1
|
Shahzadi S, Fatima S, Ul Ain Q, Shafiq Z, Janjua MRSA. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Adv 2025; 15:3858-3903. [PMID: 39917042 PMCID: PMC11800103 DOI: 10.1039/d4ra07519f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
A sustainable and viable alternative for conventional chemical and physical approaches is the green production of silver nanoparticles (SNPs) using plant extracts. This review centers on the diverse applications of plant-mediated SNPs in biomedicine, environmental remediation, and photocatalysis. Ocimum sanctum (tulsi), Curcuma longa (turmeric), and Azadirachta indica (neem) and many others are plant extracts that have been used as stabilizing and reducing agents because of their extensive phytochemical profiles. The resulting SNPs have outstanding qualities, such as better photocatalytic degradation of organic dyes like methylene blue, antibacterial efficacy towards multidrug-resistant pathogens, biocompatibility for possible therapeutic applications, and regulated magnitude (10-50 nm), enhanced rigidity, and tunable surface plasmon resonance. Significant effects of plant extract type, amount, and synthesis parameters on the physical and functional characteristics of SNPs are revealed by key findings. Along with highlighting important issues and potential paths forward, this review also underlines the necessity of scalable production, thorough toxicity evaluations, and investigating the incorporation of SNPs into commercial applications. This work highlights how plant-based SNPs can be used to address global environmental and biological concerns by straddling the division between sustainable chemistry and nanotechnology.
Collapse
Affiliation(s)
- Sehar Shahzadi
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Sehrish Fatima
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Qurat Ul Ain
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Zunaira Shafiq
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | | |
Collapse
|
2
|
Khurshid F, Muthu J, Wang YY, Wang YW, Shih MC, Chen DR, Lu YJ, Austin D, Glavin N, Plšek J, Kalbáč M, Hsieh YP, Hofmann M. The Importance of Catalytic Effects in Hot-Electron-Driven Chemical Reactions. ACS NANO 2024; 18:34332-34340. [PMID: 39632340 DOI: 10.1021/acsnano.4c12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Hot electrons (HEs) represent out-of-equilibrium carriers that are capable of facilitating reactions which are inaccessible under conventional conditions. Despite the similarity of the HE process to catalysis, optimization strategies such as orbital alignment and adsorption kinetics have not received significant attention in enhancing the HE-driven reaction yield. Here, we investigate catalytic effects in HE-driven reactions using a compositional catalyst modification (CCM) approach. Through a top-down alloying process and systematic characterization, using electrochemical, photodegradation, and ultrafast spectroscopy, we are able to disentangle chemical effects from competing electronic phenomena. Correlation between reactant energetics and the HE reaction yield demonstrates the crucial role of orbital alignment in HE catalytic efficiency. Optimization of this parameter was found to enhance HE reaction efficiency 5-fold, paving the way for tailored design of HE-based catalysts for sustainable chemistry applications. Finally, our study unveils an emergent ordering effect in photocatalytic HE processes that imparts the catalyst with an unexpected polarization dependence.
Collapse
Affiliation(s)
- Farheen Khurshid
- Department of Low-Dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jeyavelan Muthu
- Department of Low-Dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Yu Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yao-Wei Wang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Mu-Chen Shih
- Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ding-Rui Chen
- Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan
| | - Yu-Jung Lu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Drake Austin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Ohio 45433, United States
| | - Nicholas Glavin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Ohio 45433, United States
| | - Jan Plšek
- Department of Low-Dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Martin Kalbáč
- Department of Low-Dimensional Systems, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Ya-Ping Hsieh
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan
| | - Mario Hofmann
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Sam S, S S, Girish Kumar K. Lysozyme functionalized silver nanoclusters as a dual channel optical sensor for the effective determination of glutathione. Talanta 2024; 277:126326. [PMID: 38820825 DOI: 10.1016/j.talanta.2024.126326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
This article describes the development of a facile and efficient fluorescence sensor for the determination of glutathione (GSH). Presence of the antioxidant glutathione in blood serum is considered as a biomarker for catastrophe like colorectal cancer. Silver nanoclusters with strong fluorescence and good water solubility synthesized from relatively cheaper precursors are one of the species very much explored in fluorescence sensors and bioimaging. Here, Chicken egg derived-lysozyme functionalized silver nanoclusters (Lyz AgNCs) with red fluorescence emission has been synthesized and developed to a turn-off fluorescence sensor for GSH through which colorimetric determination is also possible. Due to the ground state 'Ag-S' interaction between Lyz AgNCs and GSH, the determination of the analyte is possible from 1.00 × 10-5 M to 1.00 × 10-6 M via fluorimetric and from 9.00 × 10-6 to 8.00 × 10-7 M via spectrophotometric techniques with a limit of detection 2.86 × 10-7 M and 4.76 × 10-7 M, respectively. Selectivity of the sensor has been studied and applicability of the sensor in artificial blood serum samples has been demonstrated.
Collapse
Affiliation(s)
- Sonia Sam
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| | - Swathy S
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| | - K Girish Kumar
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India.
| |
Collapse
|
4
|
Asefian S, Ghavam M. Green and environmentally friendly synthesis of silver nanoparticles with antibacterial properties from some medicinal plants. BMC Biotechnol 2024; 24:5. [PMID: 38263231 PMCID: PMC10807138 DOI: 10.1186/s12896-023-00828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Recently there have been a variety of methods to synthesize silver nanoparticles, among which the biosynthesis method is more noticeable due to features like being eco-friendly, simple, and cost-efficient. The present study aims for the green synthesis of silver nanoparticles from the extract of the three plants A. wilhelmsi, M. chamomilla, and C. longa; moreover, it pledges to measure the antibacterial activity against some variants causing a skin rash. The morphology and size of the synthesized silver nanoparticles were evaluated by UV.vis, XRD, SEM, and FTIR analyses. Then results showed a color alteration from light yellow to dark brown and the formation of silver nanoparticles. The absorption peak with the wavelength of approximately 450 nm resulting from the Spectrophotometry analysis confirmed the synthesis of silver nanoparticles. The presence of strong and wide peaks in FTIR indicated the presence of OH groups. The SEM results showed that most synthesized nanoparticles had a spherical angular structure and their size was about 10 to 20 nm. The highest inhibition power was demonstrated by silver nanoparticles synthesized from the extract combined from all three species against Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis (23 mm) which had a performance far more powerful than the extract. Thus, it can be understood that the nanoparticles synthesized from these three species can act as potential environment-friendly alternatives to inhibit some variations causing skin disorders; an issue that calls for further clinical studies.
Collapse
Affiliation(s)
- Samira Asefian
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
| | - Mansureh Ghavam
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.
| |
Collapse
|
5
|
Chen X, Zhao G, Yang X, Liu F, Wang S, Zhao X. Preparation and characterization of ι-carrageenan nanocomposite hydrogels with dual anti-HPV and anti-bacterial activities. Int J Biol Macromol 2024; 254:127941. [PMID: 37951438 DOI: 10.1016/j.ijbiomac.2023.127941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Sexually transmitted diseases (STDs) are usually caused by co-infections of bacteria and viruses. However, there is a lack of products that possess both antibacterial and antiviral activities without using chemical drugs. Here, we developed a carrageenan silver nanoparticle composite hydrogel (IC-AgNPs-Gel) based on the antiviral activity of iota carrageenan (IC) and the antibacterial effect of silver nanoparticles (AgNPs) to prevent STDs. IC-AgNPs-Gel showed excellent biocompatibility, hemostasis, antibacterial and antiviral effects. IC-AgNPs-Gel not only effectively prevented S. aureus, E. coli, P. aeruginosa, and C. albicans without using antibiotics, but also significantly inhibited human papilloma virus (HPV)-16 and HPV-6 without using chemotherapy drugs. Moreover, IC-AgNPs-Gel showed the effects of accelerating infected wound healing and reducing inflammation in a rat wound model infected with S. aureus. Therefore, the multifunctional hydrogel shows great potential application prospect in preventing STDs.
Collapse
Affiliation(s)
- Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Guiyuan Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Xiaohan Yang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Fei Liu
- The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Shixin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China.
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China.
| |
Collapse
|
6
|
Gong X, Jadhav ND, Lonikar VV, Kulkarni AN, Zhang H, Sankapal BR, Ren J, Xu BB, Pathan HM, Ma Y, Lin Z, Witherspoon E, Wang Z, Guo Z. An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv Colloid Interface Sci 2024; 323:103053. [PMID: 38056226 DOI: 10.1016/j.cis.2023.103053] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Present review emphatically introduces the synthesis, biocompatibility, and applications of silver nanoparticles (AgNPs), including their antibacterial, antimicrobial, and antifungal properties. A comprehensive discussion of various synthesis methods for AgNPs, with a particular focus on green chemistry mediated by plant extracts has been made. Recent research has revealed that the optical properties of AgNPs, including surface plasmon resonance (SPR), depend on the particle size, as well as the synthesis methods, preparation synthesis parameters, and used reducing agents. The significant emphasis on the use of synthesized AgNPs as antibacterial, antimicrobial, and antifungal agents in various applications has been reviewed. Furthermore, the application areas have been thoroughly examined, providing a detailed discussion of the underlying mechanisms, which aids in determining the optimal control parameters during the synthesis process of AgNPs. Furthermore, the challenges encountered while utilizing AgNPs and the corresponding advancements to overcome them have also been addressed. This review not only summarizes the achievements and current status of plant-mediated green synthesis of AgNPs but also explores the future prospects of these materials and technology in diverse areas, including bioactive applications.
Collapse
Affiliation(s)
- Xianyun Gong
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Nilesh D Jadhav
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India
| | - Vishal V Lonikar
- Department of Physics, MET's Bhujbal Academy of Science and Commerce, Nashik 422003 (M.S.), India
| | - Anil N Kulkarni
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India.
| | - Hongkun Zhang
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Babasaheb R Sankapal
- Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010 (M.S.), India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China; Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Ben Bin Xu
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Habib M Pathan
- Department of Physics, Savitribai Phule Pune University, Pune 411 007, India.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhiping Lin
- College of Materials Science and Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | | | - Zhe Wang
- Chemistry Department, Oakland University, Rochester 48309, USA.
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
7
|
Qaeed MA. Examining the varied concentrations of Mentha spicata and Ocimum basilicum affect the synthesis of AgNPs that restrict the development of bacteria. Saudi J Biol Sci 2024; 31:103899. [PMID: 38125734 PMCID: PMC10733098 DOI: 10.1016/j.sjbs.2023.103899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
This work examined the effects of varied concentrations of Ocimum basilicum and Mentha spicata aqueous extracts in order to determine the concentration that has the strongest antibacterial impact through the green synthesis technique of silver nanoparticles (AgNPs). In order to synthesize AgNPs using the reduction method, different quantities of reducing and stabilizing agents: (a) 0.75 mM Ocimum basilicum and 0.25 mM Mentha spicata; (b) 0.5 Mentha spicata and 0.5 mM Ocimum basilicum; and (c) 0.25 mM Ocimum basilicum and 0.75 mM Mentha spicata were utilized. X-ray Diffraction (XRD), and UV-vis spectra were used to analyze AgNPs' crystal structure and shape. The antibacterial potency of E. coli ATCC 35218 was investigated utilizing AgNPs employing the well diffusion, MBC, MIC, and the time-kill curve. Ocimum basilicum water solution's dark yellow hue denotes the completion of the AgNPs' synthesis. As the aqueous Ocimum basilicum solution concentration increases between 0.25 and 0.75 mM, the AgNPs' UV spectra show a gradually increasing absorption. This, in turn, caused the nanoparticle size to alter from 73.57 to 89.05 nm and the wavelength to change from 468 to 474 nm. The experiments also revealed that the nanoparticles had a significantly antibacterial activity against E. coli, of the sample prepared with 1 mM Ocimum basilicum. Based on the synthesis of AgNPs, it has been shown that an aqueous extract of Ocimum basilicum outperforms Mentha spicata as a powerful reducing agent and stabilizing agent for the production AgNPs in various sizes. This is true regardless of the solvent content.
Collapse
Affiliation(s)
- Motahher A. Qaeed
- Department of Physical Science, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Jana TK, Chatterjee K. Hybrid nanostructures exhibiting both photocatalytic and antibacterial activity-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95215-95249. [PMID: 37597146 DOI: 10.1007/s11356-023-29015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
The most vital issues of the modern world for a sustainable future are "health" and "the environment." Scientific endeavors to tackle these two major concerns for mankind need serious attention. The photocatalytic activity toward curbing environmental pollution and antibacterial performance toward a healthy society are two directions that have been emphasized for decades. Recently, materials engineering, in their nanodimension, has shown tremendous possibilities to integrate these functionalities within the same materials. In particular, hybrid nanostructures have shown magnificent prospects to combat both crucial challenges. Many researchers are separately engaged in this important field of research but the collective knowledge on this domain which can facilitate them to excel is badly missing. The present article integrates the development of different hybrid nanostructures which exhibit both photocatalytic degradations of environmental pollutants and antibacterial efficiency. Various synthesis techniques of those hybrid nanomaterials have been discussed. Hybrid nanosystems based on several successful materials have been categorically discussed for better insight into the research advancement in this direction. In particular, Ag-based, metal oxides-based, layered carbon material-based, and Mexene- and self-cleaning-based materials have been chosen for detailing their performance as anti-pollutant and antibacterial materials. Those hybrid systems along with some miscellaneous booming nanostructured materials have been discussed comprehensively with their success and limitations toward their bifunctionality as antipollutant and antibacterial agents.
Collapse
Affiliation(s)
- Tushar Kanti Jana
- Department of Physics, Vidyasagar University, Midnapore, 721102, India
| | - Kuntal Chatterjee
- Department of Physics, Vidyasagar University, Midnapore, 721102, India.
| |
Collapse
|
9
|
Qaeed MA, Hendi A, Thahe AA, Al-Maaqar SM, Osman AM, Ismail A, Mindil A, Eid AA, Aqlan F, Al-Nahari EG, Obaid AS, Warsi MK, Saif AA, AL-Farga A. Effect of Different Ratios of Mentha spicata Aqueous Solution Based on a Biosolvent on the Synthesis of AgNPs for Inhibiting Bacteria. JOURNAL OF NANOMATERIALS 2023; 2023:1-10. [DOI: 10.1155/2023/3599501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Our work was devoted to studying the effect of different concentrations of Mentha spicata aqueous extract on the green synthesis of silver nanoparticles (AgNPs) in order to obtain the most effective of these concentrations for bacteria inhibitory activity. Different concentrations of the aqueous M. spicata extract (0.25, 0.50, 0.75, and 1.00 mM) were used as biological solvent to synthesize AgNPs by means of the reduction method. The crystal structure and morphology of the NPs were characterized UV–vis spectra, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The inhibition effect of AgNPs on Escherichia coli was studied to determine the minimum inhibitory concentration (MIC). The dark yellow color of the M. spicata extract aqueous solution indicates the successful synthesis of the AgNPs. UV spectra of the NPs show a gradual increase in absorption with increasing concentration of aqueous M. spicata extract solution from 0.25 to 1.00 mM, accompanied by a shift in the wavelength from 455 to 479 nm along with a change in the nanoparticle size from 31 to 9 nm. The tests also showed a high activity of the particles against bacteria (E. coli) ranging between 15.6 and 62.5 µg/ml. From the AgNPs, it was confirmed that aqueous M. spicata extract is an effective biosolvent for the synthesis of different sizes of AgNPs according to the solvent concentration. The AgNPs also proved effectual for the killing of bacteria.
Collapse
Affiliation(s)
- Motahher A. Qaeed
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Abdulmajeed Hendi
- Department of Physics, IRC Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Asad A. Thahe
- Department of Medical Physics, College of Applied Science, University of Fallujah, Fallujah, Iraq
| | - Saleh M. Al-Maaqar
- Faculty of Education, Department of Biology, Al-Baydha University, Al-Baydha, Yemen
| | - Abdalghaffar M. Osman
- Department of Chemistry, IRC Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - A. Ismail
- Department of Physics, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - A. Mindil
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Alharthi A. Eid
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - E. G. Al-Nahari
- Department of Physics, Center of Excellence in Development of Non-Profit Organizations, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ahmed. S. Obaid
- Department of Physics, College of Science, University of Anbar, Ramadi, Iraq
| | - Mohiuddin Khan Warsi
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ala’eddin A. Saif
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Guzmán-Altamirano MÁ, Rebollo-Plata B, Joaquín-Ramos ADJ, Gómez-Espinoza MG. Green synthesis and antimicrobial mechanism of nanoparticles: applications in agricultural and agrifood safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2727-2744. [PMID: 35941521 DOI: 10.1002/jsfa.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The growing demand for food and its safety are a challenge for agriculture and agrifood. This has led to the incorporation of alternatives such as organic agriculture, the use of biocontrollers, the development of transgenic plants resistant to pathogens and the incorporation of nanotechnology. In this sense, agrochemicals based on nanoparticles (NPs) have been developed. Recently, the green synthesis of NPs has grown rapidly and, for this reason, molecules, microorganisms, fungi and plants are used. Synthesis from plant extracts offers a broad spectrum and, despite the fact that NPs are usually dispersed in size and shape, extensive antimicrobial effectiveness has been demonstrated at nanomolar concentrations. It has been shown that the mechanism of action can be through the dissipation of the driving force of the protons, the alteration of cellular permeability, the formation of bonds with the thiol group of the proteins, the generation of reactive species of oxygen, and the hyperoxidation of DNA, RNA and even the cell membrane. To improve the efficiency of NPs, modifications have been made such as coating with other metals, the addition of antibiotics, detergents and surfactants, as well as the acidification of the solution. Consequently, NPs are considered as a promising method for achieving safety in the agricultural and agrifood area. However, it is necessary to investigate the side effects of NPs, when applied in agroecological systems, on the textural, nutriment and sensory properties of food, as well as the impact on human health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bernabe Rebollo-Plata
- Departamento de Ing. Electrónica, Instituto Tecnológico superior de Irapuato, Guanajuato, México
| | | | | |
Collapse
|
11
|
Waghchaure RH, Adole VA. Biosynthesis of metal and metal oxide nanoparticles using various parts of plants for antibacterial, antifungal and anticancer activity: A review. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Dua TK, Giri S, Nandi G, Sahu R, Shaw TK, Paul P. Green synthesis of silver nanoparticles using Eupatorium adenophorum leaf extract: characterizations, antioxidant, antibacterial and photocatalytic activities. CHEMICAL PAPERS 2023; 77:2947-2956. [PMID: 36714039 PMCID: PMC9873543 DOI: 10.1007/s11696-023-02676-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
The green synthesis of metallic nanoparticles has tremendous impacts in various fields as found in recent years due to their low cost, easy and environmentally friendly synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver nanoparticles (AgNPs) using an aqueous Eupatorium adenophorum (E. adenophorum) leaf extract as a bioreductant. Interestingly, Fourier transform infrared (FTIR) spectroscopy analysis established that the E. adenophorum extract not only served as a bioreductant but also acted as a capping agent to stabilize the nanoparticles by functionalizing the surfaces. Various characterization techniques were adopted, such as X-ray powder diffraction (XRD), FTIR, ultraviolet-visible absorption (UV-Vis) spectroscopy, dynamic light scattering, scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX) to analyze the biosynthesized AgNPs. Biosynthesized nanoparticles were also explored for antioxidant, antibacterial and photocatalytic activities. The AgNPs showed improved free radical scavenging activity (IC50 48.96 ± 0.84 µg/mL) and bacterial inhibitory effects against both gram-positive (Staphylococcus aureus; 64.5 µg/mL) and gram-negative (Escherichia coli; 82.5 µg/mL) bacteria. Photocatalytic investigation showed AgNPs were effective at degrading rhodamine dye (78.69% in 90 min) when exposed to sunlight. These findings collectively suggest that E. adenophorum AgNPs were successfully prepared without the involvement of any hazardous chemical and it may be an effective antibacterial, antioxidant and promising agent for the removal of hazardous dye from waste water produced by industrial dyeing processes.
Collapse
Affiliation(s)
- Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O. NBU, Darjeeling, West Bengal 734013 India
| | - Simran Giri
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O. NBU, Darjeeling, West Bengal 734013 India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O. NBU, Darjeeling, West Bengal 734013 India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O. NBU, Darjeeling, West Bengal 734013 India
| | - Tapan Kumar Shaw
- Departmen of Pharmaceutical Technology, JIS University, Kolkata, West Bengal India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O. NBU, Darjeeling, West Bengal 734013 India
| |
Collapse
|
13
|
Tabasum H, Bhat BA, Sheikh BA, Mehta VN, Rohit JV. Emerging perspectives of plant-derived nanoparticles as effective antimicrobial agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Garg R, Rani P, Garg R, Khan MA, Khan NA, Khan AH, Américo-Pinheiro JHP. Biomedical and catalytic applications of agri-based biosynthesized silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119830. [PMID: 35926739 DOI: 10.1016/j.envpol.2022.119830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology has been recognized as the emerging field for the synthesis, designing, and manipulation of particle structure at the nanoscale. Its rapid development is also expected to revolutionize industries such as applied physics, mechanics, chemistry, and electronics engineering with suitably tailoring various nanomaterials. Inorganic nanoparticles such as silver nanoparticles (Ag-NPs) have garnered more interest with their diverse applications. In correspondence to green chemistry, researchers prioritize green synthetic techniques over conventional ones due to their eco-friendly and sustainable potential. Green-synthesized NPs have proven more beneficial than those synthesized by conventional methods because of capping by secondary metabolites. The present study reviews the various means being used by the researchers for the green synthesis of Ag-NPs. The morphological characteristics of these NPs as obtained from numerous characterization techniques have been explored. The potential applications of bio-synthesized Ag-NPs viz. Antimicrobial, antioxidant, catalytic, and water remediation along with the plausible mechanisms have been discussed. In addition, toxicity analysis and biomedical applications of these NPs have also been reviewed to provide a detailed overview. The study signifies that biosynthesized Ag-NPs can be efficiently used for various applications in the biomedical and industrial sectors as an environment-friendly and efficient tool.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Priya Rani
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Nadeem Ahmad Khan
- Civil Engineering Department, Faculty of Engineering, Jamia Millia Islamia University, New Delhi, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | | |
Collapse
|
15
|
Timotina M, Aghajanyan A, Schubert R, Trchounian K, Gabrielyan L. Biosynthesis of silver nanoparticles using extracts of Stevia rebaudiana and evaluation of antibacterial activity. World J Microbiol Biotechnol 2022; 38:196. [PMID: 35989355 DOI: 10.1007/s11274-022-03393-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
The present study reveals a simple, non-toxic and eco-friendly method for the "green" synthesis of Ag-NPs using hydroponic and soil medicinal plant Stevia rebaudiana extracts, the characterization of biosynthesized nanoparticles, as well as the evaluation of their antibacterial activity. Transmission electronic microscopy (TEM) and Dynamic Light Scattering (DLS) analysis confirmed that biosynthesized Ag-NPs are in the nano-size range (50-100 nm) and have irregular morphology. Biogenic NPs demonstrate antibacterial activity against Escherichia coli BW 25,113, Enterococcus hirae ATCC 9790, and Staphylococcus aureus MDC 5233. The results showed a more pronounced antibacterial effect on E. coli growth rate, in comparison with Gram-positive bacteria, which is linked to the differences in the structure of bacterial cell wall. Moreover, the Ag-NPs not only suppressed the growth of bacteria but also changed the energy-dependent H+-fluxes across the bacterial membrane. The change of H+-fluxes in presence of H+-translocating systems inhibitor, N,N'-dicyclohexylcarbodiimide (DCCD), proves the effect of Ag-NPs on the structure and permeability of the bacterial membrane. Overall, our findings indicate that the Ag-NPs synthesized by medicinal plant Stevia extracts may be an excellent candidate as an alternative to antibiotics against the tested bacteria.
Collapse
Affiliation(s)
- Marina Timotina
- Department of Medical Biochemistry and Biotechnology, Russian-Armenian University, 123 H. Emin Str., 0051, Yerevan, Armenia
| | - Anush Aghajanyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia.,Scientific-Research Institute of Biology, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia
| | - Robin Schubert
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia. .,Scientific-Research Institute of Biology, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia.
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia.
| |
Collapse
|
16
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
17
|
Parmar S, Kaur H, Singh J, Matharu AS, Ramakrishna S, Bechelany M. Recent Advances in Green Synthesis of Ag NPs for Extenuating Antimicrobial Resistance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1115. [PMID: 35407234 PMCID: PMC9000675 DOI: 10.3390/nano12071115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Combating antimicrobial resistance (AMR) is an on-going global grand challenge, as recognized by several UN Sustainable Development Goals. Silver nanoparticles (Ag NPs) are well-known for their efficacy against antimicrobial resistance, and a plethora of green synthesis methodologies now exist in the literature. Herein, this review evaluates recent advances in biological approaches for Ag NPs, and their antimicrobial potential of Ag NPs with mechanisms of action are explored deeply. Moreover, short and long-term potential toxic effects of Ag NPs on animals, the environment, and human health are briefly discussed. Finally, we also provide a summary of the current state of the research and future challenges on a biologically mediated Ag-nanostructures-based effective platform for alleviating AMR.
Collapse
Affiliation(s)
- Simerjeet Parmar
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (S.P.); (H.K.)
| | - Harwinder Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (S.P.); (H.K.)
| | - Jagpreet Singh
- Department of Chemical Engineering, Chandigarh University, Gharuan, Mohali 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Avtar Singh Matharu
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, York YO10 5DD, UK;
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Centre for Nanotechnology & Sustainability, National University of Singapore, Singapore 117575, Singapore;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, 34000 Montpellier, France
| |
Collapse
|
18
|
Noah NM, Ndangili PM. Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
19
|
Baruah R, Yadav A, Moni Das A. Evaluation of the multifunctional activity of silver bionanocomposites in environmental remediation and inhibition of the growth of multidrug-resistant pathogens. NEW J CHEM 2022. [DOI: 10.1039/d1nj06198d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imperata cylindrica cellulose supported Ag bionanocomposites purified industrial water and controlled the contagious diseases with high potential activity.
Collapse
Affiliation(s)
- Rebika Baruah
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Archana Yadav
- Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Archana Moni Das
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
20
|
Paulkumar K, Murugan K. Synthesis of silver nanoparticles from mushroom: Safety and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:413-437. [DOI: 10.1016/b978-0-12-824508-8.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Vasil'kov AY, Abd-Elsalam KA, Olenin AY. Biogenic silver nanoparticles: New trends and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:241-281. [DOI: 10.1016/b978-0-12-824508-8.00028-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
22
|
Aslam M, Fozia F, Gul A, Ahmad I, Ullah R, Bari A, Mothana RA, Hussain H. Phyto-Extract-Mediated Synthesis of Silver Nanoparticles Using Aqueous Extract of Sanvitalia procumbens, and Characterization, Optimization and Photocatalytic Degradation of Azo Dyes Orange G and Direct Blue-15. Molecules 2021; 26:6144. [PMID: 34684724 PMCID: PMC8540290 DOI: 10.3390/molecules26206144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/01/2022] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) employing an aqueous plant extract has emerged as a viable eco-friendly method. The aim of the study was to synthesize AgNPs by using plant extract of Sanvitalia procumbens (creeping zinnia) in which the phytochemicals present in plant extract act as a stabilizing and reducing agent. For the stability of the synthesized AgNPs, different parameters like AgNO3 concentration, volume ratios of AgNO3, temperature, pH, and contact time were studied. Further, AgNPs were characterized by UV-visible spectroscopy, FT-IR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and EDX (Energy Dispersive X-ray Spectrometer) analysis. FT-IR analysis showed that the plant extract contained essential functional groups like O-H stretching of carboxylic acid, N-H stretching of secondary amides, and C-N stretching of aromatic amines, and C-O indicates the vibration of alcohol, ester, and carboxylic acid that facilitated in the green synthesis of AgNPs. The crystalline nature of synthesized AgNPs was confirmed by XRD, while the elemental composition of AgNPs was detected by energy dispersive X-ray analysis (EDX). SEM studies showed the mean particle diameter of silver nanoparticles. The synthesized AgNPs were used for photocatalytic degradation of Orange G and Direct blue-15 (OG and DB-15), which were analyzed by UV-visible spectroscopy. Maximum degradation percentage of OG and DB-15 azo dyes was observed, without any significant silver leaching, thereby signifying notable photocatalytic properties of AgNPs.
Collapse
Affiliation(s)
- Madeeha Aslam
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Pakistan;
| | - Fozia Fozia
- Biochemistry Department, KMU Institute of Medical Sciences, Kohat 26000, Pakistan;
| | - Anadil Gul
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China;
| | - Ijaz Ahmad
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Pakistan;
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany;
| |
Collapse
|
23
|
Kumar B, Smita K, Sánchez E, Debut A, Cumbal L. Plukenetia volubilis L. Seed flour mediated biofabrication and characterization of silver nanoparticles. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Yang H, Wang L, Chen H, Jiang M, Wu W, Liu S, Wang J, Liu C. Phylogenetic analysis and development of molecular markers for five medicinal Alpinia species based on complete plastome sequences. BMC PLANT BIOLOGY 2021; 21:431. [PMID: 34551721 PMCID: PMC8456601 DOI: 10.1186/s12870-021-03204-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/31/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Alpinia species are widely used as medicinal herbs. To understand the taxonomic classification and plastome evolution of the medicinal Alpinia species and correctly identify medicinal products derived from Alpinia species, we systematically analyzed the plastome sequences from five Alpinia species. Four of the Alpinia species: Alpinia galanga (L.) Willd., Alpinia hainanensis K.Schum., Alpinia officinarum Hance, and Alpinia oxyphylla Miq., are listed in the Chinese pharmacopeia. The other one, Alpinia nigra (Gaertn.) Burtt, is well known for its medicinal values. RESULTS The four Alpinia species: A. galanga, A. nigra, A. officinarum, and A. oxyphylla, were sequenced using the Next-generation sequencing technology. The plastomes were assembled using Novoplasty and annotated using CPGAVAS2. The sizes of the four plastomes range from 160,590 bp for A. galanga to 164,294 bp for A. nigra, and display a conserved quadripartite structure. Each of the plastomes encodes a total of 111 unique genes, including 79 protein-coding, 28 tRNA, and four rRNA genes. In addition, 293-296 SSRs were detected in the four plastomes, of which the majority are mononucleotides Adenine/Thymine and are found in the noncoding regions. The long repeat analysis shows all types of repeats are contained in the plastomes, of which palindromic repeats occur most frequently. The comparative genomic analyses revealed that the pair of the inverted repeats were less divergent than the single-copy region. Analysis of sequence divergence on protein-coding genes showed that two genes (accD and ycf1) had undergone positive selection. Phylogenetic analysis based on coding sequence of 77 shared plastome genes resolves the molecular phylogeny of 20 species from Zingiberaceae. In particular, molecular phylogeny of four sequenced Alpinia species (A. galanga, A. nigra, A. officinarum, and A. oxyphylla) based on the plastome and nuclear sequences showed congruency. Furthermore, a comparison of the four newly sequenced Alpinia plastomes and one previously reported Alpinia plastomes (accession number: NC_048461) reveals 59 highly divergent intergenic spacer regions. We developed and validated two molecular markers Alpp and Alpr, based on two regions: petN-psbM and psaJ-rpl33, respectively. The discrimination success rate was 100 % in validation experiments. CONCLUSIONS The results from this study will be invaluable for ensuring the effective and safe uses of Alpinia medicinal products and for the exploration of novel Alpinia species to improve human health.
Collapse
Affiliation(s)
- Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, 300072 Tianjin, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193 Beijing, People’s Republic of China
| | - Liqiang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193 Beijing, People’s Republic of China
- College of Pharmacy, Heze University, Shandong Province 274015 Heze, People’s Republic of China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193 Beijing, People’s Republic of China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193 Beijing, People’s Republic of China
| | - Wuwei Wu
- Guangxi Botanical Garden of Medicinal Plants, 530023 Nanning, Guangxi China
| | - Shengyu Liu
- Department of Medical Data Sharing, Institute of Medical Information & Library, Chinese Academy of Medical Sciences & Peking Union Medical College, 100020 Beijing, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, 300072 Tianjin, China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193 Beijing, People’s Republic of China
| |
Collapse
|
25
|
Xu L, Zhu Z, Sun DW. Bioinspired Nanomodification Strategies: Moving from Chemical-Based Agrosystems to Sustainable Agriculture. ACS NANO 2021; 15:12655-12686. [PMID: 34346204 PMCID: PMC8397433 DOI: 10.1021/acsnano.1c03948] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 05/24/2023]
Abstract
Agrochemicals have supported the development of the agricultural economy and national population over the past century. However, excessive applications of agrochemicals pose threats to the environment and human health. In the last decades, nanoparticles (NPs) have been a hot topic in many fields, especially in agriculture, because of their physicochemical properties. Nevertheless, the prevalent methods for fabricating NPs are uneconomical and involve toxic reagents, hindering their extensive applications in the agricultural sector. In contrast, inspired by biological exemplifications from microbes and plants, their extract and biomass can act as a reducing and capping agent to form NPs without any toxic reagents. NPs synthesized through these bioinspired routes are cost-effective, ecofriendly, and high performing. With the development of nanotechnology, biosynthetic NPs (bioNPs) have been proven to be a substitute strategy for agrochemicals and traditional NPs in heavy-metal remediation of soil, promotion of plant growth, and management of plant disease with less toxicity and higher performance. Therefore, bioinspired synthesis of NPs will be an inevitable trend for sustainable development in agricultural fields. This critical review will demonstrate the bioinspired synthesis of NPs and discuss the influence of bioNPs on agricultural soil, crop growth, and crop diseases compared to chemical NPs or agrochemicals.
Collapse
Affiliation(s)
- Liang Xu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Zhiwei Zhu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
- Food
Refrigeration and Computerized Food Technology (FRCFT), Agriculture
and Food Science Centre, University College
Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
26
|
Jadoun S, Riaz U, Yáñez J, Pal Singh Chauhan N. Synthesis, characterization and potential applications of Poly(o-phenylenediamine) based copolymers and Nanocomposites: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Kumar S, Basumatary IB, Sudhani HP, Bajpai VK, Chen L, Shukla S, Mukherjee A. Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Rajivgandhi GN, Chenthis Kanisha C, Vijayakumar S, Alharbi NS, Kadaikunnan S, Khaled JM, Alanzi KF, Li WJ. Enhanced anti-biofilm activity of facile synthesized silver oxide nanoparticles against K. pneumoniae. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02013-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
One-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots: Applications and potential biotoxicity. Colloids Surf B Biointerfaces 2021; 200:111578. [DOI: 10.1016/j.colsurfb.2021.111578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
|
30
|
Tsegaye MM, Chouhan G, Fentie M, Tyagi P, Nand P. Therapeutic Potential of Green Synthesized Metallic Nanoparticles against Staphylococcus aureus. Curr Drug Res Rev 2021; 13:172-183. [PMID: 33634763 DOI: 10.2174/2589977513666210226123920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/08/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The recent treatment challenges posed by the widespread emergence of pathogenic Multidrug-Resistant (MDR) bacterial strains are a cause of huge health troubles worldwide. Infections caused by MDR organisms are associated with longer period of hospitalization, increased mortality, and inflated healthcare costs. Staphylococcus aureus is one of these MDR organisms identified as an urgent threat to human health by the World Health Organization. Infections caused by S. aureus may range from simple cutaneous infestations to life threatening bacteremia. S. aureus infections get easily escalated in severely ill, hospitalized and or immunocompromised patients with incapacitated immune system. Also, in HIV-positive patients S. aureus ranks amongst one of the most common comorbidities where it can further worsen a patient's health condition. At present anti-staphylococcal therapy is reliant typically on chemotherapeutics that are gathering resistance and pose unfavorable side-effects. Thus, newer drugs are required that can bridge these shortcomings and aid effective control against S. aureus. OBJECTIVE In this review, we summarize drug resistance exhibited by S. aureus and lacunae in current anti-staphylococcal therapy, nanoparticles as an alternative therapeutic modality. The focus lays on various green synthesized nanoparticles, their mode of action and application as potent antibacterial compounds against S. aureus. CONCLUSION Use of nanoparticles as anti-bacterial drugs has gained momentum in recent past and green synthesized nanoparticles, which involves microorganisms and plants or their byproducts for synthesis of nanoparticles offer a potent, as well as environment friendly solution in warfare against MDR bacte.
Collapse
Affiliation(s)
- Meron Moges Tsegaye
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Garima Chouhan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Molla Fentie
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Priya Tyagi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Parma Nand
- School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| |
Collapse
|
31
|
Priyadarshini S, Sonsudin F, Mainal A, Yahya R, Gopinath V, Vadivelu J, Alarjani KM, Al Farraj DA, Yehia HM. Phytosynthesis of biohybrid nano-silver anchors enhanced size dependent photocatalytic, antibacterial, anticancer properties and cytocompatibility. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Myint KZ, Yu Q, Xia Y, Qing J, Zhu S, Fang Y, Shen J. Bioavailability and antioxidant activity of nanotechnology-based botanic antioxidants. J Food Sci 2021; 86:284-292. [PMID: 33438274 DOI: 10.1111/1750-3841.15582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022]
Abstract
Botanic bioactive substances have issues with their solubility, stability, and oral bioavailability in the application, which could be improved by nanotechnologies. In another hands, green synthesis of nanoparticles (NPs) with plant extract is also a promising technology for preparation of NPs due to its safety advantage, yet the bioactive botanic substances that could be more than the assistant of the green synthesis of NPs. Based on the above concerns, this review summarized the preparation of botanic NPs with various plant extract, their solubility, stability, and oral bioavailability; specific attention has been paid to the botanic Ag/Au NPs, their capacity of antioxidant, bioavailability, antimicrobial, anti-inflammatory, and anticancer.
Collapse
Affiliation(s)
- Khaing Zar Myint
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Qiannan Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Jiu Qing
- Nantong Acetic Acid Chemical Co. Ltd., 968 Jiangshan Road Nantong Economic and Technological Development Zone, Nantong, Jiangsu, 226017, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Yun Fang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Jie Shen
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
33
|
Nandana CN, Christeena M, Bharathi D. Synthesis and Characterization of Chitosan/Silver Nanocomposite Using Rutin for Antibacterial, Antioxidant and Photocatalytic Applications. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01947-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Production of extracellular silver nanoparticles by radiation-resistant Deinococcus wulumuqiensis R12 and its mechanism perspective. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An Updated Review on Silver Nanoparticles in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2318. [PMID: 33238486 PMCID: PMC7700255 DOI: 10.3390/nano10112318] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) represent one of the most explored categories of nanomaterials for new and improved biomaterials and biotechnologies, with impressive use in the pharmaceutical and cosmetic industry, anti-infective therapy and wound care, food and the textile industry. Their extensive and versatile applicability relies on the genuine and easy-tunable properties of nanosilver, including remarkable physicochemical behavior, exceptional antimicrobial efficiency, anti-inflammatory action and antitumor activity. Besides commercially available and clinically safe AgNPs-based products, a substantial number of recent studies assessed the applicability of nanosilver as therapeutic agents in augmented and alternative strategies for cancer therapy, sensing and diagnosis platforms, restorative and regenerative biomaterials. Given the beneficial interactions of AgNPs with living structures and their nontoxic effects on healthy human cells, they represent an accurate candidate for various biomedical products. In the present review, the most important and recent applications of AgNPs in biomedical products and biomedicine are considered.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|
36
|
A review on phytosynthesis, affecting factors and characterization techniques of silver nanoparticles designed by green approach. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00309-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Kamarudin N, Jusoh R, Sukor N, Jalil A, Setiabudi H. Intensified photocatalytic degradation of 2, 4–dicholorophenoxyacetic acid using size-controlled silver nanoparticles: Effect of pre-synthesis extraction. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Some S, Sarkar B, Biswas K, Jana TK, Bhattacharjya D, Dam P, Mondal R, Kumar A, Deb AK, Sadat A, Saha S, Kati A, Ocsoy I, Franco OL, Mandal A, Mandal S, Mandal AK, İnce İA. Bio-molecule functionalized rapid one-pot green synthesis of silver nanoparticles and their efficacy toward the multidrug resistant (MDR) gut bacteria of silkworms ( Bombyx mori). RSC Adv 2020; 10:22742-22757. [PMID: 35514551 PMCID: PMC9054587 DOI: 10.1039/d0ra03451g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 01/29/2023] Open
Abstract
The present study aimed to synthesise bio-molecule functionalized silver nanoparticles (AgNPs) using leaf extract from mulberry variety S-1635 (Morus alba L.) and to explore its antibacterial efficacy against multidrug resistant (MDR) gut bacteria isolated from natural infection observed from silkworm larvae in rearing conditions. AgNPs formation was established by surface plasmon resonance at 480 nm. The crystallinity of the synthesised AgNPs was checked by HR-TEM and XRD analysis. SEM and TEM characterisation further exhibited the spherical, monodispersed, well scattered nature of the AgNPs with an average particle size of 11.8 nm ± 2.8. The presence of (111), (200), (220) and (311) planes in Bragg's reflections confirmed the face-cantered-cubic crystalline silver. EDX analysis confirmed the presence of elemental silver. FT-IR spectra revealed functional groups were responsible for the reduction of silver ions. The zeta potential value of -17.3 mV and -25.6 mV was recorded in MH and DMEM/F-12 media, respectively. The LC-QTOF/MS and HRMS spectra disclosed the presence of bioactive compounds like flavonoid, gallic acid, and stigmasterol, which are probably involved in the reduction and functionalization of AgNPs. The antibacterial efficacy of bio-molecule functionalized AgNPs and the naked AgNPs was tested on Gram-positive and Gram-negative bacteria isolated from silkworms and characterized by using 16S rDNA and gyrB genes. The cytotoxicity of AgNPs was tested on WRL-68, HEK-293, ACHN, and HUH-7 cell lines using MTT assay. This study provides an insight into the application of bio-molecule functionalized AgNPs for combating various silkworm pathogens which severely affect the agro-rural economy of developing countries.
Collapse
Affiliation(s)
- Sudip Some
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University Raiganj-733134 India
| | - Biraj Sarkar
- Department of Microbiology, Laboratory of Molecular Bacteriology, University of Calcutta 700019 India
| | - Kinkar Biswas
- Laboratory of Organic Synthesis, Department of Chemistry, Raiganj University Raiganj-733134 India
| | - Tushar K Jana
- Department of Physics, Vidyasagar University Midnapore-721102 India
| | - Debjoy Bhattacharjya
- Cytogenetics & Plant Biotechnology Research Unit, Department of Sericulture, Raiganj University Raiganj-733134 India
| | - Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University Raiganj-733134 India
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University Raiganj-733134 India
| | - Anoop Kumar
- ANMOL Laboratory, Department of Biotechnology, North Bengal University Darjeeling-734013 India
| | - Apurba K Deb
- Department of Physics, Raiganj University Raiganj-733134 India
| | - Abdul Sadat
- Insect Ecology and Conservation Biology Laboratory, Department of Sericulture, Raiganj University Raiganj-733134 India
| | - Soumen Saha
- Cytogenetics & Plant Biotechnology Research Unit, Department of Sericulture, Raiganj University Raiganj-733134 India
| | - Ahmet Kati
- Department of Biotechnology, Institution of Health Sciences, University of Health Sciences Uskudar Istanbul 34668 Turkey
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydınlar University 34752 Ataşehir Istanbul Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University 38039 Kayseri Turkey
| | - Octavio L Franco
- S-INOVA Biotech, Post-Graduate Program in Biotechnology, Catholic University Dom Bosco Campo Grande Mato Grosso Do Sul Brazil
| | - Amitava Mandal
- Molecular Complexity Laboratory, Department of Chemistry, Raiganj University Raiganj-733134 India
| | - Sukhendu Mandal
- Department of Microbiology, Laboratory of Molecular Bacteriology, University of Calcutta 700019 India
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University Raiganj-733134 India
- Centre for Nanotechnology Sciences, Raiganj University Raiganj-733134 India
| | - İkbal Agah İnce
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydınlar University 34752 Ataşehir Istanbul Turkey
| |
Collapse
|