1
|
Slika E, Fuchs PA, Wood MB. Virally mediated enhancement of efferent inhibition reduces acoustic trauma in wild-type murine cochleas. Mol Ther Methods Clin Dev 2025; 33:101455. [PMID: 40236498 PMCID: PMC11999434 DOI: 10.1016/j.omtm.2025.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Noise-induced hearing loss (NIHL) poses an emerging global health problem with only ear protection or sound avoidance as preventive strategies. The cochlea receives some protection from medial olivocochlear efferent neurons, providing a potential target for therapeutic enhancement. Cholinergic efferents release acetylcholine (ACh) to hyperpolarize and shunt the outer hair cells (OHCs), reducing sound-evoked activation. The (α9)2(α10)3 nicotinic ACh receptor (nAChR) on the OHCs mediates this effect. Transgenic knockin mice with a gain-of-function nAChR (α9L9'T) suffer less NIHL. α9 knockout mice are more vulnerable to NIHL but can be rescued by viral transduction of the α9L9'T subunit. In this study, an HA-tagged gain-of-function α9 isoform was expressed in wild-type mice to reduce NIHL. Synaptic integration of the virally expressed nAChR subunit was confirmed by HA immunopuncta localized to the postsynaptic membrane of OHCs. After noise exposure, AAV2.7m8-CAG-α9L9'T-HA (α9L9'T-HA)-injected mice had less hearing loss (auditory brainstem response [ABR] thresholds and threshold shifts) than did control mice. ABRs of α9L9'T-HA-injected mice also had larger wave-1 amplitudes and better recovery of wave-1 amplitudes post noise exposure. Thus, virally expressed α9L9'T combines effectively with native α9 and α10 subunits to mitigate NIHL in wild-type cochleas.
Collapse
Affiliation(s)
- Eleftheria Slika
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul A. Fuchs
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Megan Beers Wood
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Christian M, Kraft M, Wilknitz P, Nowotny M, Schöneich S. Flupyradifurone, imidacloprid and clothianidin disrupt the auditory processing in the locust CNS. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025:10.1007/s00359-025-01735-8. [PMID: 39939492 DOI: 10.1007/s00359-025-01735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Since the EU banned classic neonicotinoids like imidacloprid and clothianidin, they may be replaced by more recently marketed insecticides such as flupyradifurone. However, they all operate on the same neuropharmacological principle as selective agonists at the insect's nicotinic acetylcholine receptors. Here we investigated the impact of flupyradifurone, imidacloprid and clothianidin on the neuronal processing in the auditory pathway of the desert locust Schistocerca gregaria. While stepwise increasing the insecticide concentration in the haemolymph, we extracellularly recorded the spike responses of auditory afferents in the tympanal nerve and of auditory interneurons in the neck connectives. All three insecticides showed a very similar dose-dependent suppression of spike responses in the auditory interneurons ascending towards the brain, whereas the spike responses in the sensory neurons of the ears appeared unaffected. Furthermore, by systematic injection experiments we demonstrate that insecticide dosages which already supress the information transfer in the auditory pathway are by far too low to induce the typical poisoning symptoms like trembling, spasms, and paralysis. We discuss how sublethal intoxication with classical neonicotinoids or functionally related insecticides like flupyradifurone may disrupt the postsynaptic balance between excitation and inhibition in the auditory pathway of locusts and other orthopteran insects.
Collapse
Affiliation(s)
- Marcelo Christian
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| | - Michelle Kraft
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany
| | - Paul Wilknitz
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany
| | - Manuela Nowotny
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany
| | - Stefan Schöneich
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| |
Collapse
|
3
|
Tan J, Duron A, Sucov HM, Makita T. Placode and neural crest origins of congenital deafness in mouse models of Waardenburg-Shah syndrome. iScience 2025; 28:111680. [PMID: 39868048 PMCID: PMC11762213 DOI: 10.1016/j.isci.2024.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/19/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Mutations in the human genes encoding the endothelin ligand-receptor pair EDN3 and EDNRB cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific Ednrb mutation plus related genetic resources. On an outbred strain background, we find a normal representation of melanocytes in hearing-impaired mutant mice. Instead, our results in neural crest-specific Ednrb mutants implicate a previously unrecognized role for glial support of synapse assembly between auditory neurons and cochlear hair cells. Placode-specific Ednrb mutation also caused impaired hearing, resulting from deficient synaptic transmission. Our observations demonstrate the significant influence of genetic modifiers in auditory development, and invoke independent and separable roles for endothelin signaling in the neural crest and placode lineages to create a functional auditory circuitry.
Collapse
Affiliation(s)
- Jaime Tan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alicia Duron
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Henry M. Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Takako Makita
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Slika E, Fuchs PA, Wood MB. Virally-Mediated Enhancement of Efferent Inhibition Reduces Acoustic Trauma in Wild Type Murine Cochleas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612688. [PMID: 39314296 PMCID: PMC11419007 DOI: 10.1101/2024.09.12.612688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Noise-induced hearing loss (NIHL) poses an emerging global health problem with only ear protection or sound avoidance as preventive strategies. In addition, however, the cochlea receives some protection from medial olivocochlear (MOC) efferent neurons, providing a potential target for therapeutic enhancement. Cholinergic efferents release ACh (Acetylycholine) to hyperpolarize and shunt the outer hair cells (OHCs), reducing sound-evoked activation. The (α9)2(α10)3 nicotinic ACh receptor (nAChR) on the OHCs mediates this effect. Transgenic knock-in mice with a gain-of-function nAChR (α9L9'T) suffer less NIHL. α9 knockout mice are more vulnerable to NIHL but can be rescued by viral transduction of the α9L9'T subunit. In this study, an HA-tagged gain-of-function α9 isoform was expressed in wildtype mice in an attempt to reduce NIHL. Synaptic integration of the virally-expressed nAChR subunit was confirmed by HA-immunopuncta in the postsynaptic membrane of OHCs. After noise exposure, α9L9'T-HA injected mice had less hearing loss (auditory brainstem response (ABR) thresholds and threshold shifts) than did control mice. ABRs of α9L9'T-HA injected mice also had larger wave1 amplitudes and better recovery of wave one amplitudes post noise exposure. Thus, virally-expressed α9L9'T combines effectively with native α9 and α10 subunits to mitigate NIHL in wildtype cochleas.
Collapse
Affiliation(s)
- Eleftheria Slika
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Paul A. Fuchs
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Megan Beers Wood
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| |
Collapse
|
5
|
Gallino SL, Agüero L, Boffi JC, Schottlender G, Buonfiglio P, Dalamon V, Marcovich I, Carpaneto A, Craig PO, Plazas PV, Elgoyhen AB. Key role of the TM2-TM3 loop in calcium potentiation of the α9α10 nicotinic acetylcholine receptor. Cell Mol Life Sci 2024; 81:337. [PMID: 39120784 PMCID: PMC11335262 DOI: 10.1007/s00018-024-05381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The α9α10 nicotinic cholinergic receptor (nAChR) is a ligand-gated pentameric cation-permeable ion channel that mediates synaptic transmission between descending efferent neurons and mechanosensory inner ear hair cells. When expressed in heterologous systems, α9 and α10 subunits can assemble into functional homomeric α9 and heteromeric α9α10 receptors. One of the differential properties between these nAChRs is the modulation of their ACh-evoked responses by extracellular calcium (Ca2+). While α9 nAChRs responses are blocked by Ca2+, ACh-evoked currents through α9α10 nAChRs are potentiated by Ca2+ in the micromolar range and blocked at millimolar concentrations. Using chimeric and mutant subunits, together with electrophysiological recordings under two-electrode voltage-clamp, we show that the TM2-TM3 loop of the rat α10 subunit contains key structural determinants responsible for the potentiation of the α9α10 nAChR by extracellular Ca2+. Moreover, molecular dynamics simulations reveal that the TM2-TM3 loop of α10 does not contribute to the Ca2+ potentiation phenotype through the formation of novel Ca2+ binding sites not present in the α9 receptor. These results suggest that the TM2-TM3 loop of α10 might act as a control element that facilitates the intramolecular rearrangements that follow ACh-evoked α9α10 nAChRs gating in response to local and transient changes of extracellular Ca2+ concentration. This finding might pave the way for the future rational design of drugs that target α9α10 nAChRs as otoprotectants.
Collapse
Affiliation(s)
- Sofia L Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucía Agüero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan C Boffi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Gustavo Schottlender
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Buonfiglio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Viviana Dalamon
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Regeneron Pharmaceuticals, Inc. Tarrytown, 10591, NY, USA
| | - Agustín Carpaneto
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricio O Craig
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Andleeb H, Papke RL, Stokes C, Richter K, Herz SM, Chiang K, Kanumuri SRR, Sharma A, Damaj MI, Grau V, Horenstein NA, Thakur GA. Explorations of Agonist Selectivity for the α9* nAChR with Novel Substituted Carbamoyl/Amido/Heteroaryl Dialkylpiperazinium Salts and Their Therapeutic Implications in Pain and Inflammation. J Med Chem 2024; 67:8642-8666. [PMID: 38748608 PMCID: PMC11181317 DOI: 10.1021/acs.jmedchem.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
There is an urgent need for nonopioid treatments for chronic and neuropathic pain to provide effective alternatives amid the escalating opioid crisis. This study introduces novel compounds targeting the α9 nicotinic acetylcholine receptor (nAChR) subunit, which is crucial for pain regulation, inflammation, and inner ear functions. Specifically, it identifies novel substituted carbamoyl/amido/heteroaryl dialkylpiperazinium iodides as potent agonists selective for human α9 and α9α10 over α7 nAChRs, particularly compounds 3f, 3h, and 3j. Compound 3h (GAT2711) demonstrated a 230 nM potency as a full agonist at α9 nAChRs, being 340-fold selective over α7. Compound 3c was 10-fold selective for α9α10 over α9 nAChR. Compounds 2, 3f, and 3h inhibited ATP-induced interleukin-1β release in THP-1 cells. The analgesic activity of 3h was fully retained in α7 knockout mice, suggesting that analgesic effects were potentially mediated through α9* nAChRs. Our findings provide a blueprint for developing α9*-specific therapeutics for pain.
Collapse
Affiliation(s)
- Hina Andleeb
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Roger L. Papke
- Department
of Pharmacology and Therapeutics, University
of Florida, P.O. Box 100267, Gainesville, Florida 32610, United States
| | - Clare Stokes
- Department
of Pharmacology and Therapeutics, University
of Florida, P.O. Box 100267, Gainesville, Florida 32610, United States
| | - Katrin Richter
- Department
of General and Thoracic Surgery, Laboratory of Experimental Surgery,
Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen 35385, Germany
| | - Sara M. Herz
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Ka Chiang
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Siva R. Raju Kanumuri
- Department
of Pharmaceutics, University of Florida, Gainesville, Florida 32610, United States
| | - Abhisheak Sharma
- Department
of Pharmaceutics, University of Florida, Gainesville, Florida 32610, United States
| | - M. Imad Damaj
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Veronika Grau
- Department
of General and Thoracic Surgery, Laboratory of Experimental Surgery,
Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen 35385, Germany
| | - Nicole A. Horenstein
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Ganesh A. Thakur
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Fuentes-Santamaría V, Benítez-Maicán Z, Alvarado JC, Fernández Del Campo IS, Gabaldón-Ull MC, Merchán MA, Juiz JM. Surface electrical stimulation of the auditory cortex preserves efferent medial olivocochlear neurons and reduces cochlear traits of age-related hearing loss. Hear Res 2024; 447:109008. [PMID: 38636186 DOI: 10.1016/j.heares.2024.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The auditory cortex is the source of descending connections providing contextual feedback for auditory signal processing at almost all levels of the lemniscal auditory pathway. Such feedback is essential for cognitive processing. It is likely that corticofugal pathways are degraded with aging, becoming important players in age-related hearing loss and, by extension, in cognitive decline. We are testing the hypothesis that surface, epidural stimulation of the auditory cortex during aging may regulate the activity of corticofugal pathways, resulting in modulation of central and peripheral traits of auditory aging. Increased auditory thresholds during ongoing age-related hearing loss in the rat are attenuated after two weeks of epidural stimulation with direct current applied to the surface of the auditory cortex for two weeks in alternate days (Fernández del Campo et al., 2024). Here we report that the same cortical electrical stimulation protocol induces structural and cytochemical changes in the aging cochlea and auditory brainstem, which may underlie recovery of age-degraded auditory sensitivity. Specifically, we found that in 18 month-old rats after two weeks of cortical electrical stimulation there is, relative to age-matched non-stimulated rats: a) a larger number of choline acetyltransferase immunoreactive neuronal cell body profiles in the ventral nucleus of the trapezoid body, originating the medial olivocochlear system.; b) a reduction of age-related dystrophic changes in the stria vascularis; c) diminished immunoreactivity for the pro-inflammatory cytokine TNFα in the stria vascularis and spiral ligament. d) diminished immunoreactivity for Iba1 and changes in the morphology of Iba1 immunoreactive cells in the lateral wall, suggesting reduced activation of macrophage/microglia; d) Increased immunoreactivity levels for calretinin in spiral ganglion neurons, suggesting excitability modulation by corticofugal stimulation. Altogether, these findings support that non-invasive neuromodulation of the auditory cortex during aging preserves the cochlear efferent system and ameliorates cochlear aging traits, including stria vascularis dystrophy, dysregulated inflammation and altered excitability in primary auditory neurons.
Collapse
Affiliation(s)
- V Fuentes-Santamaría
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - Z Benítez-Maicán
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - J C Alvarado
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - I S Fernández Del Campo
- Lab. of Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - M C Gabaldón-Ull
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain
| | - M A Merchán
- Lab. of Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - J M Juiz
- School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008, Albacete, Spain; Hannover Medical School, Dept. of Otolaryngology and Cluster of Excellence "H4all" of the German Research Foundation, DFG, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
8
|
Kawashima K, Mashimo M, Nomura A, Fujii T. Contributions of Non-Neuronal Cholinergic Systems to the Regulation of Immune Cell Function, Highlighting the Role of α7 Nicotinic Acetylcholine Receptors. Int J Mol Sci 2024; 25:4564. [PMID: 38674149 PMCID: PMC11050324 DOI: 10.3390/ijms25084564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Loewi's discovery of acetylcholine (ACh) release from the frog vagus nerve and the discovery by Dale and Dudley of ACh in ox spleen led to the demonstration of chemical transmission of nerve impulses. ACh is now well-known to function as a neurotransmitter. However, advances in the techniques for ACh detection have led to its discovery in many lifeforms lacking a nervous system, including eubacteria, archaea, fungi, and plants. Notably, mRNAs encoding choline acetyltransferase and muscarinic and nicotinic ACh receptors (nAChRs) have been found in uninnervated mammalian cells, including immune cells, keratinocytes, vascular endothelial cells, cardiac myocytes, respiratory, and digestive epithelial cells. It thus appears that non-neuronal cholinergic systems are expressed in a variety of mammalian cells, and that ACh should now be recognized not only as a neurotransmitter, but also as a local regulator of non-neuronal cholinergic systems. Here, we discuss the role of non-neuronal cholinergic systems, with a focus on immune cells. A current focus of much research on non-neuronal cholinergic systems in immune cells is α7 nAChRs, as these receptors expressed on macrophages and T cells are involved in regulating inflammatory and immune responses. This makes α7 nAChRs an attractive potential therapeutic target.
Collapse
Grants
- 19-31: TF; 20-25: TF. Individual Research Grants from the Doshisha Women's College of Liberal Arts
- 24590120, K.K., T.F., K.H.; 22K06638, T.F., A.N., 15K18871, M.M.; 15K07979, T.F., 15K07969-m, K.K.; 18K06903, T.F. The Ministry of Education, Science, Sports and Culture of Japan
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| | - Atsuo Nomura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| |
Collapse
|
9
|
Fischl M, Pederson A, Voglewede R, Cheng H, Drew J, Cadenas LT, Weisz CJ. Fast inhibition slows and desynchronizes mouse auditory efferent neuron activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572886. [PMID: 38313270 PMCID: PMC10836066 DOI: 10.1101/2023.12.21.572886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well-suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits. However, their modulation of cochlear function occurs over time scales of a slower nature. This suggests the presence of mechanisms that restrict MOC inhibition of cochlear function. To determine how monaural excitatory and inhibitory synaptic inputs integrate to affect the timing of MOC neuron activity, we developed a novel in vitro slice preparation ('wedge-slice'). The wedge-slice maintains the ascending auditory nerve root, the entire CN and projecting axons, while preserving the ability to perform visually guided patch-clamp electrophysiology recordings from genetically identified MOC neurons. The 'in vivo-like' timing of the wedge-slice demonstrates that the inhibitory pathway accelerates relative to the excitatory pathway when the ascending circuit is intact, and the CN portion of the inhibitory circuit is precise enough to compensate for reduced precision in later synapses. When combined with machine learning PSC analysis and computational modeling, we demonstrate a larger suppression of MOC neuron activity when the inhibition occurs with in vivo-like timing. This delay of MOC activity may ensure that the MOC system is only engaged by sustained background sounds, preventing a maladaptive hyper-suppression of cochlear activity.
Collapse
Affiliation(s)
- Matthew Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: Lafayette College, Neuroscience Program, Easton, PA 18042, USA
| | - Alia Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: The University of Texas at Austin Dell Medical School, Austin, TX 78712, USA
| | - Rebecca Voglewede
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Jordan Drew
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Catherine J.C. Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Ashmore JF, Oghalai JS, Dewey JB, Olson ES, Strimbu CE, Wang Y, Shera CA, Altoè A, Abdala C, Elgoyhen AB, Eatock RA, Raphael RM. The Remarkable Outer Hair Cell: Proceedings of a Symposium in Honour of W. E. Brownell. J Assoc Res Otolaryngol 2023; 24:117-127. [PMID: 36648734 PMCID: PMC10121982 DOI: 10.1007/s10162-022-00852-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
In 1985, Bill Brownell and colleagues published the remarkable observation that cochlear outer hair cells (OHCs) express voltage-driven mechanical motion: electromotility. They proposed OHC electromotility as the mechanism for the elusive "cochlear amplifier" required to explain the sensitivity of mammalian hearing. The finding and hypothesis stimulated an explosion of experiments that have transformed our understanding of cochlear mechanics and physiology, the evolution of hair cell structure and function, and audiology. Here, we bring together examples of current research that illustrate the continuing impact of the discovery of OHC electromotility.
Collapse
Affiliation(s)
| | - John S Oghalai
- Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, USA
| | - James B Dewey
- Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, USA
| | - Elizabeth S Olson
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Clark E Strimbu
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Yi Wang
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology and Department of Physics and Astronomy, University of Southern California, Los Angeles, USA
| | - Alessandro Altoè
- Caruso Department of Otolaryngology and Department of Physics and Astronomy, University of Southern California, Los Angeles, USA
| | - Carolina Abdala
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, USA
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
11
|
Elgoyhen AB. The α9α10 acetylcholine receptor: a non-neuronal nicotinic receptor. Pharmacol Res 2023; 190:106735. [PMID: 36931539 DOI: 10.1016/j.phrs.2023.106735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Within the superfamily of pentameric ligand-gated ion channels, cholinergic nicotinic receptors (nAChRs) were classically identified to mediate synaptic transmission in the nervous system and the neuromuscular junction. The α9 and α10 nAChR subunits were the last ones to be identified. Surprisingly, they do not fall into the dichotomic neuronal/muscle classification of nAChRs. They assemble into heteropentamers with a well-established function as canonical ion channels in inner ear hair cells, where they mediate central nervous system control of auditory and vestibular sensory processing. The present review includes expression, pharmacological, structure-function, molecular evolution and pathophysiological studies, that define receptors composed from α9 and α10 subunits as distant and distinct members within the nAChR family. Thus, although α9 and α10 were initially included within the neuronal subdivision of nAChR subunits, they form a distinct clade within the phylogeny of nAChRs. Following the classification of nAChR subunits based on their main synaptic site of action, α9 and α10 should receive a name in their own right.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| |
Collapse
|
12
|
Tae HS, Adams DJ. Nicotinic acetylcholine receptor subtype expression, function, and pharmacology: Therapeutic potential of α-conotoxins. Pharmacol Res 2023; 191:106747. [PMID: 37001708 DOI: 10.1016/j.phrs.2023.106747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The pentameric nicotinic acetylcholine receptors (nAChRs) are typically classed as muscle- or neuronal-type, however, the latter has also been reported in non-neuronal cells. Given their broad distribution, nAChRs mediate numerous physiological and pathological processes including synaptic transmission, presynaptic modulation of transmitter release, neuropathic pain, inflammation, and cancer. There are 17 different nAChR subunits and combinations of these subunits produce subtypes with diverse pharmacological properties. The expression and role of some nAChR subtypes have been extensively deciphered with the aid of knock-out models. Many nAChR subtypes expressed in heterologous systems are selectively targeted by the disulfide-rich α-conotoxins. α-Conotoxins are small peptides isolated from the venom of cone snails, and a number of them have potential pharmaceutical value.
Collapse
|
13
|
Zhang B, Ren M, Yang F, Li R, Yu L, Luo A, Zhangsun D, Luo S, Dong S. Oligo-basic amino acids, potential nicotinic acetylcholine receptor inhibitors. Biomed Pharmacother 2022; 152:113215. [PMID: 35667234 DOI: 10.1016/j.biopha.2022.113215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Oligo-basic amino acids have been extensively studied in molecular biology and pharmacology, but the inhibitory activity on nicotinic acetylcholine receptors (nAChRs) was unknown. In this study, the inhibitory activity of 8 oligopeptides, including both basic and acidic amino acids, was evaluated on 9 nAChR subtypes by a two-electrode voltage clamp (TEVC). Among them, the oligo-lysine K9, K12, d-K9, d-K9F, and oligo-arginine R9 showed nanomolar inhibitory activity on various nAChRs, especially for α7 and α9α10 nAChRs. d-K9 containing N-Fmoc protecting group (d-K9F) has an enhanced inhibitory activity on most of the nAChRs, including 47-fold promotion on α1β1δε nAChR. However, H9 and H12 only showed weak inhibitory activity on α9α10 and α1β1δε nAChRs, and the acidic oligopeptide D9 has no inhibitory activity on nAChRs. Flexible docking of K9 in α10(+) α9(-) and α7(+) α7(-) binding pockets showed particularly strong dipole-dipole interactions, which may be responsible for the inhibition of nAChRs. These results demonstrated that oligo-basic amino acids have the potential to be the lead compounds as selective nAChR subtype inhibitors, and oligo-lysines deserved to be modified for further exploitation and utilization. On the other hand, the toxicity and side effects of these nAChR inhibitory peptides should be contemplated in the application.
Collapse
Affiliation(s)
- Baojian Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Maomao Ren
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Fang Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Rui Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liutong Yu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - An Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| |
Collapse
|
14
|
Munoz F, Vicencio-Jimenez S, Jorratt P, Delano PH, Terreros G. Corticofugal and Brainstem Functions Associated With Medial Olivocochlear Cholinergic Transmission. Front Neurosci 2022; 16:866161. [PMID: 35573302 PMCID: PMC9094045 DOI: 10.3389/fnins.2022.866161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Cholinergic transmission is essential for survival and reproduction, as it is involved in several physiological responses. In the auditory system, both ascending and descending auditory pathways are modulated by cholinergic transmission, affecting the perception of sounds. The auditory efferent system is a neuronal network comprised of several feedback loops, including corticofugal and brainstem pathways to the cochlear receptor. The auditory efferent system's -final and mandatory synapses that connect the brain with the cochlear receptor- involve medial olivocochlear neurons and outer hair cells. A unique cholinergic transmission mediates these synapses through α9/α10 nicotinic receptors. To study this receptor, it was generated a strain of mice carrying a null mutation of the Chrna9 gene (α9-KO mice), lacking cholinergic transmission between medial olivocochlear neurons and outer hair cells, providing a unique opportunity to study the role of medial olivocochlear cholinergic transmission in auditory and cognitive functions. In this article, we review behavioral and physiological studies carried out to research auditory efferent function in the context of audition, cognition, and hearing impairments. Auditory studies have shown that hearing thresholds in the α9-KO mice are normal, while more complex auditory functions, such as frequency selectivity and sound localization, are altered. The corticofugal pathways have been studied in α9-KO mice using behavioral tasks, evidencing a reduced capacity to suppress auditory distractors during visual selective attention. Finally, we discuss the evolutionary role of the auditory efferent system detecting vocalizations in noise and its role in auditory disorders, such as the prevention of age-related hearing loss.
Collapse
Affiliation(s)
- Felipe Munoz
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
- Universidad de Valparaíso, Valparaíso, Chile
| | - Sergio Vicencio-Jimenez
- Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pascal Jorratt
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Paul H. Delano
- Facultad de Medicina, Neuroscience Department, Universidad de Chile, Santiago, Chile
- Department of Otolaryngology, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Facultad de Medicina, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| |
Collapse
|
15
|
Pucci S, Zoli M, Clementi F, Gotti C. α9-Containing Nicotinic Receptors in Cancer. Front Cell Neurosci 2022; 15:805123. [PMID: 35126059 PMCID: PMC8814915 DOI: 10.3389/fncel.2021.805123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors containing the α9 or the α9 and α10 subunits are expressed in various extra-neuronal tissues. Moreover, most cancer cells and tissues highly express α9-containing receptors, and a number of studies have shown that they are powerful regulators of responses that stimulate cancer processes such as proliferation, inhibition of apoptosis, and metastasis. It has also emerged that their modulation is a promising target for drug development. The aim of this review is to summarize recent data showing the involvement of these receptors in controlling the downstream signaling cascades involved in the promotion of cancer.
Collapse
Affiliation(s)
- Susanna Pucci
- Institute of Neuroscience, National Research Council (CNR), Milan, Italy
- NeuroMi Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Clementi
- Institute of Neuroscience, National Research Council (CNR), Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Gotti
- Institute of Neuroscience, National Research Council (CNR), Milan, Italy
- NeuroMi Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
- *Correspondence: Cecilia Gotti
| |
Collapse
|
16
|
Levic S. SK Current, Expressed During the Development and Regeneration of Chick Hair Cells, Contributes to the Patterning of Spontaneous Action Potentials. Front Cell Neurosci 2022; 15:766264. [PMID: 35069114 PMCID: PMC8770932 DOI: 10.3389/fncel.2021.766264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Chick hair cells display calcium (Ca2+)-sensitive spontaneous action potentials during development and regeneration. The role of this activity is unclear but thought to be involved in establishing proper synaptic connections and tonotopic maps, both of which are instrumental to normal hearing. Using an electrophysiological approach, this work investigated the functional expression of Ca2+-sensitive potassium [IK(Ca)] currents and their role in spontaneous electrical activity in the developing and regenerating hair cells (HCs) in the chick basilar papilla. The main IK(Ca) in developing and regenerating chick HCs is an SK current, based on its sensitivity to apamin. Analysis of the functional expression of SK current showed that most dramatic changes occurred between E8 and E16. Specifically, there is a developmental downregulation of the SK current after E16. The SK current gating was very sensitive to the availability of intracellular Ca2+ but showed very little sensitivity to T-type voltage-gated Ca2+ channels, which are one of the hallmarks of developing and regenerating hair cells. Additionally, apamin reduced the frequency of spontaneous electrical activity in HCs, suggesting that SK current participates in patterning the spontaneous electrical activity of HCs.
Collapse
Affiliation(s)
- Snezana Levic
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
17
|
Lipovsek M, Marcovich I, Elgoyhen AB. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Front Cell Neurosci 2021; 15:785265. [PMID: 34867208 PMCID: PMC8634148 DOI: 10.3389/fncel.2021.785265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a subfamily of pentameric ligand-gated ion channels with members identified in most eumetazoan clades. In vertebrates, they are divided into three subgroups, according to their main tissue of expression: neuronal, muscle and hair cell nAChRs. Each receptor subtype is composed of different subunits, encoded by paralogous genes. The latest to be identified are the α9 and α10 subunits, expressed in the mechanosensory hair cells of the inner ear and the lateral line, where they mediate efferent modulation. α9α10 nAChRs are the most divergent amongst all nicotinic receptors, showing marked differences in their degree of sequence conservation, their expression pattern, their subunit co-assembly rules and, most importantly, their functional properties. Here, we review recent advances in the understanding of the structure and evolution of nAChRs. We discuss the functional consequences of sequence divergence and conservation, with special emphasis on the hair cell α9α10 receptor, a seemingly distant cousin of neuronal and muscle nicotinic receptors. Finally, we highlight potential links between the evolution of the octavolateral system and the extreme divergence of vertebrate α9α10 receptors.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Irina Marcovich
- Departments of Otolaryngology & Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
Plazas PV, Elgoyhen AB. The Cholinergic Lateral Line Efferent Synapse: Structural, Functional and Molecular Similarities With Those of the Cochlea. Front Cell Neurosci 2021; 15:765083. [PMID: 34712122 PMCID: PMC8545859 DOI: 10.3389/fncel.2021.765083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Vertebrate hair cell (HC) systems are innervated by efferent fibers that modulate their response to external stimuli. In mammals, the best studied efferent-HC synapse, the cholinergic medial olivocochlear (MOC) efferent system, makes direct synaptic contacts with HCs. The net effect of MOC activity is to hyperpolarize HCs through the activation of α9α10 nicotinic cholinergic receptors (nAChRs) and the subsequent activation of Ca2+-dependent SK2 potassium channels. A serious obstacle in research on many mammalian sensory systems in their native context is that their constituent neurons are difficult to access even in newborn animals, hampering circuit observation, mapping, or controlled manipulation. By contrast, fishes and amphibians have a superficial and accessible mechanosensory system, the lateral line (LL), which circumvents many of these problems. LL responsiveness is modulated by efferent neurons which aid to distinguish between external and self-generated stimuli. One component of the LL efferent system is cholinergic and its activation inhibits LL afferent activity, similar to what has been described for MOC efferents. The zebrafish (Danio rerio) has emerged as a powerful model system for studying human hearing and balance disorders, since LL HC are structurally and functionally analogous to cochlear HCs, but are optically and pharmacologically accessible within an intact specimen. Complementing mammalian studies, zebrafish have been used to gain significant insights into many facets of HC biology, including mechanotransduction and synaptic physiology as well as mechanisms of both hereditary and acquired HC dysfunction. With the rise of the zebrafish LL as a model in which to study auditory system function and disease, there has been an increased interest in studying its efferent system and evaluate the similarity between mammalian and piscine efferent synapses. Advances derived from studies in zebrafish include understanding the effect of the LL efferent system on HC and afferent activity, and revealing that an α9-containing nAChR, functionally coupled to SK channels, operates at the LL efferent synapse. In this review, we discuss the tools and findings of these recent investigations into zebrafish efferent-HC synapse, their commonalities with the mammalian counterpart and discuss several emerging areas for future studies.
Collapse
Affiliation(s)
- Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
19
|
Matta JA, Gu S, Davini WB, Bredt DS. Nicotinic acetylcholine receptor redux: Discovery of accessories opens therapeutic vistas. Science 2021; 373:373/6556/eabg6539. [PMID: 34385370 DOI: 10.1126/science.abg6539] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neurotransmitter acetylcholine (ACh) acts in part through a family of nicotinic ACh receptors (nAChRs), which mediate diverse physiological processes including muscle contraction, neurotransmission, and sensory transduction. Pharmacologically, nAChRs are responsible for tobacco addiction and are targeted by medicines for hypertension and dementia. Nicotinic AChRs were the first ion channels to be isolated. Recent studies have identified molecules that control nAChR biogenesis, trafficking, and function. These nAChR accessories include protein and chemical chaperones as well as auxiliary subunits. Whereas some factors act on many nAChRs, others are receptor specific. Discovery of these regulatory mechanisms is transforming nAChR research in cells and tissues ranging from central neurons to spinal ganglia to cochlear hair cells. Nicotinic AChR-specific accessories also enable drug discovery on high-confidence targets for psychiatric, neurological, and auditory disorders.
Collapse
Affiliation(s)
| | | | - Weston B Davini
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA 92121, USA
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA 92121, USA.
| |
Collapse
|
20
|
Kitcher SR, Pederson AM, Weisz CJC. Diverse identities and sites of action of cochlear neurotransmitters. Hear Res 2021; 419:108278. [PMID: 34108087 DOI: 10.1016/j.heares.2021.108278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022]
Abstract
Accurate encoding of acoustic stimuli requires temporally precise responses to sound integrated with cellular mechanisms that encode the complexity of stimuli over varying timescales and orders of magnitude of intensity. Sound in mammals is initially encoded in the cochlea, the peripheral hearing organ, which contains functionally specialized cells (including hair cells, afferent and efferent neurons, and a multitude of supporting cells) to allow faithful acoustic perception. To accomplish the demanding physiological requirements of hearing, the cochlea has developed synaptic arrangements that operate over different timescales, with varied strengths, and with the ability to adjust function in dynamic hearing conditions. Multiple neurotransmitters interact to support the precision and complexity of hearing. Here, we review the location of release, action, and function of neurotransmitters in the mammalian cochlea with an emphasis on recent work describing the complexity of signaling.
Collapse
Affiliation(s)
- Siân R Kitcher
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Alia M Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
21
|
Wang Y, Sanghvi M, Gribizis A, Zhang Y, Song L, Morley B, Barson DG, Santos-Sacchi J, Navaratnam D, Crair M. Efferent feedback controls bilateral auditory spontaneous activity. Nat Commun 2021; 12:2449. [PMID: 33907194 PMCID: PMC8079389 DOI: 10.1038/s41467-021-22796-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
In the developing auditory system, spontaneous activity generated in the cochleae propagates into the central nervous system to promote circuit formation. The effects of peripheral firing patterns on spontaneous activity in the central auditory system are not well understood. Here, we describe wide-spread bilateral coupling of spontaneous activity that coincides with the period of transient efferent modulation of inner hair cells from the brainstem medial olivocochlear system. Knocking out α9/α10 nicotinic acetylcholine receptors, a requisite part of the efferent pathway, profoundly reduces bilateral correlations. Pharmacological and chemogenetic experiments confirm that the efferent system is necessary for normal bilateral coupling. Moreover, auditory sensitivity at hearing onset is reduced in the absence of pre-hearing efferent modulation. Together, these results demonstrate how afferent and efferent pathways collectively shape spontaneous activity patterns and reveal the important role of efferents in coordinating bilateral spontaneous activity and the emergence of functional responses during the prehearing period.
Collapse
Affiliation(s)
- Yixiang Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Maya Sanghvi
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, USA
| | - Yueyi Zhang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Barbara Morley
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Daniel G Barson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph Santos-Sacchi
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dhasakumar Navaratnam
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Marchetta P, Rüttiger L, Hobbs AJ, Singer W, Knipper M. The role of cGMP signalling in auditory processing in health and disease. Br J Pharmacol 2021; 179:2378-2393. [PMID: 33768519 DOI: 10.1111/bph.15455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
cGMP is generated by the cGMP-forming guanylyl cyclases (GCs), the intracellular nitric oxide (NO)-sensitive (soluble) guanylyl cyclase (sGC) and transmembrane GC (e.g. GC-A and GC-B). In summarizing the particular role of cGMP signalling for hearing, we show that GC generally do not interfere significantly with basic hearing function but rather sustain a healthy state for proper temporal coding, fast discrimination and adjustments during injury. sGC is critical for the integrity of the first synapse in the ascending auditory pathway, the inner hair cell synapse. GC-A promotes hair cell stability under stressful conditions such as acoustic trauma or ageing. GC-B plays a role in the development of efferent feed-back and gain control. Regarding the crucial role hearing has for language development, speech discrimination and cognitive brain functions, differential pharmaceutical targeting of GCs offers therapeutic promise for the restoration of hearing.
Collapse
Affiliation(s)
- Philine Marchetta
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Wibke Singer
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Marcovich I, Moglie MJ, Carpaneto Freixas AE, Trigila AP, Franchini LF, Plazas PV, Lipovsek M, Elgoyhen AB. Distinct Evolutionary Trajectories of Neuronal and Hair Cell Nicotinic Acetylcholine Receptors. Mol Biol Evol 2021; 37:1070-1089. [PMID: 31821508 PMCID: PMC7086180 DOI: 10.1093/molbev/msz290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The expansion and pruning of ion channel families has played a crucial role in the evolution of nervous systems. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels with distinct roles in synaptic transmission at the neuromuscular junction, the central and peripheral nervous system, and the inner ear. Remarkably, the complement of nAChR subunits has been highly conserved along vertebrate phylogeny. To ask whether the different subtypes of receptors underwent different evolutionary trajectories, we performed a comprehensive analysis of vertebrate nAChRs coding sequences, mouse single-cell expression patterns, and comparative functional properties of receptors from three representative tetrapod species. We found significant differences between hair cell and neuronal receptors that were most likely shaped by the differences in coexpression patterns and coassembly rules of component subunits. Thus, neuronal nAChRs showed high degree of coding sequence conservation, coupled to greater coexpression variance and conservation of functional properties across tetrapod clades. In contrast, hair cell α9α10 nAChRs exhibited greater sequence divergence, narrow coexpression pattern, and great variability of functional properties across species. These results point to differential substrates for random change within the family of gene paralogs that relate to the segregated roles of nAChRs in synaptic transmission.
Collapse
Affiliation(s)
- Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo J Moglie
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Agustín E Carpaneto Freixas
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucia F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Centre for Developmental Neurobiology, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, London, United Kingdom
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Moglie MJ, Marcovich I, Corradi J, Carpaneto Freixas AE, Gallino S, Plazas PV, Bouzat C, Lipovsek M, Elgoyhen AB. Loss of Choline Agonism in the Inner Ear Hair Cell Nicotinic Acetylcholine Receptor Linked to the α10 Subunit. Front Mol Neurosci 2021; 14:639720. [PMID: 33613194 PMCID: PMC7892445 DOI: 10.3389/fnmol.2021.639720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
The α9α10 nicotinic acetylcholine receptor (nAChR) plays a fundamental role in inner ear physiology. It mediates synaptic transmission between efferent olivocochlear fibers that descend from the brainstem and hair cells of the auditory sensory epithelium. The α9 and α10 subunits have undergone a distinct evolutionary history within the family of nAChRs. Predominantly in mammalian vertebrates, the α9α10 receptor has accumulated changes at the protein level that may ultimately relate to the evolutionary history of the mammalian hearing organ. In the present work, we investigated the responses of α9α10 nAChRs to choline, the metabolite of acetylcholine degradation at the synaptic cleft. Whereas choline is a full agonist of chicken α9α10 receptors it is a partial agonist of the rat receptor. Making use of the expression of α9α10 heterologous receptors, encompassing wild-type, heteromeric, homomeric, mutant, chimeric, and hybrid receptors, and in silico molecular docking, we establish that the mammalian (rat) α10 nAChR subunit underscores the reduced efficacy of choline. Moreover, we show that whereas the complementary face of the α10 subunit does not play an important role in the activation of the receptor by ACh, it is strictly required for choline responses. Thus, we propose that the evolutionary changes acquired in the mammalian α9α10 nAChR resulted in the loss of choline acting as a full agonist at the efferent synapse, without affecting the triggering of ACh responses. This may have accompanied the fine-tuning of hair cell post-synaptic responses to the high-frequency activity of efferent medial olivocochlear fibers that modulate the cochlear amplifier.
Collapse
Affiliation(s)
- Marcelo J. Moglie
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jeremías Corradi
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Agustín E. Carpaneto Freixas
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sofía Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola V. Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centre for Developmental Neurobiology, King’s College London, Institute of Psychiatry, Psychology, and Neuroscience, Guy’s Campus, London, United Kingdom
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Webber JL, Clancy JC, Zhou Y, Yraola N, Homma K, García-Añoveros J. Axodendritic versus axosomatic cochlear efferent termination is determined by afferent type in a hierarchical logic of circuit formation. SCIENCE ADVANCES 2021; 7:7/4/eabd8637. [PMID: 33523928 PMCID: PMC7817091 DOI: 10.1126/sciadv.abd8637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/03/2020] [Indexed: 05/09/2023]
Abstract
Hearing involves a stereotyped neural network communicating cochlea and brain. How this sensorineural circuit assembles is largely unknown. The cochlea houses two types of mechanosensory hair cells differing in function (sound transmission versus amplification) and location (inner versus outer compartments). Inner (IHCs) and outer hair cells (OHCs) are each innervated by a distinct pair of afferent and efferent neurons: IHCs are contacted by type I afferents receiving axodendritic efferent contacts; OHCs are contacted by type II afferents and axosomatically terminating efferents. Using an Insm1 mouse mutant with IHCs in the position of OHCs, we discover a hierarchical sequence of instructions in which first IHCs attract, and OHCs repel, type I afferents; second, type II afferents innervate hair cells not contacted by type I afferents; and last, afferent fiber type determines if and how efferents innervate, whether axodendritically on the afferent, axosomatically on the hair cell, or not at all.
Collapse
Affiliation(s)
- Jemma L Webber
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John C Clancy
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yingjie Zhou
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Natalia Yraola
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and its Disorders, Northwestern University, Chicago, IL 60611, USA
| | - Jaime García-Añoveros
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and its Disorders, Northwestern University, Chicago, IL 60611, USA
- Departments of Neurology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Li X, Tae HS, Chu Y, Jiang T, Adams DJ, Yu R. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacol Ther 2020; 222:107792. [PMID: 33309557 DOI: 10.1016/j.pharmthera.2020.107792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
α-Conotoxins are disulfide-rich and well-structured peptides, most of which can block nicotinic acetylcholine receptors (nAChRs) with exquisite selectivity and potency. There are various nAChR subtypes, of which the α9α10 nAChR functions as a heteromeric ionotropic receptor in the mammalian cochlea and mediates postsynaptic transmission from the medial olivocochlear. The α9α10 nAChR subtype has also been proposed as a target for the treatment of neuropathic pain and the suppression of breast cancer cell proliferation. Therefore, α-conotoxins targeting the α9α10 nAChR are potentially useful in the development of specific therapeutic drugs and pharmacological tools. Despite dissimilarities in their amino acid sequence and structures, these conopeptides are potent antagonists of the α9α10 nAChR subtype. Consequently, the activity and stability of these peptides have been subjected to chemical modifications. The resulting synthetic analogues have not only functioned as molecular probes to explore ligand binding sites of the α9α10 nAChR, but also have the potential to become candidates for drug development. From the perspectives of medicinal chemistry and pharmacology, we highlight the structure and function of the α9α10 nAChR and review studies of α-conotoxins targeting it, including their three-dimensional structures, structure optimization strategies, and binding modes at the α9α10 nAChR, as well as their therapeutic potential.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Yanyan Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
27
|
Unraveling the Molecular Players at the Cholinergic Efferent Synapse of the Zebrafish Lateral Line. J Neurosci 2020; 41:47-60. [PMID: 33203744 DOI: 10.1523/jneurosci.1772-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The lateral line (LL) is a sensory system that allows fish and amphibians to detect water currents. LL responsiveness is modulated by efferent neurons that aid in distinguishing between external and self-generated stimuli, maintaining sensitivity to relevant cues. One component of the efferent system is cholinergic, the activation of which inhibits afferent activity. LL hair cells (HCs) share structural, functional, and molecular similarities with those of the cochlea, making them a popular model for studying human hearing and balance disorders. Because of these commonalities, one could propose that the receptor at the LL efferent synapse is a α9α10 nicotinic acetylcholine receptor (nAChR). However, the identities of the molecular players underlying ACh-mediated inhibition in the LL remain unknown. Surprisingly, through the analysis of single-cell expression studies and in situ hybridization, we describe that α9, but not the α10, subunits are enriched in zebrafish HCs. Moreover, the heterologous expression of zebrafish α9 subunits indicates that homomeric receptors are functional and exhibit robust ACh-gated currents blocked by α-bungarotoxin and strychnine. In addition, in vivo Ca2+ imaging on mechanically stimulated zebrafish LL HCs show that ACh elicits a decrease in evoked Ca2+ signals, regardless of HC polarity. This effect is blocked by both α-bungarotoxin and apamin, indicating coupling of ACh-mediated effects to small-conductance Ca2+-activated potassium (SKs) channels. Our results indicate that an α9-containing (α9*) nAChR operates at the zebrafish LL efferent synapse. Moreover, the activation of α9* nAChRs most likely leads to LL HC hyperpolarization served by SK channels.SIGNIFICANCE STATEMENT The fish lateral line (LL) mechanosensory system shares structural, functional, and molecular similarities with those of the mammalian cochlea. Thus, it has become an accessible model for studying human hearing and balance disorders. However, the molecular players serving efferent control of LL hair cell (HC) activity have not been identified. Here we demonstrate that, different from the hearing organ of vertebrate species, a nicotinic acetylcholine receptor composed only of α9 subunits operates at the LL efferent synapse. Activation of α9-containing receptors leads to LL HC hyperpolarization because of the opening of small-conductance Ca2+-activated potassium channels. These results will further aid in the interpretation of data obtained from LL HCs as a model for cochlear HCs.
Collapse
|
28
|
Hair cell α9α10 nicotinic acetylcholine receptor functional expression regulated by ligand binding and deafness gene products. Proc Natl Acad Sci U S A 2020; 117:24534-24544. [PMID: 32929005 DOI: 10.1073/pnas.2013762117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Auditory hair cells receive olivocochlear efferent innervation, which refines tonotopic mapping, improves sound discrimination, and mitigates acoustic trauma. The olivocochlear synapse involves α9α10 nicotinic acetylcholine receptors (nAChRs), which assemble in hair cells only coincident with cholinergic innervation and do not express in recombinant mammalian cell lines. Here, genome-wide screening determined that assembly and surface expression of α9α10 require ligand binding. Ion channel function additionally demands an auxiliary subunit, which can be transmembrane inner ear (TMIE) or TMEM132e. Both of these single-pass transmembrane proteins are enriched in hair cells and underlie nonsyndromic human deafness. Inner hair cells from TMIE mutant mice show altered postsynaptic α9α10 function and retain α9α10-mediated transmission beyond the second postnatal week associated with abnormally persistent cholinergic innervation. Collectively, this study provides a mechanism to link cholinergic input with α9α10 assembly, identifies unexpected functions for human deafness genes TMIE/TMEM132e, and enables drug discovery for this elusive nAChR implicated in prevalent auditory disorders.
Collapse
|
29
|
Fischl MJ, Weisz CJC. In Vitro Wedge Slice Preparation for Mimicking In Vivo Neuronal Circuit Connectivity. J Vis Exp 2020. [PMID: 32894269 DOI: 10.3791/61664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In vitro slice electrophysiology techniques measure single-cell activity with precise electrical and temporal resolution. Brain slices must be relatively thin to properly visualize and access neurons for patch-clamping or imaging, and in vitro examination of brain circuitry is limited to only what is physically present in the acute slice. To maintain the benefits of in vitro slice experimentation while preserving a larger portion of presynaptic nuclei, we developed a novel slice preparation. This "wedge slice" was designed for patch-clamp electrophysiology recordings to characterize the diverse monaural, sound-driven inputs to medial olivocochlear (MOC) neurons in the brainstem. These neurons receive their primary afferent excitatory and inhibitory inputs from neurons activated by stimuli in the contralateral ear and corresponding cochlear nucleus (CN). An asymmetrical brain slice was designed which is thickest in the rostro-caudal domain at the lateral edge of one hemisphere and then thins towards the lateral edge of the opposite hemisphere. This slice contains, on the thick side, the auditory nerve root conveying information about auditory stimuli to the brain, the intrinsic CN circuitry, and both the disynaptic excitatory and trisynaptic inhibitory afferent pathways that converge on contralateral MOC neurons. Recording is performed from MOC neurons on the thin side of the slice, where they are visualized using DIC optics for typical patch-clamp experiments. Direct stimulation of the auditory nerve is performed as it enters the auditory brainstem, allowing for intrinsic CN circuit activity and synaptic plasticity to occur at synapses upstream of MOC neurons. With this technique, one can mimic in vivo circuit activation as closely as possible within the slice. This wedge slice preparation is applicable to other brain circuits where circuit analyses would benefit from preservation of upstream connectivity and long-range inputs, in combination with the technical advantages of in vitro slice physiology.
Collapse
Affiliation(s)
- Matthew J Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH;
| |
Collapse
|
30
|
Weir K, Dupre C, van Giesen L, Lee ASY, Bellono NW. A molecular filter for the cnidarian stinging response. eLife 2020; 9:e57578. [PMID: 32452384 PMCID: PMC7250568 DOI: 10.7554/elife.57578] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023] Open
Abstract
All animals detect and integrate diverse environmental signals to mediate behavior. Cnidarians, including jellyfish and sea anemones, both detect and capture prey using stinging cells called nematocytes which fire a venom-covered barb via an unknown triggering mechanism. Here, we show that nematocytes from Nematostella vectensis use a specialized voltage-gated calcium channel (nCaV) to distinguish salient sensory cues and control the explosive discharge response. Adaptations in nCaV confer unusually sensitive, voltage-dependent inactivation to inhibit responses to non-prey signals, such as mechanical water turbulence. Prey-derived chemosensory signals are synaptically transmitted to acutely relieve nCaV inactivation, enabling mechanosensitive-triggered predatory attack. These findings reveal a molecular basis for the cnidarian stinging response and highlight general principles by which single proteins integrate diverse signals to elicit discrete animal behaviors.
Collapse
Affiliation(s)
- Keiko Weir
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Christophe Dupre
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Lena van Giesen
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Amy S-Y Lee
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
31
|
Papke RL, Lindstrom JM. Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology 2020; 168:108021. [PMID: 32146229 PMCID: PMC7610230 DOI: 10.1016/j.neuropharm.2020.108021] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022]
Abstract
Postsynaptic nAChRs in the peripheral nervous system are critical for neuromuscular and autonomic neurotransmission. Pre- and peri-synaptic nAChRs in the brain modulate neurotransmission and are responsible for the addictive effects of nicotine. Subtypes of nAChRs in lymphocytes and non-synaptic locations may modulate inflammation and other cellular functions. All AChRs that function as ligand-gated ion channels are formed from five homologous subunits organized to form a central cation channel whose opening is regulated by ACh bound at extracellular subunit interfaces. nAChR subtype subunit composition can range from α7 homomers to α4β2α6β2β3 heteromers. Subtypes differ in affinities for ACh and other agonists like nicotine and in efficiencies with which their channels are opened and desensitized. Subtypes also differ in affinities for antagonists and for positive and negative allosteric modulators. Some agonists are "silent" with respect to channel opening, and AChRs may be able to signal metabotropic pathways by releasing G-proteins independent of channel opening. Electrophysiological studies that can resolve single-channel openings and molecular genetic approaches have allowed characterization of the structures of ligand binding sites, the cation channel, and the linkages between them, as well as the organization of AChR subunits and their contributions to function. Crystallography and cryo-electron-microscopy are providing increasing insights into the structures and functions of AChRs. However, much remains to be learned about both AChR structure and function, the in vivo functional roles of some AChR subtypes, and the development of better pharmacological tools directed at AChRs to treat addiction, pain, inflammation, and other medically important issues. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA.
| | - Jon M Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Torres Cadenas L, Fischl MJ, Weisz CJC. Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of the Medial Nucleus of the Trapezoid Body. J Neurosci 2020; 40:509-525. [PMID: 31719165 PMCID: PMC6961997 DOI: 10.1523/jneurosci.1288-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Medial olivocochlear (MOC) efferent neurons in the brainstem comprise the final stage of descending control of the mammalian peripheral auditory system through axon projections to the cochlea. MOC activity adjusts cochlear gain and frequency tuning, and protects the ear from acoustic trauma. The neuronal pathways that activate and modulate the MOC somata in the brainstem to drive these cochlear effects are poorly understood. Evidence suggests that MOC neurons are primarily excited by sound stimuli in a three-neuron activation loop from the auditory nerve via an intermediate neuron in the cochlear nucleus. Anatomical studies suggest that MOC neurons receive diverse synaptic inputs, but the functional effect of additional synaptic influences on MOC neuron responses is unknown. Here we use patch-clamp electrophysiological recordings from identified MOC neurons in brainstem slices from mice of either sex to demonstrate that in addition to excitatory glutamatergic synapses, MOC neurons receive inhibitory GABAergic and glycinergic synaptic inputs. These synapses are activated by electrical stimulation of axons near the medial nucleus of the trapezoid body (MNTB). Focal glutamate uncaging confirms MNTB neurons as a source of inhibitory synapses onto MOC neurons. MNTB neurons inhibit MOC action potentials, but this effect depresses with repeat activation. This work identifies a new pathway of connectivity between brainstem auditory neurons and indicates that MOC neurons are both excited and inhibited by sound stimuli received at the same ear. The pathway depression suggests that the effect of MNTB inhibition of MOC neurons diminishes over the course of a sustained sound.SIGNIFICANCE STATEMENT Medial olivocochlear (MOC) neurons are the final stage of descending control of the mammalian auditory system and exert influence on cochlear mechanics to modulate perception of acoustic stimuli. The brainstem pathways that drive MOC function are poorly understood. Here we show for the first time that MOC neurons are inhibited by neurons of the MNTB, which may suppress the effects of MOC activity on the cochlea.
Collapse
Affiliation(s)
- Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Matthew J Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| |
Collapse
|
33
|
Kuenzel T. Modulatory influences on time-coding neurons in the ventral cochlear nucleus. Hear Res 2019; 384:107824. [DOI: 10.1016/j.heares.2019.107824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
|
34
|
Chu X, Tae HS, Xu Q, Jiang T, Adams DJ, Yu R. α-Conotoxin Vc1.1 Structure-Activity Relationship at the Human α9α10 Nicotinic Acetylcholine Receptor Investigated by Minimal Side Chain Replacement. ACS Chem Neurosci 2019; 10:4328-4336. [PMID: 31411453 DOI: 10.1021/acschemneuro.9b00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α-Conotoxin Vc1.1 inhibits the nicotinic acetylcholine receptor (nAChR) α9α10 subtype and has the potential to treat neuropathic chronic pain. To date, the crystal structure of Vc1.1-bound α9α10 nAChR remains unavailable; thus, understanding the structure-activity relationship of Vc1.1 with the α9α10 nAChR remains challenging. In this study, the Vc1.1 side chains were minimally modified to avoid introducing large local conformation perturbation to the interactions between Vc1.1 and α9α10 nAChR. The results suggest that the hydroxyl group of Vc1.1, Y10, forms a hydrogen bond with the carbonyl group of α9 N107 and a hydrogen bond donor is required. However, Vc1.1 S4 is adjacent to the α9 D166 and D169, and a positive charge residue at this position increases the binding affinity of Vc1.1. Furthermore, the carboxyl group of Vc1.1, D11, forms two hydrogen bonds with α9 N154 and R81, respectively, whereas introducing an extra carboxyl group at this position significantly decreases the potency of Vc1.1. Second-generation mutants of Vc1.1 [S4 Dab, N9A] and [S4 Dab, N9W] increased potency at the α9α10 nAChR by 20-fold compared with that of Vc1.1. The [S4 Dab, N9W] mutational effects at positions 4 and 9 of Vc1.1 are not cumulative but are coupled with each other. Overall, our findings provide valuable insights into the structure-activity relationship of Vc1.1 with the α9α10 nAChR and will contribute to further development of more potent and specific Vc1.1 analogues.
Collapse
Affiliation(s)
- Xin Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Qingliang Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
35
|
Arias HR, Jin XT, Gallino S, Peng C, Feuerbach D, García-Colunga J, Elgoyhen AB, Drenan RM, Ortells MO. Selectivity of (±)-citalopram at nicotinic acetylcholine receptors and different inhibitory mechanisms between habenular α3β4* and α9α10 subtypes. Neurochem Int 2019; 131:104552. [PMID: 31545995 DOI: 10.1016/j.neuint.2019.104552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 01/31/2023]
Abstract
The inhibitory activity of (±)-citalopram on human (h) α3β4, α4β2, and α7 nicotinic acetylcholine receptors (AChRs) was determined by Ca2+ influx assays, whereas its effect on rat α9α10 and mouse habenular α3β4* AChRs by electrophysiological recordings. The Ca2+ influx results clearly establish that (±)-citalopram inhibits (IC50's in μM) hα3β4 AChRs (5.1 ± 1.3) with higher potency than that for hα7 (18.8 ± 1.1) and hα4β2 (19.1 ± 4.2) AChRs. This is in agreement with the [3H]imipramine competition binding results indicating that (±)-citalopram binds to imipramine sites at desensitized hα3β4 with >2-fold higher affinity than that for hα4β2. The electrophysiological, molecular docking, and in silico mutation results indicate that (±)-citalopram competitively inhibits rα9α10 AChRs (7.5 ± 0.9) in a voltage-independent manner by interacting mainly with orthosteric sites, whereas it inhibits a homogeneous population of α3β4* AChRs at MHb (VI) neurons (7.6 ± 1.0) in a voltage-dependent manner by interacting mainly with a luminal site located in the middle of the ion channel, overlapping the imipramine site, which suggests an ion channel blocking mechanism. In conclusion, (±)-citalopram inhibits α3β4 and α9α10 AChRs with higher potency compared to other AChRs but by different mechanisms. (±)-Citalopram also inhibits habenular α3β4*AChRs, supporting the notion that these receptors are important endogenous targets related to their anti-addictive activities.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, College of Osteopathic Medicine, Oklahoma State University Center for Health Sciences, Tahlequah, OK, USA.
| | - Xiao-Tao Jin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sofía Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, CONICET, Universidad de Buenos Aires, Argentina
| | - Can Peng
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, CONICET, Universidad de Buenos Aires, Argentina; Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón, Morón and CONICET, Argentina.
| |
Collapse
|
36
|
Fischl MJ, Ueberfuhr MA, Drexl M, Pagella S, Sinclair JL, Alexandrova O, Deussing JM, Kopp-Scheinpflug C. Urocortin 3 signalling in the auditory brainstem aids recovery of hearing after reversible noise-induced threshold shift. J Physiol 2019; 597:4341-4355. [PMID: 31270820 PMCID: PMC6852351 DOI: 10.1113/jp278132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/03/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ongoing, moderate noise exposure does not instantly damage the auditory system but may cause lasting deficits, such as elevated thresholds and accelerated ageing of the auditory system. The neuromodulatory peptide urocortin-3 (UCN3) is involved in the body's recovery from a stress response, and is also expressed in the cochlea and the auditory brainstem. Lack of UCN3 facilitates age-induced hearing loss and causes permanently elevated auditory thresholds following a single 2 h noise exposure at moderate intensities. Outer hair cell function in mice lacking UCN3 is unaffected, so that the observed auditory deficits are most likely due to inner hair cell function or central mechanisms. Highly specific, rather than ubiquitous, expression of UCN3 in the brain renders it a promising candidate for designing drugs to ameliorate stress-related auditory deficits, including recovery from acoustic trauma. ABSTRACT Environmental acoustic noise is omnipresent in our modern society, with sound levels that are considered non-damaging still causing long-lasting or permanent changes in the auditory system. The small neuromodulatory peptide urocortin-3 (UCN3) is the endogenous ligand for corticotropin-releasing factor receptor type 2 and together they are known to play an important role in stress recovery. UCN3 expression has been observed in the auditory brainstem, but its role remains unclear. Here we describe the detailed distribution of UCN3 expression in the murine auditory brainstem and provide evidence that UCN3 is expressed in the synaptic region of inner hair cells in the cochlea. We also show that mice with deficient UCN3 signalling experience premature ageing of the auditory system starting at an age of 4.7 months with significantly elevated thresholds of auditory brainstem responses (ABRs) compared to age-matched wild-type mice. Following a single, 2 h exposure to moderate (84 or 94 dB SPL) noise, UCN3-deficient mice exhibited significantly larger shifts in ABR thresholds combined with maladaptive recovery. In wild-type mice, the same noise exposure did not cause lasting changes to auditory thresholds. The presence of UCN3-expressing neurons throughout the auditory brainstem and the predisposition to hearing loss caused by preventing its normal expression suggests UCN3 as an important neuromodulatory peptide in the auditory system's response to loud sounds.
Collapse
Affiliation(s)
- Matthew J Fischl
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Margarete A Ueberfuhr
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Markus Drexl
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Sara Pagella
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - James L Sinclair
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Olga Alexandrova
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
37
|
Kearney G, Zorrilla de San Martín J, Vattino LG, Elgoyhen AB, Wedemeyer C, Katz E. Developmental Synaptic Changes at the Transient Olivocochlear-Inner Hair Cell Synapse. J Neurosci 2019; 39:3360-3375. [PMID: 30755493 PMCID: PMC6495135 DOI: 10.1523/jneurosci.2746-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
In the mature mammalian cochlea, inner hair cells (IHCs) are mainly innervated by afferent fibers that convey sound information to the CNS. During postnatal development, however, medial olivocochlear (MOC) efferent fibers transiently innervate the IHCs. The MOC-IHC synapse, functional from postnatal day 0 (P0) to hearing onset (P12), undergoes dramatic changes in the sensitivity to acetylcholine (ACh) and in the expression of key postsynaptic proteins. To evaluate whether there are associated changes in the properties of ACh release during this period, we used a cochlear preparation from mice of either sex at P4, P6-P7, and P9-P11 and monitored transmitter release from MOC terminals in voltage-clamped IHCs in the whole-cell configuration. The quantum content increased 5.6× from P4 to P9-P11 due to increases in the size and replenishment rate of the readily releasable pool of synaptic vesicles without changes in their probability of release or quantum size. This strengthening in transmission was accompanied by changes in short-term plasticity properties, which switched from facilitation at P4 to depression at P9-P11. We have previously shown that at P9-P11, ACh release is supported by P/Q- and N-type voltage-gated calcium channels (VGCCs) and negatively regulated by BK potassium channels activated by Ca2+ influx through L-type VGCCs. We now show that at P4 and P6-P7, release is mediated by P/Q-, R- and L-type VGCCs. Interestingly, L-type VGCCs have a dual role: they both support release and fuel BK channels, suggesting that at immature stages presynaptic proteins involved in release are less compartmentalized.SIGNIFICANCE STATEMENT During postnatal development before the onset of hearing, cochlear inner hair cells (IHCs) present spontaneous Ca2+ action potentials that release glutamate at the first auditory synapse in the absence of sound stimulation. The IHC Ca2+ action potential frequency pattern, which is crucial for the correct establishment and function of the auditory system, is regulated by the efferent medial olivocochlear (MOC) system that transiently innervates IHCs during this period. We show here that developmental changes in synaptic strength and synaptic plasticity properties at the MOC-IHC synapse upon MOC fiber activation at different frequencies might be crucial for tightly shaping the pattern of afferent activity during this critical period.
Collapse
Affiliation(s)
- Graciela Kearney
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier Zorrilla de San Martín
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas G Vattino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, 1121 Ciudad Autónoma de Buenos Aires, Argentina, and
| | - Carolina Wedemeyer
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina,
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
38
|
Choi J, Kim NH, Park SH, Cho CG, Lee HJ, Kim SU, Park KS. Abnormalities of Otoacoustic Emissions in Myasthenia Gravis: Association With Serological and Electrophysiological Features. Front Neurol 2018; 9:1124. [PMID: 30619074 PMCID: PMC6306561 DOI: 10.3389/fneur.2018.01124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022] Open
Abstract
Objective: To investigate whether otoacoustic emissions (OAEs) are impaired in patients with myasthenia gravis (MG) and whether such dysfunction is associated with serological and electrophysiological features of MG. Methods: We tested 15 patients with MG (30 ears) and 10 healthy age- and sex-matched subjects (20 ears) for transiently evoked OAE (TEOAE) and distortion product OAE (DPOAE). Results: Compared with controls, MG patients revealed a significant reduction in the amplitude of TEOAEs (p < 0.05) and DPOAEs at higher frequencies between 2,026 and 4,053 Hz (p < 0.05). In the subgroup analysis, TEOAE and DPOAE amplitudes were significantly lower in the acetylcholine receptor (AChR) antibody-positive group (p < 0.05) as well as in the repetitive nerve stimulation (RNS)-positive (p < 0.05) group. In particular, the OAE alteration significantly correlated with anti-AChR antibody titers. No significant difference of the OAEs was found between thymomatous and non-thymomatous MG or between purely ocular and generalized MG. Conclusions: Our study confirms that OAEs reveal subclinical dysfunction of the cholinergic neurotransmission of cochlear outer hair cells and correlate well with electrophysiological and serological characteristics of MG patients. Our findings imply that the measurement of OAEs might increase the diagnostic accuracy and help to monitor the severity of MG.
Collapse
Affiliation(s)
- Jongsuk Choi
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam-Hee Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Ilsan, South Korea
| | - Soo-Hyun Park
- Department of Critical Care Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Chang Gun Cho
- Department of Otorhinolaryngology, Dongguk University Ilsan Hospital, Ilsan, South Korea
| | - Hyo-Jeong Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung Un Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Seok Park
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
39
|
Frank MM, Goodrich LV. Talking back: Development of the olivocochlear efferent system. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e324. [PMID: 29944783 PMCID: PMC6185769 DOI: 10.1002/wdev.324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
|
40
|
Wolter S, Möhrle D, Schmidt H, Pfeiffer S, Zelle D, Eckert P, Krämer M, Feil R, Pilz PKD, Knipper M, Rüttiger L. GC-B Deficient Mice With Axon Bifurcation Loss Exhibit Compromised Auditory Processing. Front Neural Circuits 2018; 12:65. [PMID: 30275816 PMCID: PMC6152484 DOI: 10.3389/fncir.2018.00065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory axon T-like branching (bifurcation) in neurons from dorsal root ganglia and cranial sensory ganglia depends on the molecular signaling cascade involving the secreted factor C-type natriuretic peptide, the natriuretic peptide receptor guanylyl cyclase B (GC-B; also known as Npr2) and cGMP-dependent protein kinase I (cGKI, also known as PKGI). The bifurcation of cranial nerves is suggested to be important for information processing by second-order neurons in the hindbrain or spinal cord. Indeed, mice with a spontaneous GC-B loss of function mutation (Npr2cn/cn ) display an impaired bifurcation of auditory nerve (AN) fibers. However, these mice did not show any obvious sign of impaired basal hearing. Here, we demonstrate that mice with a targeted inactivation of the GC-B gene (Npr2 lacZ/lacZ , GC-B KO mice) show an elevation of audiometric thresholds. In the inner ear, the cochlear hair cells in GC-B KO mice were nevertheless similar to those from wild type mice, justified by the typical expression of functionally relevant marker proteins. However, efferent cholinergic feedback to inner and outer hair cells was reduced in GC-B KO mice, linked to very likely reduced rapid efferent feedback. Sound-evoked AN responses of GC-B KO mice were elevated, a feature that is known to occur when the efferent axo-dendritic feedback on AN is compromised. Furthermore, late sound-evoked brainstem responses were significantly delayed in GC-B KO mice. This delay in sound response was accompanied by a weaker sensitivity of the auditory steady state response to amplitude-modulated sound stimuli. Finally, the acoustic startle response (ASR) - one of the fastest auditory responses - and the prepulse inhibition of the ASR indicated significant changes in temporal precision of auditory processing. These findings suggest that GC-B-controlled axon bifurcation of spiral ganglion neurons is important for proper activation of second-order neurons in the hindbrain and is a prerequisite for proper temporal auditory processing likely by establishing accurate efferent top-down control circuits. These data hypothesize that the bifurcation pattern of cranial nerves is important to shape spatial and temporal information processing for sensory feedback control.
Collapse
Affiliation(s)
- Steffen Wolter
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Dorit Möhrle
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sylvia Pfeiffer
- Department of Animal Physiology, University of Tübingen, Tübingen, Germany
| | - Dennis Zelle
- Department of Otolaryngology, Head and Neck Surgery, Physiological Acoustics and Communication, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Michael Krämer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Peter K D Pilz
- Department of Animal Physiology, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
41
|
Morley BJ, Whiteaker P, Elgoyhen AB. Commentary: Nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice. Front Cell Neurosci 2018; 12:104. [PMID: 29765305 PMCID: PMC5938352 DOI: 10.3389/fncel.2018.00104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/03/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ana B Elgoyhen
- CONICET, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres (INGEBI), Buenos Aires, Argentina.,Facultad de Medicinia, Instiuto de Farmaologia, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
42
|
Arias HR, Vázquez-Gómez E, Hernández-Abrego A, Gallino S, Feuerbach D, Ortells MO, Elgoyhen AB, García-Colunga J. Tricyclic antidepressants inhibit hippocampal α7* and α9α10 nicotinic acetylcholine receptors by different mechanisms. Int J Biochem Cell Biol 2018; 100:1-10. [PMID: 29704625 DOI: 10.1016/j.biocel.2018.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Abstract
The activity of tricyclic antidepressants (TCAs) at α7 and α9α10 nicotinic acetylcholine receptors (AChRs) as well as at hippocampal α7-containing (i.e., α7*) AChRs is determined by using Ca2+ influx and electrophysiological recordings. To determine the inhibitory mechanisms, additional functional tests and molecular docking experiments are performed. The results established that TCAs (a) inhibit Ca2+ influx in GH3-α7 cells with the following potency (IC50 in μM) rank: amitriptyline (2.7 ± 0.3) > doxepin (5.9 ± 1.1) ∼ imipramine (6.6 ± 1.0). Interestingly, imipramine inhibits hippocampal α7* AChRs (42.2 ± 8.5 μM) in a noncompetitive and voltage-dependent manner, whereas it inhibits α9α10 AChRs (0.53 ± 0.05 μM) in a competitive and voltage-independent manner, and (b) inhibit [3H]imipramine binding to resting α7 AChRs with the following affinity rank (IC50 in μM): imipramine (1.6 ± 0.2) > amitriptyline (2.4 ± 0.3) > doxepin (4.9 ± 0.6), whereas imipramine's affinity was no significantly different to that for the desensitized state. The molecular docking and functional results support the notion that imipramine noncompetitively inhibits α7 AChRs by interacting with two overlapping luminal sites, whereas it competitively inhibits α9α10 AChRs by interacting with the orthosteric sites. Collectively our data indicate that TCAs inhibit α7, α9α10, and hippocampal α7* AChRs at clinically relevant concentrations and by different mechanisms of action.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA.
| | - Elizabeth Vázquez-Gómez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Andy Hernández-Abrego
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Sofía Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | - Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón, Morón, CONICET, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
43
|
Poppi LA, Tabatabaee H, Drury HR, Jobling P, Callister RJ, Migliaccio AA, Jordan PM, Holt JC, Rabbitt RD, Lim R, Brichta AM. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells. J Neurophysiol 2017; 119:312-325. [PMID: 28978760 DOI: 10.1152/jn.00030.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9-/-) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9-/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted efferent mechanism for altering hair cell membrane potential and decreasing membrane resistance that should reduce sensitivity to hair bundle displacements.
Collapse
Affiliation(s)
- Lauren A Poppi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | - Hessam Tabatabaee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | - Hannah R Drury
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | | | - Paivi M Jordan
- Department of Otolaryngology, University of Rochester , Rochester, New York
| | - Joseph C Holt
- Department of Otolaryngology, University of Rochester , Rochester, New York
| | - Richard D Rabbitt
- Department of Bioengineering, University of Utah , Salt Lake City, Utah
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| | - Alan M Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute , Newcastle, New South Wales , Australia
| |
Collapse
|
44
|
Morley BJ, Dolan DF, Ohlemiller KK, Simmons DD. Generation and Characterization of α9 and α10 Nicotinic Acetylcholine Receptor Subunit Knockout Mice on a C57BL/6J Background. Front Neurosci 2017; 11:516. [PMID: 28983232 PMCID: PMC5613126 DOI: 10.3389/fnins.2017.00516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/01/2017] [Indexed: 11/13/2022] Open
Abstract
We generated constitutive knockout mouse models for the α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits by derivation from conditional knockouts by breeding with CRE deleter mice. We then backcrossed them onto a C57BL/6J genetic background. In this manuscript, we report the generation of the strains and an auditory phenotypic characterization of the constitutive α9 and α10 knockouts and a double α9α10 constitutive knockout. Although the α9 and α10 nAChR subunits are relevant to a number of physiological measures, we chose to characterize the mouse with auditory studies to compare them to existing but different α9 and α10 nAChR knockouts (KOs). Auditory brainstem response (ABR) measurements and distortion product otoacoustic emissions (DPOAEs) showed that all constitutive mouse strains had normal hearing. DPOAEs with contralateral noise (efferent adaptation measurements), however, showed that efferent strength was significantly reduced after deletion of both the α9 and α10 subunits, in comparison to wildtype controls. Animals tested were 3-8 weeks of age and efferent strength was not correlated with age. Confocal studies of single and double constitutive KOs showed that all KOs had abnormal efferent innervation of cochlear hair cells. The morphological results are similar to those obtained in other strains using constitutive deletion of exon 4 of α9 or α10 nAChR. The results of our physiological studies, however, differ from previous auditory studies using a α9 KO generated by deletion of the exon 4 region and backcrossed onto a mixed CBA/CaJ X 129Sv background.
Collapse
Affiliation(s)
- Barbara J. Morley
- Center for Sensory Neuroscience, Boys Town National Research HospitalOmaha, NE, United States
| | - David F. Dolan
- Kresge Hearing Research Institute, University of MichiganAnn Arbor, MI, United States
| | - Kevin K. Ohlemiller
- Department of Otolaryngology, Washington UniversitySt. Louis, MO, United States
| | | |
Collapse
|
45
|
Ma Z, Xia W, Liu F, Ma J, Sun S, Zhang J, Jiang N, Wang X, Hu J, Ma D. SLC44A4 mutation causes autosomal dominant hereditary postlingual non-syndromic mid-frequency hearing loss. Hum Mol Genet 2017; 26:383-394. [PMID: 28013291 DOI: 10.1093/hmg/ddw394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/11/2016] [Indexed: 01/28/2023] Open
Abstract
Clinical, genetic, and functional investigations were performed to identify the causative mutation in a distinctive Chinese family with postlingual non-syndromic mid-frequency sensorineural hearing loss. Whole-exome sequencing revealed SLC44A4, which encodes the choline transport protein, as the pathogenic gene in this family. In the zebrafish model, downregulation of slc44a4 using morpholinos led to significant abnormalities in the zebrafish inner ear and lateral line neuromasts and contributed, to some extent, to disabilities in hearing and balance. SH-SY5Y cells transfected with SLC44A4 showed higher choline uptake and acetylcholine release than that of cells transfected with mutant SLC44A4. We concluded that mutation of SLC44A4 may cause defects in the Choline- acetylcholine system, which is crucial to the efferent innervation of hair cells in the olivocochlear bundle for the maintenance of physiological function of outer hair cells and the protection of hair cells from acoustic injury, leading to hearing loss.
Collapse
Affiliation(s)
- Zhaoxin Ma
- Department of Otorhinolaryngology, Shanghai East Hospital, Tongji University, Shanghai, 200120, People's Republic of China
| | - Wenjun Xia
- Institute of Biomedical Science, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fei Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and
| | - Jiongjiong Hu
- Department of Otorhinolaryngology, Shanghai East Hospital, Tongji University, Shanghai, 200120, People's Republic of China
| | - Duan Ma
- Institute of Biomedical Science, Fudan University, Shanghai, 200032, People's Republic of China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China and.,Children's Hospital, Fudan University, 200032, People's Republic of China
| |
Collapse
|
46
|
Lykhmus O, Voytenko LP, Lips KS, Bergen I, Krasteva-Christ G, Vetter DE, Kummer W, Skok M. Nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice. Front Cell Neurosci 2017; 11:282. [PMID: 28955208 PMCID: PMC5601054 DOI: 10.3389/fncel.2017.00282] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 01/24/2023] Open
Abstract
The α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits are likely to be the evolutionary precursors to the entire cys-loop superfamily of ligand-gated ion channels, which includes acetylcholine, GABA, glycine and serotonin ionotropic receptors. nAChRs containing α9 and α10 subunits are found in the inner ear, dorsal root ganglia and many non-excitable tissues, but their expression in the central nervous system has not been definitely demonstrated. Here we show the presence of both α9 and α10 nAChR subunits in the mouse brain by RT-PCR and immunochemical approaches with a range of nAChR subunit-selective antibodies, which selectivity was demonstrated in the brain preparations of α7−/−, α9−/− and α10−/− mice. The α9 and α10 RNA transcripts were found in medulla oblongata (MO), cerebellum, midbrain (MB), thalamus and putamen (TP), somatosensory cortex (SC), frontal cortex (FC) and hippocampus. High α9-selective signal in ELISA was observed in the FC, SC, MO, TP and hippocampus and α10-selective signal was the highest in MO and FC. The α9 and α10 proteins were found in the brain mitochondria, while their presence on the plasma membrane has not been definitely confirmed The α7-, α9- and α10-selective antibodies stained mainly neurons and hypertrophied astrocytes, but not microglia. The α9- and α10-positive cells formed ordered structures or zones in cerebellum and superior olive (SO) and were randomly distributed among α7-positive cells in the FC; they were found in CA1, CA3 and CA4, but not in CA2 region of the hippocampus. The α9 and α10 subunits were up-regulated in α7−/− mice and both α7 and α9 subunits were down-regulated in α10−/− mice. We conclude that α9 and α10 nAChR subunits are expressed in distinct neurons of the mouse brain and in the brain mitochondria and are compensatory up-regulated in the absence of α7 subunits.
Collapse
Affiliation(s)
- Olena Lykhmus
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| | - Larysa P Voytenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| | - Katrin S Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University GiessenGiessen, Germany
| | - Ivonne Bergen
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University GiessenGiessen, Germany
| | | | - Douglas E Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, United States
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig University GiessenGiessen, Germany.,German Center for Lung Research (DZL)Giessen, Germany
| | - Maryna Skok
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| |
Collapse
|
47
|
Giastas P, Zouridakis M, Tzartos SJ. Understanding structure-function relationships of the human neuronal acetylcholine receptor: insights from the first crystal structures of neuronal subunits. Br J Pharmacol 2017; 175:1880-1891. [PMID: 28452148 DOI: 10.1111/bph.13838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 01/27/2023] Open
Abstract
Nicotinic ACh receptors (nAChRs) are the best studied members of the superfamily of pentameric ligand-gated ion channels (pLGICs). Neuronal nAChRs regulate neuronal excitability and neurotransmitter release in the nervous system and form either homo- or hetero-pentameric complexes with various combinations of the 11 neuronal nAChR subunits (α2-7, α9, α10 and β2-4) known to exist in humans. In addition to their wide distribution in the nervous system, neuronal nAChRs have been also found in immune cells and many peripheral tissues. These nAChRs are important drug targets for neurological and neuropsychiatric diseases (e.g. Alzheimer's, schizophrenia) and substance addiction (e.g. nicotine), as well as in a variety of diseases such as chronic pain, auditory disorders and some cancers. To decipher the functional mechanisms of human nAChRs and develop efficient and specific therapeutic drugs, elucidation of their high-resolution structures is needed. Recent studies, including the X-ray crystal structures of the near-intact α4β2 nAChR and of the ligand-binding domains of the α9 and α2 subunits, have advanced our knowledge on the detailed structure of the ligand-binding sites formed between the same and different subunits and revealed many other functionally important interactions. The aim of this review is to highlight some of the structural and functional findings of these studies and to compare them with recent breakthrough findings on other pLGIC members and earlier data from their homologous ACh-binding proteins. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Petros Giastas
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Marios Zouridakis
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
48
|
Boffi JC, Marcovich I, Gill-Thind JK, Corradi J, Collins T, Lipovsek MM, Moglie M, Plazas PV, Craig PO, Millar NS, Bouzat C, Elgoyhen AB. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function. Mol Pharmacol 2017; 91:250-262. [PMID: 28069778 PMCID: PMC5325082 DOI: 10.1124/mol.116.107482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and β subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a β subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits.
Collapse
Affiliation(s)
- Juan Carlos Boffi
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Irina Marcovich
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - JasKiran K Gill-Thind
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Jeremías Corradi
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Toby Collins
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - María Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Marcelo Moglie
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Paola V Plazas
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Patricio O Craig
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Neil S Millar
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Cecilia Bouzat
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B)
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Dr Héctor N Torres (J.C.B., I.M., M.M. L., M.M., P.V.P., A.B.E.), Instituto de Química Biológica (P.O.C.), and Instituto de Investigaciones Bioquímicas de Bahía Blanca (J.C., C.B), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (J.K.G.-T., T.C., N.S.M.); Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales (P.O.C.), and Instituto de Farmacología, Facultad de Medicina (P.V.P., A.B.E.), Universidad de Buenos Aires, Buenos Aires, Argentina; and Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina (J.C., C.B).
| |
Collapse
|
49
|
Abstract
Abstract:Descending connections are present in many sensory systems and support adaptive information processing. This allows the sensory brain to code a wider range of inputs. A well characterized descending system is the olivo-cochlear cholinergic innervation of the inner ear, which mediates a reduction of the sensitivity of the inner ear upon perception of intense sounds. Because this inhibits the response to background noise, the olivo-cochlear system supports detection of transient sound events. Olivo-cochlear neurons also innervate the cochlear nucleus through axon collaterals. Here, acetylcholine increases the excitability of central neurons without reducing their temporal precision. Thus their target neurons in the superior olivary complex can more effectively process binaural temporal cues. We argue that the central effect of the olivo-cochlear system augments the peripheral effect. In addition, olivo-cochlear cholinergic neurons are under top-down control of cortical inputs, providing further adaptability of information processing on the level of the auditory brainstem.
Collapse
|
50
|
Fergus DJ, Feng NY, Bass AH. Gene expression underlying enhanced, steroid-dependent auditory sensitivity of hair cell epithelium in a vocal fish. BMC Genomics 2015; 16:782. [PMID: 26466782 PMCID: PMC4607102 DOI: 10.1186/s12864-015-1940-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. RESULTS We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. CONCLUSIONS We identified a suite of differentially expressed genes belonging to neurotransmission and steroid-signaling pathways, consistent with previous work showing the importance of these characters in regulating hair cell auditory sensitivity in midshipman fish and, more broadly, vertebrates. The results were also consistent with auditory hair cells being generally more physiologically active when animals are in a reproductive state, a time of enhanced sensory-motor coupling between the auditory periphery and the upper harmonics of vocalizations. Together with several new candidate genes, our results identify discrete patterns of gene expression linked to frequency- and steroid-dependent plasticity of hair cell auditory sensitivity.
Collapse
Affiliation(s)
- Daniel J Fergus
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA. .,Current Address: North Carolina Museum of Natural Sciences, Genomics and Microbiology, Raleigh, NC, 27601, USA.
| | - Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|