1
|
Irannejad F, Shahbazi S, Reiisi S, Heidari R. Study of the effect of zinc oxide, selenium, and silver nanoparticles on the expression level of oxidative stress-associated genes in ovarian cancer. Med Oncol 2025; 42:39. [PMID: 39760958 DOI: 10.1007/s12032-024-02593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress. The ZnO-, Se-, and Ag-NPs were then synthesized via a green synthesis method and subsequently characterized using techniques, such as FTIR, XRD, DLS, zeta potential analysis, FESEM, and TEM. The antioxidant capacity of the NPs was evaluated using a DPPH scavenging assay and their effect on superoxide dismutase enzyme activity was determined. HDF and A2780 cells were treated with varying concentrations of ZnO-, Se-, and Ag-NPs, and cell viability and colony formation were assessed using MTT and clonogenic assays, respectively. Additionally, qPCR was performed to analyze the expression of the candidate genes NOX4, SOD2, and NR4A4. Characterization techniques confirmed the successful synthesis of pure, crystalline, and spherical NPs. Antioxidant assays demonstrated the significant antioxidant properties of ZnO-, Se-, and Ag-NPs. In vitro studies indicated that ZnO-, Se-, and Ag-NPs effectively inhibited cell proliferation and suppressed colony formation, likely owing to the downregulation of NOX4 and upregulation of SOD2 genes. Our findings suggest that ZnO-, Se-, and Ag-NPs may serve as promising anticancer agents for ovarian cancer and NOX4 downregulation and SOD2 upregulation can be proposed as oxidative stress biomarkers; however, further experimental investigation is required to elucidate the therapeutic potential of NPs and the early detection potential of biomarkers.
Collapse
Affiliation(s)
- Fatemeh Irannejad
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Shahrzad Shahbazi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Wang M, Lan S, Song M, Zhang R, Zhang W, Sun X, Liu G. Synthesis of Zinc Oxide-Doped Carbon Dots for Treatment of Triple-Negative Breast Cancer. Int J Nanomedicine 2024; 19:13949-13971. [PMID: 39742095 PMCID: PMC11687324 DOI: 10.2147/ijn.s494262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/18/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction The anti-cancer properties of zinc oxide-doped carbon dots (CDs/ZnO) in inhibiting triple-negative breast cancer (TNBC) progression merit more investigation. Methods With citric acid as the carbon source, urea applied as the nitrogen source, and zinc oxide (ZnO) used as a reactive dopant, CDs/ZnO were synthesized by microwave heating in the current study, followed by the characterization and biocompatibility assessments. Subsequently, the anti-cancer capabilities of CDs/ZnO against TNBC progression were evaluated by various biochemical and molecular techniques, including viability, proliferation, migration, invasion, adhesion, clonogenicity, cell cycle distribution, apoptosis, redox homeostasis, metabolome, and transcriptome assays of MDA-MB-231 cells. Additionally, the in vivo anti-cancer potentials of CDs/ZnO against TNBC progression were analyzed using TNBC xenograft mouse models. Results The biocompatibility of CDs/ZnO was supported by the non-significant changes in the pathological and physiological parameters in the CDs/ZnO treated mice, alongside a non-cytotoxic effect of CDs/ZnO on the proliferation of normal cells. Notably, the CDs/ZnO treatments effectively decreased the viability, proliferation, migration, invasion, adhesion, and clonogenicity of MDA-MB-231 cells. Furthermore, the CDs/ZnO treatments induced cell cycle arrest, apoptosis, redox imbalance, metabolome disturbances, and transcriptomic alterations of MDA-MB-231 cells by regulating the MAPK signaling pathway. Additionally, the CDs/ZnO treatments markedly suppressed the in vivo tumor growth in the TNBC xenograft mouse models. Conclusion In this study, we synthesized CDs/ZnO via microwave heating, using citric acid as the carbon source, urea as the nitrogen source, and ZnO as a reactive dopant. We confirmed the biosafety and potent anti-cancer efficacy of CDs/ZnO in inhibiting TNBC progression by disrupting malignant cell behaviors through modulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Mengqi Wang
- College of Life Science and Oceanography, Weifang University, Weifang, Shandong, People’s Republic of China
| | - Shuting Lan
- Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Mingjun Song
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang, Shandong, People’s Republic of China
| | - Rongrong Zhang
- Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiaomei Sun
- Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
3
|
Feng J, He L, Hui JQ, Kavithaa K, Xu Z. Synthesis of Bimetallic Palladium/Zinc Oxide Nanocomposites Using Crocus sativus and Its Anticancer Activity via the Induction of Apoptosis in Cervical Cancer. Appl Biochem Biotechnol 2024; 196:6893-6914. [PMID: 38421572 DOI: 10.1007/s12010-024-04877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Palladium (Pd) and zinc oxide (ZnO) (Pd/ZnO NPs) bimettalic nanocomposites still lag much too far behind other nanoparticles investigated for various biological uses in the area of cancer treatments. Chemically created nanoparticles agglomerate under physiological conditions, impeding their use in biomedical applications. In this study, a straightforward and environmentally friendly method for creating bimetallic nanoparticles (NPs) by combining palladium (Pd) and zinc oxide (ZnO) using Crocus sativus extract (CS-Pd/ZnO NCs) was reported; the bio-synthesize bimetallic palladium/zinc oxide nanocomposites and their antioxidant and anti-cancer properties were assessed. The developed Pd/ZnO NPs were characterized using different approaches, including UV-vis, DLS, FTIR, EDX, and SEM analyses. The present investigation shows how nanocomposites are made, their distinctive properties, antioxidant activity, anticancer mechanisms, and their potential therapeutic applications. DPPH and ABTS tests were used to investigate antioxidant activity. Further, the effects of CS-Pd/ZnO NCs on HeLa cells were assessed using the cell viability, ROS generation, MMP levels, and induced apoptosis. Apoptosis induction was measured using an Annexin V-fluorescein isothicyanate assay. Cell DNA was stained with propidium iodide to evaluate the impact upon this cell cycle. Time-dependent cell death was carried on by CS-Pd/ZnO NCs. The maximum inhibitory effect was 59 ± 3.2 when dosages of 4.5 µg/mL or higher were delivered after 24 h of treatment. Additionally, the CS-Pd/ZnO NCs caused HeLa cells to undergo apoptosis. Apoptotic HeLa cells were present in 35.64% of the treated cells at 4.5 µg/mL, and the cell cycle arrest at G0/G1 phase occurred concurrently. According to these findings, the CS-Pd/ZnO NCs may be a promising candidate for the creation of brand-new cervical cancer treatment.
Collapse
Affiliation(s)
- Jun Feng
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou Jiangsu, 215000, China
| | - Leilei He
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, 221000, Jiangsu, China
| | - Jin Qing Hui
- Department of Surgical, Shaanxi Kangfu Hospital, Xian, 710065, Shaanxi, China
| | | | - Zhengzheng Xu
- Department of Gynaecology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430000, Hubei, China.
| |
Collapse
|
4
|
Dar MR, Khan AK, Inam M, Hano C, Anjum S. Differential Impact of Zinc Salt Precursors on Physiognomies, Anticancerous, and Antibacterial Activities of Zinc Oxide Nanoparticles. Appl Biochem Biotechnol 2024; 196:4874-4899. [PMID: 37979085 DOI: 10.1007/s12010-023-04781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) are enormously popular semi-conductor metal oxides with diverse applications in every field of science. Many physical and chemical methods applied for the synthesis of ZnONPs are being rejected due to their environmental hazards. Therefore, ZnONPs synthesized from plant extracts are steered as eco-friendly showing more biocompatibility and biodegradability. Additionally, various synthesis conditions such as the type of precursor salt also play a role in influencing the physicochemical and biological properties of ZnONPs. In this study, green synthesis of ZnONPs from Acacia nilotica was carried out using zinc acetate (ZA-AN-ZNPs), zinc nitrate (ZN-AN-ZNPs), and zinc sulfate (ZS-AN-ZNPs) precursor salts. Surprisingly, characterization of ZnONPs using UV-visible spectroscopy, TEM, XRD, and EDX revealed the important role precursor salts played in influencing the size and shape of ZnONPs, i.e., 20-23 nm spherical (ZA-AN-ZNPs), 55-59 nm triangular (ZN-AN-ZNPs), and 94-97 nm nano-flowers (ZS-AN-ZNPs). FTIR analysis showed the involvement of alkaloids, alcohols, carboxylic acid, and phenolic compounds present in Acacia nilotica extract during the synthesis process. Since different precursor salts showed different morphology of ZnONPs, their biological activities were also variable. ZN-AN-ZNPs showed the highest cytotoxicity towards HepG2 cells with the lowest cell viability (28.92 ± 0.99%), highest ROS/RNS production (3425.3 ± 184.58 relative DHR123 fluorescence), and loss of mitochondrial membrane potential (1645.2 ± 32.12 relative fluorescence unit) as well as induced significant caspase-3 gene expression. In addition to this, studying the zone of inhibitions and minimum bactericidal and inhibitory concentrations of ZnONPs showed their exceptional potential as antibacterial agents. At MIC as low as 8 µg/mL, ZA-AN-ZNPs and ZN-AN-ZNPs exhibited significant bactericidal activities against human pathogens Klebsiella pneumoniae and Listeria monocytogenes, respectively. Furthermore, alkaline phosphatase, DNA/RNA leakage, and phosphate ion leakage studies revealed that a damage to the bacterial cell membrane and cell wall is involved in mediating the antibacterial effects of ZnONPs.
Collapse
Affiliation(s)
- Momina Riaz Dar
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Amna Komal Khan
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Mubashra Inam
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures, INRAE USC1328, University of Orleans, 45067CEDEX 2, Orleans, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan.
| |
Collapse
|
5
|
Sholkamy EN, Abdelhamid MAA, Khalifa HO, Ki MR, Pack SP. Bioinspired Synthesis and Characterization of Dual-Function Zinc Oxide Nanoparticles from Saccharopolyspora hirsuta: Exploring Antimicrobial and Anticancer Activities. Biomimetics (Basel) 2024; 9:456. [PMID: 39194435 DOI: 10.3390/biomimetics9080456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Microbial synthesis offers a sustainable and eco-friendly approach for nanoparticle production. This study explores the biogenic synthesis of zinc oxide nanoparticles (ZnO-NPs) utilizing the actinomycete Saccharopolyspora hirsuta (Ess_amA6) isolated from Tapinoma simrothi. The biosynthesized ZnO-NPs were characterized using various techniques to confirm their formation and properties. UV-visible spectroscopy revealed a characteristic peak at 372 nm, indicative of ZnO-NPs. X-ray diffraction (XRD) analysis confirmed the crystalline structure of the ZnO-NPs as hexagonal wurtzite with a crystallite size of approximately 37.5 ± 13.60 nm. Transmission electron microscopy (TEM) analysis showed the presence of both spherical and roughly hexagonal ZnO nanoparticles in an agglomerated state with a diameter of approximately 44 nm. The biogenic ZnO-NPs exhibited promising biomedical potential. They demonstrated selective cytotoxic activity against human cancer cell lines, demonstrating higher efficacy against Hep-2 cells (IC50 = 73.01 µg/mL) compared to MCF-7 cells (IC50 = 112.74 µg/mL). Furthermore, the biosynthesized ZnO-NPs displayed broad-spectrum antimicrobial activity against both Pseudomonas aeruginosa and Staphylococcus aureus with clear zones of inhibition of 12.67 mm and 14.33 mm, respectively. The MIC and MBC values against P. aeruginosa and S. aureus ranged between 12.5 and 50 µg/mL. These findings suggest the potential of S. hirsuta-mediated ZnO-NPs as promising biocompatible nanomaterials with dual applications as antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Essam N Sholkamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hazim O Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
6
|
Johari B, Tavangar-Roosta S, Gharbavi M, Sharafi A, Kaboli S, Rezaeejam H. Suppress the cell growth of cancer stem-like cells (NTERA-2) using Sox2-Oct4 decoy oligodeoxynucleotide-encapsulated niosomes-zinc hybrid nanocarriers under X-irradiation. Heliyon 2024; 10:e34096. [PMID: 39071677 PMCID: PMC11277410 DOI: 10.1016/j.heliyon.2024.e34096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Sox2 and Oct4 dysregulations could significantly increase in the cancer stem cell (CSC) population in some cancer cells and resistance to common treatments. In this study, the synergistic effects of Sox2-Oct4 decoy oligodeoxynucleotides-encapsulated Niosomes-zinc hybrid nanocarriers along with X-irradiation conditions as a combinational therapy tool were investigated in the treatment of cancer-like stem cells (NTERA-2). The NTERA-2 cell line known as a cancer-like stem cell line was used in this investigation. Sox2-Oct4 decoy oligodeoxynucleotides were designed based on the sequence of the Sox2 promoter and synthesized. Physicochemical characteristics of ODNs-encapsulated niosomes-zinc hybrid nanocarriers (NISM@BSA-DEC-Zn) investigated with FT-IR, DLS, FESEM, and ODNs release kinetic estimation assays. Further investigations such as hemolysis, uptake, cell viability, apoptosis, cell cycle, and scratch repair tests were performed. All the above assays were completed with and without X-ray exposure conditions (fractionated 2Gy). Physicochemical characteristics results showed that the Niosomes-Zn nanocarriers were successfully synthesized. NISM@BSA-DEC-Zn was efficiently taken up by NTERA-2 cells and significantly inhibited cell growth, increased apoptosis, and reduced cell migration in both conditions (with and without X-ray exposure). Furthermore, NISM@BSA-DEC-Zn treatment resulted in G1 and G2/M cell cycle arrest without and with X-irradiation, respectively. The prepared nanocarrier system can be a promising tool for drug delivery in cancer treatment. Decoy ODN strategy along with zinc nanoparticles could increase the sensitivity of cancer cells toward irradiation, which has the potential for combinational cancer therapies.
Collapse
Affiliation(s)
- Behrooz Johari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shabnam Tavangar-Roosta
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Gharbavi
- Nanotechnology Research Center, Medical Basic Scinces Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Kaboli
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology Technology, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
7
|
Ruijter N, van der Zee M, Katsumiti A, Boyles M, Cassee FR, Braakhuis H. Improving the dichloro-dihydro-fluorescein (DCFH) assay for the assessment of intracellular reactive oxygen species formation by nanomaterials. NANOIMPACT 2024; 35:100521. [PMID: 38901707 DOI: 10.1016/j.impact.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
To facilitate Safe and Sustainable by Design (SSbD) strategies during the development of nanomaterials (NMs), quick and easy in vitro assays to test for hazard potential at an early stage of NM development are essential. The formation of reactive oxygen species (ROS) and the induction of oxidative stress are considered important mechanisms that can lead to NM toxicity. In vitro assays measuring oxidative stress are therefore commonly included in NM hazard assessment strategies. The fluorescence-based dichloro-dihydro-fluorescein (DCFH) assay for cellular oxidative stress is a simple and cost-effective assay, making it a good candidate assay for SSbD hazard testing strategies. It is however subject to several pitfalls and caveats. Here, we provide further optimizations to the assay using 5-(6)-Chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA-AE, referred to as DCFH probe), known for its improved cell retention. We measured the release of metabolic products of the DCFH probe from cells to supernatant, direct reactions of CM-H2DCFDA-AE with positive controls, and compared the commonly used plate reader-based DCFH assay protocol with fluorescence microscopy and flow cytometry-based protocols. After loading cells with DCFH probe, translocation of several metabolic products of the DCFH probe to the supernatant was observed in multiple cell types. Translocated DCFH products are then able to react with test substances including positive controls. Our results also indicate that intracellularly oxidized fluorescent DCF is able to translocate from cells to the supernatant. In either way, this will lead to a fluorescent supernatant, making it difficult to discriminate between intra- and extra-cellular ROS production, risking misinterpretation of possible oxidative stress when measuring fluorescence on a plate reader. The use of flow cytometry instead of plate reader-based measurements resolved these issues, and also improved assay sensitivity. Several optimizations of the flow cytometry-based DCFH ISO standard (ISO/TS 19006:2016) were suggested, including loading cells with DCFH probe before incubation with the test materials, and applying an appropriate gating strategy including live-death staining, which was not included in the ISO standard. In conclusion, flow cytometry- and fluorescence microscopy-based read-outs are preferred over the classical plate reader-based read-out to assess the level of intracellular oxidative stress using the cellular DCFH assay.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, the Netherlands
| | - Margriet van der Zee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, the Netherlands; Science Lines, Emmalaan 8, 3451 CT Vleuten, the Netherlands
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh, EH14 4AP, UK; Centre for Biomedicine and Global Health, School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Flemming R Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, the Netherlands.
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, the Netherlands; TNO Risk Analysis for Products in Development, 3584 CB Utrecht, the Netherlands
| |
Collapse
|
8
|
Zhou S, Hou S, Lu Q. Polyphosphazene Microparticles with High Free Radical Scavenging Activity for Skin Photoprotection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32649-32661. [PMID: 38865694 DOI: 10.1021/acsami.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Ultraviolet (UV) filters are the core ingredients in sunscreens and protect against UV-induced skin damage. Nevertheless, their safety and effectiveness have been questioned in terms of their poor photostability, skin penetration, and UV-induced generation of deleterious reactive oxygen species (ROS). Herein, an organic UV filter self-framed microparticle sunblock was exploited, in which quercetin (QC) and hexachlorocyclotriphosphazene (HCCP) were self-constructed into microparticles (HCCP-QC MPs) by facile precipitation polymerization without any carriers. HCCP-QC MPs could not only significantly extend the UV shielding range to the whole UV region but also remarkably reduce UV-induced ROS while avoiding direct skin contact and the resulting epidermal penetration of small-molecule QC. Meanwhile, HCCP-QC MPs possess a high QC-loading ability (697 mg g-1) by QC itself as the microparticles' building blocks. In addition, there is no leakage issue with small molecules due to its covalently cross-linked structure. In vitro and vivo experiments also demonstrated that the HCCP-QC MPs have excellent UV protection properties and effective ROS scavenging ability without toxicity. In summary, effective UV-shielding and ROS scavenging ability coupled with excellent biocompatibility and nonpenetration of small molecules make it a broad prospect in skin protection.
Collapse
Affiliation(s)
- Shiliu Zhou
- School of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shenglei Hou
- The Center for Drug Evaluation, Monitoring and Assessment of Fujian Province, 156 Dongpu Road, Gulou District, Fuzhou, Fujian 350001, China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Li Y, Li J, Lu Y, Ma Y. ZnO nanomaterials target mitochondrial apoptosis and mitochondrial autophagy pathways in cancer cells. Cell Biochem Funct 2024; 42:e3909. [PMID: 38269499 DOI: 10.1002/cbf.3909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
In recent years, the application of engineering nanomaterials has significantly contributed to the development of various biomedical fields. Zinc oxide nanomaterials (ZnO NMts) have gained wide popularity due to their biocompatibility, unique physical and chemical properties, stability, and cost-effectiveness for large-scale production. They have emerged as potential materials for anticancer applications. This article provides a comprehensive review of the synthesis methods of ZnO NMts and highlights the advantages of combining ZnO NMts with anticancer drugs as a nano platform for cancer treatment. Additionally, the article briefly explains the mechanism of action of ZnO NMts in tumor cells, focusing on the mitochondrial pathways that target cell apoptosis and autophagy. It is observed that these pathways are primarily influenced by reactive oxygen species generated through oxidative stress. The article discusses the promising prospects of ZnO NMts combined with anticancer drugs in the field of cancer medicine and emphasizes the need for further in-depth research on the mitochondrial apoptosis and mitochondrial autophagy pathways.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yan Lu
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
10
|
Gorain B, Karmakar V, Sarkar B, Dwivedi M, Leong JTL, Toh JH, Seah E, Ling KY, Chen KY, Choudhury H, Pandey M. Biomacromolecule-based nanocarrier strategies to deliver plant-derived bioactive components for cancer treatment: A recent review. Int J Biol Macromol 2023; 253:126623. [PMID: 37657573 DOI: 10.1016/j.ijbiomac.2023.126623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The quest for safe chemotherapy has attracted researchers to explore anticancer potential of herbal medicines. Owing to upsurging evidence of herbal drug's beneficial effects, hopes are restored for augmenting survival rates in cancer patients. However, phytoconstituents confronted severe limitations in terms of poor absorption, low-stability, and low bioavailability. Along with toxicity issues associated with phytoconstituents, quality control and limited regulatory guidance also hinder the prevalence of herbal medicines for cancer therapy. Attempts are underway to exploit nanocarriers to circumvent the limitations of existing and new herbal drugs, where biological macromolecules (e.g., chitosan, hyaluronic acid, etc.) are established highly effective in fabricating nanocarriers and cancer targeting. Among the discussed nanocarriers, liposomes and micelles possess properties to cargo hydro- and lipophilic herbal constituents with surface modification for targeted delivery. Majorly, PEG, transferrin and folate are utilized for surface modification to improve bioavailability, circulation time and targetability. The dendrimer and carbon nanotubes responded in high-loading efficiency of phytoconstituent; whereas, SLN and nanoemulsions are suited carriers for lipophilic extracts. This review emphasized unveiling the latent potential of herbal drugs along with discussing on extended benefits of nanocarriers-based delivery of phytoconstituents for safe cancer therapy owing to enhanced clinical and preclinical outcomes without compromising safety.
Collapse
Affiliation(s)
- Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Janelle Tsui Lyn Leong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jing Hen Toh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Even Seah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kang Yi Ling
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Chen
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana 123031, India.
| |
Collapse
|
11
|
Kadhim AA, Abbas NR, Kadhum HH, Albukhaty S, Jabir MS, Naji AM, Hamzah SS, Mohammed MKA, Al-Karagoly H. Investigating the Effects of Biogenic Zinc Oxide Nanoparticles Produced Using Papaver somniferum Extract on Oxidative Stress, Cytotoxicity, and the Induction of Apoptosis in the THP-1 Cell Line. Biol Trace Elem Res 2023; 201:4697-4709. [PMID: 36662347 DOI: 10.1007/s12011-023-03574-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
This study investigated the effect of novel zinc oxide nanoparticles (ZnO NPs) biosynthesized employing Papaver somniferum leaf on oxidative stress, necrosis, and apoptosis in the leukemia cancer THP-1 cell. The obtained ZnO was examined using SEM, AFM, and TEM microscopy, which revealed an irregular spherical morphology with a size ranging from 20 to 30 nm, and the UV-vis absorbance revealed a strong absorption peak in the range of 360-370, nm confirming the production of ZnO NPs. THP-1 cells were subjected to an MTT, an EdU proliferation, a lactate dehydrogenase release tests, a reactive oxygen species (ROS) induction experiment, a DAPI staining detection assay, and a flow cytometric analysis for Annexin V to measure the effects of ZnO NPs on cancer cell growth inhibition, apoptosis, and necrosis. Our results show that ZnO NPs inhibit THP-1 line in a concentration-dependent pattern. It was observed that ZnO NPs triggered necrosis (cell death) and apoptosis in the cell line. ZnO NPs massively improved the formation of intracellular ROS, which is crucial in deactivating the development of leukemic cells. In conclusion, ZnO nanoparticles synthesized using Papaver somniferum extract have the ability to inhibit proliferation leukemic cancer cells, making them potential anticancer agents.
Collapse
Affiliation(s)
- Afraa Ali Kadhim
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | | | | | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Majid S Jabir
- Division of Biotechnology, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Amel Muhson Naji
- Department of Optics Techniques, Dijlah University College, Al-Masafi Street, Baghdad, 00964, Iraq
| | - Sawsan S Hamzah
- Dentistry Department, Al-Farahidi University, Baghdad, 00964, Iraq
| | - Mustafa K A Mohammed
- Radiological Techniques Department, Al-Mustaqbal University College, 51001, Hillah, , Babylon, Iraq.
| | - Hassan Al-Karagoly
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| |
Collapse
|
12
|
Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Kaur J, Alharbi SA, Alahmadi TA, Aggarwal D, Dhama K, Jaswal VS, Mittal S, Sethi G. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 13:321-348. [DOI: 10.1007/s40097-022-00504-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 07/28/2024]
|
13
|
Rajawat G, Ramalingam K, Pareek R, Singh G, Narula H, Aggarwal A. Assessment of Salivary ABO Blood Group Antigens and Secretor Status in Sriganganagar, Rajasthan: A Correlational Analysis of 300 Samples. Cureus 2023; 15:e37415. [PMID: 37182010 PMCID: PMC10172881 DOI: 10.7759/cureus.37415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Aim To estimate the ABO blood groups from saliva samples and to correlate with the secretor status. Materials and methods A sample size of 300 individuals was selected from the outpatient department of Surendera Dental College & Research Institute, Sriganganagar, India, and from dental camps organized by the college in the near vicinity. Informed consent was obtained from selected individuals to collect their blood and saliva samples. Salivary samples were evaluated for ABO blood groups by the absorption-inhibition method. The indicator erythrocytes were prepared after blood group confirmation from serum. It was used to identify the blood group antigens in saliva to confirm the secretor status. The results were tabulated and the Pearson's chi-squared test was performed for statistical analysis using SPSS 15.0 (SPSS Inc., Chicago, IL). Results The present study showed that 282 subjects (94%) were Rhesus positive and 18 subjects (6%) were Rhesus negative. Two-hundred-and-fifty subjects (83.3%) were secretors of antigens in saliva. Non-secretors were 50 subjects (16.7%). We identified that 250/300 were secretors and the majority were in AB & A group. Conclusion Blood groups could not be detected from the saliva of subjects who were non-secretors. In contrast, blood types could be accurately identified from the saliva of those subjects who were secretors of antigen.
Collapse
Affiliation(s)
- Gaurav Rajawat
- Oral Pathology and Microbiology, Surendera Dental College and Research Institute, Sriganganagar, IND
| | - Karthikeyan Ramalingam
- Oral pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Rajat Pareek
- Oral and Maxillofacial Surgery, Surendera Dental College and Research Institute, Sriganganagar, IND
| | - Gagandeep Singh
- Oral and Maxillofacial Surgery, Nayar Heart and Multispeciality Hospitals, Amritsar, IND
| | - Harleen Narula
- Pediatric Dentistry, Pacific Dental College and Hospitals, Udaipur, IND
| | - Atul Aggarwal
- Oral and Maxillofacial Surgery, Surendera Dental College and Research Institute, Sriganganagar, IND
| |
Collapse
|
14
|
Długosz O, Matyjasik W, Hodacka G, Szostak K, Matysik J, Krawczyk P, Piasek A, Pulit-Prociak J, Banach M. Inorganic Nanomaterials Used in Anti-Cancer Therapies:Further Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061130. [PMID: 36986024 PMCID: PMC10051539 DOI: 10.3390/nano13061130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/14/2023]
Abstract
In this article, we provide an overview of the progress of scientists working to improve the quality of life of cancer patients. Among the known methods, cancer treatment methods focusing on the synergistic action of nanoparticles and nanocomposites have been proposed and described. The application of composite systems will allow precise delivery of therapeutic agents to cancer cells without systemic toxicity. The nanosystems described could be used as a high-efficiency photothermal therapy system by exploiting the properties of the individual nanoparticle components, including their magnetic, photothermal, complex, and bioactive properties. By combining the advantages of the individual components, it is possible to obtain a product that would be effective in cancer treatment. The use of nanomaterials to produce both drug carriers and those active substances with a direct anti-cancer effect has been extensively discussed. In this section, attention is paid to metallic nanoparticles, metal oxides, magnetic nanoparticles, and others. The use of complex compounds in biomedicine is also described. A group of compounds showing significant potential in anti-cancer therapies are natural compounds, which have also been discussed.
Collapse
|
15
|
Kavitha A, Doss A, Praveen Pole R, Pushpa Rani TK, Prasad R, Satheesh S. A mini review on plant-mediated zinc oxide nanoparticles and their antibacterial potency. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Husk-like Zinc Oxide Nanoparticles Induce Apoptosis through ROS Generation in Epidermoid Carcinoma Cells: Effect of Incubation Period on Sol-Gel Synthesis and Anti-Cancerous Properties. Biomedicines 2023; 11:biomedicines11020320. [PMID: 36830857 PMCID: PMC9953567 DOI: 10.3390/biomedicines11020320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
This study effectively reports the influence of experimental incubation period on the sol-gel production of husk-like zinc oxide nanoparticles (ZNPs) and their anti-cancerous abilities. The surface morphology of ZNPs was studied with the help of SEM. With the use of TEM, the diameter range of the ZNPs was estimated to be ~86 and ~231 nm for ZNPA and ZNPB, prepared by incubating zinc oxide for 2 and 10 weeks, respectively. The X-ray diffraction (XRD) investigation showed that ZNPs had a pure wurtzite crystal structure. On prolonging the experimental incubation, a relative drop in aspect ratio was observed, displaying a distinct blue-shift in the UV-visible spectrum. Furthermore, RBC lysis assay results concluded that ZNPA and ZNPB both demonstrated innoxious nature. As indicated by MTT assay, reactive oxygen species (ROS) release, and chromatin condensation investigations against the human epidermoid carcinoma (HEC) A431 cells, ZNPB demonstrated viable relevance to chemotherapy. Compared to ZNPB, ZNPA had a slightly lower IC50 against A431 cells due to its small size. This study conclusively describes a simple, affordable method to produce ZNP nano-formulations that display significant cytotoxicity against the skin cancer cell line A431, suggesting that ZNPs may be useful in the treatment of cancer.
Collapse
|
17
|
Wani AK, Akhtar N, Mir TUG, Singh R, Jha PK, Mallik SK, Sinha S, Tripathi SK, Jain A, Jha A, Devkota HP, Prakash A. Targeting Apoptotic Pathway of Cancer Cells with Phytochemicals and Plant-Based Nanomaterials. Biomolecules 2023; 13:194. [PMID: 36830564 PMCID: PMC9953589 DOI: 10.3390/biom13020194] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Apoptosis is the elimination of functionally non-essential, neoplastic, and infected cells via the mitochondrial pathway or death receptor pathway. The process of apoptosis is highly regulated through membrane channels and apoptogenic proteins. Apoptosis maintains cellular balance within the human body through cell cycle progression. Loss of apoptosis control prolongs cancer cell survival and allows the accumulation of mutations that can promote angiogenesis, promote cell proliferation, disrupt differentiation, and increase invasiveness during tumor progression. The apoptotic pathway has been extensively studied as a potential drug target in cancer treatment. However, the off-target activities of drugs and negative implications have been a matter of concern over the years. Phytochemicals (PCs) have been studied for their efficacy in various cancer cell lines individually and synergistically. The development of nanoparticles (NPs) through green synthesis has added a new dimension to the advancement of plant-based nanomaterials for effective cancer treatment. This review provides a detailed insight into the fundamental molecular pathways of programmed cell death and highlights the role of PCs along with the existing drugs and plant-based NPs in treating cancer by targeting its programmed cell death (PCD) network.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Tahir ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Rattandeep Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA
| | - Shyam Kumar Mallik
- College of Medical and Allied Sciences, Purbanchal University, Morang 56600, Nepal
| | - Shruti Sinha
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Surya Kant Tripathi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abha Jain
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aprajita Jha
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Muacevic A, Adler JR, Mullainathan S, Sahuwala A, Chawla G, S G. Assessment of Oral Lesions With Tobacco Usage: A Cross-Sectional Clinicopathological Study in Sri Ganganagar, Rajasthan, India. Cureus 2023; 15:e33428. [PMID: 36751169 PMCID: PMC9897703 DOI: 10.7759/cureus.33428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Background Tobacco usage in the form of smoking or chewing has increased the risk of oral potentially malignant disorders (OPMDs) and oral cancer. These deleterious habits are also related to changes in dentition and the oral mucosa. Aim The aim of our study was to evaluate the oral changes associated with tobacco usage among residents of Sri Ganganagar. Materials and methods This study was conducted among the residents of Sri Ganganagar, Rajasthan, India, using stratified cluster random sampling, prestructured questionnaires, and detailed oral examination. A total of 100 patients with a previous history of tobacco usage were enrolled in this study after obtaining informed consent. Age- and gender-matched controls were also evaluated to correlate the findings. Clinical details were documented, including the Oral Hygiene Index-Simplified (OHI-S), Decayed-Missing-Filled Teeth (DMFT) index, Community Periodontal Index (CPI), loss of attachment, dental findings, and oral mucosal changes. Suspicious lesions were stained with toluidine blue, and a biopsy was performed for histopathological evaluation. The tabulated results were statistically analyzed using the Statistical Package for the Social Sciences (SPSS) version 21.0 (IBM SPSS Statistics, Armonk, NY, USA) for significance. Results Attrition, abrasion, and erosion of teeth were more frequent in tobacco users than in controls. Smoker's palate, tobacco pouch keratosis, and leukoplakia were commonly noted mucosal lesions. The mean values of the parameters of the DMFT score (3.560), CPI score (2.190), and loss of attachment score (0.542) were higher among tobacco users, and it was statistically significant (P value < 0.05). Out of 100 patients, 17 had suspicious lesions. It included seven cases of oral submucous fibrosis (OSMF), two cases of tobacco pouch keratosis, and eight cases of leukoplakia. Toluidine blue staining and biopsy were performed. Histopathological examination of suspicious lesions revealed hyperkeratosis, various grades of epithelial dysplasia, and differing inflammatory responses. Out of 17 biopsied cases, there were two cases of hyperkeratosis with severe epithelial dysplasia, four cases of hyperkeratosis with moderate epithelial dysplasia, two cases of hyperkeratosis with mild dysplasia, two cases of superficially invasive squamous cell carcinoma, five cases of advanced OSMF, and two cases of moderately advanced OSMF. Conclusion Tobacco usage produces visible changes in dentition and latent alterations in the oral mucosa. Suspicious lesions should always be referred for histopathological examination to identify oral potentially malignant disorders and oral cancer so that prompt treatment could be initiated. Patient education is mandatory to avoid the usage of tobacco in any form.
Collapse
|
19
|
Muacevic A, Adler JR, Puri A, Krishnan M, Aneja T, Gill K. Heat Shock Protein 27 (HSP27) as a Potential Prognostic Marker: Immunohistochemical Analysis of Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma. Cureus 2022; 14:e33020. [PMID: 36721546 PMCID: PMC9879797 DOI: 10.7759/cureus.33020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
AIM To evaluate and correlate the expression of heat shock protein 27 (HSP27) in oral epithelial dysplasia (ED) and oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS This immunohistochemical study of HSP27 expression was performed on 45 samples retrieved from the departmental archives. It included 15 cases of oral ED, 15 cases of OSCC and 15 cases of epithelial hyperplasia (EH). The staining intensity and distribution were scored. The expression was compared between the study groups. Kruskal-Wallis Test, Mann-Whitney U Test and Chi-square tests were performed for statistical analysis using SPSS v21.0 (IBM Corp., Armonk, NY, USA). Results: There was a statistically significant difference in HSP27 staining parameters between EH, oral ED and OSCC. There was no significant difference between oral ED and OSCC. Conclusion: HSP27 expression shows enhanced expression in oral ED and OSCC. Its expression should be investigated using larger sample sizes with clinico-pathological correlation to prove its efficiency as a prognostic marker. It will help us in defining treatment modalities so that mortality and morbidity associated with OSCC could be reduced.
Collapse
|
20
|
Aljohar AY, Muteeb G, Zia Q, Siddiqui S, Aatif M, Farhan M, Khan MF, Alsultan A, Jamal A, Alshoaibi A, Ahmad E, Alam MW, Arshad M, Ahamed MI. Anticancer effect of zinc oxide nanoparticles prepared by varying entry time of ion carriers against A431 skin cancer cells in vitro. Front Chem 2022; 10:1069450. [PMID: 36531331 PMCID: PMC9751667 DOI: 10.3389/fchem.2022.1069450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 09/19/2023] Open
Abstract
Although, zinc oxide nanoparticles (ZRTs) as an anti-cancer agent have been the subject of numerous studies, none of the reports has investigated the impact of the reaction entry time of ion-carriers on the preparation of ZRTs. Therefore, we synthesized variants of ZRTs by extending the entry time of NaOH (that acts as a carrier of hydroxyl ions) in the reaction mixture. The anti-proliferative action, morphological changes, reactive oxygen species (ROS) production, and nuclear apoptosis of ZRTs on human A431 skin carcinoma cells were observed. The samples revealed crystallinity and purity by X-ray diffraction (XRD). Scanning electron microscopy (SEM) images of ZRT-1 (5 min ion carrier entry) and ZRT-2 (10 min ion carrier entry) revealed microtubule like morphology. On prolonging the entry time for ion carrier (NaOH) introduction in the reaction mixture, a relative ascent in the aspect ratio was seen. The typical ZnO band with a slight shift in the absorption maxima was evident with UV-visible spectroscopy. Both ZRT-1 and ZRT-2 exhibited non-toxic behavior as evident by RBC lysis assay. Additionally, ZRT-2 showed better anti-cancer potential against A431 cells as seen by MTT assay, ROS generation and chromatin condensation analyses. At 25 μM of ZRT-2, 5.56% cells were viable in MTT test, ROS production was enhanced to 166.71%, while 33.0% of apoptotic cells were observed. The IC50 for ZRT-2 was slightly lower (6 μM) than that for ZRT-1 (8 μM) against A431 cells. In conclusion, this paper presents a modest, economical procedure to generate ZRT nano-structures exhibiting strong cytotoxicity against the A431 cell line, indicating that ZRTs may have application in combating cancer.
Collapse
Affiliation(s)
- Albandri Yousef Aljohar
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Lucknow, India
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohd. Farhan Khan
- Faculty of Science, Gagan College of Management & Technology, Aligarh, India
| | - Abdulrahman Alsultan
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| | - Azfar Jamal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Department of Biology, College of Science, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Ejaz Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Md Arshad
- Molecular Endocrinology Laboratory, Zoology Department, Lucknow University, Lucknow, India
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohd Imran Ahamed
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
21
|
Naik J, David M. ROS mediated apoptosis and cell cycle arrest in human lung adenocarcinoma cell lines by silver nanoparticles synthesized using Swietenia macrophylla seed extract. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Alshameri AW, Owais M. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Alsmadi MM, Al-Nemrawi NK, Obaidat R, Abu Alkahsi AE, Korshed KM, Lahlouh IK. Insights into the mapping of green synthesis conditions for ZnO nanoparticles and their toxicokinetics. Nanomedicine (Lond) 2022; 17:1281-1303. [PMID: 36254841 DOI: 10.2217/nnm-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Research on ZnO nanoparticles (NPs) has broad medical applications. However, the green synthesis of ZnO NPs involves a wide range of properties requiring optimization. ZnO NPs show toxicity at lower doses. This toxicity is a function of NP properties and pharmacokinetics. Moreover, NP toxicity and pharmacokinetics are affected by the species type and age of the animals tested. Physiologically based pharmacokinetic (PBPK) modeling offers a mechanistic platform to scrutinize the colligative effect of the interplay between these factors, which reduces the need for in vivo studies. This review provides a guide to choosing green synthesis conditions that result in minimal toxicity using a mechanistic tool, namely PBPK modeling.
Collapse
Affiliation(s)
- Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Nusaiba K Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Rana Obaidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Anwar E Abu Alkahsi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Khetam M Korshed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Ishraq K Lahlouh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
24
|
Rajabalizadeh R, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Medicinal herbs in treating chemotherapy-induced nausea and vomiting: A review. Phytother Res 2022; 36:3691-3708. [PMID: 35841194 DOI: 10.1002/ptr.7563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 12/22/2022]
Abstract
Cancer development entangles with mutation and selection for cells that progressively increase capacity for proliferation and metastasis at the cellular level. Surgery, chemotherapy, and radiotherapy are the standard treatments to manage several types of cancer. Chemotherapy is toxic for both normal and cancer cells and can induce unfavorable conditions, such as chemotherapy-induced nausea and vomiting (CINV), that reduce patients' quality of life. Emesis after chemotherapy is categorized into two classes acute and delayed. Since ancient times, herbal medicines have been used in various cultures to manage stomachache, vomiting, and nausea. In this manuscript, the antiemetic mechanisms of several herbal medicines and their preparations such as Zingiber officinale (5-HT, NK-1 receptor and muscarinic antagonist activity), Mentha spicata (5-HT antagonist activity), Scutellaria baicalensis (antioxidant activity), Persumac (useful in delayed phase through antioxidant, anti-inflammatory, and anti-contractile properties) and Rikkunshito (supportive in acute and delayed phase through 5-HT receptor antagonist activity) have been reviewed to show their potential effects on decreasing CINV and attract scientists attention to formulate more herbal medicine to alleviate CINV in cancer patients. However, it is crucial to say that additional high-quality investigations are required to firmly verify the clinical effectiveness and safety of each plant/compound.
Collapse
Affiliation(s)
- Reza Rajabalizadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Thomas S, Gunasangkaran G, Arumugam VA, Muthukrishnan S. Synthesis and Characterization of Zinc Oxide Nanoparticles of Solanum nigrum and Its Anticancer Activity via the Induction of Apoptosis in Cervical Cancer. Biol Trace Elem Res 2022; 200:2684-2697. [PMID: 34448982 DOI: 10.1007/s12011-021-02898-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
Effective cancer therapy can be achieved by using nano-drug delivery systems which provide a targeted drug delivery strategy by overcoming the drawbacks of conventional treatments like chemotherapy and radiation. ZnO nanoparticles are a potent anticancer agent that causes tumor cell destruction with the targeted drug delivery. In this present study, green synthesis of ZnO nanoparticles has been done using the plant Solanum nigrum. The synthesized ZnO nanoparticles were studied by the characterization techniques like UV-visible spectroscopy, SEM, TEM, DLS, zeta potential, FTIR, and XRD. The synthesized ZnO nanoparticles of Solanum nigrum exhibited a significant anticancer activity against HeLa cell lines through the apoptotic pathway. The cytotoxicity of ZnO nanoparticles was assessed using MTT assay, wound healing assay, DAPI staining, and acridine orange and ethidium bromide double staining. The expression patterns of β-catenin, p53, caspase-3, and caspase-9 were analyzed using reverse transcriptase-PCR. The results obtained from the study indicate that the ZnO nanoparticles of Solanum nigrum possess a dose-dependent cytotoxic effect against HeLa cell lines through the inhibition of β-catenin and increasing the levels of p53, caspase-3, and caspase-9.
Collapse
Affiliation(s)
- Steffy Thomas
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Genetics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
26
|
Shakoori Z, Pashaei-Asl R, Pashaiasl M, Davaran S, Ghanbari H, Ebrahimie E, Rezayat SM. Biocompatibility study of P (N-isopropylacrylamide)-based nanocomposite and its cytotoxic effect on HeLa cells as a drug delivery system for Cisplatin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Păduraru DN, Ion D, Niculescu AG, Mușat F, Andronic O, Grumezescu AM, Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics 2022; 14:435. [PMID: 35214167 PMCID: PMC8874382 DOI: 10.3390/pharmaceutics14020435] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer continues to represent a global health concern, imposing an ongoing need to research for better treatment alternatives. In this context, nanomedicine seems to be the solution to existing problems, bringing unprecedented results in various biomedical applications, including cancer therapy, diagnosing, and imaging. As numerous studies have uncovered the advantageous properties of various nanoscale metals, this review aims to present metal-based nanoparticles that are most frequently employed for cancer applications. This paper follows the description of relevant nanoparticles made of metals, metal derivatives, hybrids, and alloys, further discussing in more detail their potential applications in cancer management, ranging from the delivery of chemotherapeutics, vaccines, and genes to ablative hyperthermia therapies and theranostic platforms.
Collapse
Affiliation(s)
- Dan Nicolae Păduraru
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Daniel Ion
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Florentina Mușat
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Alexandra Bolocan
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
28
|
Neetha D'Souza J, Nagaraja GK, Prabhu A, Meghana Navada K, Kouser S, Manasa DJ. AgVI and Ag/ZnOVI nanostructures from Vateria indica (L.) exert antioxidant, antidiabetic, anti-inflammatory and cytotoxic efficacy on triple negative breast cancer cells in vitro. Int J Pharm 2022; 615:121450. [PMID: 35041912 DOI: 10.1016/j.ijpharm.2022.121450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/17/2021] [Accepted: 01/02/2022] [Indexed: 11/24/2022]
Abstract
Human triple-negative breast cancer (TNBC) being an aggressive cancer type accounts for about 15-20 % of global breast cancer cases. In the present study, the cytotoxicity of pure silver (AgVI) and silver/zinc oxide (Ag/ZnOVI) nanostructures was evaluated against the TNBC cells. The nanostructures synthesized from a green route using Vateria indica (L.) fruit extract were characterized to scrutinize their formation, crystal phase, size, shape, and surface properties via FTIR, PXRD, FE-SEM coupled with EDS spectroscopy, and BET analysis. The results of the studies have unveiled the formation of 26.43 nm and 20.97 nm sized AgVI and Ag/ZnOVI nanostructures in their purest form. The in-vitro anticancer study performed on human TNBC cells [MDA-MB468] revealed the enhancement in the antiproliferative potentiality of bimetallic Ag/ZnOVI nanostructures from 66.99 ± 0.13 to 79.73 ± 0.23 in comparison to pure AgVI nanostructures. In addition to this, the greenish yellow-fluorescence observed in the TNBC nuclei during the AO-EB staining study manifested the early apoptosis. Furthermore, the anti-inflammatory and cytotoxicity study performed on the human RBC and normal NIH3T3 murine fibroblasts cells proved the biocompatibility and non-toxic nature of the synthesized nanostructures with membrane stabilization percentage up to 94.5 ± 0.001. Additionally, the antioxidant and antidiabetic studies carried out have corroborated the radical scavenging and α-amylase inhibition capability up to 85.87 ± 0.001 and 89.60 ± 0.002 % respectively. Thus the overall results of the study substantiate the superlative antioxidant, antidiabetic, and antiproliferative property of green synthesized AgVI and Ag/ZnOVI nanostructures with excellent biocompatibility.
Collapse
Affiliation(s)
- Josline Neetha D'Souza
- Department of Chemistry, Mangalore University, Mangalagangothri-574199, Karnataka, India
| | - G K Nagaraja
- Department of Chemistry, Mangalore University, Mangalagangothri-574199, Karnataka, India.
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte-575018, Karnataka, India
| | - K Meghana Navada
- Department of Chemistry, Mangalore University, Mangalagangothri-574199, Karnataka, India
| | - Sabia Kouser
- Department of Chemistry, Mangalore University, Mangalagangothri-574199, Karnataka, India
| | - D J Manasa
- Department of Botany, Davanagere University, Davanagere-577007, Karnataka, India
| |
Collapse
|
29
|
Bakrania A, Zheng G, Bhat M. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2021; 14:41. [PMID: 35056937 PMCID: PMC8779722 DOI: 10.3390/pharmaceutics14010041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death and is associated with a dismal median survival of 2-9 months. The fundamental limitations and ineffectiveness of current HCC treatments have led to the development of a vast range of nanotechnologies with the goal of improving the safety and efficacy of treatment for HCC. Although remarkable success has been achieved in nanomedicine research, there are unique considerations such as molecular heterogeneity and concomitant liver dysfunction that complicate the translation of nanotheranostics in HCC. This review highlights the progress, challenges, and targeting opportunities in HCC nanomedicine based on the growing literature in recent years.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
30
|
Salesa B, Sabater i Serra R, Serrano-Aroca Á. Zinc Chloride: Time-Dependent Cytotoxicity, Proliferation and Promotion of Glycoprotein Synthesis and Antioxidant Gene Expression in Human Keratinocytes. BIOLOGY 2021; 10:1072. [PMID: 34827065 PMCID: PMC8615178 DOI: 10.3390/biology10111072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/20/2022]
Abstract
The use of ionic metals such as zinc (Zn2+) is providing promising results in regenerative medicine. In this study, human keratinocytes (HaCaT cells) were treated with different concentrations of zinc chloride (ZnCl2), ranging from 1 to 800 µg/mL, for 3, 12 and 24 h. The results showed a time-concentration dependence with three non-cytotoxic concentrations (10, 5 and 1 µg/mL) and a median effective concentration value of 13.5 µg/mL at a cell exposure to ZnCl2 of 24 h. However, the zinc treatment with 5 or 1 µg/mL had no effect on cell proliferation in HaCaT cells in relation to the control sample at 72 h. The effects of the Zn2+ treatment on the expression of several genes related to glycoprotein synthesis, oxidative stress, proliferation and differentiation were assessed at the two lowest non-cytotoxic concentrations after 24 h of treatment. Out of 13 analyzed genes (superoxide dismutase 1 (SOD1), catalase (CAT), matrix metallopeptidase 1 (MMP1), transforming growth factor beta 1 (TGFB1), glutathione peroxidase 1 (GPX1), fibronectin 1 (FN1), hyaluronan synthase 2 (HAS2), laminin subunit beta 1 (LAMB1), lumican (LUM), cadherin 1 (CDH1), collagen type IV alpha (COL4A1), fibrillin (FBN) and versican (VCAN)), Zn2+ was able to upregulate SOD1, CAT, TGFB1, GPX1, LUM, CDH1, FBN and VCAN, with relative expression levels of at least 1.9-fold with respect to controls. We found that ZnCl2 promoted glycoprotein synthesis and antioxidant gene expression, thus confirming its great potential in biomedicine.
Collapse
Affiliation(s)
- Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46022 València, Spain;
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain
- Biomedical Research Networking Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46022 València, Spain;
| |
Collapse
|
31
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
32
|
Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel) 2021; 13:4570. [PMID: 34572797 PMCID: PMC8468934 DOI: 10.3390/cancers13184570] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs as carriers of anticancerous drugs for targeted drug delivery into tumor cells, with a special focus on surface functionalization, drug-loading mechanism, and stimuli-responsive controlled release of drugs. Finally, we have critically discussed the anticancerous activity of ZnO NPs on different types of cancers along with their mode of actions. Furthermore, this review also highlights the limitations and future prospects of ZnO NPs in cancer theranostic.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Sara Asad Malik
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Maha Khan
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avenida de Galicia 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France;
| |
Collapse
|
33
|
Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim Biophys Acta Rev Cancer 2021; 1876:188621. [PMID: 34454983 DOI: 10.1016/j.bbcan.2021.188621] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Liver cancer is one of the most common cancers worldwide and is also one of the most difficult cancers to treat, resulting in almost one million deaths per year, and the danger of this cancer is compounded when the tumor is nonresectable. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has the third highest mortality rate worldwide. Considering the morbid statistics surrounding this cancer it is a popular research topic to target for better therapy practices. This review summarizes the role of nanotechnology in these endeavors. Nanoparticles (NPs) are a very broad class of material and many different kinds have been used to potentially combat liver cancer. Gold, silver, platinum, metal oxide, calcium, and selenium NPs as well as less common materials are all inorganic NPs that have been used as a therapeutic, carrier, or imaging agent in drug delivery systems (DDS) and these efforts are described. Carbon-based NPs, including polymeric, polysaccharide, and lipid NPs as well as carbon dots, have also been widely studied for this purpose and the role they play in DDS for the treatment of liver cancer is illustrated in this review. The multifunctional nature of many NPs described herein, allows these systems to display high anticancer activity in vitro and in vivo and highlights the advantage of and need for combinatorial therapy in treating this difficult cancer. These works are summarized, and future directions are presented for this promising field.
Collapse
Affiliation(s)
- Keenan J Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
34
|
Tamilarasan K, Annapoorani A, Manikandan R, Janarthanan S. Isolation, characterization of galactose-specific lectin from Odoiporus longicollis and its antibacterial and anticancer activities. Int J Biol Macromol 2021; 183:1119-1135. [PMID: 33974923 DOI: 10.1016/j.ijbiomac.2021.05.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Lectins are renowned hemagglutinins and multivalent proteins with a well known quality for sugar-binding specificity that participate significantly in invertebrate defense functions. Studies on biological activity of lectin from coleopteran insect are very scarce. In this study, lectin from the hemolymph in the grub of banana pest, Odoiporus longicollis was subjected to purification, biochemical and functional characterizations. The lectin was purified by PEG precipitation and ion-exchange chromatography using Q-Sepharose as a matrix. The purified lectin showed hemagglutination activity against rat erythrocytes, heat-labile, cation independent and insensitive to EDTA. Further, the carbohydrate affinity of this lectin was found with mannitol, adonitol, L-arabinose, L-rhamnose, D-galactose and sorbitol. The native form of purified lectin was calculated as 360 kDa by FPLC system. Denatured gel electrophoresis of the purified lectin consisted of five distinct polypeptides with molecular weights approximately 160, 60, 52, 40 and 38 kDa, respectively. The amino acid sequences obtained through peptide mass fingerprinting analysis exhibited homologies to the known conserved regions of galactose binding lectins. Further, the purified lectin exhibited bacterial inhibition with LPS from Serratia marcescens. In addition, isolated lectin also exerted bacterial agglutination, antibacterial and anti-proliferative activity against Mycobacterium smegmatis, Bacillus pumilus and Neuro 2a cell line, respectively.
Collapse
Affiliation(s)
| | - Angusamy Annapoorani
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Ramar Manikandan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
35
|
Thermodynamic and anticancer properties of inorganic zinc oxide nanoparticles synthesized through co-precipitation method. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Ahlam AA, Shaniba VS, Jayasree PR, Manish Kumar PR. Spondias pinnata (L.f.) Kurz Leaf Extract Derived Zinc Oxide Nanoparticles Induce Dual Modes of Apoptotic-Necrotic Death in HCT 116 and K562 Cells. Biol Trace Elem Res 2021; 199:1778-1801. [PMID: 32761516 DOI: 10.1007/s12011-020-02303-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
Abstract
This study evaluates the effects of phyto-derived zinc oxide nanoparticles (ZnONPs) on human cancer cells, colon carcinoma HCT 116, and chronic myelogenous leukemic K562, along with normal lymphocytes/erythrocytes. The commercial, chemically synthesized ZnONPs (cZnONPs) were also assessed in parallel. Using an eco-friendly approach devoid of harmful chemicals, biogenic nanoparticles were synthesized from aqueous leaf extract of Spondias pinnata (SpLZnONPs) by a sol-gel method. Optical, structural, and elemental characterization of both particle types were carried out deploying UV-Vis/photoluminescence spectroscopy, FTIR, XRD, FESEM, HRTEM, and EDX. Both SpLZnONPs and cZnONPs displayed hexagonal wurtzite structure with particle sizes averaging 30 and 48.5 nm, respectively. SpLZnONPs were found to be cytotoxic to both cancer cell types while cZnONPs exhibited toxicity only against HCT 116 cells. Interestingly, the cytomorphological changes and analysis of DNA laddering pattern observed in these treated cells were indicative of simultaneous induction of dual modes of death involving apoptosis and necrosis. Flow cytometric analysis of cell-cycle distribution, clonogenic, wound healing, and comet assays provided evidences of the antiproliferative potential of the tested nanoparticles. Apoptosis induction via oxidative stress-mediated Ca2+ release, ROS generation, loss of mitochondrial membrane potential, and externalization of phosphatidylserine was also determined biochemically. Relative expression of apoptotic genes was quantified using RT-qPCR and Western blot analysis. Mitotic index analysis, MTT, and hemolytic assays on lymphocytes and erythrocytes clearly revealed the absence of any deleterious effect(s) of SpLZnONPs in these cells compared with the toxicity of the chemically derived cZnONPs, thereby attesting to the biocompatibility and selective action of the biogenic nanoparticles.
Collapse
Affiliation(s)
- Abdul Aziz Ahlam
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India
| | - V S Shaniba
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India
| | - P R Jayasree
- School of Health Sciences, University of Calicut, Kerala, 673635, India
| | - P R Manish Kumar
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India.
| |
Collapse
|
37
|
Priyadarshini S, Sonsudin F, Mainal A, Yahya R, Gopinath V, Vadivelu J, Alarjani KM, Al Farraj DA, Yehia HM. Phytosynthesis of biohybrid nano-silver anchors enhanced size dependent photocatalytic, antibacterial, anticancer properties and cytocompatibility. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Gopinath V, MubarakAli D, Vadivelu J, Manjunath Kamath S, Syed A, Elgorban AM. Synthesis of biocompatible chitosan decorated silver nanoparticles biocomposites for enhanced antimicrobial and anticancer property. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Sana SS, Kumbhakar DV, Pasha A, Pawar SC, Grace AN, Singh RP, Nguyen VH, Le QV, Peng W. Crotalaria verrucosa Leaf Extract Mediated Synthesis of Zinc Oxide Nanoparticles: Assessment of Antimicrobial and Anticancer Activity. Molecules 2020; 25:E4896. [PMID: 33113894 PMCID: PMC7660202 DOI: 10.3390/molecules25214896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
In this work, we present an ecofriendly, non-hazardous, green synthesis of zinc oxide nanoparticles (ZnO NPs) by leaf extract of Crotalaria verrucosa (C. verrucosa). Total phenolic content, total flavonoid and total protein contents of C. verrucosa were determined. Further, synthesized ZnO NPs was characterized by UV-visible spectroscopy (UV-vis), X-ray diffractometer (XRD), Fourier transform infra-red (FTIR) Spectra, transmission electron microscope (TEM), and Dynamic light scattering (DLS) analysis. UV-vis shows peak at 375 nm which is unique to ZnO NPs. XRD analysis demonstrates the hexagonal phase structures of ZnO NPs. FTIR spectra demonstrates the molecules and bondings associated with the synthesized ZnO NPs and assures the role of phytochemical compounds of C. verrucosa in reduction and capping of ZnO NPs. TEM image exhibits that the prepared ZnO NPs is hexagonal shaped and in size ranged between 16 to 38 nm which is confirmed by DLS. Thermo-gravimetric analysis (TGA) was performed to determine the thermal stability of biosynthesized nanoparticles during calcination. The prepared ZnO NPs showed significant antibacterial potentiality against Gram-positive (S. aureus) and Gram-negative (Proteus vulgaris, Klebsiella pneumoniae, and Escherichia coli) pathogenic bacteria and SEM image shows the generalized mechanism of action in bacterial cell after NPs internalization. In addition, NPs are also found to be effective against the studied cancer cell lines for which cytotoxicity was assessed using MTT assay and results demonstrate highest growth of inhibition at the concentration of 100 µg/mL with IC50 value at 7.07 µg/mL for HeLa and 6.30 µg/mL for DU145 cell lines, in contrast to positive control (C. verrucosa leaf extract) with IC50 of 22.30 µg/mL on HeLa cells and 15.72 µg/mL on DU145 cells. Also, DAPI staining was performed in order to determine the effect on nuclear material due to ZnO NPs treatment in the studied cell lines taking leaf extract as positive control and untreated negative control for comparison. Cell migration assay was evaluated to determine the direct influence of NPs on metastasis that is potential suppression capacity of NPs to tumor cell migration. Outcome of the synthesized ZnO NPs using C. verrucosa shows antimicrobial activity against studied microbes, also cytotoxicity, apoptotic mediated DNA damage and antiproliferative potentiality in the studied carcinoma cells and hence, can be further used in biomedical, pharmaceutical and food processing industries as an effective antimicrobial and anti-cancerous agent.
Collapse
Affiliation(s)
- Siva Sankar Sana
- Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa 516005, India;
| | - Divya Vishambhar Kumbhakar
- Department of Genetics & Biotechnology, Osmania University, Hyderabad 500007, India; (D.V.K.); (A.P.); (S.C.P.)
| | - Akbar Pasha
- Department of Genetics & Biotechnology, Osmania University, Hyderabad 500007, India; (D.V.K.); (A.P.); (S.C.P.)
| | - Smita C. Pawar
- Department of Genetics & Biotechnology, Osmania University, Hyderabad 500007, India; (D.V.K.); (A.P.); (S.C.P.)
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India;
| | - Raghvendra Pratap Singh
- Department of Research and Development, Biotechnology, Uttaranchal University, Dehradun 248007, India;
| | - Van-Huy Nguyen
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
40
|
Akintelu SA, Folorunso AS. A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00774-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5047987. [PMID: 32774675 PMCID: PMC7396055 DOI: 10.1155/2020/5047987] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life. Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment, all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins (PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.
Collapse
|
42
|
El Rayes SM, Aboelmagd A, Gomaa MS, Fathalla W, Ali IAI, Pottoo FH, Khan FA. Newly synthesized 3-(4-chloro-phenyl)-3-hydroxy-2,2-dimethyl-propionic acid methyl ester derivatives selectively inhibit the proliferation of colon cancer cells. RSC Adv 2020; 10:8825-8841. [PMID: 35496560 PMCID: PMC9049988 DOI: 10.1039/c9ra10950a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/21/2020] [Indexed: 11/28/2022] Open
Abstract
A series of 24 compounds were synthesized based on structure modification of the model methyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoate as potent HDACIs. Saponification and hydrazinolysis of the model ester afforded the corresponding acid and hydrazide, respectively. The model ester was transformed into the corresponding trichloroacetimidate or acetate by the reaction with trichloroacetonitrile and acetic anhydride, respectively. N-Alkyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropan-amides and methyl-2-[(3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoyl)amino] alkanoates were obtained by the reaction of corresponding acid or hydrazide with amines and amino acid esters via DCC and azide coupling methods. Methyl-3-aryl-3-(4-chlorophenyl)-2,2-dimethylpropanoates were obtained in good yields and short reaction time from the corresponding trichloroacetimidate or acetate by the reaction with C-active nucleophiles in the presence of TMSOTf (0.1 eq.%) via C–C bond formation. The antiproliferative and apoptotic activity were further studied with molecular docking. The 48 post-treatments showed that out of 24 compounds, 12 compounds showed inhibitory actions on HCT-116 cells, we have calculated the inhibitory action (IC50) of these compounds on HCT-116 and we have found that the IC50 values were in between 0.12 mg mL−1 to 0.81 mg mL−1. The compounds (7a & 7g) showed highest inhibitory activity (0.12 mg mL−1), whereas compound 7d showed the lowest inhibitory activity (0.81 mg mL−1). We have also examined inhibitory action on normal and non-cancerous cells (HEK-293 cells) and confirmed that action of these compounds was specific to cancerous cells. The cancerous cells were also examined for nuclear disintegration through staining with DAPI, (4′,6-diamidino-2-phenylindole) is a blue-fluorescent DNA stain, and we have found that there was loss of DAPI staining in the compound treated cancerous cells. The compounds were found to potentially act through the HSP90 and TRAP1 mediated signaling pathway. Compounds 7a and 7g showed the highest selectivity to TRAP1 which explained its superior activity. A series of 24 compounds were synthesized based on structure modification of the model methyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoate as potent HDACIs.![]()
Collapse
Affiliation(s)
- Samir M. El Rayes
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Ahmed Aboelmagd
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Mohamed S. Gomaa
- Department of Pharmaceutical
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Kingdom of Saudi Arabia
| | - Walid Fathalla
- Department of Physics and Math
- Faculty of Engineering
- Port-Said University
- Port-Said
- Egypt
| | - Ibrahim A. I. Ali
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Faheem H. Pottoo
- Department of Pharmacology
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Kingdom of Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research
- Institute of Research and Medical Consultations (IRMC)
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Saudi Arabia
| |
Collapse
|