1
|
Sweetlove LJ, Ratcliffe RG, Fernie AR. Non-canonical plant metabolism. NATURE PLANTS 2025; 11:696-708. [PMID: 40164785 DOI: 10.1038/s41477-025-01965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/01/2025] [Indexed: 04/02/2025]
Abstract
Metabolism is essential for plant growth and has become a major target for crop improvement by enhancing nutrient use efficiency. Metabolic engineering is also the basis for producing high-value plant products such as pharmaceuticals, biofuels and industrial biochemicals. An inherent problem for such engineering endeavours is the tendency to view metabolism as a series of distinct metabolic pathways-glycolysis, the tricarboxylic acid cycle, the Calvin-Benson cycle and so on. While these canonical pathways may represent a dominant or frequently occurring flux mode, systematic analyses of metabolism via computational modelling have emphasized the inherent flexibility of the metabolic network to carry flux distributions that are distinct from the canonical pathways. Recent experimental estimates of metabolic network fluxes using 13C-labelling approaches have revealed numerous instances in which non-canonical pathways occur under different conditions and in different tissues. In this Review, we bring these non-canonical pathways to the fore, summarizing the evidence for their occurrence and the context in which they operate. We also emphasize the importance of non-canonical pathways for metabolic engineering. We argue that the introduction of a high-flux pathway to a desired metabolic product will, by necessity, require non-canonical supporting fluxes in central metabolism to provide the necessary carbon skeletons, energy and reducing power. We illustrate this using the overproduction of isoprenoids and fatty acids as case studies.
Collapse
Affiliation(s)
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
2
|
Shou M, Lin Q, Xu Y, Zhu R, Shi M, Kai G. New insights of advanced biotechnological engineering strategies for tanshinone biosynthesis in Salvia miltiorrhiza. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112384. [PMID: 39756484 DOI: 10.1016/j.plantsci.2025.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Salvia miltiorrhiza Bunge, a well-known traditional Chinese herbal medicine, has been served as not only medicine for human ailments, but also health care products. As one of major bioactive ingredients, tanshinones are widely used to treat cardiovascular and cerebrovascular diseases, and also possess different pharmacological activities including anti-tumor, anti-inflammatory, anti-fibrotic and others. However, the content of tanshinones is relatively low in S. miltiorrhiza plants. Recently, multiple biotechnological strategies have been applied to improve tanshinone production. In this review, advances in bioactivities, biosynthesis pathway and regulation, transcriptional regulatory network, epigenetic modification and synthetic biology are summarized, and future perspectives are discussed, which will help develop high-quality S. miltiorrhiza resources.
Collapse
Affiliation(s)
- Minyu Shou
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qinzhe Lin
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Xu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruiyan Zhu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China; College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Min Shi
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Guoyin Kai
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
3
|
Niu M, Yan H, Zhang X, Zhang Y, Li J, Xiong Y, Li Y, Bian Z, Teixeira da Silva JA, Ma G. Identification of 3-hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) associated with the synthesis of terpenoids in Santalum album L. Gene 2024:149188. [PMID: 39710012 DOI: 10.1016/j.gene.2024.149188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/22/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Santalum album is an economically important plant in the craft, spices and medicine industries. The main chemical constituents found in sandalwood essential oils are sesquiterpenes. 3-Hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) is one of the rate-limiting enzymes required for the synthesis of sandal sesquiterpenes, but there are no studies on the HMGR gene in S. album. In this study, the full-length ORFs of the upper rate-limiting enzyme genes SaHMGR1 and SaHMGR2, which lie upstream of the MVA metabolic pathway of sandal sesquiterpenes, were cloned for the first time. Bioinformatics and phylogenetic analyses were conducted. The results showed that SaHMGR1 and SaHMGR2 had typical domains of HMGR class I enzymes in the HMGR superfamily, including four catalytic sites, six NADPH-binding sites, five substrate binding regions, four inhibitor binding sites, and several dimer interface regions. A phylogenetic analysis showed that SaHMGR1 and SaHMGR2 were highly conserved relative to corresponding genes in other plants. An analysis of subcellular localization showed that these SaHMGR genes were located in the endoplasmic reticulum. SaHMGR1 and SaHMGR2 were detected by real-time PCR in roots, sapwood, heartwood, young leaves, mature leaves and twigs. Highest expression was in roots. SaHMGR1 expression was higher in mature leaves than in heartwood while SaHMGR2 expression was lower in mature leaves than in heartwood. Expression in Escherichia coli strain DH5α with plasmid pET-32a (+) was also used to verify the functionality of both HMGR proteins, which catalyzed the formation of MVA from HMG-CoA. In E. coli, the enzymatic activity of SaHMGR1 was higher than that of SaHMGR2. These findings provide a basis for further studies on the function of SaHMGR genes and the regulation of sesquiterpene biosynthesis in S. album.
Collapse
Affiliation(s)
- Meiyun Niu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Haifeng Yan
- University of Chinese Academy of Sciences, Beijing 100039, China; Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yueya Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jianrong Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yuping Xiong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Zhan Bian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China.
| | | | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
4
|
Pan Y, Dai J, Jin M, Zhou Q, Jin X, Zhang J. Transcription factors in tanshinones: Emerging mechanisms of transcriptional regulation. Medicine (Baltimore) 2024; 103:e40343. [PMID: 39809191 PMCID: PMC11596512 DOI: 10.1097/md.0000000000040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/15/2024] [Indexed: 01/16/2025] Open
Abstract
Transcription factors play a crucial role in the biosynthesis of tanshinones, which are significant secondary metabolites derived from Salvia miltiorrhiza, commonly known as Danshen. These compounds have extensive pharmacological properties, including anti-inflammatory and cardioprotective effects. This review delves into the roles of various transcription factor families, such as APETALA2/ethylene response factor, basic helix-loop-helix, myeloblastosis, basic leucine zipper, and WRKY domain-binding protein, in regulating the biosynthetic pathways of tanshinones. We discuss the emerging mechanisms by which these transcription factors influence the synthesis of tanshinones, both positively and negatively, by directly regulating gene expression or forming complex regulatory networks. Additionally, the review highlights the potential applications of these insights in enhancing tanshinone production through genetic and metabolic engineering, setting the stage for future advancements in medicinal plant research.
Collapse
Affiliation(s)
- Yanyun Pan
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jin Dai
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Minwei Jin
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qiujun Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaoliang Jin
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jinjie Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Yin X, Yang H, Ding K, Luo Y, Deng W, Liao J, Pan Y, Jiang B, Yong X, Jia Y. PfERF106, a novel key transcription factor regulating the biosynthesis of floral terpenoids in Primula forbesii Franch. BMC PLANT BIOLOGY 2024; 24:851. [PMID: 39256664 PMCID: PMC11385529 DOI: 10.1186/s12870-024-05567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Flowers can be a source of essential oils used in the manufacture of substances with high economic value. The ethylene response factor (ERF) gene family plays a key role in regulating secondary metabolite biosynthesis in plants. However, until now, little has been known about the involvement of ERF transcription factors (TFs) in floral terpenoid biosynthesis. RESULTS In this study, an aromatic plant, Primula forbesii Franch., was used as research material to explore the key regulatory effects of PfERF106 on the biosynthesis of terpenoids. PfERF106, which encodes an IXb group ERF transcription factor, exhibited a consistent expression trend in the flowers of P. forbesii and was transcriptionally induced by exogenous ethylene. Transient silencing of PfERF106 in P. forbesii significantly decreased the relative contents of key floral terpenes, including (z)-β-ocimene, sabinene, β-pinene, γ-terpinene, linalool, eremophilene, α-ionone, and α-terpineol. In contrast, constitutive overexpression of PfERF106 in transgenic tobacco significantly increased the relative contents of key floral terpenes, including cis-3-hexen-1-ol, linalool, caryophyllene, cembrene, and sclareol. RNA sequencing of petals of PfERF106-silenced plants and empty-vector control plants revealed 52,711 expressed unigenes and 9,060 differentially expressed genes (DEGs). KEGG annotation analysis revealed that the DEGs were enriched for involvement in secondary metabolic biosynthetic pathways, including monoterpene and diterpene synthesis. Notably, 10 downregulated DEGs were determined to be the downstream target genes of PfERF106 affecting the biosynthesis of terpenoids in P. forbesii. CONCLUSION This study characterized the key positive regulatory effects of PfERF106 on the biosynthesis of terpenoids, indicating high-quality genetic resources for aroma improvement in P. forbesii. Thus, this study advances the artificial and precise directional regulation of metabolic engineering of aromatic substances.
Collapse
Affiliation(s)
- Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongchen Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keying Ding
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanzhi Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wanqing Deng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianwei Liao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
6
|
Zhang J, Yang K, Tang W, Yang Y, Yu X, Lu Y, Yu L. Molecular Characterization and Expression Analysis of a Gene Encoding 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGR) from Bipolaris eleusines, an Ophiobolin A-Producing Fungus. J Fungi (Basel) 2024; 10:445. [PMID: 39057330 PMCID: PMC11277564 DOI: 10.3390/jof10070445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Ophibolin A, a fungal sesterterpene, exerts a pivotal influence in a diverse array of biological processes, encompassing herbicidal, bactericidal, fungicidal, and cytotoxic activities. Sixty genes associated with sesterterpene compound biosynthesis were obtained from Bipolaris eleusines via transcriptome sequencing, and those closely linked to ophiobolin A biosynthesis were subsequently filtered. A gene encoding 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) that catalyzes the first committed step of ophiobolin biosynthesis in the mevalonic acid (MVA) pathway was isolated and characterized using RACE (Rapid Amplification of cDNA Ends) technology from ophiobolin A-producing fungus, B. eleusines. The full-length cDNA of the B. eleusines HMGR gene (BeHMGR) was 3906 bp and contained a 3474 bp open reading frame (ORF) encoding 1157 amino acids. Sequence analysis revealed that deduced BeHMGR had high homology to the known HMGRs from Pyrenophora tritici-repentis and Leptosphaeria maculans. It had a calculated molecular mass of about 124.65 kDa and an isoelectric point (pI) of 6.90. It contained two putative HMG-CoA-binding motifs and two NADP(H)-binding motifs. Induced expression analysis of the BeHMGR gene by methyl jasmonate treatment using quantitative fluorescence PCR showed that it significantly elevated after 3 h of methyl jasmonate treatment, peaked at 6 h, and then gradually decreased. This demonstrates that BeHMGR gene expression is induced by methyl jasmonate.
Collapse
Affiliation(s)
- Jianping Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Ke Yang
- Department of Industrial Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Wei Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yongjie Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoyue Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yongliang Lu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Liuqing Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
7
|
Chai S, Deng W, Yang J, Guo L, Wang L, Jiang Y, Liao J, Deng X, Yang R, Zhang Y, Lu Z, Wang X, Zhang L. Physiological and molecular mechanisms of ZnO quantum dots mitigating cadmium stress in Salvia miltiorrhiza. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134245. [PMID: 38603910 DOI: 10.1016/j.jhazmat.2024.134245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
This study delved into the physiological and molecular mechanisms underlying the mitigation of cadmium (Cd) stress in the model medicinal plant Salvia miltiorrhiza through the application of ZnO quantum dots (ZnO QDs, 3.84 nm). A pot experiment was conducted, wherein S. miltiorrhiza was subjected to Cd stress for six weeks with foliar application of 100 mg/L ZnO QDs. Physiological analyses demonstrated that compared to Cd stress alone, ZnO QDs improved biomass, reduced Cd accumulation, increased the content of photosynthetic pigments (chlorophyll and carotenoids), and enhanced the levels of essential nutrient elements (Ca, Mn, and Cu) under Cd stress. Furthermore, ZnO QDs significantly lowered Cd-induced reactive oxygen species (ROS) content, including H2O2, O2-, and MDA, while enhancing the activity of antioxidant enzymes (SOD, POD, APX, and GSH-PX). Additionally, ZnO QDs promoted the biosynthesis of primary and secondary metabolites, such as total protein, soluble sugars, terpenoids, and phenols, thereby mitigating Cd stress in S. miltiorrhiza. At the molecular level, ZnO QDs were found to activate the expression of stress signal transduction-related genes, subsequently regulating the expression of downstream target genes associated with metal transport, cell wall synthesis, and secondary metabolite synthesis via transcription factors. This activation mechanism contributed to enhancing Cd tolerance in S. miltiorrhiza. In summary, these findings shed light on the mechanisms underlying the mitigation of Cd stress by ZnO QDs, offering a potential nanomaterial-based strategy for enhancing Cd tolerance in medicinal plants.
Collapse
Affiliation(s)
- Songyue Chai
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Weihao Deng
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianping Yang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Linfeng Guo
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Long Wang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Jinqiu Liao
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China; College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuexue Deng
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Ruiwu Yang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China; College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Yunsong Zhang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
8
|
Alam SSM, Samanta A, Uddin F, Ali S, Hoque M. Tanshinone IIA targeting cell signaling pathways: a plausible paradigm for cancer therapy. Pharmacol Rep 2023:10.1007/s43440-023-00507-y. [PMID: 37440106 DOI: 10.1007/s43440-023-00507-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Natural compounds originating from plants offer a wide range of pharmacological potential and have traditionally been used to treat a wide range of diseases including cancer. Tanshinone IIA (Tan IIA), a bioactive molecule found in the roots of the Traditional Chinese Medicine (TCM) herb Salvia miltiorrhiza, has been shown to have remarkable anticancer properties through several mechanisms, such as inhibition of tumor cell growth and proliferation, metastasis, invasion, and angiogenesis, as well as induction of apoptosis and autophagy. It has demonstrated excellent anticancer efficacy against cell lines from breast, cervical, colorectal, gastric, lung, and prostate cancer by modulating multiple signaling pathways including PI3K/Akt, JAK/STAT, IGF-1R, and Bcl-2-Caspase pathways. This review focuses on the role of Tan IIA in the treatment of various cancers, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Arijit Samanta
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Faizan Uddin
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Mehboob Hoque
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India.
| |
Collapse
|
9
|
Li J, Li C, Deng Y, Wei H, Lu S. Characteristics of Salvia miltiorrhiza methylome and the regulatory mechanism of DNA methylation in tanshinone biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad114. [PMID: 37577393 PMCID: PMC10419789 DOI: 10.1093/hr/uhad114] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/21/2023] [Indexed: 08/15/2023]
Abstract
Salvia miltiorrhiza is a model medicinal plant with significant economic and medicinal value. Its roots produce a group of diterpenoid lipophilic bioactive components, termed tanshinones. Biosynthesis and regulation of tanshinones has attracted widespread interest. However, the methylome of S. miltiorrhiza has not been analysed and the regulatory mechanism of DNA methylation in tanshinone production is largely unknown. Here we report single-base resolution DNA methylomes from roots and leaves. Comparative analysis revealed differential methylation patterns for CG, CHG, and CHH contexts and the association between DNA methylation and the expression of genes and small RNAs. Lowly methylated genes always had higher expression levels and 24-nucleotide sRNAs could be key players in the RdDM pathway in S. miltiorrhiza. DNA methylation variation analysis showed that CHH methylation contributed mostly to the difference. Go enrichment analysis showed that diterpenoid biosynthetic process was significantly enriched for genes with downstream overlapping with hypoCHHDMR in July_root when comparing with those in March_root. Tanshinone biosynthesis-related enzyme genes, such as DXS2, CMK, IDI1, HMGR2, DXR, MDS, CYP76AH1, 2OGD25, and CYP71D373, were less CHH methylated in gene promoters or downstream regions in roots collected in July than those collected in March. Consistently, gene expression was up-regulated in S. miltiorrhiza roots collected in July compared with March and the treatment of DNA methylation inhibitor 5-azacytidine significantly promoted tanshinone production. It suggests that DNA methylation plays a significant regulatory role in tanshinone biosynthesis in S. miltiorrhiza through changing the levels of CHH methylation in promoters or downstreams of key enzyme genes.
Collapse
Affiliation(s)
- Jiang Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yuxing Deng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
10
|
3-Hydroxy-3-methylglutaryl coenzyme A reductase genes from Glycine max regulate plant growth and isoprenoid biosynthesis. Sci Rep 2023; 13:3902. [PMID: 36890158 PMCID: PMC9995466 DOI: 10.1038/s41598-023-30797-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Isoprenoids, a large kind of plant natural products, are synthesized by the mevalonate (MVA) pathway in the cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. As one of the rate-limiting enzymes in the MVA pathway of soybean (Glycine max), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is encoded by eight isogenes (GmHMGR1-GmHMGR8). To begin, we used lovastatin (LOV), a specific inhibitor of GmHMGR, to investigate their role in soybean development. To further investigate, we overexpressed the GmHMGR4 and GmHMGR6 genes in Arabidopsis thaliana. The growth of soybean seedlings, especially the development of lateral roots, was inhibited after LOV treatment, accompanied by a decrease in sterols content and GmHMGR gene expression. After the overexpression of GmHMGR4 and GmHMGR6 in A. thaliana, the primary root length was higher than the wild type, and total sterol and squalene contents were significantly increased. In addition, we detected a significant increase in the product tocopherol from the MEP pathway. These results further support the fact that GmHMGR1-GmHMGR8 play a key role in soybean development and isoprenoid biosynthesis.
Collapse
|
11
|
Li Q, Fang X, Zhao Y, Cao R, Dong J, Ma P. The SmMYB36-SmERF6/SmERF115 module regulates the biosynthesis of tanshinones and phenolic acids in salvia miltiorrhiza hairy roots. HORTICULTURE RESEARCH 2022; 10:uhac238. [PMID: 36643739 PMCID: PMC9832864 DOI: 10.1093/hr/uhac238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Tanshinone and phenolic acids are the most important active substances of Salvia miltiorrhiza, and the insight into their transcriptional regulatory mechanisms is an essential process to increase their content in vivo. SmMYB36 has been found to have important regulatory functions in the synthesis of tanshinone and phenolic acid; paradoxically, its mechanism of action in S. miltiorrhiza is not clear. Here, we demonstrated that SmMYB36 functions as a promoter of tanshinones accumulation and a suppressor of phenolic acids through the generation of SmMYB36 overexpressed and chimeric SmMYB36-SRDX (EAR repressive domain) repressor hairy roots in combination with transcriptomic-metabolomic analysis. SmMYB36 directly down-regulate the key enzyme gene of primary metabolism, SmGAPC, up-regulate the tanshinones biosynthesis branch genes SmDXS2, SmGGPPS1, SmCPS1 and down-regulate the phenolic acids biosynthesis branch enzyme gene, SmRAS. Meanwhile, SmERF6, a positive regulator of tanshinone synthesis activating SmCPS1, was up-regulated and SmERF115, a positive regulator of phenolic acid biosynthesis activating SmRAS, was down-regulated. Furthermore, the seven acidic amino acids at the C-terminus of SmMYB36 are required for both self-activating domain and activation of target gene expression. As a consequence, this study contributes to reveal the potential relevance of transcription factors synergistically regulating the biosynthesis of tanshinone and phenolic acid.
Collapse
Affiliation(s)
| | | | | | - Ruizhi Cao
- College of Life Sciences, Northwest A&F University, Yangling 71210, China
| | | | | |
Collapse
|
12
|
Lu LL, Zhang YX, Yang YF. Integrative transcriptomic and metabolomic analyses unveil tanshinone biosynthesis in Salvia miltiorrhiza root under N starvation stress. PLoS One 2022; 17:e0273495. [PMID: 36006940 PMCID: PMC9409544 DOI: 10.1371/journal.pone.0273495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Salvia miltiorrhiza is a model plant for Chinese herbal medicine with significant pharmacologic effects due to its tanshinone components. Our previous study indicated that nitrogen starvation stress increased its tanshinone content. However, the molecular mechanism of this low nitrogen-induced tanshinone biosynthesis is still unclear. Thus, this study aimed to elucidate the molecular mechanism of tanshinone biosynthesis in S. miltiorrhiza under different N conditions [N-free (N0), low-N (Nl), and full-N (Nf, as control) conditions] by using transcriptome and metabolome analyses. Our results showed 3,437 and 2,274 differentially expressed unigenes between N0 and Nf as well as Nl and Nf root samples, respectively. N starvation (N0 and Nl) promoted the expression of the genes involved in the MVA and MEP pathway of tanshinone and terpenoid backbone biosynthesis. Gene ontology and KEGG analyses revealed that terpenoid backbone biosynthesis, hormone signal transduction, and phenylpropanoid biosynthesis were promoted under N starvation conditions, whereas starch and sucrose metabolisms, nitrogen and phosphorus metabolisms, as well as membrane development were inhibited. Furthermore, metabolome analysis showed that metabolite compounds and biosynthesis of secondary metabolites were upregulated. This study provided a novel insight into the molecular mechanisms of tanshinone production in S. miltiorrhiza in response to nitrogen stress.
Collapse
Affiliation(s)
- Li-Lan Lu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, China
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- * E-mail:
| | - Yu-Xiu Zhang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, China
| | - Yan-Fang Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
13
|
Isolation and Comprehensive in Silico Characterisation of a New 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase 4 (HMGR4) Gene Promoter from Salvia miltiorrhiza: Comparative Analyses of Plant HMGR Promoters. PLANTS 2022; 11:plants11141861. [PMID: 35890495 PMCID: PMC9318348 DOI: 10.3390/plants11141861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Salvia miltiorrhiza synthesises tanshinones with multidirectional therapeutic effects. These compounds have a complex biosynthetic pathway, whose first rate limiting enzyme is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). In the present study, a new 1646 bp fragment of the S. miltiorrhiza HMGR4 gene consisting of a promoter, 5′ untranslated region and part of a coding sequence was isolated and characterised in silico using bioinformatics tools. The results indicate the presence of a TATA box, tandem repeat and pyrimidine-rich sequence, and the absence of CpG islands. The sequence was rich in motifs recognised by specific transcription factors sensitive mainly to light, salicylic acid, bacterial infection and auxins; it also demonstrated many binding sites for microRNAs. Moreover, our results suggest that HMGR4 expression is possibly regulated during flowering, embryogenesis, organogenesis and the circadian rhythm. The obtained data were verified by comparison with microarray co-expression results obtained for Arabidopsis thaliana. Alignment of the isolated HMGR4 sequence with other plant HMGRs indicated the presence of many common binding sites for transcription factors, including conserved ones. Our findings provide valuable information for understanding the mechanisms that direct transcription of the S. miltiorrhiza HMGR4 gene.
Collapse
|
14
|
Majewska M, Szymczyk P, Gomulski J, Jeleń A, Grąbkowska R, Balcerczak E, Kuźma Ł. The Expression Profiles of the Salvia miltiorrhiza 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase 4 Gene and Its Influence on the Biosynthesis of Tanshinones. Molecules 2022; 27:molecules27144354. [PMID: 35889227 PMCID: PMC9317829 DOI: 10.3390/molecules27144354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Salvia miltiorrhiza is a medicinal plant that synthesises biologically-active tanshinones with numerous therapeutic properties. An important rate-limiting enzyme in the biosynthesis of their precursors is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). This study presents the organ-specific expression profile of the S. miltiorrhiza HMGR4 gene and its sensitivity to potential regulators, viz. gibberellic acid (GA3), indole-3-acetic acid (IAA) and salicylic acid (SA). In addition, it demonstrates the importance of the HMGR4 gene, the hormone used, the plant organ, and the culture environment for the biosynthesis of tanshinones. HMGR4 overexpression was found to significantly boost the accumulation of dihydrotanshinone I (DHTI), cryptotanshinone (CT), tanshinone I (TI) and tanshinone IIA (TIIA) in roots by 0.44 to 5.39 mg/g dry weight (DW), as well as TIIA in stems and leaves. S. miltiorrhiza roots cultivated in soil demonstrated higher concentrations of the examined metabolites than those grown in vitro. GA3 caused a considerable increase in the quantity of CT (by 794.2 µg/g DW) and TIIA (by 88.1 µg/g DW) in roots. In turn, IAA significantly inhibited the biosynthesis of the studied tanshinones in root material.
Collapse
Affiliation(s)
- Małgorzata Majewska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (P.S.); (J.G.); (R.G.)
- Correspondence: (M.M.); (Ł.K.)
| | - Piotr Szymczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (P.S.); (J.G.); (R.G.)
| | - Jan Gomulski
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (P.S.); (J.G.); (R.G.)
| | - Agnieszka Jeleń
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.J.); (E.B.)
| | - Renata Grąbkowska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (P.S.); (J.G.); (R.G.)
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.J.); (E.B.)
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (P.S.); (J.G.); (R.G.)
- Correspondence: (M.M.); (Ł.K.)
| |
Collapse
|
15
|
Zhang K, Wang N, Gao X, Ma Q. Integrated metabolite profiling and transcriptome analysis reveals tissue-specific regulation of terpenoid biosynthesis in Artemisia argyi. Genomics 2022; 114:110388. [PMID: 35568110 DOI: 10.1016/j.ygeno.2022.110388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
Artemisia argyi L. is a widely distributed medicinal plant in China. The major bioactive substances of essential oils extracted from leaves are terpenoids. Although many researches have studied the pharmacological effects of the essential oils, the tissue-specific accumulation of terpenoid biosynthesis and the regulatory networks in A. argyi are poorly understood. This study conducted an integrated metabolomic and transcriptomic analysis of roots, stems, and leaves to investigate the tissue-specific regulatory network of terpenoid biosynthesis in A. argyi. We identified 77 unigenes putatively involved in terpenoid backbone biosynthesis. Three rate-determining enzyme genes (DXS, DXR, and HDR) of the methylerythritol phosphate pathway were predominantly expressed in leaves, and strongly co-expressed with eight transcription factors (2 MYBs, 4 WRKYs, and 2 AP2s). An metabolite-transcript correlation analysis revealed 26 putative cytochrome P450s related to terpenoid metabolism in leaves. These results provide a foundation for the future metabolic engineering of useful terpenoids in A. argyi.
Collapse
Affiliation(s)
- Kunpeng Zhang
- Anyang Institute of Technology, Anyang 455000, China; Anyang Institute of Technology, Postdoctoral Innovation Practice Base, Anyang 455000, China
| | - Nuohan Wang
- Anyang Institute of Technology, Anyang 455000, China; Anyang Institute of Technology, Postdoctoral Innovation Practice Base, Anyang 455000, China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinqiang Gao
- Anyang Institute of Technology, Anyang 455000, China
| | - Qiang Ma
- Anyang Institute of Technology, Anyang 455000, China.
| |
Collapse
|
16
|
Wang Z, Peters RJ. Tanshinones: Leading the way into Lamiaceae labdane-related diterpenoid biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102189. [PMID: 35196638 PMCID: PMC8940693 DOI: 10.1016/j.pbi.2022.102189] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 05/06/2023]
Abstract
Tanshinones are the bioactive diterpenoid constituents of the traditional Chinese medicinal herb Danshen (Salvia miltiorrhiza), and are examples of the phenolic abietanes widely found within the Lamiaceae plant family. Due to the significant interest in these labdane-related diterpenoid natural products, their biosynthesis has been intensively investigated. In addition to providing the basis for metabolic engineering efforts, this work further yielded pioneering insights into labdane-related diterpenoid biosynthesis in the Lamiaceae more broadly. This includes stereochemical foreshadowing of aromatization, with novel protein domain loss in the relevant diterpene synthase, as well as broader phylogenetic conservation of the relevant enzymes. Beyond such summary of more widespread metabolism, formation of the furan ring that characterizes the tanshinones also has been recently elucidated. Nevertheless, the biocatalysts for the pair of demethylations remain unknown, and the intriguing potential connection of these reactions to the further aromatization observed in the tanshinones are speculated upon here.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
17
|
Liu X, Tang N, Xu F, Chen Z, Zhang X, Ye J, Liao Y, Zhang W, Kim SU, Wu P, Cao Z. SMRT and Illumina RNA sequencing reveal the complexity of terpenoid biosynthesis in Zanthoxylum armatum. TREE PHYSIOLOGY 2022; 42:664-683. [PMID: 34448876 DOI: 10.1093/treephys/tpab114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Sichuan pepper (Zanthoxylum armatum DC) is a popular spice and is often prescribed in traditional Chinese medicine to treat vomiting, diarrhea, ascariasis and eczema, among other conditions. Volatile oils from Z. armatum leaves contain active ingredients, with terpenoids being one of the main components. In the present study, the combination of sequencing data of Z. armatum from PacBio single molecule real time (SMRT) and Illumina RNA sequencing (RNA-Seq) platforms facilitated an understanding of the gene regulatory network of terpenoid biosynthesis in pepper leaves. The leaves of three developmental stages from two Z. armatum cultivars, 'Rongchangwuci' (WC) and 'Zhuye' (ZY), were selected as test materials to construct sequencing libraries. A total of 143,122 predictions of unique coding sequences, 105,465 simple sequence repeats, 20,145 transcription factors and 4719 long non-coding RNAs (lncRNAs) were identified, and 142,829 transcripts were successfully annotated. The occurrence of alternative splicing events was verified by reverse transcription PCR, and quantitative real-time PCR was used to confirm the expression pattern of six randomly selected lncRNAs. A total of 96,931 differentially expressed genes were filtered from different samples. According to functional annotation, a total of 560 candidate genes were involved in terpenoid synthesis, of which 526 were differentially expressed genes (DEGs). To identify the key genes involved in terpenoid biosynthesis, the module genes in different samples, including structural and transcription factors genes, were analyzed using the weighted gene co-expression network method, and the co-expression network of genes was constructed. Thirty-one terpenoids were identified by gas chromatography-mass spectrometry. The correlation between 18 compounds with significantly different contents and genes with high connectivity in the module was jointly analyzed in both cultivars, yielding 12 candidate DEGs presumably involved in the regulation of terpenoid biosynthesis. Our findings showed that full-length transcriptome SMRT and Illumina RNA-Seq can play an important role in studying organisms without reference genomes and elucidating the gene regulation of a biosynthetic pathway.
Collapse
Affiliation(s)
- Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Xian Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Soo-Un Kim
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Peiyin Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhengyan Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
18
|
Movahedi A, Wei H, Pucker B, Ghaderi-Zefrehei M, Rasouli F, Kiani-Pouya A, Jiang T, Zhuge Q, Yang L, Zhou X. Isoprenoid biosynthesis regulation in poplars by methylerythritol phosphate and mevalonic acid pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:968780. [PMID: 36247639 PMCID: PMC9562105 DOI: 10.3389/fpls.2022.968780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
It is critical to develop plant isoprenoid production when dealing with human-demanded industries such as flavoring, aroma, pigment, pharmaceuticals, and biomass used for biofuels. The methylerythritol phosphate (MEP) and mevalonic acid (MVA) plant pathways contribute to the dynamic production of isoprenoid compounds. Still, the cross-talk between MVA and MEP in isoprenoid biosynthesis is not quite recognized. Regarding the rate-limiting steps in the MEP pathway through catalyzing 1-deoxy-D-xylulose5-phosphate synthase and 1-deoxy-D-xylulose5-phosphate reductoisomerase (DXR) and also the rate-limiting step in the MVA pathway through catalyzing 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the characterization and function of HMGR from Populus trichocarpa (PtHMGR) were analyzed. The results indicated that PtHMGR overexpressors (OEs) displayed various MEP and MVA-related gene expressions compared to NT poplars. The overexpression of PtDXR upregulated MEP-related genes and downregulated MVA-related genes. The overexpression of PtDXR and PtHMGR affected the isoprenoid production involved in both MVA and MEP pathways. Here, results illustrated that the PtHMGR and PtDXR play significant roles in regulating MEP and MVA-related genes and derived isoprenoids. This study clarifies cross-talk between MVA and MEP pathways. It demonstrates the key functions of HMGR and DXR in this cross-talk, which significantly contribute to regulate isoprenoid biosynthesis in poplars.
Collapse
Affiliation(s)
- Ali Movahedi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Boas Pucker
- Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany
| | | | - Fatemeh Rasouli
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Ali Kiani-Pouya
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qiang Zhuge
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- *Correspondence: Qiang Zhuge,
| | - Liming Yang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Liming Yang,
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Xiaohong Zhou,
| |
Collapse
|
19
|
Li W, Ma X, Li G, Zhang A, Wang D, Fan F, Ma X, Zhang X, Dai Z, Qian Z. De Novo Biosynthesis of the Oleanane-Type Triterpenoids of Tunicosaponins in Yeast. ACS Synth Biol 2021; 10:1874-1881. [PMID: 34259519 DOI: 10.1021/acssynbio.1c00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tunicosaponins are natural products extracted from Psammosilene tunicoides, which is an important ingredient of Yunnan Baiyao Powder, an ancient and famous Asian herbal medicine. The representative aglycones of tunicosaponins are the oleanane-type triterpenoids of gypsogenin and quillaic acid, which were found to manipulate a broad range of virus-host fusion via wrapping the heptad repeat-2 (HR2) domain prevalent in viral envelopes. However, the unknown biosynthetic pathway and difficulty in chemical synthesis hinder the therapeutic use of tunicosaponins. Here, two novel cytochrome P450-dependent monooxygenases that take part in the biosynthesis of tunicosaponins, CYP716A262 (CYP091) and CYP72A567 (CYP099), were identified from P. tunicoides. In addition, the whole biosynthesis pathway of the tunicosaponin aglycones was reconstituted in yeast by transforming the platform strain BY-bAS with the CYP716A262 and CYP716A567 genes, the resulting strain could produce 146.84 and 314.01 mg/L of gypsogenin and quillaic acid, respectively. This synthetic biology platform for complicated metabolic pathways elucidation and microbial cell factories construction can provide alternative sources of important natural products, helping conserve natural plant resources.
Collapse
Affiliation(s)
- Weixian Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Department of Pharmacy, The Third People’s Hospital of Kunming, Kunming, 650000, China
| | - Xiaohui Ma
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Guodong Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Aili Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaolin Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhubo Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zigang Qian
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
20
|
Zheng T, Guan L, Yu K, Haider MS, Nasim M, Liu Z, Li T, Zhang K, Jiu S, Jia H, Fang J. Expressional diversity of grapevine 3-Hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) in different grapes genotypes. BMC PLANT BIOLOGY 2021; 21:279. [PMID: 34147088 PMCID: PMC8214791 DOI: 10.1186/s12870-021-03073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is a key enzyme in the mevalonate (MVA) pathway, which regulates the metabolism of terpenoids in the cytoplasm and determines the type and content of downstream terpenoid metabolites. RESULTS Results showed that grapevine HMGR family has three members, such as VvHMGR1, VvHMGR2, and VvHMGR3. The expression of VvHMGRs in 'Kyoho' has tissue specificity, for example, VvHMGR1 keeps a higher expression, VvHMGR2 is the lowest, and VvHMGR3 gradually decreases as the fruit development. VvHMGR3 is closely related to CsHMGR1 and GmHMGR9 and has collinearity with CsHMGR2 and GmHMGR4. By the prediction of interaction protein, it can interact with HMG-CoA synthase, MVA kinase, FPP/GGPP synthase, diphosphate mevalonate decarboxylase, and participates in the synthesis and metabolism of terpenoids. VvHMGR3 have similar trends in expression with some of the genes of carotenoid biosynthesis and MEP pathways. VvHMGR3 responds to various environmental and phytohormone stimuli, especially salt stress and ultraviolet (UV) treatment. The expression level of VvHMGRs is diverse in grapes of different colors and aroma. VvHMGRs are significantly higher in yellow varieties than that in red varieties, whereas rose-scented varieties showed significantly higher expression than that of strawberry aroma. The expression level is highest in yellow rose-scented varieties, and the lowest in red strawberry scent varieties, especially 'Summer Black' and 'Fujiminori'. CONCLUSION This study confirms the important role of VvHMGR3 in the process of grape fruit coloring and aroma formation, and provided a new idea to explain the loss of grape aroma and poor coloring during production. There may be an additive effect between color and aroma in the HMGR expression aspect.
Collapse
Affiliation(s)
- Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Lubin Guan
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Kun Yu
- College of Agriculture, Shihezi University, Shihezi City, 832003, PR China
| | - Muhammad Salman Haider
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Maazullah Nasim
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Teng Li
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Kekun Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, PR China
| | - Songtao Jiu
- Department of Plant Science, Shanghai Jiao Tong University, 200030, Shanghai, PR China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China.
| |
Collapse
|
21
|
Kim YK, Sathasivam R, Kim YB, Kim JK, Park SU. Transcriptomic Analysis, Cloning, Characterization, and Expression Analysis of Triterpene Biosynthetic Genes and Triterpene Accumulation in the Hairy Roots of Platycodon grandiflorum Exposed to Methyl Jasmonate. ACS OMEGA 2021; 6:12820-12830. [PMID: 34056433 PMCID: PMC8154235 DOI: 10.1021/acsomega.1c01202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 05/17/2023]
Abstract
Platycodon grandiflorum is a perennial plant that has been used for medicinal purposes. Specifically, it is widely used in Northern China and Korea for the treatment of various diseases. Terpenoids belong to a group called secondary metabolites and have attracted a wide range of interest. Here, we determined the expressed sequence tag (EST) library of the methyl jasmonate (MeJA)-treated hairy root of P. grandiflorum. In total, 5760 ESTs were obtained, but after deleting the vector sequences and removing poor-quality sequences, a total of 2536 ESTs were attained. Of these, 811 contigs and 1725 singletons were annotated. The data were further analyzed with a focus on the gene families of the terpenoid biosynthetic pathway (TBP). We identified and characterized four TBP genes; among these were three full-length cDNAs encoding PgHMGS, PgMK, and PgMVD, whereas PgHMGR had a partial sequence based on the EST library database. Phylogenetic analysis and a pairwise identity matrix showed that these identified genes were closely related to those of other higher plants. Moreover, the tertiary structure and multiple alignment analysis showed that several distinct conserved motifs were present. Quantitative reverse transcription-polymerase chain reaction results revealed that TBP genes were constitutively expressed in all organs of P. grandiflorum, while the expression of transcript levels of these genes varied distinctly among the organs. Additionally, the total amount of platycosides was highly detected in the root, accumulating in concentrations 7.8 and 2.6 times higher than in the hairy root and stem, respectively, and 1.4 times higher than in the leaf and flower. The highest amount of total phytosterols was found to accumulate in the leaves at 9.3, 9.1, 1.8, and 1.6 times higher than that of the stem, root, hairy root, and flower, respectively. After the hairy root was exposed to the MeJA treatment, the transcript levels of PgHMGS, PgHMGR, PgMK, and PgMVD had significantly increased. The highest level of transcript accumulation occurred at 3 h after initial exposure for most of the genes. Meanwhile, triterpene saponin accumulation increased with the increase in the time of exposure, and at 48 h after initial exposure, the total saponin content was the highest recorded.
Collapse
Affiliation(s)
- Yong-Kyoung Kim
- Division
of Safety Analysis, Experiment and Research Institute, National Agricultural Products Quality Management
Service, Gimcheon 39660, Republic of Korea
| | - Ramaraj Sathasivam
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
| | - Yeon Bok Kim
- Department
of Medicinal and Industrial Crops, Korea
National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Jae Kwang Kim
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- . Phone: +82-32-835-8241. Fax: +82-32-835-0763
| | - Sang Un Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
- Department
of Smart Agriculture Systems, Chungnam National
University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- . Phone: +82-42-821-5730. Fax: +82-42-822-2631
| |
Collapse
|
22
|
Complexity of gene paralogues resolved in biosynthetic pathway of hepatoprotective iridoid glycosides in a medicinal herb, Picrorhiza kurroa through differential NGS transcriptomes. Mol Genet Genomics 2021; 296:863-876. [PMID: 33899140 DOI: 10.1007/s00438-021-01787-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Picrorhiza kurroa is a medicinal herb with diverse pharmacological applications due to the presence of iridoid glycosides, picroside-I (P-I), and picroside-II (P-II), among others. Any genetic improvement in this medicinal herb can only be undertaken if the biosynthetic pathway genes are correctly identified. Our previous studies have deciphered biosynthetic pathways for P-I and P-II, however, the occurrence of multiple copies of genes has been a stumbling block in their usage. Therefore, a methodological strategy was designed to identify and prioritize paralogues of pathway genes associated with contents of P-I and P-II. We used differential transcriptomes varying for P-I and P-II contents in different tissues of P. kurroa. All transcripts for a particular pathway gene were identified, clustered based on multiple sequence alignment to notify as a representative of the same gene (≥ 99% sequence identity) or a paralogue of the same gene. Further, individual paralogues were tested for their expression level via qRT-PCR in tissue-specific manner. In total 44 paralogues in 14 key genes have been identified out of which 19 gene paralogues showed the highest expression pattern via qRT-PCR. Overall analysis shortlisted 6 gene paralogues, PKHMGR3, PKPAL2, PKDXPS1, PK4CL2, PKG10H2 and PKIS2 that might be playing role in the biosynthesis of P-I and P-II, however, their functional analysis need to be further validated either through gene silencing or over-expression. The usefulness of this approach can be expanded to other non-model plant species for which transcriptome resources have been generated.
Collapse
|
23
|
Liu Z, Mohsin A, Wang Z, Zhu X, Zhuang Y, Cao L, Guo M, Yin Z. Enhanced Biosynthesis of Chlorogenic Acid and Its Derivatives in Methyl-Jasmonate-Treated Gardenia jasminoides Cells: A Study on Metabolic and Transcriptional Responses of Cells. Front Bioeng Biotechnol 2021; 8:604957. [PMID: 33469531 PMCID: PMC7813945 DOI: 10.3389/fbioe.2020.604957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Chlorogenic acid and its derivatives (CQAs) are considered as important bioactive secondary metabolites in Gardenia jasminoides Ellis (G. jasminoides). However, few studies have investigated the biosynthesis and regulation of CQAs in G. jasminoides. In this study, methyl jasmonate (MeJA) was used to enhance CQAs accumulation in cultured G. jasminoides cells. Moreover, the possible molecular mechanism of MeJA-mediated accumulation of CQAs is also explored. To this end, time-course transcriptional profiles of G. jasminoides cells responding to MeJA were used to investigate the mechanism from different aspects, including jasmonate (JAs) biosynthesis, signal transduction, biosynthesis of precursor, CQAs biosynthesis, transporters, and transcription factors (TFs). A total of 57,069 unigenes were assembled from the clean reads, in which 80.7% unigenes were successfully annotated. Furthermore, comparative transcriptomic results indicated that differentially expressed genes (DEGs) were mainly involved in JAs biosynthesis and signal transduction (25 DEGs), biosynthesis of precursor for CQAs (18 DEGs), CQAs biosynthesis (19 DEGs), and transporters (29 DEGs). Most of these DEGs showed continuously upregulated expressions over time, which might activate the jasmonic acid (JA) signal transduction network, boost precursor supply, and ultimately stimulate CQAs biosynthesis. Additionally, various TFs from different TF families also responded to MeJA elicitation. Interestingly, 38 DEGs from different subgroups of the MYB family might display positive or negative regulations on phenylpropanoids, especially on CQAs biosynthesis. Conclusively, our results provide insight into the possible molecular mechanism of regulation on CQAs biosynthesis, which led to a high CQAs yield in the G. jasminoides cells under MeJA treatment.
Collapse
Affiliation(s)
- Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Jiangxi Key Laboratory of Natural Products and Functional Foods, Jiangxi Agricultural University, Nanchang, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaofeng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liming Cao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
24
|
Cloning, characterization, and functional analysis of acetyl-CoA C-acetyltransferase and 3-hydroxy-3-methylglutaryl-CoA synthase genes in Santalum album. Sci Rep 2021; 11:1082. [PMID: 33441887 PMCID: PMC7807033 DOI: 10.1038/s41598-020-80268-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
Sandalwood (Santalum album L.) is famous for its unique fragrance derived from the essential oil of heartwood, whose major components are santalols. To understand the mechanism underlying the biosynthesis of santalols, in this study, we cloned two related genes involved in the mevalonate pathway in S. album coding for acetyl-CoA C-acetyl transferase (AACT) and 3-hydroxy-3-methyglutary-CoA synthase (HMGS). These genes were characterized and functionally analyzed, and their expression profiles were also assessed. An AACT gene designated as SaAACT (GenBank accession No. MH018694) and a HMGS gene designated as SaHMGS (GenBank accession No. MH018695) were successfully cloned from S. album. The deduced SaAACT and SaHMGS proteins contain 415 and 470 amino acids, and the corresponding size of their open-reading frames is 1538 bp and 1807 bp, respectively. Phylogenetic trees showed that the SaAACT protein had the closest relationship with AACT from Hevea brasiliensis and the SaHMGS proteins had the highest homology with HMGS from Siraitia grosvenorii. Functional complementation of SaAACT and SaHMGS in a mutant yeast strain deficient in these proteins confirmed that SaAACT and SaHMGS cDNA encodes functional SaAACT and SaHMGS that mediate mevalonate biosynthesis in yeast. Tissue-specific expression analysis revealed that both genes were constitutively expressed in all examined tissues (roots, sapwood, heartwood, young leaves, mature leaves and shoots) of S. album, both genes showing highest expression in roots. After S. album seedlings were treated with 100 μM methyl jasmonate, the expression levels of SaAACT and SaHMGS genes increased, suggesting that these genes were responsive to this elicitor. These studies provide insight that would allow further analysis of the role of genes related to the sandalwood mevalonate pathway in the regulation of biosynthesis of sandalwood terpenoids and a deeper understanding of the molecular mechanism of santalol biosynthesis.
Collapse
|
25
|
Liu Z, Wang S, Xu X, Wang S, Sun T, Zou L. Molecular cloning and characterization of a gene encoding HMG-CoA reductase involved in triterpenoids biosynthetic pathway from Sanghuangporus baumii. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1929482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Zengcai Liu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| | - Shixin Wang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| | - Xinru Xu
- Department of Biological Sciences, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, PR China
| | - Shuting Wang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| | - Tingting Sun
- Department of Food Science and Engineering, College of Food Engineering, Harbin University, Harbin, Heilongjiang, PR China
| | - Li Zou
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| |
Collapse
|
26
|
Molecular Characterization of Terpenoid Biosynthetic Genes and Terpenoid Accumulation in Phlomis umbrosa Turczaninow. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The root of Phlomis umbrosa has traditionally been used as a medicine in South Asian nations to treat colds and bone fractures, to staunch bleeding, and as an anti-inflammatory, and such use continues today. We identified 10 genes that are involved in terpenoid biosynthesis, while using the Illumina/Solexa HiSeq2000 platform. We investigated the transcript levels of the 10 genes using quantitative real-time PCR and quantified the level of terpenoid accumulation in different organs of P. umbrosa while using high-performance liquid chromatography. The transcript levels of PuHDR and PuHMGR1 were the highest among the studied genes. Sesamoside, an iridoid glycoside, appeared in higher quantity than shanzhiside methylester, umbroside (8-O-acetyl shanzhiside methyl ester), and acteoside. We speculate that PuHDR and PuHMGR1 may contribute to terpenoid biosynthesis in P. umbrosa. This study highlights the molecular mechanisms that underlie iridoid glycoside biosynthesis in P. umbrosa.
Collapse
|
27
|
Juneidi S, Gao Z, Yin H, Makunga NP, Chen W, Hu S, Li X, Hu X. Breaking the Summer Dormancy of Pinellia ternata by Introducing a Heat Tolerance Receptor-Like Kinase ERECTA Gene. FRONTIERS IN PLANT SCIENCE 2020; 11:780. [PMID: 32670314 PMCID: PMC7326942 DOI: 10.3389/fpls.2020.00780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/15/2020] [Indexed: 05/15/2023]
Abstract
Pinellia ternata is a perennial traditional Chinese medicinal plant that undergoes different phenological patterns of dormancy depending on where it is growing. Plants grown in central and southern China typically display two growth cycles every year before and after hot summer days, exhibiting a summer dormancy. However, germplasms from these areas do not go into a dormancy phase in northern China where the summer monthly average temperatures range from 29-31°C. The northern China herbal growers prefer plant stocks from central China due to their longer growing quality and better tuber harvests. Here, we introduced a heat responsive receptor-like kinase ERECTA (ER) gene into P. ternata to explore changes in the growth cycle which were aimed at disrupting the summer dormancy. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene was also co-transformed with ER to improve the commercial trait. For the thermo-tolerance evaluation, all plants were treated with high temperatures (35°C/40°C) in a growth chamber or grown in natural field temperature in an isolated field before measurement of different agricultural, biochemical and physiological traits. The transgenics showed significantly (P < 0.05) higher heat tolerance, maintaining healthy vegetative growth unlike the empty vector (EV) harboring controls that became chlorotic and necrotic. Better performance in some of the monitored physiological traits was evident for overexpression lines exposed to the heat stress. In open isolated field trials, the transgenic genotypes did not show a summer dormancy but had a survival rate of 84-95%. The tuber biomasses were also significantly (P < 0.05) higher for the transgenic lines as compared to the EV controls, except for line ER118. Metabolites analysis indicated that the HMGR overexpressing lines (HMGR orHMGR + ER) exhibited significantly higher amounts of bioactive compounds including aromadendrene-4, 10-diol and 4, 8, 13-cyclotetradecatriene-1, 3-diol, 1, 5, 9-trimethyl-12-(1-methylethyl). Our findings show that the summer dormancy of P. ternata which is a naturally evolved trait, can be removed by a single heat responsive gene. The study contributes to generating heat tolerant new Pinellia varieties with enhanced commercially valuable chemicals.
Collapse
Affiliation(s)
- Seifu Juneidi
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zengyan Gao
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Sheng Hu
- Hubei Cancer Hospital, Wuhan, China
| | - Xiaohua Li
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Xuebo Hu
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Wei H, Movahedi A, Xu C, Sun W, Li L, Wang P, Li D, Zhuge Q. Overexpression of PtHMGR enhances drought and salt tolerance of poplar. ANNALS OF BOTANY 2020; 125:785-803. [PMID: 31574532 PMCID: PMC7182595 DOI: 10.1093/aob/mcz158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/28/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Soil salinization and aridification are swiftly engulfing the limited land resources on which humans depend, restricting agricultural production. Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is important in the biosynthesis of terpenoids, which are involved in plant growth, development and responses to environmental stresses. This study aimed to provide guidance for producing salt- and drought-resistant poplar. METHODS A protein expression system was used to obtain PtHMGR protein, and high-performance liquid chromatography was used to detect the activity of PtHMGR protein in vitro. In addition, a simplified version of the leaf infection method was used for transformation of 'Nanlin895' poplar (Populus×euramericana). qRT-PCR was used to identify expression levels of genes. KEY RESULTS PtHMGR catalysed a reaction involving HMG-CoA and NADPH to form mevalonate. Overexpression of PtHMGR in Populus × euramericana 'Nanlin895' improved drought and salinity tolerance. In the presence of NaCl and PEG6000, the rates of rooting and survival of PtHMGR-overexpressing poplars were higher than those of wild-type poplars. The transgenic lines also exhibited higher proline content and peroxidase and superoxide dismutase activities, and a lower malondialdehyde level under osmotic stress. In addition, the expression of genes related to reactive oxygen species (ROS) scavenging and formation was altered by osmotic stress. Moreover, the effect of osmotic stress on transcript levels of stress-related genes differed between the transgenic and wild-type poplars. CONCLUSION PtHMGR catalysed a reaction involving HMG-CoA and NADPH to form mevalonate in vitro. Overexpression of PtHMGR promoted root development, increased the expression of ROS scavenging-related genes, decreased the expression of ROS formation-related genes, and increased the activity of antioxidant enzymes in transgenic poplars, enhancing their tolerance of osmotic stress. In addition, overexpression of PtHMGR increased expression of the stress-related genes KIN1, COR15 and AAO3 and decreased that of ABI, MYB, MYC2 and RD22, enhancing the stress resistance of poplar.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Ali Movahedi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Chen Xu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
| | - Weibo Sun
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Lingling Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Pu Wang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Dawei Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Qiang Zhuge
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
29
|
Gao Z, Tian S, Hou J, Zhang Z, Yang L, Hu T, Li W, Liu Y. RNA-Seq based transcriptome analysis reveals the molecular mechanism of triterpenoid biosynthesis in Glycyrrhiza glabra. Bioorg Med Chem Lett 2020; 30:127102. [PMID: 32220349 DOI: 10.1016/j.bmcl.2020.127102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 03/07/2020] [Indexed: 11/29/2022]
Abstract
Licorice is a frequently-used medicinal plant worldwide. Two triterpenoids, 18α-glycyrrhizic acid (18α-GC) and 18β-glycyrrhizic acid (18β-GC), are the key medicinal components accumulated in licorice. Biosynthesis of triterpenoids is a complex process that involves many secondary metabolic pathways. In this study, we tried to identify the key enzymes and pathways for the triterpenoid biosynthesis in licorice by analyzing the gene expression patterns in samples containing different GC levels. Glycyrrhizia glabra (one of the original species used as licorice in Chinese Pharmacopoeia) seeds were irradiated by X-ray and cultivated for one year, and samples with different GC contents were selected by HPLC analysis. RNA-Seq was performed to determine the gene expression in three X-ray irradiated G. glabra samples (H1, H2, and H3) with the highest GC content and one control G. glabra sample (L1) with the lowest GC content. 28.44 Gb raw data was generated and 47.7 million, 45.4 million, 43.3 million, and 45.9 million clean reads were obtained in samples H1, H2, H3, and L1, respectively. Approximately 48.53% of genes were annotated searching against GO and KEGG databases. A total of 1376 core differentially expressed genes (DEGs) were identified, which mainly enriched in phenylpropanoid metabolism, glycometabolism, plant circadian rhythm, and terpenoid biosynthetic pathway. 15 core DEGs selected from the 1376 DEGs were further verified by qRT-PCR, which confirmed that the RNA-Seq results were accurate and reliable. This study provides a basis for future functional genes mining and molecular regulatory mechanism elucidation of triterpenoid biosynthesis in licorice.
Collapse
Affiliation(s)
- Zhiqiang Gao
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Ting Hu
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Wendong Li
- Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, China.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, China.
| |
Collapse
|
30
|
Liu M, Chen X, Wang M, Lu S. SmPPT, a 4-hydroxybenzoate polyprenyl diphosphate transferase gene involved in ubiquinone biosynthesis, confers salt tolerance in Salvia miltiorrhiza. PLANT CELL REPORTS 2019; 38:1527-1540. [PMID: 31471635 DOI: 10.1007/s00299-019-02463-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
SmPPT, which encodes 4-hydroxybenzoate polyprenyl diphosphate transferase involved in ubiquinone biosynthesis, confers salt tolerance to S. miltiorrhiza through enhancing the activities of POD and CAT to scavenge ROS. Ubiquinone (UQ), also known as coenzyme Q (CoQ), is a key electron transporter in the mitochondrial respiratory system. UQ is composed of a benzene quinone ring and a polyisoprenoid side chain. Attachment of polyisoprenoid side chain to the benzene quinone ring is a rate-limiting step catalyzed by 4-hydroxybenzoate polyprenyl diphosphate transferase (PPT). So far, only a few plant PPT-encoding genes have been functionally analyzed. Through genome-wide analysis and subsequent molecular cloning, a PPT-encoding gene, termed SmPPT, was identified from an economically and academically important medicinal model plant, Salvia miltiorrhiza. SmPPT contained many putative cis-elements associated with abiotic stresses in the promoter region and were responsive to PEG-6000 and methyl jasmonate treatments. The deduced SmPPT protein contains the PT_UbiA conserved domain of polyprenyl diphosphate transferase and an N-terminal mitochondria transit peptide. Transient expression assay of SmPPT-GFP fusion protein showed that SmPPT was mainly localized in the mitochondria. SmPPT could functionally complement coq2 mutation and catalyzed UQ6 production in yeast cells. Overexpression of SmPPT increased UQ production and enhanced salt tolerance in S. miltiorrhiza. Under salinity stress conditions, transgenic plants accumulated less H2O2 and malondialdehyde and exhibited higher peroxidase (POD) and catalase (CAT) activities compared with wild-type plants. It indicates that SmPPT confers salt tolerance to S. miltiorrhiza at least partially through enhancing the activities of POD and CAT to scavenge ROS.
Collapse
Affiliation(s)
- Miaomiao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Xiang Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
31
|
Jiang Y, Wang L, Lu S, Xue Y, Wei X, Lu J, Zhang Y. Transcriptome sequencing of Salvia miltiorrhiza after infection by its endophytic fungi and identification of genes related to tanshinone biosynthesis. PHARMACEUTICAL BIOLOGY 2019; 57:760-769. [PMID: 31694427 PMCID: PMC6844419 DOI: 10.1080/13880209.2019.1680706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 10/06/2019] [Accepted: 10/11/2019] [Indexed: 05/25/2023]
Abstract
Context: Salvia miltiorrhiza Bunge (Labiatae) is a traditional Chinese herb. Endophytic fungi, which are biotic elicitors, can induce accumulation of secondary metabolites in their host plants.Objective: To analyze the interaction mechanism between S. miltiorrhiza and endophytic fungi.Materials and methods: Endophytic fungi U104 producing tanshinone IIA were isolated from the healthy disease-free tissue of root of S. miltiorrhiza by conventional methods. The endophytic fungus U104 of S. miltiorrhiza was co-cultured with the sterile seedlings of S. miltiorrhiza for 20 d (temp:day/night = 26 °C/18 °C, photoperiod:12/12 h, illuminance:2000 Lx). Transcriptome sequencing of S. miltiorrhiza seedlings after 20 d of co-cultivation was performed using the Illumina platform.Results: A total of 3713 differentially expressed genes (DEGs) were obtained. These different expression genes, such as STPII, LTP2, MYB transcription factors, CNGC, CDPK, Rboh, CaM, MAP2K1/MEK1, WRKY33, SGT1/SGT and Hsp90/htpG, showed that host S. miltiorrhiza had biological defence response in the initial stage of interaction. Under the induction of endophytic fungi, 14 key enzyme genes were up-regulated in the tanshinone biosynthesis pathway: DXS, DXS2, DXR, HMGR3, AACT, MK, PMK, GGPPS2, GPPS, KSL, IDI, IPII, FDPS and CPS.Discussion and conclusions: A total of 14 key genes were obtained from the tanshinone component synthesis and metabolic pathways, providing a reasonable explanation for the accumulation of tanshinone components, an accumulation induced by endophytic fungi, in the host plants. The large amounts of data generated in this study provide a strong and powerful platform for future functional and molecular studies of interactions between host plants and their endophytic fungi.
Collapse
Affiliation(s)
- Yan Jiang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Lei Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Shaorong Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Yizhe Xue
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Xiying Wei
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Juan Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Yanyan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
32
|
Wei H, Xu C, Movahedi A, Sun W, Li D, Zhuge Q. Characterization and Function of 3-Hydroxy-3-Methylglutaryl-CoA Reductase in Populus trichocarpa: Overexpression of PtHMGR Enhances Terpenoids in Transgenic Poplar. FRONTIERS IN PLANT SCIENCE 2019; 10:1476. [PMID: 31803212 PMCID: PMC6872958 DOI: 10.3389/fpls.2019.01476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/24/2019] [Indexed: 05/26/2023]
Abstract
In the mevalonic acid (MVA) pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) is considered the first rate-limiting enzyme in isoprenoid biosynthesis. In this study, we cloned a full-length cDNA from Populus trichocarpa with an open reading frame of 1,734 bp. The deduced PtHMGR sequence contained two HMG-CoA motifs and two NADPH motifs, which exhibited homology with HMGR proteins from other species. Subsequently, truncated PtHMGR was expressed in Escherichia coli BL21 (DE3) cells, and enzyme activity analysis revealed that the truncated PtHMGR protein could catalyze the reaction of HMG-CoA and NADPH to form MVA. Relative expression analysis suggests that PtHMGR expression varies among tissues and that PtHMGR responds significantly to abscisic acid (ABA), NaCl, PEG6000, hydrogen peroxide (H2O2), and cold stresses. We used polymerase chain reaction (PCR) analysis to select transgenic Nanlin 895 poplars (Populus× euramericana cv.) and quantitative reverse-transcription PCR (qRT-PCR) to show that PtHMGR expression levels were 3- to 10-fold higher in transgenic lines than in wild-type (WT) poplars. qRT-PCR was also used to determine transcript levels of methylerythritol phosphate (MEP)-, MVA-, and downstream-related genes, indicating that overexpression of PtHMGR not only affects expression levels of MVA-related genes, but also those of MEP-related genes. We also measured the content of terpenoids including ABA, gibberellic acid (GA), carotenes, and lycopene. PtHMGR overexpression significantly increased ABA, GA, carotene, and lycopene content, indicating that PtHMGR participates in the regulation of terpenoid compound synthesis.
Collapse
Affiliation(s)
- Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Chen Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
33
|
MEIm XD, Cao YF, Che YY, Li J, Shang ZP, Zhao WJ, Qiao YJ, Zhang JY. Danshen: a phytochemical and pharmacological overview. Chin J Nat Med 2019; 17:59-80. [PMID: 30704625 DOI: 10.1016/s1875-5364(19)30010-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 12/27/2022]
Abstract
Danshen, the dried root or rhizome of Salvia miltiorrhiza Bge., is a traditional and folk medicine in Asian countries, especially in China and Japan. In this review, we summarized the recent researches of Danshen in traditional uses and preparations, chemical constituents, pharmacological activities and side effects. A total of 201 compounds from Danshen have been reported, including lipophilic diterpenoids, water-soluble phenolic acids, and other constituents, which have showed various pharmacological activities, such as anti-inflammation, anti-oxidation, anti-tumor, anti-atherogenesis, and anti-diabetes. This article intends to provide novel insight information for further development of Danshen, which could be of great value to its improvement of utilization.
Collapse
Affiliation(s)
- Xiao-Dan MEIm
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Feng Cao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Yun Che
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Jing Li
- College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Zhan-Peng Shang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wen-Jing Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Jiang Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jia-Yu Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
34
|
Yin YC, Zhang XD, Gao ZQ, Hu T, Yang L, Zhang ZX, Li WD, Liu Y. Over-expressing root-specific β-amyrin synthase gene increases glycyrrhizic acid content in hairy roots of glycyrrhiza uralensis. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Jiang Z, Gao W, Huang L. Tanshinones, Critical Pharmacological Components in Salvia miltiorrhiza. Front Pharmacol 2019; 10:202. [PMID: 30923500 PMCID: PMC6426754 DOI: 10.3389/fphar.2019.00202] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 01/21/2023] Open
Abstract
Salvia miltiorrhiza Bunge, a member of the Lamiaceae family, is valued in traditional Chinese Medicine. Its dried root (named Danshen) has been used for hundreds of years, primarily for the treatment of cardiovascular and cerebrovascular diseases. Tanshinones are the main active ingredients in S. miltiorrhiza and exhibit significant pharmacological activities, such as antioxidant activity, anti-inflammatory activity, cardiovascular effects, and antitumor activity. Danshen dripping pill of Tianshili is an effective drug widely used in the clinical treatment of cardiovascular diseases. With the increasing demand for clinical drugs, the traditional method for extracting and separating tanshinones from medicinal plants is insufficient. Therefore, in combination with synthetic biological methods and strategies, it is necessary to analyze the biosynthetic pathway of tanshinones and construct high-yield functional bacteria to obtain tanshinones. Moreover, the biosynthesis of tanshinones has been studied for more than two decades but remains to be completely elucidated. This review will systematically present the composition, extraction and separation, pharmacological activities and biosynthesis of tanshinones from S. miltiorrhiza, with the intent to provide references for studies on other terpenoid bioactive components of traditional Chinese medicines and to provide new research strategies for the sustainable development of traditional Chinese medicine resources.
Collapse
Affiliation(s)
- Zhouqian Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Zhang H, Jin B, Bu J, Guo J, Chen T, Ma Y, Tang J, Cui G, Huang L. Transcriptomic Insight into Terpenoid Biosynthesis and Functional Characterization of Three Diterpene Synthases in Scutellaria barbata. Molecules 2018; 23:molecules23112952. [PMID: 30424547 PMCID: PMC6278268 DOI: 10.3390/molecules23112952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Scutellaria barbata (Lamiaceae) is an important medicinal herb widely used in China, Korea, India, and other Asian countries. Neo-clerodane diterpenoids are the largest known group of Scutellaria diterpenoids and show promising cytotoxic activity against several cancer cell lines. Here, Illumina-based deep transcriptome analysis of flowers, the aerial parts (leaf and stem), and roots of S. barbata was used to explore terpenoid-related genes. In total, 121,958,564 clean RNA-sequence reads were assembled into 88,980 transcripts, with an average length of 1370 nt and N50 length of 2144 nt, indicating high assembly quality. We identified nearly all known terpenoid-related genes (33 genes) involved in biosynthesis of the terpenoid backbone and 14 terpene synthase genes which generate skeletons for different terpenoids. Three full length diterpene synthase genes were functionally identified using an in vitro assay. SbTPS8 and SbTPS9 were identified as normal-CPP and ent-CPP synthase, respectively. SbTPS12 reacts with SbTPS8 to produce miltiradiene. Furthermore, SbTPS12 was proven to be a less promiscuous class I diterpene synthase. These results give a comprehensive understanding of the terpenoid biosynthesis in S. barbata and provide useful information for enhancing the production of bioactive neo-clerodane diterpenoids through genetic engineering.
Collapse
Affiliation(s)
- Huabei Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Junling Bu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
37
|
Xing B, Yang D, Yu H, Zhang B, Yan K, Zhang X, Han R, Liang Z. Overexpression of SmbHLH10 enhances tanshinones biosynthesis in Salvia miltiorrhiza hairy roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:229-238. [PMID: 30348323 DOI: 10.1016/j.plantsci.2018.07.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/02/2018] [Accepted: 07/27/2018] [Indexed: 05/22/2023]
Abstract
The bHLH transcription factors have important role in regulation of plant growth, development, and secondary metabolism. Tanshinones are the major pharmaceutical components present in Salvia miltiorrhiza Bunge. It has been reported that bHLHs have functions in terpenoids biosynthesis. Here, we got a bHLH family member named SmbHLH10 which could positively regulate tanshinones biosynthesis in S. miltiorrhiza hairy roots. In the SmbHLH10-overexpressing line 6, four major tanshinones contents were reaching 2.51-fold (dihydrotanshinone I), 2.84-fold (cryptotanshinone), 2.89- fold (tanshinone I), 2.68-fold (tanshinone II A) of WT, respectively. The variation in tanshinones biosynthetic pathway gene transcription was generally consistent with tanshinones content. DXS2, DXS3 and DXR of MEP pathway were induced substantially, reaching 10-fold, 3-fold, 5.74-fold higher of the WT, respectively. The downstream pathway genes CPS1, CPS5 and CYP76AH1 were highest in line OE-SmbHLH10-6, reached 4.93, 16.29 and 3.27-fold of the WT, respectively, while KSL1's expression was highest in line OE-SmbHLH10-4, 4.64-fold of WT. Yeast one-hybrid assays results showed that SmbHLH10 could binds the predicted G-box motifs within the promoters of DXS2, CPS1 and CPS5. These findings indicated that SmbHLH10 could directly binds to G-box in the pathway genes' promotor, activate their expression and then upregulate tanshinones biosynthesis.
Collapse
Affiliation(s)
- Bingcong Xing
- Institute of Soil and Water Conservation, CAS & MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfeng Yang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haizheng Yu
- Institute of Soil and Water Conservation, CAS & MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingxue Zhang
- Institute of Soil and Water Conservation, CAS & MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaijing Yan
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin 300410, China
| | - Xuemin Zhang
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin 300410, China
| | - Ruilian Han
- Institute of Soil and Water Conservation, CAS & MWR, Yangling 712100, China; College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zongsuo Liang
- Institute of Soil and Water Conservation, CAS & MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin 300410, China.
| |
Collapse
|
38
|
Upadhyay S, Jeena GS, Shukla RK. Recent advances in steroidal saponins biosynthesis and in vitro production. PLANTA 2018; 248:519-544. [PMID: 29748819 DOI: 10.1007/s00425-018-2911-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Steroidal saponins exhibited numerous pharmacological activities due to the modification of their backbone by different cytochrome P450s (P450) and UDP glycosyltransferases (UGTs). Plant-derived steroidal saponins are not sufficient for utilizing them for commercial purpose so in vitro production of saponin by tissue culture, root culture, embryo culture, etc, is necessary for its large-scale production. Saponin glycosides are the important class of plant secondary metabolites, which consists of either steroidal or terpenoidal backbone. Due to the existence of a wide range of medicinal properties, saponin glycosides are pharmacologically very important. This review is focused on important medicinal properties of steroidal saponin, its occurrence, and biosynthesis. In addition to this, some recently identified plants containing steroidal saponins in different parts were summarized. The high throughput transcriptome sequencing approach elaborates our understanding related to the secondary metabolic pathway and its regulation even in the absence of adequate genomic information of non-model plants. The aim of this review is to encapsulate the information related to applications of steroidal saponin and its biosynthetic enzymes specially P450s and UGTs that are involved at later stage modifications of saponin backbone. Lastly, we discussed the in vitro production of steroidal saponin as the plant-based production of saponin is time-consuming and yield a limited amount of saponins. A large amount of plant material has been used to increase the production of steroidal saponin by employing in vitro culture technique, which has received a lot of attention in past two decades and provides a way to conserve medicinal plants as well as to escape them for being endangered.
Collapse
Affiliation(s)
- Swati Upadhyay
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Gajendra Singh Jeena
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India.
| |
Collapse
|
39
|
Liu JP, Hu J, Liu YH, Yang CP, Zhuang YF, Guo XL, Li YJ, Zhang L. Transcriptome analysis of Hevea brasiliensis in response to exogenous methyl jasmonate provides novel insights into regulation of jasmonate-elicited rubber biosynthesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:349-358. [PMID: 29692543 PMCID: PMC5911270 DOI: 10.1007/s12298-018-0529-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 05/14/2023]
Abstract
The phytohomorne methyl jasmonate (MeJA) is known to trigger extensive reprogramming of gene expression leading to transcriptional activation of many secondary metabolic pathways. However, natural rubber is a commercially important secondary metabolite and little is known about the genetic and genomic basis of jasmonate-elicited rubber biosynthesis in rubber tree (Hevea brasiliensis). RNA sequencing (RNA-seq) of H. brasiliensis bark treated with 1 g lanolin paste containing 0.02% w/w MeJA for 24 h (M2) and 0.04% w/w MeJA for 24 h (M4) was performed. A total of 2950 and 2850 differentially expressed genes in M2 and M4 compared with control (C) were respectively detected. Key genes involved in 2-C-methyl-D-erythritol 4-phosphate, rubber biosynthesis, glycolysis and carbon fixation (Calvin cycle) pathway were found to be up-regulated by MeJA treatment. Particularly, the expression of 3-hydroxy-3-metylglutaryl coenzyme A reductase in MVA pathway was down-regulated by MeJA treatment, but the expression of farnesyl diphosphate synthase (FPS) and cis-prenyltransferase (CPT, or rubber transferase) in rubber biosynthesis pathway were up-regulated by MeJA treatment. Up-regulation of critical genes in JA biosynthesis in response to MeJA treatment exhibited the self-activation of JA biosynthesis. In addition, up-regulated genes of great regulatory importance in cross-talk between JA and other hormone signaling, and of transcriptional regulation were identified. The increased expression levels of FPS and CPT in rubber biosynthesis pathway possibly resulted in an increased latex production in rubber tree treated with MeJA. The present results provide insights into the mechanism by which MeJA activates the rubber biosynthesis and the transcriptome data can also serve as the foundation for future research into the molecular basis for MeJA regulation of other cellular processes.
Collapse
Affiliation(s)
- Jin-Ping Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Tropical Agriculture and Forestry Institute, Hainan University, Haikou, 570228 Hainan Province China
| | - Jin Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Tropical Agriculture and Forestry Institute, Hainan University, Haikou, 570228 Hainan Province China
| | - Yan-Hui Liu
- Center for Genomics and Biotechnology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Cui-Ping Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Tropical Agriculture and Forestry Institute, Hainan University, Haikou, 570228 Hainan Province China
| | - Yu-Fen Zhuang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Tropical Agriculture and Forestry Institute, Hainan University, Haikou, 570228 Hainan Province China
| | - Xiu-Li Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Tropical Agriculture and Forestry Institute, Hainan University, Haikou, 570228 Hainan Province China
| | - Yi-Jian Li
- Service Center of Science and Technology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan Province China
| | - Liangsheng Zhang
- Center for Genomics and Biotechnology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
40
|
Cao W, Wang Y, Shi M, Hao X, Zhao W, Wang Y, Ren J, Kai G. Transcription Factor SmWRKY1 Positively Promotes the Biosynthesis of Tanshinones in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2018; 9:554. [PMID: 29755494 PMCID: PMC5934499 DOI: 10.3389/fpls.2018.00554] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/09/2018] [Indexed: 05/20/2023]
Abstract
Tanshinones, one group of bioactive diterpenes, were widely used in the treatment of cardiovascular diseases. WRKYs play important roles in plant metabolism, but their regulation mechanism in Salvia miltiorrhiza remains elusive. In this study, one WRKY transcription factor SmWRKY1 was isolated and functionally characterized from S. miltiorrhiza. Multiple sequence alignment and phylogenetic tree analysis showed SmWRKY1 shared high homology with other plant WRKYs such as CrWRKY1. SmWRKY1 was found predominantly expressed in leaves and stems, and was responsive to salicylic acid (SA), methyl jasmonate (MeJA), and nitric oxide (NO) treatment. Subcellular localization analysis found that SmWRKY1 was localized in the nucleus. Over-expression of SmWRKY1 significantly elevated the transcripts of genes coding for enzymes in the MEP pathway especially 1-deoxy-D-xylulose-5-phosphate synthase (SmDXS) and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (SmDXR), resulted in over fivefold increase in tanshinones production in transgenic lines (up to 13.7 mg/g DW) compared with the control lines. A dual-luciferase (Dual-LUC) assay showed that SmWRKY1 can positively regulate SmDXR expression by binding to its promoter. Our work revealed that SmWRKY1 participated in the regulation of tanshinones biosynthesis and acted as a positive regulator through activating SmDXR in the MEP pathway, thus provided a new insight to further explore the regulation mechanism of tanshinones biosynthesis.
Collapse
Affiliation(s)
- Wenzhi Cao
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Wang
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Min Shi
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaolong Hao
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Weiwei Zhao
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Yu Wang
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Jie Ren
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Guoyin Kai
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
41
|
Xie W, Hao Z, Zhou X, Jiang X, Xu L, Wu S, Zhao A, Zhang X, Chen B. Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. MYCORRHIZA 2018; 28:285-300. [PMID: 29455337 DOI: 10.1007/s00572-018-0827-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/07/2018] [Indexed: 05/27/2023]
Abstract
Liquorice (Glycyrrhiza uralensis) is an important medicinal plant for which there is a huge market demand. It has been reported that arbuscular mycorrhizal (AM) symbiosis and drought stress can stimulate the accumulation of the active ingredients, glycyrrhizin and liquiritin, in liquorice plants, but the potential interactions of AM symbiosis and drought stress remain largely unknown. In the present work, we investigated mycorrhizal effects on plant growth and accumulation of glycyrrhizin and liquiritin in liquorice plants under different water regimes. The results indicated that AM plants generally exhibited better growth and physiological status including stomatal conductance, photosynthesis rate, and water use efficiency compared with non-AM plants. AM inoculation up-regulated the expression of an aquaporin gene PIP and decreased root abscisic acid (ABA) concentrations under drought stress. In general, AM plants displayed lower root carbon (C) and nitrogen (N) concentrations, higher phosphorus (P) concentrations, and therefore, lower C:P and N:P ratios but higher C:N ratio than non-AM plants. On the other hand, AM inoculation increased root glycyrrhizin and liquiritin concentrations, and the mycorrhizal effects were more pronounced under moderate drought stress than under well-watered condition or severe drought stress for glycyrrhizin accumulation. The accumulation of glycyrrhizin and liquiritin in AM plants was consistent with the C:N ratio changes in support of the carbon-nutrient balance hypothesis. Moreover, the glycyrrhizin accumulation was positively correlated with the expression of glycyrrhizin biosynthesis genes SQS1, β-AS, CYP88D6, and CYP72A154. By contrast, no significant interaction of AM inoculation with water treatment was observed for liquiritin accumulation, while we similarly observed a positive correlation between liquiritin accumulation and the expression of a liquiritin biosynthesis gene CHS. These results suggested that AM inoculation in combination with proper water management potentially could improve glycyrrhizin and liquiritin accumulation in liquorice roots and may be practiced to promote liquorice cultivation.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xuelian Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Lijiao Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songlin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- Environment Centres (CMLR), Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Aihua Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
42
|
Bansal S, Narnoliya LK, Mishra B, Chandra M, Yadav RK, Sangwan NS. HMG-CoA reductase from Camphor Tulsi (Ocimum kilimandscharicum) regulated MVA dependent biosynthesis of diverse terpenoids in homologous and heterologous plant systems. Sci Rep 2018; 8:3547. [PMID: 29476116 PMCID: PMC5824918 DOI: 10.1038/s41598-017-17153-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Ocimum kilimandscharicum is unique in possessing terpenoids whereas other Ocimum species are renowned for phenylpropanoids as major constituents of essential oil. The key enzyme of MVA/terpenoid metabolic pathway viz 3-hydroxy-3-methylglutaryl Co-A reductase (OkHMGR) of 1.7-Kb ORF encoding ~60-kDa protein was cloned from O. kilimandscharicum and its kinetic characteristics revealed the availability of HMG-CoA as a control point of MVA-pathway. Transcript profiling of the OkHMGR elucidated tissue-specific functions of the gene in flower and leaf tissues in accumulation of terpenoidal essential oil. OkHMGR was differentially regulated in response to exposure to methyl-jasmonate, salicylic-acid, and stress conditions such-as salt and temperature stress, demonstrating its key role in managing signaling and stress-responses. To elucidate its functional role, OkHMGR was transiently over-expressed in homologous and heterologous plants such as O. sanctum, O. basilicum, O. gratissimum, Withania somnifera and Artemisia annua. The over-expression and inhibition dual strategy revealed that the additional OkHMGR in-planta could afford endogenous flow of isoprenoid units towards synthesis of terpenoids. The present study provides in-depth insight of OkHMGR in regulation of biosynthesis of non-plastidal isoprenoids. This is first report on any gene of MVA/isoprenoid pathway from under-explored Camphor Tulsi belonging to genus Ocimum. Studies also suggested that OkHMGR could be a potential tool for attempting metabolic engineering for enhancing medicinally important terpenoidal metabolites in plants.
Collapse
Affiliation(s)
- Shilpi Bansal
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre Campus, Sector- 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Lokesh Kumar Narnoliya
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, UP, India
| | - Bhawana Mishra
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre Campus, Sector- 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Muktesh Chandra
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, UP, India
| | - Ritesh Kumar Yadav
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, UP, India
| | - Neelam Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, UP, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre Campus, Sector- 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
43
|
Yang N, Zhou W, Su J, Wang X, Li L, Wang L, Cao X, Wang Z. Overexpression of SmMYC2 Increases the Production of Phenolic Acids in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2017; 8:1804. [PMID: 29230228 PMCID: PMC5708653 DOI: 10.3389/fpls.2017.01804] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/04/2017] [Indexed: 05/20/2023]
Abstract
MYC2 is a core transcription factor in the plant response to jasmonates. It also functions in secondary metabolism and various processes for growth and development. However, the knowledge about its role in Salvia miltiorrhiza is still very limited. We determined that the biosynthesis of salvianolic acid B (Sal B) was strongly induced in 2-month-old transgenic plants that over-expressed SmMYC2. In the roots of transgenic line 12 that over-expressed SmMYC2 (OEM-12), the Sal B concentration was as high as 5.95 ± 0.07 mg g-1, a level that was 1.88-fold higher than that in control plants that had been transformed with an empty vector. Neither tanshinone IIA nor cryptotanshinone was detected by high-performance liquid chromatography in any of the genotypes. Global transcriptomic analysis using RNA sequencing revealed that most enzyme-encoding genes for the phenylpropanoid biosynthesis pathway were up-regulated in the overexpression lines. Furthermore, both the phenylalanine and tyrosine biosynthesis pathways were activated in those transgenics. Our data demonstrate that overexpression of SmMYC2 promotes the production of phenolic acids by simultaneously activating both primary and secondary pathways for metabolism in S. miltiorrhiza.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
44
|
Meng X, Song Q, Ye J, Wang L, Xu F. Characterization, Function, and Transcriptional Profiling Analysis of 3-Hydroxy-3-methylglutaryl-CoA Synthase Gene (GbHMGS1) towards Stresses and Exogenous Hormone Treatments in Ginkgo biloba. Molecules 2017; 22:molecules22101706. [PMID: 29023415 PMCID: PMC6151752 DOI: 10.3390/molecules22101706] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/08/2017] [Indexed: 12/11/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) is one of the rate-limiting enzymes in the mevalonate pathway as it catalyzes the condensation of acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA. In this study, A HMGS gene (designated as GbHMGS1) was cloned from Ginkgo biloba for the first time. GbHMGS1 contained a 1422-bp open-reading frame encoding 474 amino acids. Comparative and bioinformatics analysis revealed that GbHMGS1 was extensively homologous to HMGSs from other plant species. Phylogenetic analysis indicated that the GbHMGS1 belonged to the plant HMGS superfamily, sharing a common evolutionary ancestor with other HMGSs, and had a further relationship with other gymnosperm species. The yeast complement assay of GbHMGS1 in HMGS-deficient Saccharomyces cerevisiae strain YSC6274 demonstrated that GbHMGS1 gene encodes a functional HMGS enzyme. The recombinant protein of GbHMGS1 was successfully expressed in E. coli. The in vitro enzyme activity assay showed that the kcat and Km values of GbHMGS1 were 195.4 min−1 and 689 μM, respectively. GbHMGS1 was constitutively expressed in all tested tissues, including the roots, stems, leaves, female flowers, male flowers and fruits. The transcript accumulation for GbHMGS1 was highest in the leaves. Expression profiling analyses revealed that GbHMGS1 expression was induced by abiotic stresses (ultraviolet B and cold) and hormone treatments (salicylic acid, methyl jasmonate, and ethephon) in G. biloba, indicating that GbHMGS1 gene was involved in the response to environmental stresses and plant hormones.
Collapse
Affiliation(s)
- Xiangxiang Meng
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Qiling Song
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Lanlan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
45
|
Improving the accumulation of 18 α -and 18 β -glycyrrhizins by over-expressing GuHMGR , GuSQS 1, and GuBAS genes in Glycyrrhiza uralensis. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Zhou W, Huang Q, Wu X, Zhou Z, Ding M, Shi M, Huang F, Li S, Wang Y, Kai G. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci Rep 2017; 7:10554. [PMID: 28874707 PMCID: PMC5585387 DOI: 10.1038/s41598-017-10215-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022] Open
Abstract
Tanshinones and phenolic acids are crucial bioactive compounds biosynthesized in Salvia miltiorrhiza. Methyl jasmonate (MeJA) is an effective elicitor to enhance the production of phenolic acids and tanshinones simultaneously, while yeast extract (YE) is used as a biotic elicitor that only induce tanshinones accumulation. However, little was known about the different molecular mechanism. To identify the downstream and regulatory genes involved in tanshinone and phenolic acid biosynthesis, we conducted comprehensive transcriptome profiling of S. miltiorrhiza hairy roots treated with either MeJA or YE. Total 55588 unigenes were assembled from about 1.72 billion clean reads, of which 42458 unigenes (76.4%) were successfully annotated. The expression patterns of 19 selected genes in the significantly upregulated unigenes were verified by quantitative real-time PCR. The candidate downstream genes and other cytochrome P450s involved in the late steps of tanshinone and phenolic acid biosynthesis pathways were screened from the RNA-seq dataset based on co-expression pattern analysis with specific biosynthetic genes. Additionally, 375 transcription factors were identified to exhibit a significant up-regulated expression pattern in response to induction. This study can provide us a valuable gene resource for elucidating the molecular mechanism of tanshinones and phenolic acids biosynthesis in hairy roots of S. miltiorrhiza.
Collapse
Affiliation(s)
- Wei Zhou
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, 311300, China
| | - Qiang Huang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao Wu
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zewen Zhou
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mingquan Ding
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, 311300, China
| | - Min Shi
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fenfen Huang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shen Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, 311300, China
| | - Yao Wang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guoyin Kai
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
47
|
Chai J, Wang D, Peng Y, Zhao X, Zhang Q, Li P, Fang X, Wang M, Cai X. Molecular cloning, expression and immunolocalization analysis of diphosphomevalonate decarboxylase involved in terpenoid biosynthesis from Euphorbia helioscopia L. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1370677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jia Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Dou Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Yong Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Xueyan Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Qing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Peng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Xiaoai Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| |
Collapse
|
48
|
Sun H, Li F, Xu Z, Sun M, Cong H, Qiao F, Zhong X. De novo leaf and root transcriptome analysis to identify putative genes involved in triterpenoid saponins biosynthesis in Hedera helix L. PLoS One 2017; 12:e0182243. [PMID: 28771546 PMCID: PMC5542655 DOI: 10.1371/journal.pone.0182243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/14/2017] [Indexed: 11/19/2022] Open
Abstract
Hedera helix L. is an important traditional medicinal plant in Europe. The main active components are triterpenoid saponins, but none of the potential enzymes involved in triterpenoid saponins biosynthesis have been discovered and annotated. Here is reported the first study of global transcriptome analyses using the Illumina HiSeq™ 2500 platform for H. helix. In total, over 24 million clean reads were produced and 96,333 unigenes were assembled, with an average length of 1385 nt; more than 79,085 unigenes had at least one significant match to an existing gene model. Differentially Expressed Gene analysis identified 6,222 and 7,012 unigenes which were expressed either higher or lower in leaf samples when compared with roots. After functional annotation and classification, two pathways and 410 unigenes related to triterpenoid saponins biosynthesis were discovered. The accuracy of these de novo sequences was validated by RT-qPCR analysis and a RACE clone. These data will enrich our knowledge of triterpenoid saponin biosynthesis and provide a theoretical foundation for molecular research on H. helix.
Collapse
Affiliation(s)
- Huapeng Sun
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture / Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Fang Li
- Horticulture & Landscape College, Hunan Agricultural University, Changsha, China
| | - Zijian Xu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Mengli Sun
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hanqing Cong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture / Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture / Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
- * E-mail: (FQ); (X-hZ)
| | - Xiaohong Zhong
- Horticulture & Landscape College, Hunan Agricultural University, Changsha, China
- * E-mail: (FQ); (X-hZ)
| |
Collapse
|
49
|
Ding K, Pei T, Bai Z, Jia Y, Ma P, Liang Z. SmMYB36, a Novel R2R3-MYB Transcription Factor, Enhances Tanshinone Accumulation and Decreases Phenolic Acid Content in Salvia miltiorrhiza Hairy Roots. Sci Rep 2017; 7:5104. [PMID: 28698552 PMCID: PMC5506036 DOI: 10.1038/s41598-017-04909-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022] Open
Abstract
Phenolic acids and tanshinones are two major bioactive components in Salvia miltiorrhiza Bunge. A novel endogenous R2R3-MYB transcription factor, SmMYB36, was identified in this research. This transcript factor can simultaneously influence the content of two types of components in SmMYB36 overexpression hairy roots. SmMYB36 was mainly localized in the nucleus of onion epidermis and it has transactivation activity. The overexpression of SmMYB36 promoted tanshinone accumulation but inhibited phenolic acid and flavonoid biosynthesis in Salvia miltiorrhiza hairy roots. The altered metabolite content was due to changed metabolic flow which was regulated by transcript expression of metabolic pathway genes. The gene transcription levels of the phenylpropanoid general pathway, tyrosine derived pathway, methylerythritol phosphate pathway and downstream tanshinone biosynthetic pathway changed significantly due to the overexpression of SmMYB36. The wide distribution of MYB binding elements (MBS, MRE, MBSI and MBSII) and electrophoretic mobility shift assay results indicated that SmMYB36 may be an effective tool to regulate metabolic flux shifts.
Collapse
Affiliation(s)
- Kai Ding
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianlin Pei
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengqing Bai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanyan Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zongsuo Liang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
50
|
Enhancement of triterpenoid saponins biosynthesis in Panax notoginseng cells by co-overexpressions of 3-hydroxy-3-methylglutaryl CoA reductase and squalene synthase genes. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|