entrapment efficiency than that obtained by InPc-loaded nanoparticles. The free InPc was more efficient than the free AlPc to photooxidize the BSA and Trp; whereas the encapsulated AlPc was more efficient than encapsulated InPc to photooxidize the biomolecules. The higher hydrophobicity of the AlPc, combined with the greater aggregation state and the major interaction with the BSA, quenching the capacity of the free AlPc to photooxidate the biomolecules; whereas the greater interaction of the AlPc with PHB reduce the aggregation effect on the free molecules in the aqueous phase and increase the entrapment efficiency, resulting in an improving of the photodynamic efficiency and an increase of the photooxidation rate constant.
Collapse
Affiliation(s)
- Barbara Silva Figueiredo
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | - Julyana Noval de Souza Ferreira
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | | | - Joselito Nardy Ribeiro
- Health Science Center, Federal University of Espírito Santo, 29043-910 Vitória, ES, Brazil
| | - Marco Cesar Cunegundes Guimarães
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | - Arlan da Silva Gonçalves
- Federal Institute of Espírito Santo, Campus Vila Velha, 29106-010 Vila Velha, ES, Brazil; Graduate Program in Chemistry, Federal University of Espírito Santo, unit Goiabeiras, 29075-910 Vitória, ES, Brazil
| | - André Romero da Silva
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil; Federal Institute of Espírito Santo, Campus Aracruz, 29192-733 Aracruz, ES, Brazil.
| |
Collapse
|
7
|
Gorbunova EA, Stepanova DA, Kosov AD, Bolshakova AV, Filatova NV, Sizov LR, Rybkin AY, Spiridonov VV, Sybachin AV, Dubinina TV, Milaeva ER. Dark and photoinduced cytotoxicity of solubilized hydrophobic octa-and hexadecachloro-substituted lutetium(III) phthalocyanines. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Mollaeva MR, Yabbarov N, Sokol M, Chirkina M, Mollaev MD, Zabolotskii A, Seregina I, Bolshov M, Kaplun A, Nikolskaya E. Optimization, Characterization and Pharmacokinetic Study of Meso-Tetraphenylporphyrin Metal Complex-Loaded PLGA Nanoparticles. Int J Mol Sci 2021; 22:12261. [PMID: 34830136 PMCID: PMC8618356 DOI: 10.3390/ijms222212261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
The selection of technological parameters for nanoparticle formulation represents a complicated development phase. Therefore, the statistical analysis based on Box-Behnken methodology is widely used to optimize technological processes, including poly(lactic-co-glycolic acid) nanoparticle formulation. In this study, we applied a two-level three-factor design to optimize the preparation of nanoparticles loaded with cobalt (CoTPP), manganese (MnClTPP), and nickel (NiTPP) metalloporphyrins (MeP). The resulting nanoparticles were examined by dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, MTT test, and hemolytic activity assay. The optimized model of nanoparticle formulation was validated, and the obtained nanoparticles possessed a spherical shape and physicochemical characteristics enabling them to deliver MeP in cancer cells. In vitro hemolysis assay revealed high safety of the formulated MeP-loaded nanoparticles. The MeP release demonstrated a biphasic profile and release mechanism via Fick diffusion, according to release exponent values. Formulated MeP-loaded nanoparticles revealed significant antitumor activity and ability to generate reactive oxygen species. MnClTPP- and CoTPP-nanoparticles specifically accumulated in tissues, preventing wide tissue distribution caused by long-term circulation of the hydrophobic drug. Our results suggest that MnClTPP- and CoTPP-nanoparticles represent the greatest potential for utilization in in anticancer therapy due to their effectiveness and safety.
Collapse
Affiliation(s)
- Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Murad D. Mollaev
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Artur Zabolotskii
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Irina Seregina
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Mikhail Bolshov
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Alexander Kaplun
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia;
| | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| |
Collapse
|
9
|
Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. NANOMATERIALS 2021; 11:nano11092426. [PMID: 34578740 PMCID: PMC8469866 DOI: 10.3390/nano11092426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
This perspective article summarizes the last decade’s developments in the field of phthalocyanine (Pc)-polymeric nanoparticle (NP) delivery systems for cancer photodynamic therapy (PDT), including studies with at least in vitro data. Moreover, special attention will be paid to the various strategies for enhancing the behavior of Pc-polymeric NPs in PDT, underlining the great potential of this class of nanomaterials as advanced Pcs’ nanocarriers for cancer PDT. This review shows that there is still a lot of research to be done, opening the door to new and interesting nanodelivery systems.
Collapse
|
10
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Zhao Y, Xiao W, Peng W, Huang Q, Wu K, Evans CE, Liu X, Jin H. Oridonin-Loaded Nanoparticles Inhibit Breast Cancer Progression Through Regulation of ROS-Related Nrf2 Signaling Pathway. Front Bioeng Biotechnol 2021; 9:600579. [PMID: 33898397 PMCID: PMC8058419 DOI: 10.3389/fbioe.2021.600579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oridonin (ORI) has been shown to inhibit tumor cell growth and proliferation in vitro, while its optimum anti-tumor activity in vivo is limited due to the poor aqueous solubility and bioavailability. In this study, to improve the bioavailability, we developed a nanoparticle-based drug delivery system to facilitate delivery of ORI to breast tumor. ORI was encapsulated in biodegradable nanoparticles (NPs) based on poly-lactic-co-glycolic acid (PLGA) and polyethylene glycol (PEG) to form ORI NPs (ORI-NPs). The resulting ORI-NPs exhibited a mean particle diameter of 100 nm and displayed an efficient cellular uptake by human breast cancer MCF-7 cells. Compared to free ORI that showed no effects on tumor cell proliferation, the ORI-NPs showed significant cytotoxicity and delayed endothelial cell migration, tube formation and angiogenesis. Pharmacokinetics studies showed that ORI-NPs significantly increased the half-life of ORI in the blood circulation. In the nude mouse xenograft model, ORI-NPs markedly inhibited tumor growth and angiogenesis, while ORI did not show any inhibitory effects on the growth of tumor xenografts. The mechanism experiments showed that the antitumor activity of ORI-NPs against breast cancer might be through ROS related Nrf2/HO-1 signaling pathway. Together, these results demonstrated that ORI-loaded PEG-PLGA NPs enhanced bioactivity and bioavailability in vivo over ORI, indicating that ORI-NPs may represent a promisingly effective candidate against breast cancer.
Collapse
Affiliation(s)
- Yue Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Weiwei Xiao
- Biosafety Level-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wanqing Peng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Qinghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Kunru Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Colin E Evans
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The Scientific Research Center of Dongguan, College of Pharmacy, Institute of Clinical Laboratory Medicine, Guangdong Medical University, Dongguan, China
| |
Collapse
|
12
|
Lapkina LA, Sinelshchikova AA, Birin KP, Larchenko VE, Grigoriev MS, Tsivadze AY, Gorbunova YG. Cation-Induced Dimerization of Crown-Substituted Gallium Phthalocyanine by Complexing with Alkali Metals: The Crucial Role of a Central Metal. Inorg Chem 2021; 60:1948-1956. [DOI: 10.1021/acs.inorgchem.0c03408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lyudmila A. Lapkina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences (RAS), Leninsky pr. 31, Moscow 119991, Russia
| | - Anna A. Sinelshchikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (RAS), Leninsky pr. 31, Building 4, Moscow 119071, Russia
| | - Kirill P. Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (RAS), Leninsky pr. 31, Building 4, Moscow 119071, Russia
| | - Vladimir E. Larchenko
- JSC Fine Chemicals R&D Center, Krasnobogatyrskaya 42, Building 1, Moscow, 107258, Russia
| | - Mikhail S. Grigoriev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (RAS), Leninsky pr. 31, Building 4, Moscow 119071, Russia
| | - Aslan Yu. Tsivadze
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences (RAS), Leninsky pr. 31, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (RAS), Leninsky pr. 31, Building 4, Moscow 119071, Russia
| | - Yulia G. Gorbunova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences (RAS), Leninsky pr. 31, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (RAS), Leninsky pr. 31, Building 4, Moscow 119071, Russia
| |
Collapse
|
13
|
Santos KLM, Barros RM, da Silva Lima DP, Nunes AMA, Sato MR, Faccio R, de Lima Damasceno BPG, Oshiro-Junior JA. Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagnosis Photodyn Ther 2020; 32:102032. [DOI: 10.1016/j.pdpdt.2020.102032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022]
|
14
|
Chen Z, Liang Y, Feng X, Liang Y, Shen G, Huang H, Chen Z, Yu J, Liu H, Lin T, Chen H, Wu D, Li G, Zhao B, Guo W, Hu Y. Vitamin-B12-conjugated PLGA-PEG nanoparticles incorporating miR-532-3p induce mitochondrial damage by targeting apoptosis repressor with caspase recruitment domain (ARC) on CD320-overexpressed gastric cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111722. [PMID: 33545873 DOI: 10.1016/j.msec.2020.111722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Among various methods, the use of targeting nucleic acid therapy is a promising method for inhibiting gastric cancer (GC) cells' rapid growth and metastasis abilities. In this study, vitamin B12-labeled poly (d,l-lactide-co-glycolide) and polyethylene glycol nanoparticles (PLGA-PEG-VB12 NPs) were developed for microRNAs-532-3p mimics incorporating as targeting gene delivery systems (miR-532-3p@PLGA-PEG-VB12 NPs) to fight against transcobalamin II (CD320)-overexpressed GC cells' progression. The PLGA-PEG-VB12 NPs with appropriate particle sizes and good bio-compatibility could be selectively delivered into CD320-overexpressed GC cells, and significantly decrease the expression of apoptosis repressor with caspase recruitment domain (ARC). Following that, more pro-apoptotic protein (Bax) flowed from cytoplasm into mitochondria to form Bax oligomerization, thus induced mitochondrial damage, including mitochondrial membrane potentials (MMPs) loss and excessive production of mitochondrial reactive oxygen species (mitoROS). Since that, mitochondrial permeability transition pore (mPTP) was opened, followed by induced more cytochrome c (Cyto C) releasing from mitochondria into cytosol, and finally activated caspase-depended cell apoptosis pathway. Therefore, our designed miR-532-3p@PLGA-PEG-VB12 NPs showed enhanced GC targeting ability, and could induce apoptosis through activating ARC/Bax/mitochondria-mediated apoptosis signaling pathway, finally remarkably suppressed proliferation of GC cells both in vitro and in vivo, which presented a promising treatment for GC.
Collapse
Affiliation(s)
- Zhian Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanrui Liang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Feng
- Guangdong Provincial Stomatology Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yu Liang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guodong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huilin Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaoyu Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tian Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dong Wu
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|