1
|
Yang F, Wang L, Wang H, Zhang S, Li Y. Perspectives on photodynamic therapy combined with immunotherapy in treatment of colorectal cancer: An overview based on experimental studies. Photodiagnosis Photodyn Ther 2025; 52:104464. [PMID: 39746558 DOI: 10.1016/j.pdpdt.2024.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Colorectal cancer (CRC) is one of the major cancers threatening human health, with high mortality, tumor drug resistance and metastasis. Due to its advantages of non-invasive, strongly targeted and limited side effects, Photodynamic therapy (PDT) has become a promising treatment for CRC. Remarkably, PDT has been shown to activate T cell-adaptive immune response and induce immunogenic cell death (ICD). Used in combination with other treatment techniques, PDT has considerable promise in the management of colorectal cancer. In particular, the combination of PDT and tumor immunotherapy, the systemic anti-tumor immune response was enhanced more significantly. This strategy is expected to achieve a synergistic anti-tumor effect by inducing tumor cell apoptosis, regulating tumor immune microenvironment and effectively activating anti-tumor immunity during treatment process. This review focuses on the research of PDT combined with immunotherapy to improve the treatment of CRC. In most studies, a positive effect was observed for combination therapy, experimentally indicating new therapeutic opportunities for CRC.
Collapse
Affiliation(s)
- Fang Yang
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Li Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Haiping Wang
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Song Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China.
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
2
|
Rahman I, Liang B, Sajid A, Ambudkar SV, Huang H. Photodynamic priming modulates cellular ATP levels to overcome P-glycoprotein-mediated drug efflux in chemoresistant triple-negative breast cancer. Photochem Photobiol 2025; 101:188-205. [PMID: 38824410 PMCID: PMC11737009 DOI: 10.1111/php.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
P-glycoprotein (P-gp, ABCB1) is a well-researched ATP-binding cassette (ABC) drug efflux transporter linked to the development of cancer multidrug resistance (MDR). Despite extensive studies, approved therapies to safely inhibit P-gp in clinical settings are lacking, necessitating innovative strategies beyond conventional inhibitors or antibodies to reverse MDR. Photodynamic therapy is a globally approved cancer treatment that uses targeted, harmless red light to activate non-toxic photosensitizers, confining its cytotoxic photochemical effects to disease sites while sparing healthy tissues. This study demonstrates that photodynamic priming (PDP), a sub-cytotoxic photodynamic therapy process, can inhibit P-gp function by modulating cellular respiration and ATP levels in light accessible regions. Using chemoresistant (VBL-MDA-MB-231) and chemosensitive (MDA-MB-231) triple-negative breast cancer cell lines, we showed that PDP decreases mitochondrial membrane potential by 54.4% ± 30.4 and reduces mitochondrial ATP production rates by 94.9% ± 3.46. Flow cytometry studies showed PDP can effectively improve the retention of P-gp substrates (calcein) by up to 228.4% ± 156.3 in chemoresistant VBL-MDA-MB-231 cells, but not in chemosensitive MDA-MB-231 cells. Further analysis revealed that PDP did not alter the cell surface expression level of P-gp in VBL-MDA-MB-231 cells. These findings indicate that PDP can reduce cellular ATP below the levels that is required for the function of P-gp and improve intracellular substrate retention. We propose that PDP in combination with chemotherapy drugs, might improve the efficacy of chemotherapy and overcome cancer MDR.
Collapse
Affiliation(s)
- Idrisa Rahman
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Laboratory of Cell Biology, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Barry Liang
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Laboratory of Cell Biology, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Huang‐Chiao Huang
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
3
|
Ezdakova MI, Andreeva ER. Impaired Communication through Gap Junctions Reduces the Angiogenic Potential of the Secretome in Mesenchymal Stromal Cell-Endothelial Cell Interactions In Vitro. Bull Exp Biol Med 2024:10.1007/s10517-024-06296-5. [PMID: 39579296 DOI: 10.1007/s10517-024-06296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 11/25/2024]
Abstract
Highly specialized gap junctions play an important role in the interaction between endothelial (EC) and multipotent mesenchymal stromal cells (MSC). Inhibition of gap junctions with a specific inhibitor carbenoxolone attenuates the effects of the medium conditioned by MSC-EC co-culture on proliferation and migration of cultured EC. In conditioned medium from co-culture, the levels of angiogenic mediators (VEGF-A, FGF-2, MCP-1, etc.) were decreased, which apparently determines lower angiogenic effect of the conditioned medium on the growth of the vascular network in the chorioallantois membrane of quail embryo in ovo. Suppression of communication through gap junctions in associations of MSC and EC, the structural and functional units of physiological and reparative angiogenesis, can directly reduce the level of proangiogenic mediators in the microenvironment, which, in turn, can help to control the regulation of vascular function in pathologies.
Collapse
Affiliation(s)
- M I Ezdakova
- State Research Center of the Russian Federation - Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.
| | - E R Andreeva
- State Research Center of the Russian Federation - Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Li Y, Jin M, Guo D, Shen S, Lu K, Pan R, Sun L, Zhang H, Shao J, Pan G. Unveiling the immunogenicity of allogeneic mesenchymal stromal cells: Challenges and strategies for enhanced therapeutic efficacy. Biomed Pharmacother 2024; 180:117537. [PMID: 39405918 DOI: 10.1016/j.biopha.2024.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) exhibit significant potential in the context of cell therapy because of their capacity to perform a range of interconnected functions in damaged tissues, including immune modulation, hematopoietic support, and tissue regeneration. MSCs are hypoimmunogenic because of their diminished expression of major histocompatibility molecules, absence of costimulatory molecules, and presence of coinhibitory molecules. While autologous MSCs reduce the risk of rejection and infection, variability in cell numbers and proliferation limits their potential applications. Conversely, allogeneic MSCs (allo-MSCs) possess broad clinical applications unconstrained by donor physiology. Nonetheless, preclinical and clinical investigations highlight that transplanted allo-MSCs are subject to immune attack from recipients. These cells exhibit anti-inflammatory and proinflammatory phenotypes contingent on the microenvironment. Notably, the proinflammatory phenotype features enhanced immunogenicity and diminished immunosuppression, potentially triggering allogeneic immune reactions that impede long-term clinical efficacy. Consequently, preserving the low immunogenicity of allo-MSCs in vivo and mitigating immune rejection in diverse microenvironments represent crucial challenges for the widespread clinical application of MSCs. In this review, we elucidate the immune regulation of allo-MSCs, specifically focusing on two distinct subgroups, MSC1 and MSC2, that exhibit varying polarization states and immunogenicity. We discuss the factors and underlying mechanisms that induce MSC immunogenicity and polarization, highlighting the crucial role of major histocompatibility complex class I/II molecules in rejection post-transplantation. Additionally, we summarize the immunogenic regulatory targets and applications of allo-MSCs and outline strategies to address challenges in this promising field, aiming to enhance allo-MSC therapeutic efficacy for patients.
Collapse
Affiliation(s)
- Yuanhui Li
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Mengting Jin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dongyang Guo
- Hangzhou City University, School of Medicine, 50 Huzhou Street, Hangzhou, China
| | - Shuang Shen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Kaining Lu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Li Sun
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Hongchen Zhang
- Department of Gatroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Hangzhou, China.
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Morais JAV, Barros PHA, Brigido MDM, Marina CL, Bocca A, Mariano ADLES, Souza PEND, Paiva KLR, Simões MM, Bao SN, Camargo LC, Longo JPF, Morais AAC, Azevedo RBD, Fonseca MJP, Muehlmann LA. Direct and Abscopal Antitumor Responses Elicited by AlPcNE-Mediated Photodynamic Therapy in a Murine Melanoma Model. Pharmaceutics 2024; 16:1177. [PMID: 39339213 PMCID: PMC11435272 DOI: 10.3390/pharmaceutics16091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Melanoma, the most aggressive form of skin cancer, presents a major clinical challenge due to its tendency to metastasize and recalcitrance to traditional therapies. Despite advances in surgery, chemotherapy, and radiotherapy, the outlook for advanced melanoma remains bleak, reinforcing the urgent need for more effective treatments. Photodynamic therapy (PDT) has emerged as a promising alternative, leading to targeted tumor destruction with minimal harm to surrounding tissues. In this study, the direct and abscopal antitumor effects of PDT in a bilateral murine melanoma model were evaluated. Although only one of the two tumors was treated, effects were observed in both. Our findings revealed significant changes in systemic inflammation and alterations in CD4+ and CD8+ T cell populations in treated groups, as evidenced by blood analyses and flow cytometry. High-throughput RNA sequencing (RNA-Seq) further unveiled shifts in gene expression profiles in both treated and untreated tumors. This research sheds light on the novel antitumor and abscopal effects of nanoemulsion of aluminum chloride phthalocyanine (AlPcNE)-mediated PDT in melanoma, highlighting the potential of different PDT protocols to modulate immune responses and to achieve more effective and targeted cancer treatments.
Collapse
Affiliation(s)
- José Athayde Vasconcelos Morais
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia Ceilandia Sul, Brasilia 72220-275, DF, Brazil
- Laboratory of Gene Regulation and Mutagenesis, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Pedro H A Barros
- Laboratory of Molecular Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marcelo de Macedo Brigido
- Laboratory of Molecular Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Clara Luna Marina
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Anamelia Bocca
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - André de Lima E Silva Mariano
- Laboratory for Softwares and Physics Instrumentation Development, Institute of Physics, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Paulo E N de Souza
- Laboratory for Softwares and Physics Instrumentation Development, Institute of Physics, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Karen L R Paiva
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marina Mesquita Simões
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Sonia Nair Bao
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Luana C Camargo
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - João P Figueiró Longo
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Amanda Alencar Cabral Morais
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Ricardo B de Azevedo
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marcio J P Fonseca
- Laboratory of Gene Regulation and Mutagenesis, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Luis A Muehlmann
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia Ceilandia Sul, Brasilia 72220-275, DF, Brazil
| |
Collapse
|
6
|
Guo Q, Ji X, Zhang L, Liu X, Wang Y, Liu Z, Jin J, Han Y, Liu H. Differences in the response of normal oral mucosa, oral leukoplakia, oral squamous cell carcinoma-derived mesenchymal stem cells, and epithelial cells to photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112907. [PMID: 38677259 DOI: 10.1016/j.jphotobiol.2024.112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE The objective of this study is to investigate the variances in transcriptome gene expression of normal oral mucosa-derived mesenchymal stem cell (OM-MSC), oral leukoplakia-derived MSC (OLK-MSC) and oral squamous cell carcinoma-derived MSC(OSCC-MSC). as Additionally, the study aims to compare the in vitro proliferation, migration, invasion ability, and response to photodynamic therapy (PDT) of these three MSC, HOK, DOK, leuk1, and Cal27 cell lines. METHODS HOK, DOK, leuk1, Cal27 cells were cultured in vitro. 3 MSC cells were obtained from OM, OLK, OSCC tissue (n = 3) and identified through flow cytometry. They were also cultured in vitro for osteogenic and lipogenic-induced differentiation. Based on the Illumina HiSeq high-throughput sequencing platform, OM-MSC, OLK-MSC, OSCC-MSC (n = 3) were subjected to transcriptome sequencing, functional annotation, and enrichment analysis of differentially expressed genes and related genes. CCK8 assay, wound healing assay, and transwell assay were performed to compare the proliferation, migration, and invasion of the seven types of cells. The 7 cells were incubated with 0, 0.125 mM, 0.25 mM, 0.5 mM, 1 mM, and 2 mM of the photosensitizer (5-aminolevulinic acid, 5-ALA) in vitro. Subsequently, they were irradiated with a 150 mM, 635 nm laser for 1 min, and the cell activity was detected using the CCK8 assay after 24 h. The mitochondrial changes in the 7 cells before and after the treatment of PDT were detected using the JC-10 probe, and the changes in ATP content were measured before and after the PDT treatment. RESULTS OM-MSC, OLK-MSC, and OSCC-MSC expressed positive MSC surface markers. After osteogenic and lipogenic-induced differentiation culture, stained calcium nodules and lipid droplets were visible, meeting the identification criteria of MSC. Pathway enrichment analysis revealed that the differentially expressed genes (DEGs) of OSCC-MSC compared to OLK-MSC were primarily associated with the PI3K-Akt signaling pathway and tumor-related pathways. OSCC-MSC exhibited stronger migratory and invasive abilities compared to Cal27. The IC50 values required for OM, OLK, and OSCC-derived MSC were lower than those required for epithelial cells treated with PDT, which were 1.396 mM, 0.9063 mM, and 2.924 mM, respectively. Cell membrane and mitochondrial disruption were observed in seven types of cells after 24 h of PDT treatment. However, HOK, DOK, leuk1, and Cal27 cells had an ATP content increased. CONCLUSIONS OLK, OSCC epithelial cells require higher concentrations of 5-ALA for PDT treatment than MSC of the same tissue origin. The concentration of 5-ALA required increases with increasing cell malignancy. Differences in the response of epithelial cells and MSC to PDT treatment may have varying impacts on OLK recurrence and malignancy.
Collapse
Affiliation(s)
- Qianyun Guo
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xiaoli Ji
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China; Central Hospital of Shandong First Medical University, Shandong, China
| | - Lei Zhang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xingyun Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yutian Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Zijian Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China; Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Fujian, China
| | - Jianqiu Jin
- Beijing Hospital, National Center of Gerontology, Department of Stomatology, Chinese Academy of Medical Sciences, Institute of Geriatric Medicine, Beijing, China
| | - Ying Han
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hongwei Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
7
|
Thiruppathi J, Vijayan V, Park IK, Lee SE, Rhee JH. Enhancing cancer immunotherapy with photodynamic therapy and nanoparticle: making tumor microenvironment hotter to make immunotherapeutic work better. Front Immunol 2024; 15:1375767. [PMID: 38646546 PMCID: PMC11026591 DOI: 10.3389/fimmu.2024.1375767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer immunotherapy has made tremendous advancements in treating various malignancies. The biggest hurdle to successful immunotherapy would be the immunosuppressive tumor microenvironment (TME) and low immunogenicity of cancer cells. To make immunotherapy successful, the 'cold' TME must be converted to 'hot' immunostimulatory status to activate residual host immune responses. To this end, the immunosuppressive equilibrium in TME should be broken, and immunogenic cancer cell death ought to be induced to stimulate tumor-killing immune cells appropriately. Photodynamic therapy (PDT) is an efficient way of inducing immunogenic cell death (ICD) of cancer cells and disrupting immune-restrictive tumor tissues. PDT would trigger a chain reaction that would make the TME 'hot' and have ICD-induced tumor antigens presented to immune cells. In principle, the strategic combination of PDT and immunotherapy would synergize to enhance therapeutic outcomes in many intractable tumors. Novel technologies employing nanocarriers were developed to deliver photosensitizers and immunotherapeutic to TME efficiently. New-generation nanomedicines have been developed for PDT immunotherapy in recent years, which will accelerate clinical applications.
Collapse
Affiliation(s)
- Jayalakshmi Thiruppathi
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - In-Kyu Park
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Laboratory, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
8
|
Wiegand C, Dirksen A, Tittelbach J. Treatment with a red-laser-based wound therapy device exerts positive effects in models of delayed keratinocyte and fibroblast wound healing. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12926. [PMID: 37957888 DOI: 10.1111/phpp.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Light therapy is widely used in medicine. Specifically, photobiomodulation has been shown to exert beneficial effects in wound healing disorders, which present a major challenge in health care. The study's aim was providing information on the effect of a novel, red-laser-based wound therapy device (WTD) on keratinocytes and fibroblasts during wound healing under optimal and non-optimal conditions. METHODS The scratch wound assay was employed as a wound healing model for mechanical damage with readjustment of specific cell milieus, explicitly chronic TH1 inflammation and TH2-dominant conditions. Furthermore, gene expression analysis of pro-inflammatory cytokines (IL1A, IL6, CXCL8), growth factors (TGFB1, PDGFC), transcription factors (NFKB1, TP53) and heat shock proteins (HSP90AA1, HSPA1A, HSPD1) as well as desmogleins (DSG1, DSG3) in keratinocytes and collagen (COL1A1, COL3A1) in fibroblasts was performed after WTD treatment. RESULTS It was shown that WTD treatment is biocompatible and supports scratch wound closure under non-optimal conditions. A distinct enhancement of desmoglein and collagen gene expression as well as induction of early growth factor gene expression was observed under chronic inflammatory conditions. Moreover, WTD increased HSPD1 transcript levels in keratinocytes and augmented collagen expression in fibroblasts during wound healing under TH2 conditions. WTD treatment also alleviated the inflammatory response in keratinocytes and induced early growth factor gene expression in fibroblasts under physiological conditions. CONCLUSION Positive effects described for wound treatment with WTD could be replicated in vitro and seem to be to be conferred by a direct influence on cellular processes taking place in keratinocytes and fibroblasts during wound healing.
Collapse
Affiliation(s)
- Cornelia Wiegand
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Jörg Tittelbach
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
9
|
Nie M, Zhang P, Pathak JL, Wang X, Wu Y, Yang J, Shen Y. Photodynamic therapy in periodontitis: A narrative review. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12946. [PMID: 38288767 DOI: 10.1111/phpp.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Periodontitis, a chronic infectious disease, is primarily caused by a dysbiotic microbiome, leading to the destruction of tooth-supporting tissues and tooth loss. Photodynamic therapy (PDT), which combines excitation light with photosensitizers (PS) and oxygen to produce antibacterial reactive oxygen species, is emerging as a promising adjuvant treatment for periodontitis. METHODS This review focuses on studies examining the antibacterial effects of PDT against periodontal pathogens. It also explores the impact of PDT on various aspects of periodontal health, including periodontal immune cells, human gingival fibroblasts, gingival collagen, inflammatory mediators, cytokines in the periodontium, vascular oxidative stress, vascular behavior, and alveolar bone health. Clinical trials assessing the types of PSs and light sources used in PDT, as well as its effects on clinical and immune factors in gingival sulcus fluid and the bacterial composition of dental plaque, are discussed. RESULTS The findings indicate that PDT is effective in reducing periodontal pathogens and improving markers of periodontal health. It has shown positive impacts on periodontal immune response, tissue integrity, and alveolar bone preservation. Clinical trials have demonstrated improvements in periodontal health and alterations in the microbial composition of dental plaque when PDT is used alongside conventional treatments. CONCLUSIONS PDT offers a promising adjunctive treatment for periodontitis, with benefits in bacterial reduction, tissue healing, and immune modulation. This article highlights the potential of PDT in periodontal therapy and emphasizes the need for further research to refine its clinical application and efficacy.
Collapse
Affiliation(s)
- Min Nie
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peipei Zhang
- Department of Oral Medicine, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Janak Lal Pathak
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yafei Wu
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingmei Yang
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqin Shen
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Lin C, Wang J, Ma Y, Han W, Cao Y, Shao M, Cui S. Effect of a 630 nm light on vasculogenic mimicry in A549 lung adenocarcinoma cells in vitro. Photodiagnosis Photodyn Ther 2023; 44:103831. [PMID: 37806608 DOI: 10.1016/j.pdpdt.2023.103831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the effect of photodynamic therapy (PDT) on the formation of vasculogenic mimicry (VM) in the human lung adenocarcinoma A549 cell line in vitro. METHODS The participants were divided into a blank control group, a photosensitizer group, a light group, and a PDT group. Cells from each group were cultured in three dimensions using Matrigel, and vasculogenic mimicry generation was observed microscopically. Periodic Acid-Schiff (PAS) staining was used to verify the vasculogenic mimicry structure. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was used to detect the expression levels of cellular osteopontin (OPN) and vascular endothelial growth factor (VEGF) mRNA. Western blotting was used to detect the expression levels of cellular OPN and VEGF protein. RESULTS A549 cells cultured on Matrigel for about six hours revealed VM on PAS staining, and the number of formations was significantly reduced in the PDT group compared with other groups (P < 0.05). The RT-PCR results showed that the PDT group downregulated OPN and VEGF mRNA expression compared with each control group (P < 0.05). Western blot results showed that OPN and VEGF protein expression was downregulated in the PDT group compared with each control group (P < 0.05). The results of RT-PCR showed that the expression of OPN and VEGF mRNA was downregulated in the PDT group compared with each control group (P < 0.05). The results of Western blotting showed that the expression of OPN and VEGF was downregulated in the protein PDT group compared with each control group (P < 0.001). CONCLUSION Photodynamic therapy significantly inhibited the formation of vasculogenic mimicry in human lung adenocarcinoma A549 cells in vitro and downregulated the expression of OPN, VEGF mRNA, and protein levels.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jingyu Wang
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yijiang Ma
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Weizhong Han
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yiwei Cao
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Mingju Shao
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shichao Cui
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
11
|
Lintern N, Smith AM, Jayne DG, Khaled YS. Photodynamic Stromal Depletion in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4135. [PMID: 37627163 PMCID: PMC10453210 DOI: 10.3390/cancers15164135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid malignancies, with a five-year survival of less than 10%. The resistance of the disease and the associated lack of therapeutic response is attributed primarily to its dense, fibrotic stroma, which acts as a barrier to drug perfusion and permits tumour survival and invasion. As clinical trials of chemotherapy (CT), radiotherapy (RT), and targeted agents have not been successful, improving the survival rate in unresectable PDAC remains an urgent clinical need. Photodynamic stromal depletion (PSD) is a recent approach that uses visible or near-infrared light to destroy the desmoplastic tissue. Preclinical evidence suggests this can resensitise tumour cells to subsequent therapies whilst averting the tumorigenic effects of tumour-stromal cell interactions. So far, the pre-clinical studies have suggested that PDT can successfully mediate the destruction of various stromal elements without increasing the aggressiveness of the tumour. However, the complexity of this interplay, including the combined tumour promoting and suppressing effects, poses unknowns for the clinical application of photodynamic stromal depletion in PDAC.
Collapse
Affiliation(s)
- Nicole Lintern
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew M. Smith
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds LS9 7TF, UK
| | - David G. Jayne
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Yazan S. Khaled
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
12
|
Mudambi S, Fitzgerald M, Pera P, Washington D, Chamberlain S, Fidrus E, Hegedűs C, Remenyik E, Shafirstein G, Bellnier D, Paragh G. KDM1A inhibition increases UVA toxicity and enhances photodynamic therapy efficacy. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:226-234. [PMID: 35968606 PMCID: PMC10089661 DOI: 10.1111/phpp.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Lysine-specific histone demethylase 1 (KDM1A/LSD1) regulates multiple cellular functions, including cellular proliferation, differentiation, and DNA repair. KDM1A is overexpressed in squamous cell carcinoma of the skin and inhibition of KDM1A can suppress cutaneous carcinogenesis. Despite the role of KDM1A in skin and DNA repair, the effect of KDM1A inhibition on cellular ultraviolet (UV) response has not been studied. METHODS The ability of KDM1A inhibitor bizine to modify cell death after UVA and UVB exposure was tested in normal human keratinocytes and melanocytes, HaCaT, and FaDu cell lines. KDM1A was also downregulated using shRNA and inhibited by phenelzine in HaCaT and FaDu cells to confirm the role of KDM1A in UVA response. In addition, cellular reactive oxygen species (ROS) changes were assessed by a lipid-soluble fluorescent indicator of lipid oxidation, and ROS-related gene regulation using qPCR. During photodynamic therapy (PDT) studies HaCaT and FaDu cells were treated with aminolaevulinic acid (5-ALA) or HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a) sodium and irradiated with 0-8 J/cm2 red LED light. RESULTS KDM1A inhibition sensitized cells to UVA radiation-induced cell death but not to UVB. KDM1A inhibition increased ROS generation as detected by increased lipid peroxidation and the upregulation of ROS-responsive genes. The effectiveness of both ALA and HPPH PDT significantly improved in vitro in HaCaT and FaDu cells after KDM1A inhibition. CONCLUSION KDM1A is a regulator of cellular UV response and KDM1A inhibition can improve PDT efficacy.
Collapse
Affiliation(s)
- Shaila Mudambi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Megan Fitzgerald
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Paula Pera
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Deschana Washington
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Sarah Chamberlain
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Eszter Fidrus
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei korut 98, Debrecen, Hungary, H-4032
| | - Csaba Hegedűs
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei korut 98, Debrecen, Hungary, H-4032
| | - Eva Remenyik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei korut 98, Debrecen, Hungary, H-4032
| | - Gal Shafirstein
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - David Bellnier
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| |
Collapse
|
13
|
Guo X, Niu Y, Han W, Han X, Chen Q, Tian S, Zhu Y, Bai D, Li K. The ALK1‑Smad1/5‑ID1 pathway participates in tumour angiogenesis induced by low‑dose photodynamic therapy. Int J Oncol 2023; 62:55. [PMID: 36928315 PMCID: PMC10019755 DOI: 10.3892/ijo.2023.5503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and low‑invasive tumour therapy. However, it can induce tumour angiogenesis, which is a main factor leading to tumour recurrence and metastasis. Activin receptor‑like kinase‑1 (ALK1) is a key factor regulating angiogenesis. However, it remains unclear whether ALK1 plays an unusual role in low‑dose PDT‑induced tumour angiogenesis. In the present study, human umbilical vein endothelial cells (HUVECs) co‑cultured with breast cancer MDA‑MB‑231 cells (termed HU‑231 cells) were used to construct an experimental model of tumour angiogenesis induced by low‑dose PDT. The viability, and the proliferative, invasive, migratory, as well as the tube‑forming ability of the HU‑231 cells were evaluated following low‑dose PDT. In particular, ALK1 inhibitor and and an adenovirus against ALK1 were used to further verify the role of ALK1 in low‑dose PDT‑induced tumour angiogenesis. Moreover, the expression of ALK1, inhibitor of DNA binding 1 (ID1), Smad 1, p‑Smad1/5, AKT and PI3K were detected in order to verify the underlying mechanisms. The findings indicated that low‑dose PDT enhanced the proliferative ability of the HU‑231 cells and reinforced their migratory, invasive and tube formation capacity. However, these effects were reversed with the addition of an ALK1 inhibitor or by the knockdown of ALK1 using adenovirus. These results indicated that ALK1 was involved and played a critical role in tumour angiogenesis induced by low‑dose PDT. Furthermore, ALK1 was found to participate in PDT‑induced tumour angiogenesis by activating the Smad1/5‑ID1 pathway, as opposed to the PI3K/AKT pathway. On the whole, the present study, for the first time, to the best of our knowledge, demonstrates that ALK1 is involved in PDT‑induced tumour angiogenesis. The inhibition of ALK1 can suppress PDT‑induced tumour angiogenesis, which can enhance the effects of PDT and may thus provide a novel treatment strategy for PDT.
Collapse
Affiliation(s)
- Xiya Guo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yajuan Niu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wang Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Si Tian
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- Correspondence to: Dr Dingqun Bai or Dr Kaiting Li, Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing 400016, P.R. China, E-mail: , E-mail:
| | - Kaiting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- Correspondence to: Dr Dingqun Bai or Dr Kaiting Li, Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing 400016, P.R. China, E-mail: , E-mail:
| |
Collapse
|
14
|
Ogneva IV, Golubkova MA, Biryukov NS, Kotov OV. Drosophila melanogaster Oocytes after Space Flight: The Early Period of Adaptation to the Force of Gravity. Cells 2022; 11:cells11233871. [PMID: 36497128 PMCID: PMC9736949 DOI: 10.3390/cells11233871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
The effect of space flight factors and the subsequent adaptation to the Earth's gravity on oocytes is still poorly understood. Studies of mammalian oocytes in space present significant technical difficulties; therefore, the fruit fly Drosophila melanogaster is a convenient test subject. In this study, we analyzed the structure of the oocytes of the fruit fly Drosophila melanogaster, the maturation of which took place under space flight conditions (the "Cytomehanarium" experiment on the Russian Segment of the ISS during the ISS-67 expedition). The collection of the oocytes began immediately after landing and continued for 12 h. The flies were then transferred onto fresh agar plates and oocyte collection continued for the subsequent 12 h. The stiffness of oocytes was determined by atomic force microscopy and the content of the cytoskeletal proteins by Western blotting. The results demonstrated a significant decrease in the stiffness of oocytes in the flight group compared to the control (26.5 ± 1.1 pN/nm vs. 31.0 ± 1.8 pN/nm) against the background of a decrease in the content of some cytoskeletal proteins involved in the formation of microtubules and microfilaments. This pattern of oocyte structure leads to the disruption of cytokinesis during the cleavage of early embryos.
Collapse
|
15
|
Ezdakova MI, Matveeva DK, Andreeva ER. Short-Term Interaction with Endothelial Cells Enhances Angiogenic Activity of Growth-Arrested Mesenchymal Stromal Cells In Vitro and In Ovo. Bull Exp Biol Med 2022; 174:125-130. [PMID: 36437339 DOI: 10.1007/s10517-022-05660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/29/2022]
Abstract
We compared angiogenic effects of conditioned medium from mesenchymal stromal cell (MSC) monoculture and co-culture of MSC with endothelial cells (EC). Conditioned medium from 24-h EC-MSC co-cultures significantly stimulated the proliferation and migration of EC in monoculture and growth of the vascular network of the chorioallantoic membrane of the quail embryo in ovo in comparison with the conditioned medium from MSC monoculture. Conditioned medium from the co-culture contained increased levels of angiogenic factors (FGF-2, MCP-1, PDGF-AB/BB, IL-6, IL-8, etc.), which could explain the revealed effects. We hypothesized that a similar mechanism of EC-mediated enhancement of functional activity of MSC could be involved in reparative angiogenesis in the target tissues in vivo.
Collapse
Affiliation(s)
- M I Ezdakova
- Institute of Biomedical Problems, State Research Center, Russian Academy of Sciences, Moscow, Russia.
| | - D K Matveeva
- Institute of Biomedical Problems, State Research Center, Russian Academy of Sciences, Moscow, Russia
| | - E R Andreeva
- Institute of Biomedical Problems, State Research Center, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Khorsandi K, Hosseinzadeh R, Esfahani H, Zandsalimi K, Shahidi FK, Abrahamse H. Accelerating skin regeneration and wound healing by controlled ROS from photodynamic treatment. Inflamm Regen 2022; 42:40. [PMID: 36192814 PMCID: PMC9529607 DOI: 10.1186/s41232-022-00226-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolisms produce reactive oxygen species (ROS) which are essential for cellular signaling pathways and physiological functions. Nevertheless, ROS act as “double-edged swords” that have an unstable redox balance between ROS production and removal. A little raise of ROS results in cell proliferation enhancement, survival, and soft immune responses, while a high level of ROS could lead to cellular damage consequently protein, nucleic acid, and lipid damages and finally cell death. ROS play an important role in various pathological circumstances. On the contrary, ROS can show selective toxicity which is used against cancer cells and pathogens. Photodynamic therapy (PDT) is based on three important components including a photosensitizer (PS), oxygen, and light. Upon excitation of the PS at a specific wavelength, the PDT process begins which leads to ROS generation. ROS produced during PDT could induce two different pathways. If PDT produces control and low ROS, it can lead to cell proliferation and differentiation. However, excess production of ROS by PDT causes cellular photo damage which is the main mechanism used in cancer treatment. This review summarizes the functions of ROS in living systems and describes role of PDT in production of controllable ROS and finally a special focus on current ROS-generating therapeutic protocols for regeneration and wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Reza Hosseinzadeh
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Academic center for education, culture and research, Urmia, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
17
|
Alos HC, Billones JB, Castillo AL, Vasquez RD. Alpinumisoflavone against cancer pro-angiogenic targets: In silico, In vitro, and In ovo evaluation. Daru 2022; 30:273-288. [PMID: 35925539 PMCID: PMC9715906 DOI: 10.1007/s40199-022-00445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/16/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Breast cancer is currently the world's most predominant malignancy. In cancer progression, angiogenesis is a requirement for tumor growth and metastasis.Alpinumisoflavone (AIF), a bioactive isoflavonoid, exhibited good binding affinity with the angiogenesis pathway's druggable target through molecular docking. OBJECTIVES To confirm AIF's angiogenesis inhibitory activity, cytotoxic potential toward breast cancer cells, and druggability. METHODS Antiangiogenic activity was evaluated in six pro-angiogenic proteins in vitro, duck chorioallantoic membrane (CAM) in ovo, molecular docking and druggability in silico. RESULTS Findings showed that AIF significantly inhibited (p = < 0.001) the HER2(IC50 = 2.96 µM), VEGFR-2(IC50 = 4.80 µM), MMP-9(IC50 = 23.00 µM), FGFR4(IC50 = 57.65 µM), EGFR(IC50 = 92.06 µM) and RET(IC50 = > 200 µM) activity in vitro.AIF at 25 µM-200 µM significantly inhibited (p = < 0.001) the total number of branch points (IC50 = 14.25 μM) and mean length of tubule complexes (IC50 = 3.52 μM) of duck CAM comparable (p = > 0.001) with the positive control 200 µM celecoxib on both parameters.AIF inhibited the growth of the estrogen-receptor-positive (ER +) human breast cancer cells (MCF-7) by 44.92 ± 1.79% at 100 µM while presenting less toxicity to human dermal fibroblast neonatal (HDFn) normal cells.The positive control 100 µM doxorubicin showed 86.66 ± 0.93% and 92.97 ± 1.27% inhibition with MCF-7 (IC50 = 3.62 μM) and HDFn, (IC50 = 27.16 μM) respectively.In docking, AIF has the greatest in silico binding affinity on HER2 (-10.9 kcal/mol) among the key angiogenic molecules tested. In silico rat oral LD50 calculation indicates that AIF is moderate to slightly toxic at 146.4 mg/kg with 1.1 g/kg and 20.1 mg/kg upper and lower 95% confidence limits. Lastly, it sufficiently complies with Lipinski's, Veber's, Egan's, Ghose's, and Muegge's Rule, supporting its oral drug-like property. CONCLUSION This study revealed that AIF possesses characteristics of a phytoestrogen compound with significant binding affinity, inhibitory activity against pro-angiogenic proteins, and cytotoxic potential against ER + breast cancer cells.The acceptable and considerable safety and drug-likeness profiles of AIF are worthy of further confirmation in vivo and advanced pre-clinical studies so that AIF can be elevated as a promising molecule for breast cancer therapy.
Collapse
|
18
|
Meng Z, Xue H, Wang T, Chen B, Dong X, Yang L, Dai J, Lou X, Xia F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. J Nanobiotechnology 2022; 20:344. [PMID: 35883086 PMCID: PMC9327335 DOI: 10.1186/s12951-022-01553-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer remains a serious threat to human health owing to the lack of effective treatments. Photodynamic therapy (PDT) has emerged as a promising non-invasive cancer treatment that consists of three main elements: photosensitizers (PSs), light and oxygen. However, some traditional PSs are prone to aggregation-caused quenching (ACQ), leading to reduced reactive oxygen species (ROS) generation capacity. Aggregation-induced emission (AIE)-PSs, due to their distorted structure, suppress the strong molecular interactions, making them more photosensitive in the aggregated state instead. Activated by light, they can efficiently produce ROS and induce cell death. PS is one of the core factors of efficient PDT, so proceeding from the design and preparation of AIE-PSs, including how to manipulate the electron donor (D) and receptor (A) in the PSs configuration, introduce heavy atoms or metal complexes, design of Type I AIE-PSs, polymerization-enhanced photosensitization and nano-engineering approaches. Then, the preclinical experiments of AIE-PSs in treating different types of tumors, such as ovarian cancer, cervical cancer, lung cancer, breast cancer, and its great potential clinical applications are discussed. In addition, some perspectives on the further development of AIE-PSs are presented. This review hopes to stimulate the interest of researchers in different fields such as chemistry, materials science, biology, and medicine, and promote the clinical translation of AIE-PSs.
Collapse
Affiliation(s)
- Zijuan Meng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huiying Xue
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Lili Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
19
|
Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022; 12:biom12060850. [PMID: 35740975 PMCID: PMC9221070 DOI: 10.3390/biom12060850] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subset of highly tumorigenic cells in tumors. They have enhanced self-renewal properties, are usually chemo-radioresistant, and can promote tumor recurrence and metastasis. They can recruit macrophages into the tumor microenvironment and differentiate them into tumor-associated macrophages (TAMs). TAMs maintain CSC stemness and construct niches that are favorable for CSC survival. However, how CSCs and TAMs interact is not completely understood. An understanding on these mechanisms can provide additional targeting strategies for eliminating CSCs. In this review, we comprehensively summarize the reported mechanisms of crosstalk between CSCs and TAMs and update the related signaling pathways involved in tumor progression. In addition, we discuss potential therapies targeting CSC–TAM interaction, including targeting macrophage recruitment and polarization by CSCs and inhibiting the TAM-induced promotion of CSC stemness. This review also provides the perspective on the major challenge for developing potential therapeutic strategies to overcome CSC-TAM crosstalk.
Collapse
|
20
|
Shaller BD, Filsoof D, Pineda JM, Gildea TR. Malignant Central Airway Obstruction: What's New? Semin Respir Crit Care Med 2022; 43:512-529. [PMID: 35654419 DOI: 10.1055/s-0042-1748187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Malignant central airway obstruction (MCAO) is a debilitating and life-limiting complication that occurs in an unfortunately large number of individuals with advanced intrathoracic cancer. Although the management of MCAO is multimodal and interdisciplinary, the task of providing patients with prompt palliation falls increasingly on the shoulders of interventional pulmonologists. While a variety of tools and techniques are available for the management of malignant obstructive lesions, advancements and evolution in this therapeutic venue have been somewhat sluggish and limited when compared with other branches of interventional pulmonary medicine (e.g., the early diagnosis of peripheral lung nodules). Indeed, one pragmatic, albeit somewhat uncharitable, reading of this article's title might suggest a wry smile and shug of the shoulders as to imply that relatively little has changed in recent years. That said, the spectrum of interventions for MCAO continues to expand, even if at a less impressive clip. Herein, we present on MCAO and its endoscopic and nonendoscopic management-that which is old, that which is new, and that which is still on the horizon.
Collapse
Affiliation(s)
- Brian D Shaller
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, California
| | - Darius Filsoof
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, California
| | - Jorge M Pineda
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, California
| | | |
Collapse
|
21
|
Guo R, Liu Y, Xu N, Ling G, Zhang P. Multifunctional nanomedicines for synergistic photodynamic immunotherapy based on tumor immune microenvironment. Eur J Pharm Biopharm 2022; 173:103-120. [DOI: 10.1016/j.ejpb.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 12/07/2022]
|
22
|
Dong Y, Zhou L, Shen Z, Ma Q, Zhao Y, Sun Y, Cao J. Iodinated cyanine dye-based nanosystem for synergistic phototherapy and hypoxia-activated bioreductive therapy. Drug Deliv 2022; 29:238-253. [PMID: 35001784 PMCID: PMC8745379 DOI: 10.1080/10717544.2021.2023701] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Photodynamic therapy (PDT) has been applied in cancer treatment by utilizing reactive oxygen species (ROS) to kill cancer cells. However, the effectiveness of PDT is greatly reduced due to local hypoxia. Hypoxic activated chemotherapy combined with PDT is expected to be a novel strategy to enhance anti-cancer therapy. Herein, a novel liposome (LCT) incorporated with photosensitizer (PS) and bioreductive prodrugs was developed for PDT-activated chemotherapy. In the design, CyI, an iodinated cyanine dye, which could simultaneously generate enhanced ROS and heat than other commonly used cyanine dyes, was loaded into the lipid bilayer; while tirapazamine (TPZ), a hypoxia-activated prodrug was encapsulated in the hydrophilic nucleus. Upon appropriate near-infrared (NIR) irradiation, CyI could simultaneously produce ROS and heat for synergistic PDT and photothermal therapy (PTT), as well as provide fluorescence signals for precise real-time imaging. Meanwhile, the continuous consumption of oxygen would result in a hypoxia microenvironment, further activating TPZ free radicals for chemotherapy, which could induce DNA double-strand breakage and chromosome aberration. Moreover, the prepared LCT could stimulate acute immune response through PDT activation, leading to synergistic PDT/PTT/chemo/immunotherapy to kill cancer cells and reduce tumor metastasis. Both in vitro and in vivo results demonstrated improved anticancer efficacy of LCT compared with traditional PDT or chemotherapy. It is expected that these iodinated cyanine dyes-based liposomes will provide a powerful and versatile theranostic strategy for tumor target phototherapy and PDT-induced chemotherapy.
Collapse
Affiliation(s)
- Yunxia Dong
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zijun Shen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Jin J, Lin J, Xu A, Lou J, Qian C, Li X, Wang Y, Yu W, Tao H. CCL2: An Important Mediator Between Tumor Cells and Host Cells in Tumor Microenvironment. Front Oncol 2021; 11:722916. [PMID: 34386431 PMCID: PMC8354025 DOI: 10.3389/fonc.2021.722916] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) formation is a major cause of immunosuppression. The TME consists of a considerable number of macrophages and stromal cells that have been identified in multiple tumor types. CCL2 is the strongest chemoattractant involved in macrophage recruitment and a powerful initiator of inflammation. Evidence indicates that CCL2 can attract other host cells in the TME and direct their differentiation in cooperation with other cytokines. Overall, CCL2 has an unfavorable effect on prognosis in tumor patients because of the accumulation of immunosuppressive cell subtypes. However, there is also evidence demonstrating that CCL2 enhances the anti-tumor capability of specific cell types such as inflammatory monocytes and neutrophils. The inflammation state of the tumor seems to have a bi-lateral role in tumor progression. Here, we review works focusing on the interactions between cancer cells and host cells, and on the biological role of CCL2 in these processes.
Collapse
Affiliation(s)
- Jiakang Jin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jinti Lin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jianan Lou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chao Qian
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Xiumao Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
25
|
Zhang Y, Cheung YK, Ng DKP, Fong WP. Immunogenic necroptosis in the anti-tumor photodynamic action of BAM-SiPc, a silicon(IV) phthalocyanine-based photosensitizer. Cancer Immunol Immunother 2021; 70:485-495. [PMID: 32839829 PMCID: PMC10992937 DOI: 10.1007/s00262-020-02700-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) is an anti-tumor modality which employs three individually non-toxic substances, including photosensitizer, light and oxygen, to produce a toxic effect. Besides causing damage to blood vessels that supply oxygen and nutrients to the tumor and killing the tumor by a direct cytotoxic effect, PDT has also been known to trigger an anti-tumor immune response. For instance, our previous study showed that PDT with BAM-SiPc, a silicon(IV) phthalocyanine based-photosensitizer, can not only eradicate the mouse CT26 tumor cells in a Balb/c mouse model, but also protect the mice against further re-challenge of the tumor cells through an immunomodulatory mechanism. To understand more about the immune effect, the biochemical actions of BAM-SiPc-PDT on CT26 cells were studied in the in vitro system. It was confirmed that the PDT treatment could induce immunogenic necroptosis in the tumor cells. Upon treatment, different damage-associated molecular patterns were exposed onto the cell surface or released from the cells. Among them, calreticulin was found to translocate to the cell membrane through a pathway similar to that in chemotherapy. The activation of immune response was also demonstrated by an increase in the expression of different chemokines.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ying-Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
26
|
Nwabo Kamdje AH, Seke Etet PF, Simo Tagne R, Vecchio L, Lukong KE, Krampera M. Tumor Microenvironment Uses a Reversible Reprogramming of Mesenchymal Stromal Cells to Mediate Pro-tumorigenic Effects. Front Cell Dev Biol 2020; 8:545126. [PMID: 33330442 PMCID: PMC7710932 DOI: 10.3389/fcell.2020.545126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
The role of mesenchymal stromal cells (MSCs) in the tumor microenvironment is well described. Available data support that MSCs display anticancer activities, and that their reprogramming by cancer cells in the tumor microenvironment induces their switch toward pro-tumorigenic activities. Here we discuss the recent evidence of pro-tumorigenic effects of stromal cells, in particular (i) MSC support to cancer cells through the metabolic reprogramming necessary to maintain their malignant behavior and stemness, and (ii) MSC role in cancer cell immunosenescence and in the establishment and maintenance of immunosuppression in the tumor microenvironment. We also discuss the mechanisms of tumor microenvironment mediated reprogramming of MSCs, including the effects of hypoxia, tumor stiffness, cancer-promoting cells, and tumor extracellular matrix. Finally, we summarize the emerging strategies for reprogramming tumor MSCs to reactivate anticancer functions of these stromal cells.
Collapse
Affiliation(s)
- Armel H. Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences (FMBS), University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Paul F. Seke Etet
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences (FMBS), University of Ngaoundéré, Ngaoundéré, Cameroon
- Center for Sustainable Health and Development, Garoua, Cameroon
| | - Richard Simo Tagne
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences (FMBS), University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Lorella Vecchio
- Center for Sustainable Health and Development, Garoua, Cameroon
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mauro Krampera
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
27
|
Nwabo Kamdje AH, Seke Etet PF, Simo RT, Vecchio L, Lukong KE, Krampera M. Emerging data supporting stromal cell therapeutic potential in cancer: reprogramming stromal cells of the tumor microenvironment for anti-cancer effects. Cancer Biol Med 2020; 17:828-841. [PMID: 33299638 PMCID: PMC7721102 DOI: 10.20892/j.issn.2095-3941.2020.0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 02/03/2023] Open
Abstract
After more than a decade of controversy on the role of stromal cells in the tumor microenvironment, the emerging data shed light on pro-tumorigenic and potential anti-cancer factors, as well as on the roots of the discrepancies. We discuss the pro-tumorigenic effects of stromal cells, considering the effects of tumor drivers like hypoxia and tumor stiffness on these cells, as well as stromal cell-mediated adiposity and immunosuppression in the tumor microenvironment, and cancer initiating cells' cellular senescence and adaptive metabolism. We summarize the emerging data supporting stromal cell therapeutic potential in cancer, discuss the possibility to reprogram stromal cells of the tumor microenvironment for anti-cancer effects, and explore some causes of discrepancies on the roles of stromal cells in cancer in the available literature.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Biomedical Sciences, University of Ngaoundere, Faculty of Science, Ngaoundere 454, Cameroon
| | - Paul Faustin Seke Etet
- Department of Physiological Sciences and Biochemistry, University of Ngaoundéré, Garoua 454, Cameroon
- Center for Sustainable Health and Development, Garoua 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Faculty of Science, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Center for Sustainable Health and Development, Garoua 454, Cameroon
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, College of Medicine, Saskatoon SK S7N 5E5, Canada
| | - Mauro Krampera
- Department of Medicine, University of Verona, Section of Hematology, Stem Cell Research Laboratory, Verona 37134, Italy
| |
Collapse
|
28
|
Photo biostimulatory effect of low dose photodynamic therapy on human mesenchymal stem cells. Photodiagnosis Photodyn Ther 2020; 31:101886. [PMID: 32574798 DOI: 10.1016/j.pdpdt.2020.101886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tissue engineering is one treatment to regenerate bone . Stem cell proliferation or differentiation can be stimulated by adjunctive approaches like photobiomodulation. Some studies suggested that, photodynamic therapy with low concentration of photosensitizers can stimulate cell differentiation as a photobiomodulation approach. METHODS Human bone marrow mesenchymal stem cell was isolated and then cultured in sterile medium. Two photosensitizer drugs as 5- aminolevulenic acid (1 mM) (5-ALA) and Methylene blue (1μM) (MB) were used in incubation culture media. In order to activate the photosensitizers, 630 and 660 nm wavelengths were irradiated with 1 J/cm2 energy density, respectively. Cell viability was assessed using MTT assay before and after laser irradiation, and also Alizarin red histologic test was used for calcium nodule formation. RESULTS performing the MTT test before irradiation showed that, the optimum concentrations were 1 mM for 5-ALA and 1μM for MB that were optimized. After laser irradiation, ALA group showed no osseous differentiation. In contrast, there was a significant calcium nodule formation in MB group compared with the control one. CONCLUSIONS Photodynamic therapy with low photosensitizer concentration and low doses of laser energy density may improve osteogenic differentiation. Accordingly, MB had stimulatory effect on bone marrow derived mesenchymal stem cells. However, 5-ALA did not show this effect.
Collapse
|