1
|
Orsi N, Marques JPR, Bibiano LBJ, Camargo LEA, Pinheiro DG, Vieira MLC. Genotype-Specific Responses of Common Bean to Meloidogyne incognita. PHYTOPATHOLOGY 2025; 115:535-547. [PMID: 39902881 DOI: 10.1094/phyto-10-24-0313-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The root-knot nematode Meloidogyne incognita causes large galls on roots, interfering with the flow of water and nutrients to the plant. In the common bean, no major resistance (R) genes have been described. Instead, resistance is controlled by multiple genes, which have not proved effective so far. An RNA sequencing approach was used to identify genes involved in common bean response to M. incognita at the stages of nematode invasion and root galling. When comparing infected and uninfected treatments of a moderately resistant (MR) and a susceptible (S) genotype, several genes were identified as differentially expressed. Their functional annotation indicated that both genotypes underwent complex transcriptional reprogramming from early to later periods of the interaction, but defense-related genes were mostly upregulated in the MR genotype. At the early stage, a large set of genes was activated in both genotypes, including those involved in cell wall organization, signaling, hormonal pathways, transcription factors, oxidative stress, and putative resistance gene analogs. Later, most of the previously activated defense mechanisms were no longer expressed in the S genotype. There was an increased expression of genes encoding proteins involved in hormonal signaling pathways (salicylic acid and gibberellin-related), protein kinases, transcription factors, and oxidative stress in the MR genotype. However, a decreased expression of genes involved in signaling mediated by calcium and oxidative stress occurred in the S genotype, indicating susceptibility. The repertoire of genes identified herein will facilitate research in plant-nematode interactions, with possible applications for the improvement of the common bean.
Collapse
Affiliation(s)
- Nicole Orsi
- Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - João Paulo Rodrigues Marques
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, 13635-900, Brazil
| | | | - Luis Eduardo Aranha Camargo
- Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Daniel Guariz Pinheiro
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, 14884-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
2
|
Lakhssassi N, Chhapekar SS, Devkar V, Knizia D, El Baze A, Ye H, Vuong T, Patil GB, Nguyen HT, Meksem K. Discovery of two tightly linked soybean genes at the qSCN10 (O) locus conferring broad-spectrum resistance to soybean cyst nematode. Commun Biol 2025; 8:259. [PMID: 39966671 PMCID: PMC11836386 DOI: 10.1038/s42003-025-07633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Soybean cyst nematode (SCN, Heterodera glycine Ichinohe) is a major threat to global soybean yield. Resistance genes at the rhg1 locus from PI 88788 are majorly utilized in 95% of the U.S. breeding programs. Continuous use of this resistance source leads to a shift in the virulence of SCN populations and overcomes host resistance. Therefore, it is necessary to identify alternative SCN resistance sources to combat this ever-changing pest. Previously, we identified an exotic soybean line, PI 567516C, which carries a novel qSCN10 (O) locus for SCN resistance demonstrating different resistance responses compared to the known rhg1 and Rhg4 loci. Here, we narrowed the qSCN10 QTL region to 142-kb (containing 20 genes). Based on gene expression, gene ontology, in-silico analysis, and QTL-based haplotyping, two genes were identified for functional characterization. Overexpression of the transcription factor TGA1-related and Shugoshin C-terminus in the SCN-susceptible Williams 82 reduced the cyst number by 6.4-fold (84.6%) and 5.3-fold (81.2%), respectively. GmTGA1-10 and GmSCT-10 Tilling mutants showed high cyst numbers. The two genes associated with the qSCN10 QTL have significant potential to reduce the SCN population. They also offer an alternative source of durable SCN resistance that is independent of rhg1 and Rhg4.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
- Department of Biological Sciences, School of Science, Hampton University, Hampton, VA, 23668, USA
| | | | - Vikas Devkar
- Institute of Genomic of for Crop Abiotic Stress Tolerance, Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX, 79423, USA
| | - Dounya Knizia
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Abdelhalim El Baze
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Heng Ye
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Tri Vuong
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Gunvant B Patil
- Institute of Genomic of for Crop Abiotic Stress Tolerance, Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX, 79423, USA
| | - Henry T Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| | - Khalid Meksem
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
3
|
Maruyama T, Ishibashi Y, Sano M, Yoshimura H, Taguchi Y. Simulation and application assessment of the efficacy of fosthiazate-loaded microcapsules against root-knot nematode. PEST MANAGEMENT SCIENCE 2024; 80:5078-5087. [PMID: 38853757 DOI: 10.1002/ps.8231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Although microencapsulation technology is an effective pesticide formulation method, the correlation between the release properties of microcapsules and pesticide concentrations in soil and their efficacy has not been thoroughly investigated. Here, the effects of the release properties of the nematicide Fosthiazate (FTZ) from microcapsules on their efficacy against the nematode Meloidogyne incognita were examined using experimental and mathematical approaches. RESULTS Gradual release of FTZ from both polyurea microcapsules (PU-MC) and melamine-formaldehyde microcapsules (MF-MC) was observed over 30 days in the release test, and each release curve was completely distinct. In the biological test, the efficacy of both microcapsules against M. incognita 42 days after the application was 8-15% higher than that of the non-encapsulated FTZ at a concentration of 2.0 mg FTZ kg-1 soil. Soil degradation experiments suggested that the microcapsules worked effectively to protect the FTZ from degradation, which resulted in higher efficacy at a later stage. A simulation study to predict the concentration of FTZ outside the microcapsule found that the timing of supplying FTZ was important and suggested that the mixture of non-encapsulated FTZ (non-MC) and MF-MC showed enhanced efficiency for the entire cultivation period in the biological test; the efficacy against nematodes was also confirmed by the measurement of nematode density using the Bearman funnel method. CONCLUSION The release properties of FTZ from microcapsules are critical for their effective application against M. incognita, and the established simulation study is a useful step in designing suitable release properties under complex soil conditions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Takahiro Maruyama
- Graduate School of Science and Technology, Niigata University, Niigata City, Japan
- Formulation Research Laboratory, Central Research Institute, Kusatsu City, Japan
| | - Yutaka Ishibashi
- Formulation Research Laboratory, Central Research Institute, Kusatsu City, Japan
| | - Mitsuo Sano
- Formulation Research Laboratory, Central Research Institute, Kusatsu City, Japan
| | - Hideshi Yoshimura
- Bioscience Research Laboratory, Central Research Institute, Kusatsu City, Japan
| | - Yoshinari Taguchi
- Graduate School of Science and Technology, Niigata University, Niigata City, Japan
| |
Collapse
|
4
|
Chen Y, Wang Z, Nie W, Zhao T, Dang Y, Feng C, Liu L, Wang C, Du C. Study on the Function of SlWRKY80 in Tomato Defense against Meloidogyne incognita. Int J Mol Sci 2024; 25:8892. [PMID: 39201582 PMCID: PMC11354995 DOI: 10.3390/ijms25168892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
WRKY transcription factors (TFs) can participate in plant biological stress responses and play important roles. SlWRKY80 was found to be differentially expressed in the Mi-1- and Mi-3-resistant tomato lines by RNA-seq and may serve as a key node for disease resistance regulation. This study used RNAi to determine whether SlWRKY80 silencing could influence the sensitivity of 'M82' (mi-1/mi-1)-susceptible lines to M. incognita. Further overexpression of this gene revealed a significant increase in tomato disease resistance, ranging from highly susceptible to susceptible, combined with the identification of growth (plant height, stem diameter, and leaf area) and physiological (soluble sugars and proteins; root activity) indicators, clarifying the role of SlWRKY80 as a positive regulatory factor in tomato defense against M. incognita. Based on this phenomenon, a preliminary exploration of its metabolic signals revealed that SlWRKY80 stimulates different degrees of signaling, such as salicylic acid (SA), jasmonic acid (JA), and ethylene (ETH), and may synergistically regulate reactive oxygen species (ROS) accumulation and scavenging enzyme activity, hindering the formation of feeding sites and ultimately leading to the reduction of root gall growth. To our knowledge, SlWRKY80 has an extremely high utilization value for improving tomato resistance to root-knot nematodes and breeding.
Collapse
Affiliation(s)
- Yinxia Chen
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.C.); (Z.W.); (W.N.); (T.Z.); (Y.D.); (C.F.); (L.L.); (C.W.)
| | - Zhize Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.C.); (Z.W.); (W.N.); (T.Z.); (Y.D.); (C.F.); (L.L.); (C.W.)
| | - Weidan Nie
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.C.); (Z.W.); (W.N.); (T.Z.); (Y.D.); (C.F.); (L.L.); (C.W.)
| | - Tingjie Zhao
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.C.); (Z.W.); (W.N.); (T.Z.); (Y.D.); (C.F.); (L.L.); (C.W.)
| | - Yule Dang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.C.); (Z.W.); (W.N.); (T.Z.); (Y.D.); (C.F.); (L.L.); (C.W.)
| | - Chenghao Feng
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.C.); (Z.W.); (W.N.); (T.Z.); (Y.D.); (C.F.); (L.L.); (C.W.)
| | - Lili Liu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.C.); (Z.W.); (W.N.); (T.Z.); (Y.D.); (C.F.); (L.L.); (C.W.)
| | - Chaonan Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.C.); (Z.W.); (W.N.); (T.Z.); (Y.D.); (C.F.); (L.L.); (C.W.)
| | - Chong Du
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Y.C.); (Z.W.); (W.N.); (T.Z.); (Y.D.); (C.F.); (L.L.); (C.W.)
- Postdoctoral Station of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
5
|
Tzean Y, Wang KT, Gamboa Chen E, Wang HW, Wu TM, Liu CA. Antioxidant Responses and Growth Impairment in Cucurbita moschata Infected by Meloidogyne incognita. BIOLOGY 2024; 13:267. [PMID: 38666879 PMCID: PMC11048190 DOI: 10.3390/biology13040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Pumpkins (Cucurbita moschata), valued for their nutritional, medicinal, and economic significance, face threats from Meloidogyne incognita, a critical plant-parasitic nematode. This study extensively examines the impact of M. incognita on the growth, physiological, and biochemical responses of C. moschata. We demonstrate that M. incognita infection leads to significant growth impairment in C. moschata, evidenced by reduced plant height and biomass, along with the significant development of nematode-induced galls. Concurrently, a pronounced oxidative stress response was observed, characterized by elevated levels of hydrogen peroxide and a significant increase in antioxidant defense mechanisms, including the upregulation of key antioxidative enzymes (superoxide dismutase, glutathione reductase, catalase, and peroxidase) and the accumulation of glutathione. These responses highlight a dynamic interaction between the plant and the nematode, wherein C. moschata activates a robust antioxidant defense to mitigate the oxidative stress induced by nematode infection. Despite these defenses, the persistence of growth impairment underscores the challenge posed by M. incognita to the agricultural production of C. moschata. Our findings contribute to the understanding of plant-nematode interactions, paving the way for the development of strategies aimed at enhancing resistance in Cucurbitaceae crops against nematode pests, thus supporting sustainable agricultural practices.
Collapse
Affiliation(s)
- Yuh Tzean
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (E.G.C.); (H.-W.W.); (C.-A.L.)
| | - Kuang-Teng Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (K.-T.W.); (T.-M.W.)
| | - Elena Gamboa Chen
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (E.G.C.); (H.-W.W.); (C.-A.L.)
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Hung-Wen Wang
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (E.G.C.); (H.-W.W.); (C.-A.L.)
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (K.-T.W.); (T.-M.W.)
| | - Chia-An Liu
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (E.G.C.); (H.-W.W.); (C.-A.L.)
| |
Collapse
|
6
|
Bali S, Gleason C. Unveiling the Diversity: Plant Parasitic Nematode Effectors and Their Plant Interaction Partners. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:179-189. [PMID: 37870371 DOI: 10.1094/mpmi-09-23-0124-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Root-knot and cyst nematodes are two groups of plant parasitic nematodes that cause the majority of crop losses in agriculture. As a result, these nematodes are the focus of most nematode effector research. Root-knot and cyst nematode effectors are defined as secreted molecules, typically proteins, with crucial roles in nematode parasitism. There are likely hundreds of secreted effector molecules exuded through the nematode stylet into the plant. The current research has shown that nematode effectors can target a variety of host proteins and have impacts that include the suppression of plant immune responses and the manipulation of host hormone signaling. The discovery of effectors that localize to the nucleus indicates that the nematodes can directly modulate host gene expression for cellular reprogramming during feeding site formation. In addition, plant peptide mimicry by some nematode effectors highlights the sophisticated strategies the nematodes employ to manipulate host processes. Here we describe research on the interactions between nematode effectors and host proteins that will provide insights into the molecular mechanisms underpinning plant-nematode interactions. By identifying the host proteins and pathways that are targeted by root-knot and cyst nematode effectors, scientists can gain a better understanding of how nematodes establish feeding sites and subvert plant immune responses. Such information will be invaluable for future engineering of nematode-resistant crops, ultimately fostering advancements in agricultural practices and crop protection. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Sapinder Bali
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| |
Collapse
|
7
|
Zhao J, Huang K, Liu R, Lai Y, Abad P, Favery B, Jian H, Ling J, Li Y, Yang Y, Xie B, Quentin M, Mao Z. The root-knot nematode effector Mi2G02 hijacks a host plant trihelix transcription factor to promote nematode parasitism. PLANT COMMUNICATIONS 2024; 5:100723. [PMID: 37742073 PMCID: PMC10873892 DOI: 10.1016/j.xplc.2023.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Root-knot nematodes (RKNs) cause huge agricultural losses every year. They secrete a repertoire of effectors to facilitate parasitism through the induction of plant-derived giant feeding cells, which serve as their sole source of nutrients. However, the mode of action of these effectors and their targeted host proteins remain largely unknown. In this study, we investigated the role of the effector Mi2G02 in Meloidogyne incognita parasitism. Host-derived Mi2G02 RNA interference in Arabidopsis thaliana affected giant cell development, whereas ectopic expression of Mi2G02 promoted root growth and increased plant susceptibility to M. incognita. We used various combinations of approaches to study the specific interactions between Mi2G02 and A. thaliana GT-3a, a trihelix transcription factor. GT-3a knockout in A. thaliana affected feeding-site development, resulting in production of fewer egg masses, whereas GT-3a overexpression in A. thaliana increased susceptibility to M. incognita and also root growth. Moreover, we demonstrated that Mi2G02 plays a role in maintaining GT-3a protein stabilization by inhibiting the 26S proteasome-dependent pathway, leading to suppression of TOZ and RAD23C expression and thus promoting nematode parasitism. This work enhances our understanding of how a pathogen effector manipulates the role and regulation of a transcription factor by interfering with a proteolysis pathway to reprogram gene expression for development of nematode feeding cells.
Collapse
Affiliation(s)
- Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Kaiwei Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rui Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqing Lai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903 Sophia Antipolis, France.
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Taleski M, Jin M, Chapman K, Taylor K, Winning C, Frank M, Imin N, Djordjevic MA. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:538-552. [PMID: 37946363 PMCID: PMC10773996 DOI: 10.1093/jxb/erad444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
A growing understanding is emerging of the roles of peptide hormones in local and long-distance signalling that coordinates plant growth and development as well as responses to the environment. C-TERMINALLY ENCODED PEPTIDE (CEP) signalling triggered by its interaction with CEP RECEPTOR 1 (CEPR1) is known to play roles in systemic nitrogen (N) demand signalling, legume nodulation, and root system architecture. Recent research provides further insight into how CEP signalling operates, which involves diverse downstream targets and interactions with other hormone pathways. Additionally, there is emerging evidence of CEP signalling playing roles in N allocation, root responses to carbon levels, the uptake of other soil nutrients such as phosphorus and sulfur, root responses to arbuscular mycorrhizal fungi, plant immunity, and reproductive development. These findings suggest that CEP signalling more broadly coordinates growth across the whole plant in response to diverse environmental cues. Moreover, CEP signalling and function appear to be conserved in angiosperms. We review recent advances in CEP biology with a focus on soil nutrient uptake, root system architecture and organogenesis, and roles in plant-microbe interactions. Furthermore, we address knowledge gaps and future directions in this research field.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Marvin Jin
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Katia Taylor
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Courtney Winning
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nijat Imin
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| |
Collapse
|
9
|
Sung YW, Kim J, Yang JW, Shim D, Kim YH. Transcriptome-Based Comparative Expression Profiling of Sweet Potato during a Compatible Response with Root-Knot Nematode Meloidogyne incognita Infection. Genes (Basel) 2023; 14:2074. [PMID: 38003017 PMCID: PMC10671793 DOI: 10.3390/genes14112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
M. incognita, a root-knot nematode (RKN), infects the roots of several important food crops, including sweet potato (Ipomoea batatas Lam.), and severely reduces yields. However, the molecular mechanisms underlying infection remain unclear. Previously, we investigated differential responses to RKN invasion in susceptible and resistant sweet potato cultivars through RNA-seq-based transcriptome analysis. In this study, gene expression similarities and differences were examined in RKN-susceptible sweet potato cultivars during the compatible response to RKN infection. Three susceptible cultivars investigated in previous research were used: Dahomi (DHM), Shinhwangmi (SHM), and Yulmi (YM). Of the three cultivars, YM had the highest number of genes with altered expression in response to infection. YM was also the cultivar with the highest susceptibility to RKN. Comparisons among cultivars identified genes that were regulated in more than one cultivar upon infection. Pairwise comparisons revealed that YM and DHM shared the most regulated genes, whereas YM and SHM shared the lowest number of regulated genes. Five genes were up-regulated, and two were down-regulated, in all three cultivars. Among these, four genes were highly up-regulated in all cultivars: germin-like protein, anthranilate synthase α subunit, isocitrate lyase, and uncharacterized protein. Genes were also identified that were uniquely regulated in each cultivar in response to infection, suggesting that susceptible cultivars respond to infection through shared and cultivar-specific pathways. Our findings expand the understanding of the compatible response to RKN invasion in sweet potato roots and provide useful information for further research on RKN defense mechanisms.
Collapse
Affiliation(s)
- Yeon Woo Sung
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Wook Yang
- Department of Crop Cultivation & Environment, Research National Institute of Crop Science, RDA, Suwon 16429, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
10
|
Noureddine Y, da Rocha M, An J, Médina C, Mejias J, Mulet K, Quentin M, Abad P, Zouine M, Favery B, Jaubert-Possamai S. AUXIN RESPONSIVE FACTOR8 regulates development of the feeding site induced by root-knot nematodes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5752-5766. [PMID: 37310189 DOI: 10.1093/jxb/erad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKN) from the genus Meloidogyne induce the dedifferentiation of root vascular cells into giant multinucleate feeding cells. These feeding cells result from an extensive reprogramming of gene expression, and auxin is known to be a key player in their development. However, little is known about how the auxin signal is transmitted during giant cell development. Integrative analyses combining transcriptome and small non-coding RNA datasets with the specific sequencing of cleaved transcripts identified genes targeted by miRNAs in tomato (Solanum lycopersicum) galls. The two auxin-responsive transcription factors ARF8A and ARF8B, and their miRNA167 regulators, were identified as robust gene-miRNA pair candidates to be involved in the tomato response to M. incognita. Spatiotemporal expression analysis using promoter-β-glucuronidase (GUS) fusions showed the up-regulation of ARF8A and ARF8B in RKN-induced feeding cells and surrounding cells. The generation and phenotyping of CRISPR (clustered regularly interspaced palindromic repeats) mutants demonstrated the role of ARF8A and ARF8B in giant cell development and allowed the characterization of their downstream regulated genes.
Collapse
Affiliation(s)
- Yara Noureddine
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Martine da Rocha
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Jing An
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Clémence Médina
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Joffrey Mejias
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Karine Mulet
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | |
Collapse
|
11
|
Stucky T, Hochstrasser M, Meyer S, Segessemann T, Ruthes AC, Ahrens CH, Pelludat C, Dahlin P. A Novel Robust Screening Assay Identifies Pseudomonas Strains as Reliable Antagonists of the Root-Knot Nematode Meloidogyne incognita. Microorganisms 2023; 11:2011. [PMID: 37630571 PMCID: PMC10459205 DOI: 10.3390/microorganisms11082011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Forty-four bacterial strains isolated from greenhouse soil and beetroots were tested for their antagonistic activity against the plant-parasitic root-knot nematode (RKN) Meloidogyne incognita, which causes significant yield losses in a number of important crops worldwide. Through a novel combination of in vitro and on planta screening assays, Pseudomonas spp. 105 and 108 were identified as the most promising bacterial isolates. Both strains were evaluated for their potential to control different RKN population densities and as root protectants against nematode infestation. Regardless of the application method, both strains significantly reduced root galling caused by M. incognita. These two strains were subjected to whole genome sequencing and de novo genome assembly as a basis for phylogenetic and future functional characterization. Phylogenetic analysis revealed that both Pseudomonas strains cluster within the Pseudomonas fluorescens clade among previously characterized RKN antagonists and Pseudomonas-based biocontrol agents of plant diseases.
Collapse
Affiliation(s)
- Tobias Stucky
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Miro Hochstrasser
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Silvan Meyer
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Tina Segessemann
- Method Development and Analytics, Agroscope, Reckenholzstrasse 190, 8046 Zürich, Switzerland
| | | | - Christian H. Ahrens
- Method Development and Analytics, Agroscope, Reckenholzstrasse 190, 8046 Zürich, Switzerland
- Swiss Institute of Bioinformatics—SIB, Reckenholzstrasse 190, 8046 Zurich, Switzerland
| | - Cosima Pelludat
- Virology, Bacteriology and Phytoplasmology, Plant Protection, Agroscope, 1260 Nyon, Switzerland
| | - Paul Dahlin
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| |
Collapse
|
12
|
Khan A, Chen S, Fatima S, Ahamad L, Siddiqui MA. Biotechnological Tools to Elucidate the Mechanism of Plant and Nematode Interactions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2387. [PMID: 37376010 DOI: 10.3390/plants12122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Plant-parasitic nematodes (PPNs) pose a threat to global food security in both the developed and developing worlds. PPNs cause crop losses worth a total of more than USD 150 billion worldwide. The sedentary root-knot nematodes (RKNs) also cause severe damage to various agricultural crops and establish compatible relationships with a broad range of host plants. This review aims to provide a broad overview of the strategies used to identify the morpho-physiological and molecular events that occur during RKN parasitism. It describes the most current developments in the transcriptomic, proteomic, and metabolomic strategies of nematodes, which are important for understanding compatible interactions of plants and nematodes, and several strategies for enhancing plant resistance against RKNs. We will highlight recent rapid advances in molecular strategies, such as gene-silencing technologies, RNA interference (RNAi), and small interfering RNA (siRNA) effector proteins, that are leading to considerable progress in understanding the mechanism of plant-nematode interactions. We also take into account genetic engineering strategies, such as targeted genome editing techniques, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system, and quantitative trait loci (QTL), to enhance the resistance of plants against nematodes.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Saba Fatima
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Lukman Ahamad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
13
|
Yang JW, Park SU, Lee HU, Nam KJ, Lee KL, Lee JJ, Kim JH, Kwak SS, Kim HS, Kim YH. Differential Responses of Antioxidant Enzymes and Lignin Metabolism in Susceptible and Resistant Sweetpotato Cultivars during Root-Knot Nematode Infection. Antioxidants (Basel) 2023; 12:1164. [PMID: 37371894 DOI: 10.3390/antiox12061164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Root-knot nematodes (RKN) cause significant damage to sweetpotato plants and cause significant losses in yield and quality. Reactive oxygen species (ROS) play an important role in plant defenses, with levels of ROS-detoxifying antioxidant enzymes tightly regulated during pathogen infection. In this study, ROS metabolism was examined in three RKN-resistant and three RKN-susceptible sweetpotato cultivars. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were assessed, as was lignin-related metabolism. In RKN-infected roots, both resistant and susceptible cultivars increased SOD activity to produce higher levels of hydrogen peroxide (H2O2). However, H2O2 removal by CAT activity differed between cultivars, with susceptible cultivars having higher CAT activity and lower overall H2O2 levels. In addition, the expression of phenylpropanoid-related phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase genes, which encode enzymes involved in lignin metabolism, were higher in resistant cultivars, as were total phenolic and lignin contents. Enzyme activities and H2O2 levels were examined during the early (7 days) and late (28 days) phases of infection in representative susceptible and resistant cultivars, revealing contrasting changes in ROS levels and antioxidant responses in the different stages of infection. This study suggests that differences in antioxidant enzyme activities and ROS regulation in resistant and susceptible cultivars might explain reduced RKN infection in resistant cultivars, resulting in smaller RKN populations and overall higher resistance to infection and infestation by RKNs.
Collapse
Affiliation(s)
- Jung-Wook Yang
- Department of Crop Cultivation & Environment, Research National Institute of Crop Science, Rural Development Administration, Suwon 16200, Republic of Korea
| | - Sul-U Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34030, Republic of Korea
| | - Hyeong-Un Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, RDA, Muan 58538, Republic of Korea
| | - Ki Jung Nam
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52609, Republic of Korea
| | - Kang-Lok Lee
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52609, Republic of Korea
| | - Jeung Joo Lee
- Department of Plant Medicine, IALS, Gyeongsang National University, Jinju 52609, Republic of Korea
| | - Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31008, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34030, Republic of Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34030, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52609, Republic of Korea
| |
Collapse
|
14
|
Nasiou E, Giannakou IO. Nematicidal Potential of Thymol against Meloidogyne javanica (Treub) Chitwood. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091851. [PMID: 37176908 PMCID: PMC10181045 DOI: 10.3390/plants12091851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Root-knot nematodes (RKN; Meloidogyne spp.) are obligatory endoparasites with worldwide distribution which cause severe damage to agricultural crops. The present study aimed to define the nematicidal activity of thymol on different life stages of the root-knot nematode Meloidogyne javanica (Treub) Chitwood, at concentrations of 37.5-1000 μL/L. This study is the first to report the effect of thymol on egg differentiation and also its vapor and sublethal concentration activities. A mortality of greater than 90% of M. javanica second-stage juveniles (J2s) occurred after 96 h of exposure at a concentration of 500 μL/L. At this concentration, thymol inhibited 59.7% of nematode hatching. In addition, the use of thymol at sublethal concentrations reduced the number of females per gram in tomato roots in a pot test, as well as inhibiting egg differentiation. On the contrary, no nematostatic effects were observed in paralysis bioassays. The results presented here indicate that the use of thymol may show its potential as a source of a new sustainable nematicidal product.
Collapse
Affiliation(s)
- Eleni Nasiou
- Laboratory of Agricultural Zoology and Entomology, Department of Science of Crop Production, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Ioannis O Giannakou
- Laboratory of Agricultural Zoology and Entomology, Department of Science of Crop Production, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
15
|
d’Errico G, Sasanelli N, Guastamacchia F, Stillittano V, D’Addabbo T. Efficacy of Azadirachtin in the Integrated Management of the Root Knot Nematode Meloidogyne incognita on Short- and Long-Cycle Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:1362. [PMID: 36987049 PMCID: PMC10052935 DOI: 10.3390/plants12061362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Activity of azadirachtin on phytoparasitic nematodes has been documented for some decades, but the relationship between its nematicidal efficacy and crop cycle length has not yet been clarified. This study aimed to assess the efficacy of an azadirachtin-based nematicide, for controlling the infestation of the root-knot nematode Meloidogyne incognita, on the short- and long-cycle crops, lettuce and tomato, respectively. Experiments on lettuce and tomato were carried out in a greenhouse infested by M. incognita, including non-treated soil, or treated with the nematicide fluopyram, as controls. In the experiment on the short-cycle lettuce crop, the azadirachtin product effectively suppressed M. incognita infestation and increased crop yield, without significant differences from fluopyram. In the tomato crop, both azadirachtin and fluopyram were not able to control nematode infestation, but resulted in significantly higher yields. Data from this study indicated that azadirachtin can be a valid alternative to fluopyram and other nematicides, for root-knot nematode control in short-cycle crops. Integration of azadirachtin with a synthetic nematicide or nematode-suppressive agronomical techniques, should be more suitable to long-cycle crops.
Collapse
Affiliation(s)
- Giada d’Errico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Nicola Sasanelli
- Institute for Sustainable Plant Protection—National Council or Research, 70126 Bari, Italy
| | | | - Virgilio Stillittano
- Experimental Zooprophylactic Institute of Latium and Tuscany “M. Aleandri”, 00178 Roma, Italy
| | - Trifone D’Addabbo
- Institute for Sustainable Plant Protection—National Council or Research, 70126 Bari, Italy
| |
Collapse
|
16
|
Zhou Y, Zhao D, Duan Y, Chen L, Fan H, Wang Y, Liu X, Chen LQ, Xuan Y, Zhu X. AtSWEET1 negatively regulates plant susceptibility to root-knot nematode disease. FRONTIERS IN PLANT SCIENCE 2023; 14:1010348. [PMID: 36824200 PMCID: PMC9941640 DOI: 10.3389/fpls.2023.1010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The root-knot nematode Meloidogyne incognita is a pathogenic pest that causes severe economic loss to agricultural production by forming a parasitic relationship with its hosts. During the development of M. incognita in the host plant roots, giant cells are formed as a nutrient sink. However, the roles of sugar transporters during the giant cells gain sugar from the plant cells are needed to improve. Meanwhile, the eventual function of sugars will eventually be exported transporters (SWEETs) in nematode-plant interactions remains unclear. In this study, the expression patterns of Arabidopsis thaliana SWEETs were examined by inoculation with M. incognita at 3 days post inoculation (dpi) (penetration stage) and 18 dpi (developing stage). We found that few AtSWEETs responded sensitively to M. incognita inoculation, with the highest induction of AtSWEET1 (AT1G21460), a glucose transporter gene. Histological analyses indicated that the β-glucuronidase (GUS) and green fluorescent protein (GFP) signals were observed specifically in the galls of AtSWEET1-GUS and AtSWEET1-GFP transgenic plant roots, suggesting that AtSWEET1 was induced specifically in the galls. Genetic studies have shown that parasitism of M. incognita was significantly affected in atsweet1 compared to wild-type and complementation plants. In addition, parasitism of M. incognita was significantly affected in atsweet10 but not in atsweet13 and atsweet14, expression of which was induced by inoculation with M. incognita. Taken together, these data prove that SWEETs play important roles in plant and nematode interactions.
Collapse
Affiliation(s)
- Yuan Zhou
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Dan Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yuxi Duan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuanyuan Wang
- College of Biological Science and Technology, Shenyang Agriculture University, Shenyang, China
| | - Xiaoyu Liu
- College of Sciences, Shenyang Agriculture University, Shenyang, China
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yuanhu Xuan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| |
Collapse
|
17
|
Suzuki R, Kanno Y, Abril-Urias P, Seo M, Escobar C, Tsai AYL, Sawa S. Local auxin synthesis mediated by YUCCA4 induced during root-knot nematode infection positively regulates gall growth and nematode development. FRONTIERS IN PLANT SCIENCE 2022; 13:1019427. [PMID: 36466293 PMCID: PMC9709418 DOI: 10.3389/fpls.2022.1019427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Parasites and pathogens are known to manipulate the host's endogenous signaling pathways to facilitate the infection process. In particular, plant-parasitic root-knot nematodes (RKN) are known to elicit auxin response at the infection sites, to aid the development of root galls as feeding sites for the parasites. Here we describe the role of local auxin synthesis induced during RKN infection. Exogenous application of auxin synthesis inhibitors decreased RKN gall formation rates, gall size and auxin response in galls, while auxin and auxin analogues produced the opposite effects, re-enforcing the notion that auxin positively regulates RKN gall formation. Among the auxin biosynthesis enzymes, YUCCA4 (YUC4) was found to be dramatically up-regulated during RKN infection, suggesting it may be a major contributor to the auxin accumulation during gall formation. However, yuc4-1 showed only very transient decrease in gall auxin levels and did not show significant changes in RKN infection rates, implying the loss of YUC4 is likely compensated by other auxin sources. Nevertheless, yuc4-1 plants produced significantly smaller galls with fewer mature females and egg masses, confirming that auxin synthesized by YUC4 is required for proper gall formation and RKN development within. Interestingly, YUC4 promoter was also activated during cyst nematode infection. These lines of evidence imply auxin biosynthesis from multiple sources, one of them being YUC4, is induced upon plant endoparasitic nematode invasion and likely contribute to their infections. The coordination of these different auxins adds another layer of complexity of hormonal regulations during plant parasitic nematode interaction.
Collapse
Affiliation(s)
- Reira Suzuki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Patricia Abril-Urias
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Carolina Escobar
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Allen Yi-Lun Tsai
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
18
|
Abstract
Nuclear movement is crucial for the development of many cell types and organisms. Nuclear movement is highly conserved, indicating its necessity for cellular function and development. In addition to mononucleated cells, there are several examples of cells in which multiple nuclei exist within a shared cytoplasm. These multinucleated cells and syncytia have important functions for development and homeostasis. Here, we review a subset of the developmental contexts in which the regulation of the movement and positioning of multiple nuclei are well understood, including pronuclear migration, the Drosophila syncytial blastoderm, the Caenorhabditis elegans hypodermis, skeletal muscle and filamentous fungi. We apply the principles learned from these models to other systems.
Collapse
Affiliation(s)
- Jorel R. Padilla
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Eric S. Folker
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
19
|
Arraes FBM, Vasquez DDN, Tahir M, Pinheiro DH, Faheem M, Freitas-Alves NS, Moreira-Pinto CE, Moreira VJV, Paes-de-Melo B, Lisei-de-Sa ME, Morgante CV, Mota APZ, Lourenço-Tessutti IT, Togawa RC, Grynberg P, Fragoso RR, de Almeida-Engler J, Larsen MR, Grossi-de-Sa MF. Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202744. [PMID: 36297768 PMCID: PMC9612212 DOI: 10.3390/plants11202744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/08/2023]
Abstract
The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.
Collapse
Affiliation(s)
- Fabricio B M Arraes
- Postgraduate Program in Cellular and Molecular Biology (PPGBCM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Daniel D N Vasquez
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Muhammed Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Daniele H Pinheiro
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Muhammed Faheem
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Department of Biological Sciences, National University of Medical Sciences, The Mall, Rawalpindi 46000, Punjab, Pakistan
| | - Nayara S Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Bioprocess Engineering and Biotechnology (PPGEBB), Federal University of Paraná (UFPR), Curitiba 80060-000, PR, Brazil
| | - Clídia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Valdeir J V Moreira
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Molecular Biology (PPGBiomol), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Maria E Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Uberaba 31170-495, MG, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Semiarid, Petrolina 56302-970, PE, Brazil
| | - Ana P Z Mota
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Rodrigo R Fragoso
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil
| | - Janice de Almeida-Engler
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| |
Collapse
|
20
|
Elsharkawy MM, Al-Askar AA, Behiry SI, Abdelkhalek A, Saleem MH, Kamran M, Derbalah A. Resistance induction and nematicidal activity of certain monoterpenes against tomato root-knot caused by Meloidogyne incognita. FRONTIERS IN PLANT SCIENCE 2022; 13:982414. [PMID: 36204064 PMCID: PMC9530745 DOI: 10.3389/fpls.2022.982414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
This research was performed to evaluate the potential of carvone, cuminaldehyde, cineole, and linalool for the control of root-knot of tomato. The tested control agents were evaluated for their ability to stimulate systemic resistance to Meloidogyne incognita in tomato by monitoring the transcription levels of defense-related genes. Moreover, the ability of the tested agents to induce nematicidal activity concerning second-stage juveniles (J2) hatching and mortality was evaluated. Furthermore, the effect of the tested agents on certain tomato growth and yield parameters was assessed. The tested monoterpenes showed high nematicidal activity against M. incognita concerning J2 hatching inhibition and mortality. Carvone, cuminaldhyde, linalool, and cineole had LC50 values of 123.5, 172.2, 354.9, 466.4, and 952.3 μg/mL, respectively. Carvone was found to be the most efficient hatching inhibitor. The tested monoterpenes showed a high potential against root-knot under greenhouse and field conditions with respect to root-galling, egg masses, and the number of J2. Carvone was the most effective treatment. The growth and yield characters of treated tomato were significantly increased in monoterpenes treatments compared to untreated control. Treated tomato plants showed expression of defense-related genes (PR1 and PAL) 5-8 folds higher than the control. The results also showed that cuminaldhyde, followed by carvone, linalool, and cineole, had the greatest levels of expression in tomato plants. Taken together, the selected monoterpenes could be used as alternatives to control the root-knot of tomato.
Collapse
Affiliation(s)
- Mohsen Mohamed Elsharkawy
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System Core in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Aly Derbalah
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh, Egypt
| |
Collapse
|
21
|
Korayem A, Safwat El- H, Shater Abd M, Abd El-Mon A, Mohamed Mo M, El-Ashry S. Physiological and Biochemical Changes in the Wheat Plant (Triticum aestivum L.) Infected with Nematodes. ASIAN JOURNAL OF PLANT SCIENCES 2022; 21:613-628. [DOI: 10.3923/ajps.2022.613.628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
22
|
Abstract
Peptide signaling is an emerging paradigm in molecular plant-microbe interactions with vast implications for our understanding of plant-nematode interactions and beyond. Plant-like peptide hormones, first discovered in cyst nematodes, are now recognized as an important class of peptide effectors mediating several different types of pathogenic and symbiotic interactions. Here, we summarize what has been learned about nematode-secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptide effectors since the last comprehensive review on this topic a decade ago. We also highlight new discoveries of a diverse array of peptide effectors that go beyond the CLE peptide effector family in not only phytonematodes but in organisms beyond the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| |
Collapse
|
23
|
Diyapoglu A, Oner M, Meng M. Application Potential of Bacterial Volatile Organic Compounds in the Control of Root-Knot Nematodes. Molecules 2022; 27:4355. [PMID: 35889228 PMCID: PMC9318376 DOI: 10.3390/molecules27144355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) constitute the most damaging group of plant pathogens. Plant infections by root-knot nematodes (RKNs) alone could cause approximately 5% of global crop loss. Conventionally, chemical-based methods are used to control PPNs at the expense of the environment and human health. Accordingly, the development of eco-friendly and safer methods has been urged to supplement or replace chemical-based methods for the control of RKNs. Using microorganisms or their metabolites as biological control agents (BCAs) is a promising approach to controlling RKNs. Among the metabolites, volatile organic compounds (VOCs) have gained increasing attention because of their potential in the control of not only RKNs but also other plant pathogens, such as insects, fungi, and bacteria. This review discusses the biology of RKNs as well as the status of various control strategies. The discovery of VOCs emitted by bacteria from various environmental sources and their application potential as BCAs in controlling RKNs are specifically addressed.
Collapse
Affiliation(s)
- Ali Diyapoglu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Muhammet Oner
- Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan;
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| |
Collapse
|
24
|
Nguyê˜n PV, Biện TLT, Tôn LB, Lê ÐÐ, Wright MK, Mantelin S, Petitot AS, Fernandez D, Bellafiore S. Meloidogyne-SP4 effector gene silencing reduces reproduction of root-knot nematodes in rice (Oryza sativa). NEMATOLOGY 2022. [DOI: 10.1163/15685411-bja10152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
The root-knot nematodes (RKN) Meloidogyne graminicola and M. incognita are responsible for rice yield losses worldwide, particularly in Asia and Africa. Previous studies demonstrated that nematode-secreted proteins are crucial for root invasion and establishment in the host. We present some characteristics of a pioneer effector, M. incognita-secreted protein 4 (Mi-SP4), which is conserved in RKN and required for infection in compatible rice-RKN interactions. In situ hybridisation assays revealed Mi-SP4 expression in the dorsal pharyngeal gland of M. incognita second-stage juveniles (J2). Meloidogyne-SP4 transcripts strongly accumulated in pre-parasitic J2 and decreased in later parasitic stages of M. incognita and M. graminicola. Transient expression of the nematode effector gene in Nicotiana benthamiana leaves and onion cells indicated that GFP-tagged Mi-SP4 was present in the cytoplasm and accumulated in the nucleus of the plant cells. In vitro RNA interference (RNAi) gene silencing, obtained by soaking J2 with small-interfering (si)RNA si4-1, decreased Mi -SP4 expression in J2 by 35% and significantly reduced M. incognita reproduction in rice by at least 30%. Similarly, host-mediated gene silencing of the nematode SP4 effector candidate gene in transgenic rice plants significantly reduced M. graminicola reproduction by 26% to 47%. The data obtained demonstrate that Mi -SP4 is a pioneer virulence effector, which plays an essential role in both M. incognita and M. graminicola pathogenicity on rice.
Collapse
Affiliation(s)
- Phong V. Nguyê˜n
- Faculty of Biological Sciences, Nông Lâm University, Hô` Chí Minh City, Vietnam
| | - Thanh LT. Biện
- Faculty of Biological Sciences, Nông Lâm University, Hô` Chí Minh City, Vietnam
| | - Linh B. Tôn
- Faculty of Biological Sciences, Nông Lâm University, Hô` Chí Minh City, Vietnam
| | - Ðôn Ð. Lê
- Faculty of Biological Sciences, Nông Lâm University, Hô` Chí Minh City, Vietnam
| | | | - Sophie Mantelin
- INRAE UMR 1355 Institute Sophia Agrobiotech, 400 route des Chappes, BP 167, 06903 Sophia Antipolis-Cedex, France
| | - Anne-Sophie Petitot
- PHIM Plant Health Institute, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Diana Fernandez
- PHIM Plant Health Institute, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Stéphane Bellafiore
- PHIM Plant Health Institute, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| |
Collapse
|
25
|
Goode K, Mitchum MG. Pattern-triggered immunity against root-knot nematode infection: A minireview. PHYSIOLOGIA PLANTARUM 2022; 174:e13680. [PMID: 35362104 PMCID: PMC9322311 DOI: 10.1111/ppl.13680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 05/24/2023]
Abstract
Pattern-triggered immunity (PTI) is the basal level of defense a plant has against pathogens. In the case of root-knot nematodes (RKN), PTI relies on the recognition of nematode-associated molecular patterns (NAMPs) for activation. Nematodes have successfully overcome PTI many times by evolving effector proteins to combat PTI responses. As a result, much study has focused on effector-triggered immunity (ETI). Here, we highlight recent advances in our understanding of PTI against RKN. A new interest in understanding PTI in response to RKN infection shows that understanding the basal defense responses RKN have overcome provides critical insight into what mechanisms the effectors have evolved to target in the host plant.
Collapse
Affiliation(s)
- Kelly Goode
- Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| | - Melissa G. Mitchum
- Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Department of Plant PathologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
26
|
Hassanaly-Goulamhoussen R, De Carvalho Augusto R, Marteu-Garello N, Péré A, Favery B, Da Rocha M, Danchin EGJ, Abad P, Grunau C, Perfus-Barbeoch L. Chromatin Landscape Dynamics in the Early Development of the Plant Parasitic Nematode Meloidogyne incognita. Front Cell Dev Biol 2021; 9:765690. [PMID: 34938734 PMCID: PMC8685519 DOI: 10.3389/fcell.2021.765690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
In model organisms, epigenome dynamics underlies a plethora of biological processes. The role of epigenetic modifications in development and parasitism in nematode pests remains unknown. The root-knot nematode Meloidogyne incognita adapts rapidly to unfavorable conditions, despite its asexual reproduction. However, the mechanisms underlying this remarkable plasticity and their potential impact on gene expression remain unknown. This study provides the first insight into contribution of epigenetic mechanisms to this plasticity, by studying histone modifications in M. incognita. The distribution of five histone modifications revealed the existence of strong epigenetic signatures, similar to those found in the model nematode Caenorhabditis elegans. We investigated their impact on chromatin structure and their distribution relative to transposable elements (TE) loci. We assessed the influence of the chromatin landscape on gene expression at two developmental stages: eggs, and pre-parasitic juveniles. H3K4me3 histone modification was strongly correlated with high levels of expression for protein-coding genes implicated in stage-specific processes during M. incognita development. We provided new insights in the dynamic regulation of parasitism genes kept under histone modifications silencing. In this pioneering study, we establish a comprehensive framework for the importance of epigenetic mechanisms in the regulation of the genome expression and its stability in plant-parasitic nematodes.
Collapse
Affiliation(s)
| | - Ronaldo De Carvalho Augusto
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France.,Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | | | - Arthur Péré
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Bruno Favery
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Martine Da Rocha
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | | | - Pierre Abad
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Christoph Grunau
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | | |
Collapse
|
27
|
Mbaluto CM, Vergara F, van Dam NM, Martínez-Medina A. Root infection by the nematode Meloidogyne incognita modulates leaf antiherbivore defenses and plant resistance to Spodoptera exigua. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7909-7926. [PMID: 34545935 PMCID: PMC8664589 DOI: 10.1093/jxb/erab370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Studies on plant-mediated interactions between root parasitic nematodes and aboveground herbivores are rapidly increasing. However, outcomes for the interacting organisms vary, and the mechanisms involved remain ambiguous. We hypothesized that the impact of root infection by the root-knot nematode Meloidogyne incognita on the performance of the aboveground caterpillar Spodoptera exigua is modulated by the nematode's infection cycle. We challenged root-knot nematode-infected tomato plants with caterpillars when the nematode's infection cycle was at the invasion, galling, and reproduction stages. We found that M. incognita root infection enhanced S. exigua performance during the galling stage, while it did not affect the caterpillar's performance at the invasion and reproduction stages. Molecular and chemical analyses performed at the different stages of the nematode infection cycle revealed that M. incognita root infection systemically affected the jasmonic acid-, salicylic acid-, and abscisic acid-related responses, as well as the changes in the leaf metabolome triggered during S. exigua feeding. The M. incognita-induced leaf responses varied over the nematode's root infection cycle. These findings suggest that specific leaf responses triggered systemically by the nematode at its different life-cycle stages underlie the differential impact of M. incognita on plant resistance against the caterpillar S. exigua.
Collapse
Affiliation(s)
- Crispus M Mbaluto
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
| | - Fredd Vergara
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas, 40, 37008, Salamanca, Spain
| |
Collapse
|
28
|
Evaluation of Scopoletin from Penicillium janthinellum Snef1650 for the Control of Heterodera glycines in Soybean. Life (Basel) 2021; 11:life11111143. [PMID: 34833019 PMCID: PMC8625814 DOI: 10.3390/life11111143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is responsible for causing a major soybean disease globally. The fungal strain Penicillium janthinellum Snef1650 was evaluated against H. glycines. However, the effective determinants of the P. janthinellum strain are unknown. By performing pot experiments, a functioning compound was isolated from P. janthinellum Snef1650 through organic solvent extraction, semi-preparative HPLC, Sephadex LH-20 column chromatography, and silica gel column chromatography, and the isolated compound was identified to be scopoletin through 1H NMR, 13C NMR, and HPLC–MS. The pot experiments indicated that the treatment of soybean seeds with scopoletin drastically reduced the SCN population. The field experiments performed in 2017 and 2018 revealed that scopoletin decreased over 43.7% juveniles in the roots and over 61.55% cysts in the soil. Scopoletin treatment also promoted soybean growth and improved its yield, with an increase in plot yield by >5.33%. Scopoletin obtained from P. janthinellum Snef1650 could be used as an anti-H. glycines biocontrol agent.
Collapse
|
29
|
Zhang L, Gleason C. Transcriptome Analyses of Pre-parasitic and Parasitic Meloidogyne Chitwoodi Race 1 to Identify Putative Effector Genes. J Nematol 2021; 53:e2021-84. [PMID: 34671748 PMCID: PMC8509085 DOI: 10.21307/jofnem-2021-084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 11/11/2022] Open
Abstract
Meloidogyne chitwoodi is a root-knot nematode that is a major pest of potato in the northwestern United States. Due to the lack of resistance against root-knot nematodes in potato, research has been undertaken to understand the M. chitwoodi-potato interaction at the molecular level. To identify the nematode genes that are playing roles in parasitism, we have performed transcriptome analyses on pre-parasitic and parasitic M. chitwoodi juveniles in susceptible potato. We compared gene expression profiles and identified genes that were significantly up- or down-regulated during nematode parasitism. Because parasitism proteins are typically secreted by the nematode to facilitate infection of host roots, we focused on the genes that encoded proteins that were predicted to be secreted. We found that approximately 34% (43/127) of the genes in the predicted secretome encoded proteins with no significant homology in the public genome databases, and 12% (15/127) encoded either a known effector, putative effectors or putative esophageal gland cell proteins. The transcriptome analyses of M. chitwoodi at the pre-parasitic and parasitic life stages shed light on the genes involved in nematode parasitism.
Collapse
Affiliation(s)
- Lei Zhang
- Plant Pathology Department, Washington State University, Pullman, WA 9916.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907.,Department of Entomology, Purdue University, West Lafayette, IN 47907
| | - Cynthia Gleason
- Plant Pathology Department, Washington State University, Pullman, WA 9916
| |
Collapse
|
30
|
Suzuki R, Yamada M, Higaki T, Aida M, Kubo M, Tsai AYL, Sawa S. PUCHI Regulates Giant Cell Morphology During Root-Knot Nematode Infection in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:755610. [PMID: 34691131 PMCID: PMC8527015 DOI: 10.3389/fpls.2021.755610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Parasitic root-knot nematodes transform the host's vascular cells into permanent feeding giant cells (GCs) to withdraw nutrients from the host plants. GCs are multinucleated metabolically active cells with distinctive cell wall structures; however, the genetic regulation of GC formation is largely unknown. In this study, the functions of the Arabidopsis thaliana transcription factor PUCHI during GC development were investigated. PUCHI expression was shown to be induced in early developing galls, suggesting the importance of the PUCHI gene in gall formation. Despite the puchi mutant not differing significantly from the wild type in nematode invasion and reproduction rates, puchi GC cell walls appeared to be thicker and lobate when compared to the wild type, while the cell membrane sometimes formed invaginations. In three-dimensional (3D) reconstructions of puchi GCs, they appeared to be more irregularly shaped than those in the wild type, with noticeable cell-surface protrusions and folds. Interestingly, the loss-of-function mutant of 3-KETOACYL-COA SYNTHASE 1 showed GC morphology and cell wall defects similar to those of the puchi mutant, suggesting that PUCHI may regulate GC development via very long chain fatty acid synthesis.
Collapse
Affiliation(s)
- Reira Suzuki
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Mizuki Yamada
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
| | - Mitsuhiro Aida
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
| | - Minoru Kubo
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Nara, Japan
| | - Allen Yi-Lun Tsai
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
31
|
Arunakumar GS, Gnanesh BN, Manojkumar HB, Doss SG, Mogili T, Sivaprasad V, Tewary P. Genetic Diversity, Identification, and Utilization of Novel Genetic Resources for Resistance to Meloidogyne incognita in Mulberry ( Morus spp.). PLANT DISEASE 2021; 105:2919-2928. [PMID: 33787307 DOI: 10.1094/pdis-11-20-2515-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mulberry (Morus spp.) is an important crop in the sericulture industry, as the leaves constitute the primary feed for the silkworm. The availability of diverse genetic sources of resistance to root-knot nematode (RKN; Meloidogyne spp.) are very scanty. To address this need, a set of 415 varied exotic and indigenous germplasm accessions were screened under glasshouse conditions. Twenty-one accessions were identified as highly resistant and 48 were resistant, with the highest numbers of highly resistant/resistant accessions being found in Morus alba. Further, 30 accessions based on rooting ability were evaluated for field resistance at four different locations with infested soil. Finally, eight germplasm accessions (BR-8, Karanjtoli-1, Hosur-C8, Nagalur Estate, Tippu, Calabresa, Thai Pecah, and SRDC-3) were identified as potential genetic sources in RKN-resistance breeding programs or as resistant rootstock for the establishment of mulberry gardens. Sixteen simple sequence repeat markers analyzed among the 77 resistant and susceptible accessions generated 55 alleles, ranging from two to five, with an average of 3.43 alleles per locus. Principal coordinates analysis grouped the accessions on the basis of susceptibility and resistance to RKN infestation. The RKN-susceptible accessions exhibited higher variability as compared with resistant accessions, and they were more dispersed. Analysis of molecular variance showed maximum molecular variance was 78% within the population, and 22% between populations. Results of this study indicate that simple sequence repeat markers are reliable for assessing genetic variability among the RKN-resistant and RKN-susceptible mulberry accessions.
Collapse
Affiliation(s)
- Gondi S Arunakumar
- Central Sericultural Research and Training Institute, Mysuru 570 008, Karnataka, India
| | | | | | - S Gandhi Doss
- Central Sericultural Research and Training Institute, Mysuru 570 008, Karnataka, India
| | - T Mogili
- Central Sericultural Research and Training Institute, Mysuru 570 008, Karnataka, India
| | - Vankadara Sivaprasad
- Central Sericultural Research and Training Institute, Berhampore 742 101, West Bengal, India
| | - Pankaj Tewary
- Central Sericultural Research and Training Institute, Mysuru 570 008, Karnataka, India
| |
Collapse
|
32
|
Sliwinska E, Loureiro J, Leitch IJ, Šmarda P, Bainard J, Bureš P, Chumová Z, Horová L, Koutecký P, Lučanová M, Trávníček P, Galbraith DW. Application-based guidelines for best practices in plant flow cytometry. Cytometry A 2021; 101:749-781. [PMID: 34585818 DOI: 10.1002/cyto.a.24499] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.
Collapse
Affiliation(s)
- Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ilia J Leitch
- Kew Science Directorate, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jillian Bainard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Chumová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Koutecký
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Trávníček
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - David W Galbraith
- School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.,Henan University, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Kaifeng, China
| |
Collapse
|
33
|
Exploiting the Innate Potential of Sorghum/Sorghum-Sudangrass Cover Crops to Improve Soil Microbial Profile That Can Lead to Suppression of Plant-Parasitic Nematodes. Microorganisms 2021; 9:microorganisms9091831. [PMID: 34576726 PMCID: PMC8470355 DOI: 10.3390/microorganisms9091831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Sorghum/sorghum–sudangrass hybrids (SSgH) have been used as a cover crop to improve soil health by adding soil organic matter, enhancing microbial activities, and suppressing soil-borne pathogens in various cropping systems. A series of SSgH were screened for (1) allelopathic suppression and (2) improvement of soil edaphic factors and soil microbial profile against plant-parasitic nematode (PPNs). The allelopathic potential of SSgH against PPNs is hypothesized to vary by variety and age. In two greenhouse bioassays, ‘NX-D-61′ sorghum and the ‘Latte’ SSgH amendment provided the most suppressive allelopathic effect against the female formation of Meloidogyne incognita on mustard green seedlings when using 1-, 2-, or 3-month-old SSgH tissue, though most varieties showed a decrease in allelopathic effect as SSgH mature. A field trial was conducted where seven SSgH varieties were grown for 2.5 months and terminated using a flail mower, and eggplant was planted in a no-till system. Multivariate analysis of measured parameters revealed that increase in soil moisture, microbial biomass, respiration rate, nematode enrichment index, and sorghum biomass were negatively related to the initial abundance of PPNs and the root-gall index at 5 months after planting eggplant in a no-till system. These results suggested that improvement of soil health by SSgH could lead to suppression of PPN infection.
Collapse
|
34
|
Singh RR, Pajar JA, Audenaert K, Kyndt T. Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. FRONTIERS IN PLANT SCIENCE 2021; 12:713870. [PMID: 34456953 PMCID: PMC8386471 DOI: 10.3389/fpls.2021.713870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 05/07/2023]
Abstract
Anticipating an increased ecological awareness, scientists have been exploring new strategies to reduce the use of chemical pesticides to control pests and diseases. Triggering the intrinsic plant defense system is one of the promising strategies to reduce yield loss by pathogenic organisms, such as nematodes. Ascorbate oxidase (AO) enzyme plays an important role in plant defense by regulating the apoplastic ascorbate/dehydroascorbate (DHA) ratio via the ascorbate oxidation process. Ascorbate oxidation is known to induce systemic resistance in rice against parasitic root-knot nematodes (RKN). Here, we sought to evaluate if AO- or DHA-induced resistance (IR) against RKN M. graminicola involves activation of the phenylpropanoid pathway and whether this IR phenotype has potential effects on growth of rice seedlings under stressed and unstressed conditions. Our results show that AO/DHA-IR against these parasitic nematodes is dependent on activation of phenylalanine ammonia lyase (PAL). However, application of reduced ascorbic acid (AA) did not induce this response. Gene expression analysis via qRT-PCR showed that OsPAL2 and OsPAL4 are highly expressed in AO/DHA-sprayed nematode-infected roots and PAL-activity measurements confirmed that AO/DHA spraying triggers the plants for primed activation of this enzyme upon nematode infection. AO/DHA-IR is not effective in plants sprayed with a chemical PAL inhibitor confirming that AO/DHA-induced resistance is dependent on PAL activity. Improved plant growth and low nematode infection in AO/DHA-sprayed plants was found to be correlated with an increase in shoot chlorophyll fluorescence (Fv/Fm), chlorophyll index (ChlIdx), and modified anthocyanin reflection index which were proven to be good above-ground parameters for nematode infestation. A detailed growth analysis confirmed the improved growth of AO/DHA-treated plants under nematode-infected conditions. Taken together, our results indicate that ascorbate oxidation enhances the phenylpropanoid-based response to nematode infection and leads to a tolerance phenotype in treated rice plants.
Collapse
Affiliation(s)
- Richard Raj Singh
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jessil Ann Pajar
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Fitoussi N, Borrego E, Kolomiets MV, Qing X, Bucki P, Sela N, Belausov E, Braun Miyara S. Oxylipins are implicated as communication signals in tomato-root-knot nematode (Meloidogyne javanica) interaction. Sci Rep 2021; 11:326. [PMID: 33431951 PMCID: PMC7801703 DOI: 10.1038/s41598-020-79432-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Throughout infection, plant-parasitic nematodes activate a complex host defense response that will regulate their development and aggressiveness. Oxylipins-lipophilic signaling molecules-are part of this complex, performing a fundamental role in regulating plant development and immunity. At the same time, the sedentary root-knot nematode Meloidogyne spp. secretes numerous effectors that play key roles during invasion and migration, supporting construction and maintenance of nematodes' feeding sites. Herein, comprehensive oxylipin profiling of tomato roots, performed using LC-MS/MS, indicated strong and early responses of many oxylipins following root-knot nematode infection. To identify genes that might respond to the lipidomic defense pathway mediated through oxylipins, RNA-Seq was performed by exposing Meloidogyne javanica second-stage juveniles to tomato protoplasts and the oxylipin 9-HOT, one of the early-induced oxylipins in tomato roots upon nematode infection. A total of 7512 differentially expressed genes were identified. To target putative effectors, we sought differentially expressed genes carrying a predicted secretion signal peptide. Among these, several were homologous with known effectors in other nematode species; other unknown, potentially secreted proteins may have a role as root-knot nematode effectors that are induced by plant lipid signals. These include effectors associated with distortion of the plant immune response or manipulating signal transduction mediated by lipid signals. Other effectors are implicated in cell wall degradation or ROS detoxification at the plant-nematode interface. Being an integral part of the plant's defense response, oxylipins might be placed as important signaling molecules underlying nematode parasitism.
Collapse
Affiliation(s)
- Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel
- Department of Plant Pathology and Microbiology, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Eli Borrego
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, TAMU 2132, College Station, 77843-2132, USA
| | - Xue Qing
- Department of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, 50250, Bet Dagan, Israel
| | - Eduard Belausov
- Department of Plant Sciences, Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, 50250, Bet Dagan, Israel
| | - Sigal Braun Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel.
| |
Collapse
|
36
|
Truong NM, Chen Y, Mejias J, Soulé S, Mulet K, Jaouannet M, Jaubert-Possamai S, Sawa S, Abad P, Favery B, Quentin M. The Meloidogyne incognita Nuclear Effector MiEFF1 Interacts With Arabidopsis Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases to Promote Parasitism. FRONTIERS IN PLANT SCIENCE 2021; 12:641480. [PMID: 33897729 PMCID: PMC8062903 DOI: 10.3389/fpls.2021.641480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Root-knot nematodes are obligate endoparasites that maintain a biotrophic relationship with their hosts over a period of several weeks. They induce the differentiation of root cells into specialized multinucleate hypertrophied feeding cells known as giant cells. Nematode effectors synthesized in the esophageal glands and injected into the plant tissue through the syringe-like stylet play a key role in giant cell ontogenesis. The Meloidogyne incognita MiEFF1 is one of the rare effectors of phytopathogenic nematodes to have been located in vivo in feeding cells. This effector specifically targets the giant cell nuclei. We investigated the Arabidopsis functions modulated by this effector, by using a yeast two-hybrid approach to identify its host targets. We characterized a universal stress protein (USP) and cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs) as the targets of MiEFF1. We validated the interaction of MiEFF1 with these host targets in the plant cell nucleus, by bimolecular fluorescence complementation (BiFC). A functional analysis with Arabidopsis GUS reporter lines and knockout mutant lines showed that GAPCs were induced in giant cells and that their non-metabolic functions were required for root-knot nematode infection. These susceptibility factors are potentially interesting targets for the development of new root-knot nematode control strategies.
Collapse
Affiliation(s)
- Nhat My Truong
- Institut Sophia Agrobiotech, INRAE, CNRS, Université Côte d’Azur, Sophia Antipolis, France
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yongpan Chen
- Institut Sophia Agrobiotech, INRAE, CNRS, Université Côte d’Azur, Sophia Antipolis, France
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Joffrey Mejias
- Institut Sophia Agrobiotech, INRAE, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | - Salomé Soulé
- Institut Sophia Agrobiotech, INRAE, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | - Karine Mulet
- Institut Sophia Agrobiotech, INRAE, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | - Maëlle Jaouannet
- Institut Sophia Agrobiotech, INRAE, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | | | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Pierre Abad
- Institut Sophia Agrobiotech, INRAE, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | - Bruno Favery
- Institut Sophia Agrobiotech, INRAE, CNRS, Université Côte d’Azur, Sophia Antipolis, France
- *Correspondence: Michaël Quentin, ; Bruno Favery,
| | - Michaël Quentin
- Institut Sophia Agrobiotech, INRAE, CNRS, Université Côte d’Azur, Sophia Antipolis, France
- *Correspondence: Michaël Quentin, ; Bruno Favery,
| |
Collapse
|
37
|
Xiao K, Chen W, Chen X, Zhu X, Guan P, Hu J. CCS52 and DEL1 function in root-knot nematode giant cell development in Xinjiang wild myrobalan plum (Prunus sogdiana Vassilcz). PROTOPLASMA 2020; 257:1333-1344. [PMID: 32367262 DOI: 10.1007/s00709-020-01505-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Root-knot nematodes (RKNs) are highly invasive plant parasites that establish permanent feeding sites within the roots of the host plant. Successful establishment of the feeding site is essential for the survival of RKN. The formation and development of the feeding cell, also called giant cell, involve both cell division and endoreduplication. Here, we examined giant cell development and endoreduplication in Prunus sogdiana infected with the RKN. We found that feeding sites were established 3-5 days post inoculation (dpi) and matured at 21-28 dpi. The giant cells began to form 5 dpi and continued to increase in size from 7 to 21 dpi. The large numbers of dividing nuclei were observed in giant cells from 7 to 14 dpi. However, nuclear division was rarely observed after 28 days. RT-PCR and in situ hybridization analyses revealed that PsoCCS52A was abundantly expressed at 7-21 dpi and the PsoCCS52A signal observed in giant cell nucleus at 7-14 dpi. The PsoCCS52B is highly expressed at 14 dpi, and the hybridization signal was mainly in the cytoplasm of giant cells. The PsoDEL1 expression was lowest 7-21 dip, with negligible transcript detected in the giant cells. This indicates that the PsoCCS52A plays a role in the process of cell division, while the CCS52B plays a role in the development of giant cells. The PsoDEL1 plays a negative regulatory role in megakaryocyte nuclear replication. These data suggest that an increased expression of PsoCCS52A promotes nuclear division and produces a large number of polyploid nuclei, the area of giant cells and feeding sites increase, ultimately leading to the formation of galls in Prunus sogdiana.
Collapse
Affiliation(s)
- Kun Xiao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Weiyang Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Zhu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese, Guiyang, 550025, China
| | - Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Mbaluto CM, Ahmad EM, Fu M, Martínez-Medina A, van Dam NM. The impact of Spodoptera exigua herbivory on Meloidogyne incognita-induced root responses depends on the nematodes' life cycle stages. AOB PLANTS 2020; 12:plaa029. [PMID: 32665829 PMCID: PMC7336558 DOI: 10.1093/aobpla/plaa029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 05/22/2023]
Abstract
Induced responses to above-ground and below-ground herbivores may interact via systemic signalling in plants. We investigated whether the impact of above-ground herbivory on root-knot nematode-induced responses depends on the nematode's life cycle stages. Tomato plants were infected with the nematode (Meloidogyne incognita) for 5, 15 or 30 days before receiving Spodoptera exigua caterpillars above-ground. We collected root materials after 24 h of caterpillar feeding. We investigated phytohormones and α-tomatine levels, and the expression of defence and glycoalkaloid metabolism (GAME) marker genes in tomato roots. Nematode infection alone increased the endogenous root levels of jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), α-tomatine and the expression of the GLYCOALKALOID METABOLISM 1 (GAME1) gene mostly at 30 days post-nematode inoculation. Caterpillar feeding alone upregulated Lipoxygenase D and downregulated Basic-β-1-glucanase and GAME1 expression in roots. On nematode-infected plants, caterpillar feeding decreased JA levels, but it increased the expression of Leucine aminopeptidase A. The induction patterns of ABA and SA suggest that caterpillars cause cross-talk between the JA-signalling pathway and the SA and ABA pathways. Our results show that caterpillar feeding attenuated the induction of the JA pathway triggered by nematodes, mostly in the nematodes' reproduction stage. These results generate a better understanding of the molecular and chemical mechanisms underlying frequent nematode-plant-caterpillar interactions in natural and agricultural ecosystems.
Collapse
Affiliation(s)
- Crispus M Mbaluto
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| | - Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Melody Fu
- Faculty of Land and Food Systems, University of British Columbia, BC, Canada
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Plant-Microorganism Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| |
Collapse
|
39
|
Sousa AJ, Souza PF, Gifoni JM, Dias LP, Freitas CD, Oliveira JT, Sousa DO, Vasconcelos IM. Scanning electron microscopy reveals deleterious effects of Moringa oleifera seed exuded proteins on root-knot nematode Meloidogyne incognita eggs. Int J Biol Macromol 2020; 154:1237-1244. [DOI: 10.1016/j.ijbiomac.2019.10.278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
|
40
|
Khan MR, Sharma RK. Fusarium-nematode wilt disease complexes, etiology and mechanism of development. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42360-020-00240-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Warmerdam S, Sterken MG, Sukarta OCA, van Schaik CC, Oortwijn MEP, Lozano-Torres JL, Bakker J, Smant G, Goverse A. The TIR-NB-LRR pair DSC1 and WRKY19 contributes to basal immunity of Arabidopsis to the root-knot nematode Meloidogyne incognita. BMC PLANT BIOLOGY 2020; 20:73. [PMID: 32054439 PMCID: PMC7020509 DOI: 10.1186/s12870-020-2285-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/07/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Root-knot nematodes transform vascular host cells into permanent feeding structures to withdraw nutrients from the host plant. Ecotypes of Arabidopsis thaliana can display large quantitative variation in susceptibility to the root-knot nematode Meloidogyne incognita, which is thought to be independent of dominant major resistance genes. However, in an earlier genome-wide association study of the interaction between Arabidopsis and M. incognita we identified a quantitative trait locus harboring homologs of dominant resistance genes but with minor effect on susceptibility to the M. incognita population tested. RESULTS Here, we report on the characterization of two of these genes encoding the TIR-NB-LRR immune receptor DSC1 (DOMINANT SUPPRESSOR OF Camta 3 NUMBER 1) and the TIR-NB-LRR-WRKY-MAPx protein WRKY19 in nematode-infected Arabidopsis roots. Nematode infection studies and whole transcriptome analyses using the Arabidopsis mutants showed that DSC1 and WRKY19 co-regulate susceptibility of Arabidopsis to M. incognita. CONCLUSION Given the head-to-head orientation of DSC1 and WRKY19 in the Arabidopsis genome our data suggests that both genes may function as a TIR-NB-LRR immune receptor pair. Unlike other TIR-NB-LRR pairs involved in dominant disease resistance in plants, DSC1 and WRKY19 most likely regulate basal levels of immunity to root-knot nematodes.
Collapse
Affiliation(s)
- Sonja Warmerdam
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Octavina C. A. Sukarta
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Casper C. van Schaik
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian E. P. Oortwijn
- Laboratory of Plant breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jose L. Lozano-Torres
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaap Bakker
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
42
|
Zhou Y, Zhao D, Shuang L, Xiao D, Xuan Y, Duan Y, Chen L, Wang Y, Liu X, Fan H, Zhu X. Transcriptome Analysis of Rice Roots in Response to Root-Knot Nematode Infection. Int J Mol Sci 2020; 21:ijms21030848. [PMID: 32013011 PMCID: PMC7037758 DOI: 10.3390/ijms21030848] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Meloidogyne incognita and Meloidogyne graminicola are root-knot nematodes (RKNs) infecting rice (Oryza sativa L.) roots and severely decreasing yield, whose mechanisms of action remain unclear. We investigated RKN invasion and development in rice roots through RNA-seq transcriptome analysis. The results showed that 952 and 647 genes were differently expressed after 6 (invasion stage) and 18 (development stage) days post inoculation, respectively. Gene annotation showed that the differentially expressed genes were classified into diverse metabolic and stress response categories. Furthermore, phytohormone, transcription factor, redox signaling, and defense response pathways were enriched upon RKN infection. RNA-seq validation using qRT-PCR confirmed that CBL-interacting protein kinase (CIPK) genes (CIPK5, 8, 9, 11, 14, 23, 24, and 31) as well as brassinosteroid (BR)-related genes (OsBAK1, OsBRI1, D2, and D11) were altered by RKN infection. Analysis of the CIPK9 mutant and overexpressor indicated that the RKN populations were smaller in cipk9 and larger in CIPK9 OX, while more galls were produced in CIPK9 OX plant roots than the in wild-type roots. Significantly fewer numbers of second-stage infective juveniles (J2s) were observed in the plants expressing the BR biosynthesis gene D2 mutant and the BR receptor BRI1 activation-tagged mutant (bri1-D), and fewer galls were observed in bri1-D roots than in wild-type roots. The roots of plants expressing the regulator of ethylene signaling ERS1 (ethylene response sensor 1) mutant contained higher numbers of J2s and developed more galls compared with wild-type roots, suggesting that these signals function in RKN invasion or development. Our findings broaden our understanding of rice responses to RKN invasion and provide useful information for further research on RKN defense mechanisms.
Collapse
Affiliation(s)
- Yuan Zhou
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Di Zhao
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Li Shuang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi 716000, China;
| | - Dongxue Xiao
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Yuanhu Xuan
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Yuxi Duan
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Lijie Chen
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Yuanyuan Wang
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Xiaoyu Liu
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Haiyan Fan
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Xiaofeng Zhu
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
- Correspondence: ; Tel.: +86-135-1603-9056
| |
Collapse
|
43
|
Meidani C, Ntalli NG, Giannoutsou E, Adamakis IDS. Cell Wall Modifications in Giant Cells Induced by the Plant Parasitic Nematode Meloidogyne incognita in Wild-Type (Col-0) and the fra2 Arabidopsis thaliana Katanin Mutant. Int J Mol Sci 2019; 20:E5465. [PMID: 31684028 PMCID: PMC6862268 DOI: 10.3390/ijms20215465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Meloidogyne incognita is a root knot nematode (RKN) species which is among the most notoriously unmanageable crop pests with a wide host range. It inhabits plants and induces unique feeding site structures within host roots, known as giant cells (GCs). The cell walls of the GCs undergo the process of both thickening and loosening to allow expansion and finally support nutrient uptake by the nematode. In this study, a comparative in situ analysis of cell wall polysaccharides in the GCs of wild-type Col-0 and the microtubule-defective fra2 katanin mutant, both infected with M. incognita has been carried out. The fra2 mutant had an increased infection rate. Moreover, fra2 roots exhibited a differential pectin and hemicellulose distribution when compared to Col-0 probably mirroring the fra2 root developmental defects. Features of fra2 GC walls include the presence of high-esterified pectic homogalacturonan and pectic arabinan, possibly to compensate for the reduced levels of callose, which was omnipresent in GCs of Col-0. Katanin severing of microtubules seems important in plant defense against M. incognita, with the nematode, however, to be nonchalant about this "katanin deficiency" and eventually induce the necessary GC cell wall modifications to establish a feeding site.
Collapse
Affiliation(s)
- Christianna Meidani
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece.
| | - Nikoletta G Ntalli
- Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 14561 Athens, Greece.
| | - Eleni Giannoutsou
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece.
| | | |
Collapse
|
44
|
Zhao J, Li L, Liu Q, Liu P, Li S, Yang D, Chen Y, Pagnotta S, Favery B, Abad P, Jian H. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5943-5958. [PMID: 31365744 PMCID: PMC6812717 DOI: 10.1093/jxb/erz348] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
Plant-parasitic nematodes secrete numerous effectors to facilitate parasitism, but detailed functions of nematode effectors and their plant targets remain largely unknown. Here, we characterized four macrophage migration inhibitory factors (MIFs) in Meloidogyne incognita resembling the MIFs secreted by human and animal parasites. Transcriptional data showed MiMIFs are up-regulated in parasitism. Immunolocalization provided evidence that MiMIF proteins are secreted from the nematode hypodermis to the parasite surface, detected in plant tissues and giant cells. In planta MiMIFs RNA interference in Arabidopsis decreased infection and nematode reproduction. Transient expression of MiMIF-2 could suppress Bax- and RBP1/Gpa2-induced cell death. MiMIF-2 ectopic expression led to higher levels of Arabidopsis susceptibility, suppressed immune responses triggered by flg22, and impaired [Ca2+]cyt influx induced by H2O2. The immunoprecipitation of MiMIF-2-interacting proteins, followed by co-immunoprecipitation and bimolecular fluorescence complementation validations, revealed specific interactions between MiMIF-2 and two Arabidopsis annexins, AnnAt1 and AnnAt4, involved in the transport of calcium ions, stress responses, and signal transduction. Suppression of expression or overexpression of these annexins modified nematode infection. Our results provide functional evidence that nematode effectors secreted from hypodermis to the parasite cuticle surface target host proteins and M. incognita uses MiMIFs to promote parasitism by interfering with the annexin-mediated plant immune responses.
Collapse
Affiliation(s)
- Jianlong Zhao
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Lijuan Li
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Qian Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Pei Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Shuang Li
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Dan Yang
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Yongpan Chen
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée (CCMA), Université de Nice Sophia Antipolis, Nice, France
| | | | - Pierre Abad
- Université Côte d’Azur, INRA, CNRS, ISA, France
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
45
|
Sharma M, Jasrotia S, Ohri P, Manhas RK. Nematicidal potential of Streptomyces antibioticus strain M7 against Meloidogyne incognita. AMB Express 2019; 9:168. [PMID: 31641879 PMCID: PMC6805829 DOI: 10.1186/s13568-019-0894-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
Meloidogyne spp. are microscopic, obligatory endoparasites with worldwide distribution which cause severe damage to agricultural crops. The present study revealed the nematicidal activity of Streptomyces antibioticus strain M7 against Meloidogyne incognita. The culture supernatant of the isolate caused 100% J2 mortality after 24 h and inhibited egg hatching (only 3%). In addition, the nematicidal activity of actinomycins V, X2 and D purified from strain M7 was also checked. In vitro studies displayed 97.0-99.0% juvenile mortality and 28.0-44.0% egg hatching after 168 h at 240 µg/ml of actinomycin, with LD50 (lethal dose) values of 28-120 µg/ml. In vivo study further validated the nematicidal activity of strain M7, where nematode infested tomato plants treated with culture supernatant/cells/solvent extract showed reduction in root galls and egg masses per plant by 50.0-62.06% and 53.48-76.74%, respectively, and significantly enhanced the shoot length (54.67-76.39%), root length (36.45-64.88%), shoot fresh weight (111-171.77%), root fresh weight (120-163.33%), shoot dry weight (54.45-145.45%), and root dry weight (100-133.3%) over the nematode infested plants treated with water. Furthermore, tomato plants treated with cells/culture supernatant/extract of strain M7 without nematode infestation also showed significant increase in various plant growth parameters. Thus, the outcome of the study revealed the potential of S. antibioticus strain M7 and actinomycins produced from it to be developed as safe nematicidal agents to control the root knot nematodes, and to increase the crop yield.
Collapse
|
46
|
Aydınlı G, Kurtar ES, Mennan S. Screening of Cucurbita maxima and Cucurbita moschata Genotypes for Resistance Against Meloidogyne arenaria, M. incognita, M. javanica, and M. luci. J Nematol 2019; 51:e2019-57. [PMID: 34179793 PMCID: PMC6909016 DOI: 10.21307/jofnem-2019-057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 11/19/2022] Open
Abstract
The host response of fifteen winter squash (Cucurbita maxima) and five pumpkin (Cucurbita moschata) dihaploid genotypes to Meloidogyne arenaria, M. incognita, M. javanica, and M. luci was screened in pot experiments. Root galling and nematode reproduction were detected in all combinations of plant genotype and nematode species. Ten genotypes of C. maxima and three genotypes of C. moschata were considered highly resistant (<10% of the susceptible genotype) or moderately resistant (<50% of the susceptible genotype) to one or more Meloidogyne species based on nematode reproduction as a percentage of the most susceptible genotype. Genotypes 55CA15-A3 and G14-IP1 of C. maxima were highly resistant to M. luci and M. arenaria, respectively. Both 14BO01-O2 and G9-A4 genotypes of C. moschata were considered highly resistant to M. arenaria. However, these genotypes still allowed significant nematode reproduction because egg number per plant was higher than initial number of eggs used as inoculum, indicating that all genotypes were hosts.
Collapse
Affiliation(s)
- Gökhan Aydınlı
- Department of Crop and Animal Production, Bafra Vocational High School, Ondokuz Mayıs University, 55400 Samsun, Turkey.,Department of Plant Protection, Faculty of Agriculture, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Ertan Sait Kurtar
- Department of Horticulture, Faculty of Agriculture, Selçuk University, 42130 Konya, Turkey
| | - Sevilhan Mennan
- Department of Plant Protection, Faculty of Agriculture, Ondokuz Mayıs University, 55139 Samsun, Turkey
| |
Collapse
|
47
|
Blyuss KB, Fatehi F, Tsygankova VA, Biliavska LO, Iutynska GO, Yemets AI, Blume YB. RNAi-Based Biocontrol of Wheat Nematodes Using Natural Poly-Component Biostimulants. FRONTIERS IN PLANT SCIENCE 2019; 10:483. [PMID: 31057585 PMCID: PMC6479188 DOI: 10.3389/fpls.2019.00483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
With the growing global demands on sustainable food production, one of the biggest challenges to agriculture is associated with crop losses due to parasitic nematodes. While chemical pesticides have been quite successful in crop protection and mitigation of damage from parasites, their potential harm to humans and environment, as well as the emergence of nematode resistance, have necessitated the development of viable alternatives to chemical pesticides. One of the most promising and targeted approaches to biocontrol of parasitic nematodes in crops is that of RNA interference (RNAi). In this study we explore the possibility of using biostimulants obtained from metabolites of soil streptomycetes to protect wheat (Triticum aestivum L.) against the cereal cyst nematode Heterodera avenae by means of inducing RNAi in wheat plants. Theoretical models of uptake of organic compounds by plants, and within-plant RNAi dynamics, have provided us with useful insights regarding the choice of routes for delivery of RNAi-inducing biostimulants into plants. We then conducted in planta experiments with several streptomycete-derived biostimulants, which have demonstrated the efficiency of these biostimulants at improving plant growth and development, as well as in providing resistance against the cereal cyst nematode. Using dot blot hybridization we demonstrate that biostimulants trigger a significant increase of the production in plant cells of si/miRNA complementary with plant and nematode mRNA. Wheat germ cell-free experiments show that these si/miRNAs are indeed very effective at silencing the translation of nematode mRNA having complementary sequences, thus reducing the level of nematode infestation and improving plant resistance to nematodes. Thus, we conclude that natural biostimulants produced from metabolites of soil streptomycetes provide an effective tool for biocontrol of wheat nematode.
Collapse
Affiliation(s)
| | - Farzad Fatehi
- Department of Mathematics, University of Sussex, Brighton, United Kingdom
| | - Victoria A. Tsygankova
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Compounds, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Liudmyla O. Biliavska
- Department of General and Soil Microbiology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Galyna O. Iutynska
- Department of General and Soil Microbiology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alla I. Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav B. Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
48
|
Impact of phenolic compounds on Meloidogyne incognita in vitro and in tomato plants. Exp Parasitol 2019; 199:17-23. [DOI: 10.1016/j.exppara.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/20/2018] [Accepted: 02/16/2019] [Indexed: 02/02/2023]
|
49
|
Seiml-Buchinger VV, Zinovieva SV, Udalova ZV, Matveeva EM. Jasmonic acid modulates Meloidogyne incognita – tomato plant interactions. NEMATOLOGY 2019. [DOI: 10.1163/15685411-00003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Molecular aspects of the responses of tomato (Solanum lycopersicum) plants to invasion by Meloidogyne incognita, as well as the nematode reproduction capacity, were investigated and the role of jasmonic acid (JA) in these interactions was evaluated. Real-time quantitative PCR analysis showed that resistant and susceptible plants had similar levels of Mi1.2, PR1 and PR6 gene expression in stress-free conditions. During nematode invasion resistant plants showed up-regulation of Mi1.2, PR1 and PR6 genes and no reproduction of M. incognita. By contrast, susceptible plants showed no response in gene expression and the nematode had a high level of reproduction. Treatment of tomato plants with JA modulated Mi1.2 and PR6 gene expression that was accompanied by a suppression of the M. incognita reproduction on the roots of JA-treated susceptible plants.
Collapse
Affiliation(s)
- Victoria V. Seiml-Buchinger
- 1Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Russian Federation
| | - Svetlana V. Zinovieva
- 2Center of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russian Federation
| | - Zhanna V. Udalova
- 2Center of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russian Federation
| | - Elizaveta M. Matveeva
- 1Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Russian Federation
| |
Collapse
|
50
|
Warmerdam S, Sterken MG, Van Schaik C, Oortwijn MEP, Lozano‐Torres JL, Bakker J, Goverse A, Smant G. Mediator of tolerance to abiotic stress ERF6 regulates susceptibility of Arabidopsis to Meloidogyne incognita. MOLECULAR PLANT PATHOLOGY 2019; 20:137-152. [PMID: 30160354 PMCID: PMC6430479 DOI: 10.1111/mpp.12745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 05/04/2023]
Abstract
Root-knot nematodes transform vascular host cells into permanent feeding structures to selectively withdraw their nutrients from host plants during the course of several weeks. The susceptibility of host plants to root-knot nematode infections is thought to be a complex trait involving many genetic loci. However, genome-wide association (GWA) analysis has so far revealed only four quantitative trait loci (QTLs) linked to the reproductive success of the root-knot nematode Meloidogyne incognita in Arabidopsis thaliana, which suggests that the genetic architecture underlying host susceptibility could be much simpler than previously thought. Here, we report that, by using a relaxed stringency approach in a GWA analysis, we could identify 15 additional loci linked to quantitative variation in the reproductive success of M. incognita in Arabidopsis. To test the robustness of our analysis, we functionally characterized six genes located in a QTL with the lowest acceptable statistical support and smallest effect size. This led us to identify ETHYLENE RESPONSE FACTOR 6 (ERF6) as a novel susceptibility gene for M. incognita in Arabidopsis. ERF6 functions as a transcriptional activator and suppressor of genes in response to various abiotic stresses independent of ethylene signalling. However, whole-transcriptome analysis of nematode-infected roots of the Arabidopsis erf6-1 knockout mutant line showed that allelic variation at this locus may regulate the conversion of aminocyclopropane-1-carboxylate (ACC) into ethylene by altering the expression of 1-aminocyclopropane-1-carboxylate oxidase 3 (ACO3). Our data further suggest that tolerance to abiotic stress mediated by ERF6 forms a novel layer of control in the susceptibility of Arabidopsis to M. incognita.
Collapse
Affiliation(s)
- Sonja Warmerdam
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Casper Van Schaik
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Marian E. P. Oortwijn
- Plant BreedingWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Jose L. Lozano‐Torres
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Jaap Bakker
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Aska Goverse
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| |
Collapse
|