1
|
Boruah B, Lopez‐Ruiz JA. Progress on Photo-, Electro-, and Photoelectro-Catalytic Conversion of Recalcitrant Polyethylene, Polypropylene, and Polystyrene - A Review. CHEMSUSCHEM 2025; 18:e202401714. [PMID: 39547947 PMCID: PMC11874671 DOI: 10.1002/cssc.202401714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Recalcitrant waste plastics such a polyethylene, polypropylene, and polystyrene are difficult to recycle and are mostly disposed of in landfills and eventually leached into the environmental as micro- and nano-plastics. This review explores how photo-, electro-, and combined photoelectro-catalytic processes can assist in the degradation and upcycling of waste plastic into different chemicals and mitigate their release to the environment. In this work, we discuss how the different reaction mechanisms proceed, explore the current relevant literature, and highlight the developments needed to advance the field.
Collapse
Affiliation(s)
- Bhanupriya Boruah
- Institute for Integrated CatalysisPacific Northwest National LaboratoryWSU-PNNL Bioproducts Institute902 Battelle BlvdRichlandWA 99352USA
| | - Juan A. Lopez‐Ruiz
- Institute for Integrated CatalysisPacific Northwest National LaboratoryWSU-PNNL Bioproducts Institute902 Battelle BlvdRichlandWA 99352USA
| |
Collapse
|
2
|
Das SK, Chatterjee R, Bhaumik A. Ultrasmall Bismuth Nanoparticles Supported Over Nitrogen-Rich Porous Triazine-Piperazine Polymer for Efficient Catalytic Reduction. Chem Asian J 2024:e202401302. [PMID: 39644139 DOI: 10.1002/asia.202401302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The development of inexpensive and reusable nanocatalysts to convert the hazardous pollutant 4-nitrophenol (4-NP) into a valuable platform chemical 4-aminophenol (4-AP) is quite demanding due to environmental and public health concerns. Herein, we report a facile strategy for the preparation of supported Bi nanoparticles (NPs) over the surfaces of nitrogen-rich porous covalent triazine-piperazine-3D nanoflowers (BiNPs@3D-NCTP). SEM and TEM image analysis suggested 3D-flower-like morphology of the composite consisting of the self-assembly of interweaving and the slight bending of the nanoflakes. The powder X-ray diffraction (PXRD) analysis also confirmed the loading of Bi NPs. N2 sorption analysis suggested BET surface areas of 663 and 364 m2 g-1 for the 3D-NCTP and BiNPs@3D-NCTP materials, respectively. The large surface area, bimodal pores and 3D nanoflower architecture enable uniform loading of Bi nanoparticles, while its nitrogen-rich functionality stabilizes and acts as a capping agent restricting further nanoparticle expansion. BiNPs@3D-NCTP showed a 99.85 % conversion for the 4-NP to 4-AP within four minutes. The normalized rate constant of 38.3 min-1 mg-1 of BiNPs@3D-NCTP catalyst for the reduction of 4-NP suggested its superior catalytic efficiency. Nitrogen-rich functionality activates the catalytic site to accelerate the reaction, while bimodal pores can promote the diffusion of reactant molecules. After five catalytic cycles, the nanocatalyst showed high chemical stability and negligible activity loss.
Collapse
Affiliation(s)
- Swapan K Das
- Department of Chemistry, School of Physical and Chemical Science, B. S. Abdur Rahman Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048, India
| | - Rupak Chatterjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| |
Collapse
|
3
|
Verma PK, Bhattacharyya A, Mohapatra PK. Interlayer confinement mediated oxidation of americium by sodium bismuthate and stability of its higher redox states in acidic solution. Dalton Trans 2024; 53:15890-15902. [PMID: 39257201 DOI: 10.1039/d4dt00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mutual separation of trans-plutonium actinides (Ans) from lanthanides (Lns) or adjacent Ans is challenging as they exhibit great chemical similarity. Selective Am oxidation-based Am-Lns or Am-Cm separation strategies give very high separation factors. There exist several reports on different aspects of Am3+ oxidation by NaBiO3·xH2O (x = 2-3), which suggests that the oxidation mechanism is still not well understood. We, therefore, carefully performed several experiments taking advantage of the difference in the redox chemistry of Eu3+ and Am3+. The ion exchange of Eu3+ with the interlayer Na+ in NaBiO3 was confirmed by an ionic strength variation experiment. The shift in the 001 peak of NaBiO3 in XRD and the appearance of peaks corresponding to the trivalent Ln ions in XRF after Ln3+ loading give direct evidence for Na+ exchange with Ln3+. The stability of the higher oxidation state of Am was monitored spectrophotometrically. The experimental investigations also suggested the role of Am3+ → AmO22+ transformation in NaBiO3·xH2O (x = 2-3) dissolution even at pH ∼ 1, which otherwise is difficult to achieve even with >1 M HNO3. The role of colloidal NaBiO3 particles and dissolved BiO3- in controlling or stabilizing different oxidation states of Am was also discussed.
Collapse
Affiliation(s)
- Parveen K Verma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.
| | | | - Prasanta K Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.
| |
Collapse
|
4
|
Cardoso Juarez AO, Ivan Ocampo Lopez E, Kesarla MK, Bogireddy NKR. Advances in 4-Nitrophenol Detection and Reduction Methods and Mechanisms: An Updated Review. ACS OMEGA 2024; 9:33335-33350. [PMID: 39130545 PMCID: PMC11307991 DOI: 10.1021/acsomega.4c04185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
This review emphasizes the progress in identifying and eliminating para-nitrophenol (4-NP), a toxic organic compound. It covers various strategical methods and materials, including organic and inorganic nanomaterials, for detecting and reducing 4-NP. Detection techniques such as electrochemical methods. Optical fiber-based surface plasmon resonance and photoluminescence, as well as the mechanisms of Förster Resonance Energy Transfer (FRET) and Inner Filter Effect (IFE) in fluorescence detection, are presented. Removal techniques for this contaminant include homogeneous catalysis, electrocatalysis, photocatalysis, and thermocatalysis, and their reaction mechanisms are also discussed. Further, the theoretical perspectives of 4-NP detection and reduction, parameters influencing the activities, and future perspectives are also reviewed in detail.
Collapse
Affiliation(s)
| | | | - Mohan Kumar Kesarla
- Instituto de Ciencias Físicas
(ICF), Universidad Nacional Autónoma
de Mexico (UNAM), Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C.P 62210, Morelos, Mexico
| | - Naveen Kumar Reddy Bogireddy
- Instituto de Ciencias Físicas
(ICF), Universidad Nacional Autónoma
de Mexico (UNAM), Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C.P 62210, Morelos, Mexico
| |
Collapse
|
5
|
Adel Hamza M, Abd El-Rahman SA, Ramadan SK, Ezz-Elregal EEM, Rizk SA, Abou-Gamra ZM. The enhanced visible-light-driven photocatalytic performance of nanocrystalline TiO2 decorated by quinazolinone-photosensitizer toward photocatalytic treatment of simulated wastewater. J Photochem Photobiol A Chem 2024; 452:115599. [DOI: 10.1016/j.jphotochem.2024.115599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
|
6
|
Wang J, Fu S, Hou P, Liu J, Li C, Zhang H, Wang G. Construction of TiO 2/CuPc Heterojunctions for the Efficient Photocatalytic Reduction of CO 2 with Water. Molecules 2024; 29:1899. [PMID: 38675718 PMCID: PMC11053929 DOI: 10.3390/molecules29081899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Utilizing solar energy for photocatalytic CO2 reduction is an attractive research field because of its convenience, safety, and practicality. The selection of an appropriate photocatalyst is the key to achieve efficient CO2 reduction. Herein, we report the synthesis of TiO2/CuPc heterojunctions by compositing CuPc with TiO2 microspheres via a hydroxyl-induced self-assembly process. The experimental investigations demonstrated that the optimal TiO2/0.5CuPc photocatalyst exhibited a significantly enhanced CO2 photoreduction rate up to 32.4 μmol·g-1·h-1 under 300 W xenon lamp irradiation, which was 3.7 times that of the TiO2 microspheres alone. The results of photoelectrochemical experiments indicated that the construction of the heterojunctions by introducing CuPc effectively promoted the separation and transport of photogenerated carriers, thus enhancing the catalytic effect of the photocatalyst.
Collapse
Affiliation(s)
- Jun Wang
- Academic Affairs Office, Qiqihar Medical University, Qiqihar 161006, China;
| | - Shuang Fu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.F.); (P.H.); (J.L.); (C.L.)
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.F.); (P.H.); (J.L.); (C.L.)
| | - Jun Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.F.); (P.H.); (J.L.); (C.L.)
| | - Chao Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.F.); (P.H.); (J.L.); (C.L.)
| | - Hongguang Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.F.); (P.H.); (J.L.); (C.L.)
| | - Guowei Wang
- College of Pathology, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
7
|
Ma S, Kong J, Luo X, Xie J, Zhou Z, Bai X. Recent progress on bismuth-based light-triggered antibacterial nanocomposites: Synthesis, characterization, optical properties and bactericidal applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170125. [PMID: 38242469 DOI: 10.1016/j.scitotenv.2024.170125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Bacterial infections pose a seriously threat to the safety of the environment and human health. In particular, the emergence of drug-resistant pathogens as a result of antibiotic abuse and high trauma risk has rendered conventional therapeutic techniques insufficient for treating infections by these so-called "superbugs". Therefore, there is an urgent need to develop highly efficient and environmentally-friendly antimicrobial agents. Bismuth-based nanomaterials with unique structures and physicochemical characteristics have attracted considerable attention as promising antimicrobial candidates, with many demonstratingoutstanding antibacterial effects upon being triggered by broad-spectrum light. These nanomaterials have also exhibited satisfactory energy band gaps and electronic density distribution with improved photonic properties for extensive and comprehensive applications after being modified through various engineering methods. This review summarizes the latest research progress made on bismuth-based nanomaterials with different morphologies, structures and compositions as well as the different methods used for their synthesis to meet their rapidly increasing demand, especially for antibacterial applications. Moreover, the future prospects and challenges regarding the application of these nanomaterials are discussed. The aim of this review is to stimulate interest in the development and experimental transformation of novel bismuth-based nanomaterials to expand the arsenal of effective antimicrobials.
Collapse
Affiliation(s)
- Sihan Ma
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xian Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361002, China
| | - Jun Xie
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zonglang Zhou
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Feizpoor S, Habibi-Yangjeh A, Luque R. Design of TiO 2/Ag 3BiO 3 n-n heterojunction for enhanced degradation of tetracycline hydrochloride under visible-light irradiation. ENVIRONMENTAL RESEARCH 2022; 215:114315. [PMID: 36116489 DOI: 10.1016/j.envres.2022.114315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical residual contaminants in aquatic ecosystems have caused severe risks to human health. Affordable, eco-friendly and effective photocatalysts to deal with these pollutants has become a hot topic in the scientific community. In this research, Ag3BiO3 nanoparticles were embedded on TiO2 to form n-n heterojunction through a facile hydrothermal method. According to scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), brunauer emmett teller (BET), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), photoluminescence (PL), X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS) tests, the successful construction of TiO2/Ag3BiO3 heterojunction is proved. TiO2/Ag3BiO3 heterojunctions were employed as photocatalysts to remove tetracycline hydrochloride (TCH) under visible light irradiation in aqueous solution. Optimum TCH photodegradation efficiency was observed for TiO2/Ag3BiO3 (10%), 15.4 times superior to that of TiO2. The enhanced TCH photodegradation efficiency of TiO2/Ag3BiO3 results from improved light absorption capacity and the reduction of recombination of photogenerated charge carriers via generation of n-n heterojunctions. The mechanism of increasing the photodegradation efficiency of TCH was determined by employing reactive species quenching experiments. TiO2/Ag3BiO3 (10%) also exhibited an acceptable stability.
Collapse
Affiliation(s)
- Solmaz Feizpoor
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran; Departamento de Química Organica, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra. N-IV Km. 396, E14014, Córdoba, Spain
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Rafael Luque
- Departamento de Química Organica, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra. N-IV Km. 396, E14014, Córdoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| |
Collapse
|
9
|
Fu Y, Zhang Y, Wei L, Du H, Yan Q. Er 3+/Sm 3+ co-doped Bi 2O 2CO 3 in photocatalytic water treatment: Immobilization, acute toxicity, sterilization, and catalytic oxidation activity. CHEMOSPHERE 2022; 306:135507. [PMID: 35772515 DOI: 10.1016/j.chemosphere.2022.135507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Defect construction and rare earth doping are the linchpins to completing the target of partial electronic regulation. In Er3+/Sm3+ co-doping Bi2O2CO3, rare earth doping resulted in the exposure of {001} crystal plane in Bi2O2CO3 and cause surface defects and electron traps, achieving wide light response capability and fast carrier separation. Furthermore, a potential TC degradation route was acknowledged derived from LC-MS. Then, the median lethal concentration LC50 (96 h) is 80 ppm, probing the 2E2SBOC photocatalyst has low toxicity in actual wastewater. Combining with immobilization technology, not only does it have little impact on the organisms in the wastewater, but it is easy to recycle after degradation. In terms of new water disinfection technology, bacterial experiments in natural waters proved that 2E2SBOC has a potential disinfection system, which promotes the exposure of more active sites during degradation. This effective project offers a novel perspective for the development and application of rare-earth-doped photocatalysts.
Collapse
Affiliation(s)
- Yiwen Fu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan, 450001, China
| | - Yang Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan, 450001, China
| | - Lina Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan, 450001, China
| | - Haoyu Du
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan, 450001, China
| | - Qishe Yan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
10
|
Review on Support Materials Used for Immobilization of Nano-Photocatalysts for Water Treatment Applications. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Hu X, Zhao M, Zheng W, Zhu J. Preparation, Characterization, and Photocatalytic Performance of Ag/BiOBr 0.85I 0.15 Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6022. [PMID: 36079402 PMCID: PMC9456716 DOI: 10.3390/ma15176022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
In the present paper, a series of Ag/BiOBr0.85I0.15 composite nanoparticles with different silver loading were prepared by a combined solvothermal and photocatalytic reduction method. The composite samples have been characterized by XRD, XPS, SEM, EDX, TEM, UV-Vis, and N2 adsorption/desorption techniques. The characterization results showed that BiOBr0.85I0.15 composite nanoparticles have a tetragonal phase structure. Silver nanoparticles are uniformly distributed on the BiOBr0.85I0.15, which results in surface plasmon resonance absorption, effectively increasing the visible light absorption ability of BiOBr0.85I0.15. The photocatalytic activity of the samples was evaluated by photocatalytic degradation of ammonia nitrogen in circulating aquaculture water under simulated sunlight irradiation. The effect of the Ag loading amount on the photocatalytic degradation of ammonia nitrogen was investigated. Silver loading of 1% (molar ratio) can effectively improve the degradation capacity of the catalyst for ammonia nitrogen in water. The recycling experiments show that 1%Ag/BiOBr0.85I0.15 has good photocatalytic stability. ESR characterization and oxidation species scavenging experimental results suggest that h+, 1O2, and ·O2- are the main oxidizing species in the photocatalytic system.
Collapse
Affiliation(s)
| | | | | | - Junjie Zhu
- School of Life Science, Huzhou University, No. 759, East 2nd Ring Road, Huzhou 313000, China
| |
Collapse
|
12
|
Mahmoudi F, Saravanakumar K, Maheskumar V, Njaramba LK, Yoon Y, Park CM. Application of perovskite oxides and their composites for degrading organic pollutants from wastewater using advanced oxidation processes: Review of the recent progress. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129074. [PMID: 35567810 DOI: 10.1016/j.jhazmat.2022.129074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
In the recent years, perovskite oxides are gaining an increasing amount of attention owing to their unique traits such as tunable electronic structures, flexible composition, and eco-friendly properties. In contrast, their catalytic performance is not satisfactory, which hinders real wastewater remediation. To overcome this shortcoming, various strategies are developed to design new perovskite oxide-based materials to enhance their catalytic activities in advanced oxidation process (AOPs). This review article is to provide overview of basic principle and different methods of AOPs, while the strategies to design novel perovskite oxide-based composites for enhancing the catalytic activities in AOPs have been highlighted. Moreover, the recent progress of their synthesis and applications in wastewater remediation (pertaining to the period 2016-2022) was described, and the related mechanisms were thoroughly discussed. This review article helps scientists to have a clear outlook on the selection and design of new effective perovskite oxide-based materials for the application of AOPs. At the end of the review, perspective on the challenges and future research directions are discussed.
Collapse
Affiliation(s)
- Farzaneh Mahmoudi
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Karunamoorthy Saravanakumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Velusamy Maheskumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
13
|
Zuarez-Chamba M, Rajendran S, Herrera-Robledo M, Priya AK, Navas-Cárdenas C. Bi-based photocatalysts for bacterial inactivation in water: Inactivation mechanisms, challenges, and strategies to improve the photocatalytic activity. ENVIRONMENTAL RESEARCH 2022; 209:112834. [PMID: 35122745 DOI: 10.1016/j.envres.2022.112834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Bi-based photocatalysts have been considered suitable materials for water disinfection under natural solar light due to their outstanding optical and electronic properties. However, until now, there are not extensive reviews about the development of Bi-based materials and their application in bacterial inactivation in aqueous solutions. For this reason, this work has focused on summarizing the state of the art related to the inactivation of Gram- and Gram + pathogenic bacteria under visible light irradiation using different Bi-based micro and nano structures. In this sense, the photocatalytic bacterial inactivation mechanisms are analyzed, considering several modifications. The factors that can affect the photocatalytic performance of these materials in real conditions and at a large scale (e.g., water characteristics, pH, light intensity, photocatalyst dosage, and bacteria level) have been studied. Furthermore, current alternatives for improving the photocatalytic antibacterial activity and reuse of Bi-based materials (e.g., surface engineering, crystal facet engineering, doping, noble metal coupling, heterojunctions, Z-scheme junctions, coupling with graphene derivatives, magnetic composites, immobilization) have been explored. According to several reports, inactivation rate values higher than 90% can be achieved by using the modified Bi-based micro/nano structures, which become them excellent candidates for photocatalytic water disinfection. However, these innovative photocatalytic materials bring a variety of future difficulties and opportunities in water disinfection.
Collapse
Affiliation(s)
| | - Saravanan Rajendran
- Department of Mechanical Engineering, Faculty of Engineering, University of Tarapaca, Avda. General Velásquez, Arica, Chile
| | | | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - Carlos Navas-Cárdenas
- School of Chemical Sciences and Engineering, Universidad Yachay Tech, Urcuquí, Ecuador.
| |
Collapse
|
14
|
Soliman AIA, Abdel-Wahab AMA, Abdelhamid HN. Hierarchical porous zeolitic imidazolate frameworks (ZIF-8) and ZnO@N-doped carbon for selective adsorption and photocatalytic degradation of organic pollutants. RSC Adv 2022; 12:7075-7084. [PMID: 35424696 PMCID: PMC8982255 DOI: 10.1039/d2ra00503d] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
Removing organic contaminants such as dyes from water is essential to purify wastewater. Herein, zeolitic imidazolate framework-8 (ZIF-8) and ZnO@N-doped C are reported as effective adsorbents and photocatalysts for the adsorption and degradation of organic dyes. The materials showed effective and selective adsorption toward anionic dyes such as methyl blue (MeB) dye in the presence of fluorescein (FLU) dye. The adsorption capacities of ZnO@N-doped C for MeB and FLU dyes are 900 mg g-1 and 100 mg g-1, respectively. According to UV-Vis diffuse reflectance spectroscopy (DRS) data, ZnO@N-doped C has a lower bandgap (2.07 eV) than ZIF-8 (4.34 eV) and ZnO (3.12 eV). Thus, ZnO@N-doped C serves as an effective photocatalyst for the degradation of both dyes under UV exposure. The degradation efficiency capacity of the dye (50 mg L-1) is >90% using 200 mg L-1 of the photocatalyst. The mechanism of adsorption and photocatalysis is investigated. The photodegradation pathway of the dye involved the generation of oxidative hydroxy radicals (OH˙), which can degrade the dyes. The degradation products of FLU were recorded using mass spectrometry.
Collapse
Affiliation(s)
- Ahmed I A Soliman
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
- Department of Chemical Engineering, Lakehead University 955 Oliver Road Thunder Bay ON, P7B 5E1 Canada
| | | | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Chemistry Department, Assiut University Assiut 71516 Egypt +0020-88.234222 +201029952642
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry, Assiut University Assiut 71516 Egypt
| |
Collapse
|
15
|
Zhao K, Ge L, Wong TI, Zhou X, Lisak G. Gold-silver nanoparticles modified electrochemical sensor array for simultaneous determination of chromium(III) and chromium(VI) in wastewater samples. CHEMOSPHERE 2021; 281:130880. [PMID: 34029966 DOI: 10.1016/j.chemosphere.2021.130880] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The oxidation state of ions is a crucial aspect that often has been overlooked when determining the toxicity of chromium (Cr) species in environmental samples. In this study, a novel electrochemical sensor array based on gold-silver nanoparticles modified electrodes was developed for simultaneous determination of the two main chromium species (Cr(III) and (VI)). Specifically, the working electrodes of screen-printed carbon electrodes (SPCEs) were modified with silver-gold bimetallic nanoparticles through electrochemical deposition for detection of Cr(VI). The silver-gold bimetallic nanoparticles were further oxidized to form stable silver-gold bimetallic oxide nanoparticles for the detection of Cr(III). The results showed that the addition of silver with a theoretical value of 1% of gold could contribute to the formation and stabilization of oxides on the surface of gold nanoparticles. After characterization, the two kinds of electrodes were integrated as an electrochemical sensor array for selective and sensitive detection of Cr(VI) and Cr(III). The linear range and limit of detection (LOD, identified by three times of signal-to-noise ratio) were found to be 0.05-5 ppm and 0.1 ppb for Cr(VI), and 0.05-1 ppm and 0.1 ppb for Cr(III), respectively. Finally, the electrochemical sensor array was proven for successful detection of Cr(VI) and Cr(III) in tap water, artificial saliva and artificial sweat samples, and monitoring of Cr(VI) and Cr(III) in chromium-containing wastewater treatment process. Combined with a handheld dual-channel electrochemical device, the simultaneous determination of Cr(VI), Cr(III) and total chromium contents can be easily achieved for various samples.
Collapse
Affiliation(s)
- Ke Zhao
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Liya Ge
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore.
| | - Ten It Wong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
| | - Xiaodong Zhou
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
16
|
Qin K, Zhao Q, Yu H, Xia X, Li J, He S, Wei L, An T. A review of bismuth-based photocatalysts for antibiotic degradation: Insight into the photocatalytic degradation performance, pathways and relevant mechanisms. ENVIRONMENTAL RESEARCH 2021; 199:111360. [PMID: 34022231 DOI: 10.1016/j.envres.2021.111360] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The intensive production and utilization of antibiotics worldwide has inevitably led to releases of very large amounts of these medicines into the environment, and numerous strategies have recently been developed to eliminate antibiotic pollution. Therefore, bismuth-based photocatalysts have attracted much attention due to their high adsorption of visible light and low production cost. This review summarizes the performance, degradation pathways and relevant mechanisms of typical antibiotics during bismuth-based photocatalytic degradation. First, the band gap and redox ability of the bismuth-based catalysts and modified materials (such as morphology, structure mediation, heterojunction construction and element doping) were compared and evaluated. Second, the performance and potential mechanisms of bismuth oxides, bismuth sulfides, bismuth oxyhalides and bismuth-based metal oxides for antibiotic removal were investigated. Third, we analysed the effect of co-existing interfering substances in a real water matrix on the photocatalytic ability, as well as the coupling processes for degradation enhancement. In the last section, current difficulties and future perspectives on photocatalytic degradation for antibiotic elimination by bismuth-based catalysts are summarized. Generally, modified bismuth-based compounds showed better performance than single-component photocatalysts during photocatalytic degradation for most antibiotics, in which h+ played a predominant role among all the related reactive oxygen species. Moreover, the crystal structures and morphologies of bismuth-based catalysts seriously affected their practical efficiencies.
Collapse
Affiliation(s)
- Kena Qin
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Govinda Raj M, Vijayakumar E, Neppolian B, Lakhera SK, Bosco AJ. Influence of Ag nanoparticles anchored on protonated g-C 3N 4-Bi 2MoO 6 nanocomposites for effective antibiotic and organic pollutant degradation. RSC Adv 2021; 11:25511-25523. [PMID: 35478864 PMCID: PMC9036985 DOI: 10.1039/d1ra02800f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022] Open
Abstract
The development of noble metal-anchored semiconductors for photocatalytic processes is now garnering interest for potential application to toxic pollutants as well as antibiotic degradation. Herein, we report novel Ag@p-g-C3N4-Bi2MoO6 nanocomposites synthesized by facile hydrothermal and calcination methods with a size of about 50 nm, exhibiting superior photocatalytic activity for charge separation. The resulting nanocomposites were evaluated by various physiochemical techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The charge transfer photogenerated carriers were confirmed by photoluminescence spectra and electrochemical impedance spectroscopy. The anchoring of Ag nanoparticles over p-g-C3N4/Bi2MoO6 decreased the band gap energy from 2.67 to 2.48 eV, to exhibit an abnormal increase in absorption of light towards the visible light region. The degradation performance of the nanocomposites in terms of antibiotic ciprofloxacin and rhodamine B degradation efficiency was measured 85 and 99.7% respectively. The superoxide radical anion ˙O2 - played a significant role throughout the entire degradation process. Focusing on the probable mechanism based on the desirable results, the present work follows the heterostructure mechanism. Moreover, this work features the feasible applications of Ag@p-g-C3N4-Bi2MoO6 as a modified photocatalyst in the treatment of both domestic and industrial waste water.
Collapse
Affiliation(s)
- Muniyandi Govinda Raj
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603203 Chennai Tamilnadu India +91-9840757430 +91-8610498493
| | - Elayaperumal Vijayakumar
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603203 Chennai Tamilnadu India +91-9840757430 +91-8610498493
| | - Bernaurdshaw Neppolian
- Energy and Environmental Remediation Lab, SRM Research Institute, SRM Insitute of Science and Technology Kattankulathur 603 203 Chennai Tamilnadu India
| | - Sandeep Kumar Lakhera
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Chennai Tamilnadu India
| | - Aruljothy John Bosco
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603203 Chennai Tamilnadu India +91-9840757430 +91-8610498493
| |
Collapse
|
18
|
An X, Erramilli S, Reinhard BM. Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing. NANOSCALE 2021; 13:3374-3411. [PMID: 33538743 PMCID: PMC8349509 DOI: 10.1039/d0nr08353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacterial, viral and fungal infections pose serious threats to human health and well-being. The continuous emergence of acute infectious diseases caused by pathogenic microbes and the rapid development of resistances against conventional antimicrobial drugs necessitates the development of new and effective strategies for the safe elimination of microbes in water, food or on surfaces, as well as for the inactivation of pathogenic microbes in human hosts. The need for new antimicrobials has triggered the development of plasmonic nano-antimicrobials that facilitate both light-dependent and -independent microbe inactivation mechanisms. This review introduces the relevant photophysical mechanisms underlying these plasmonic nano-antimicrobials, and provides an overview of how the photoresponses and materials properties of plasmonic nanostructures can be applied in microbial pathogen inactivation and sensing applications. Through a systematic analysis of the inactivation efficacies of different plasmonic nanostructures, this review outlines the current state-of-the-art in plasmonic nano-antimicrobials and defines the application space for different microbial inactivation strategies. The advantageous optical properties of plasmonic nano-antimicrobials also enhance microbial detection and sensing modalities and thus help to avoid exposure to microbial pathogens. Sensitive and fast plasmonic microbial sensing modalities and their theranostic and targeted therapeutic applications are discussed.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Shyamsunder Erramilli
- Department of Physics, Boston University, Boston, MA 02215, USA and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
19
|
Nguyen VH, Ali Delbari S, Mousavi M, Sabahi Namini A, Ghasemi JB, Van Le Q, Shahedi Asl M, Mohammadi M, Shokouhimehr M. WITHDRAWN: g-C3N4-nanosheet/ZnCr2O4 S-scheme heterojunction photocatalyst with enhanced visible-light photocatalytic activity for degradation of phenol and tetracycline [Sep. Purif. Technol. (2021) 118511]. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Yuan H, Su Q, Wang Y, Li J, Liu B, Li Y, Wu P. Tetracycline catalytic photodegradation with mesoporous phosphated TiO 2: characterization, process optimization and degradation pathway. RSC Adv 2021; 11:10975-10985. [PMID: 35423567 PMCID: PMC8695772 DOI: 10.1039/d1ra00516b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 12/05/2022] Open
Abstract
Concern about the effect of tetracycline (TC) on the ecosystem has been increasing due to its endurance and low decomposition. Photocatalysts have attracted extensive interest as alternatives to other ordinary wastewater treatment methods. A nanosized mesoporous phosphated TiO2 (P-TiO2) photocatalyst was fabricated to degrade TC under Xe lamp irradiation. The TC degradation and COD removal rate reached 98.97% and 79.16% within 30 min. Photocatalysts were characterized by SEM, HRTEM, BET, DRS, XRD, XPS and FT-IR techniques. 31 experiments were designed to identify the best conditions for photocatalytic degradation of TC by response surface methodology (RSM) based on a central composite design (CCD). 6 key operating parameters were selected to study their interrelationships by CCD design. Based on the experimental data and ANOVA, the coefficient of determination (R2), the values of “Prob > F” and F-value were determined to be 0.9692, 0.002 and 7.87, respectively, which demonstrated that the model is significant. And the excellent correlation between the predicted and actual values also provided good confidence in the model. To achieve a higher removal rate of TC under appropriate and more economical experimental conditions, the optimum values of P-loading on TiO2, concentration of P-TiO2, irradiation time, photo intensity, pH and concentration of TC should be set to 17.45 wt%, 1.00 g L−1, 40.39 min, 5 A, 7, 29.93 mg L−1, respectively, in which the degradation of TC can reach 99.16%. Furthermore, the intermediates of TC verified by GC-MS analysis were mainly chains and rings. A possible pathway of photodegradation was also proposed. The prepared P-TiO2 has a perfect degradation effect on TC (99.16%) due to the loading of phosphate. The impact of multiple factors and the best degradation conditions were obtained by RSM. The possible degradation pathways of TC were proposed also.![]()
Collapse
Affiliation(s)
- Huayu Yuan
- College of Resources and Environmental Engineering
- Guizhou University
- Guiyang
- China
| | - Qi Su
- College of Resources and Environmental Engineering
- Guizhou University
- Guiyang
- China
| | - Yuehu Wang
- College of Resources and Environmental Engineering
- Guizhou University
- Guiyang
- China
- Guizhou Karst Environmental Ecosystems Observation and Research Station
| | - Jiang Li
- College of Resources and Environmental Engineering
- Guizhou University
- Guiyang
- China
- Guizhou Karst Environmental Ecosystems Observation and Research Station
| | - Baojun Liu
- College of Resources and Environmental Engineering
- Guizhou University
- Guiyang
- China
| | - Yancheng Li
- College of Resources and Environmental Engineering
- Guizhou University
- Guiyang
- China
- Guizhou Karst Environmental Ecosystems Observation and Research Station
| | - Pan Wu
- College of Resources and Environmental Engineering
- Guizhou University
- Guiyang
- China
- Guizhou Karst Environmental Ecosystems Observation and Research Station
| |
Collapse
|
21
|
Wu W, Xu C, Shi X, Zhao J, An X, Ma H, Tian Y, Zhou H. Effective degradation of organic pollutants and reaction mechanism with flower-like AgBiO3/g-C3N4 composite. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Samantaray PK, Indrakumar S, Chatterjee K, Agarwal V, Bose S. 'Template-free' hierarchical MoS 2 foam as a sustainable 'green' scavenger of heavy metals and bacteria in point of use water purification. NANOSCALE ADVANCES 2020; 2:2824-2834. [PMID: 36132388 PMCID: PMC9419618 DOI: 10.1039/c9na00747d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/05/2020] [Indexed: 05/13/2023]
Abstract
Molybdenum disulfide (MoS2), with its unique optical and electrical properties, has been explored for a variety of applications in the recent past. Still, its capabilities in point-of-use heavy metal ion removal remain to be explored. Herein, for the first time using a facile approach, we fabricated three-dimensional (3D) MoS2 foam from exfoliated single to few-layered MoS2 sheets for the selective exclusion of heavy metals and stringent bactericidal response. This foam was able to exclude 99.9% of Pb(ii) and 98.7% of As(iii) instantaneously and reduced more than 98% of bacteria E. coli. Moreover, the foam exhibits selective toxicity towards bacterial cells while showing no observable toxicity towards mammalian cells. The foam can be recycled and reused for at least five cycles under accelerated conditions and thus can be used for a promising non-cytotoxic, facile, and environmentally benign process for inline water remediation to remove heavy metal ions from the feed and as a potential antibacterial agent.
Collapse
Affiliation(s)
- Paresh Kumar Samantaray
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore India
- Department of Materials Engineering, Indian Institute of Science Bangalore India
| | - Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science Bangalore India
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore India
- Department of Materials Engineering, Indian Institute of Science Bangalore India
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education Bangalore India
| | - Vipul Agarwal
- Department of Materials Engineering, Indian Institute of Science Bangalore India
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bangalore India
| |
Collapse
|
23
|
Zhou J, Yu M, Peng J, Lin R, Li Z, Yu C. Photocatalytic degradation characteristics of tetracycline and structural transformation on bismuth silver oxide perovskite nano-catalysts. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01440-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Sun Y, Lei J, Wang Y, Tang Q, Kang C. Fabrication of a magnetic ternary ZnFe 2O 4/TiO 2/RGO Z-scheme system with efficient photocatalytic activity and easy recyclability. RSC Adv 2020; 10:17293-17301. [PMID: 35521446 PMCID: PMC9053514 DOI: 10.1039/d0ra01880e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
A magnetic composite based on TiO2 nanosheets, ZnFe2O4 and reduced graphene oxide (RGO) was synthesized by a one-step hydrothermal synthesis method, which possessed the band structure of a Z-scheme photocatalytic system. The properties and structures of the samples were characterized by XRD, UV-Vis DRS, Raman spectroscopy, SEM, EDS, XPS and PL spectroscopy. Compared with TiO2 nanosheets and the TiO2/RGO composite, the obtained ternary composite with 3 wt% RGO exhibited a significant enhancement in photocatalytic activities, attributed to the efficient charge separation induced by the fabricated Z-scheme system. About 99.7% of p-nitrophenol (p-NP) degraded within 60 min under simulated solar irradiation. Trapping experiments showed that superoxide anions (˙O2 -) and hydroxyl radicals (˙OH) were the main active species in the p-NP photocatalytic degradation. Finally, a possible photocatalytic mechanism of Z-scheme ZnFe2O4/TiO2/RGO was proposed based on the results of trapping experiments and the energy bands of TiO2 and ZnFe2O4.
Collapse
Affiliation(s)
- Yuwei Sun
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University Changchun 130012 Jilin China
- College of Environmental Science and Engineering, Jilin Normal University Siping 136000 Jilin China
| | - Jiashuang Lei
- College of Environmental Science and Engineering, Jilin Normal University Siping 136000 Jilin China
| | - Yizhu Wang
- College of Environmental Science and Engineering, Jilin Normal University Siping 136000 Jilin China
| | - Qian Tang
- College of Environmental Science and Engineering, Jilin Normal University Siping 136000 Jilin China
| | - Chunli Kang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University Changchun 130012 Jilin China
| |
Collapse
|
25
|
|
26
|
Affiliation(s)
- Rimzhim Gupta
- Department of Chemical EngineeringIndian Institute of Science Bangalore, Karnataka 560012 India
| | - Jayant Modak
- Department of Chemical EngineeringIndian Institute of Science Bangalore, Karnataka 560012 India
| |
Collapse
|
27
|
Wang Y, Kong X, Jiang M, Zhang F, Lei X. A Z-scheme ZnIn2S4/Nb2O5 nanocomposite: constructed and used as an efficient bifunctional photocatalyst for H2 evolution and oxidation of 5-hydroxymethylfurfural. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01196j] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bifunctional Z-scheme ZnIn2S4/Nb2O5 photocatalyst was fabricated, which can be used both for hydrogen evolution and HMF oxidation.
Collapse
Affiliation(s)
- Yuwei Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Meihong Jiang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
28
|
Boruah B, Gupta R, Modak JM, Madras G. Enhanced photocatalysis and bacterial inhibition in Nb 2O 5 via versatile doping with metals (Sr, Y, Zr, and Ag): a critical assessment. NANOSCALE ADVANCES 2019; 1:2748-2760. [PMID: 36132720 PMCID: PMC9418613 DOI: 10.1039/c9na00305c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
Unique optical properties render semiconductor Nb2O5 nanoparticles suitable for light harvesting and photocatalytic applications. This study focuses on determining optical properties such as the band gap, conduction band edge, valence band edge and work function of as-prepared solution combustion synthesized Nb2O5 nanoparticles with the help of UV-vis Diffuse Reflectance spectroscopy (DRS) and ultraviolet photoelectron spectroscopy (UPS) techniques. Phase purity and the oxidation states of the elements present in the material were confirmed from X-ray diffraction (XRD) patterns and X-ray photoelectron spectra (XPS), respectively. Doping semiconductors with different metal ions impacts the activity of the material, and therefore efforts were made to understand the effect on the photocatalytic performance of Nb2O5 due to the incorporation of metal dopants viz. Sr, Y, Zr, and Ag. Lattice parameters were obtained from Rietveld refinement of the XRD patterns. Parameters which are closely related to the photoactivity of the catalysts such as the presence of surface defects, oxygen vacancies, surface area, and charge carrier dynamics were determined from photoluminescence (PL) analysis, Brunauer-Emmett-Teller (BET) surface area measurements and time-resolved fluorescence (TRF) analysis respectively. In addition, the dopant concentrations were optimised for enhanced photocatalytic activity. The doped Nb2O5 nanoparticles showed significant activity towards targeted degradation of organic pollutants like 2-chlorophenol (2-CP) and dye contaminants like methylene blue (MB), orange G (OG) and indigo carmine (IC). This strategy yielded a robust response towards inactivation of E. coli and S. aureus as well. Adsorption and photodegradation of MB followed Lagergren's pseudo 1st order reaction model and the Langmuir Hinshelwood model respectively. Bacterial inactivation and OG, IC and 2-CP photodegradation followed 1st order kinetics. The reusability of the catalyst for 5 cycles was demonstrated. Finally, a plausible mechanism is proposed based on radical trapping experiments and combined analysis of the characterization techniques.
Collapse
Affiliation(s)
- Bhanupriya Boruah
- Department of Chemical Engineering, Indian Institute of Science Bangalore 560012 India +91 80 23600683 +91 80 22932321
| | - Rimzhim Gupta
- Department of Chemical Engineering, Indian Institute of Science Bangalore 560012 India +91 80 23600683 +91 80 22932321
| | - Jayant M Modak
- Department of Chemical Engineering, Indian Institute of Science Bangalore 560012 India +91 80 23600683 +91 80 22932321
| | - Giridhar Madras
- Department of Chemical Engineering, Indian Institute of Science Bangalore 560012 India +91 80 23600683 +91 80 22932321
| |
Collapse
|